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Abstract 
Genes involved in spermatogenesis tend to evolve rapidly, but we lack a clear understanding of 

how protein sequences and patterns of gene expression evolve across this complex 

developmental process. We used fluorescence activated cell sorting (FACS) to generate 

expression data for early (meiotic) and late (postmeiotic) cell types across thirteen inbred strains 

of mice (Mus) spanning ~7 million years of evolution. We used these comparative 

developmental data to investigate the evolution of lineage-specific expression, protein-coding 

sequences, and expression levels. We found increased lineage specificity and more rapid 

protein-coding and expression divergence during late spermatogenesis, suggesting that 

signatures of rapid testis molecular evolution are punctuated across sperm development. 

Despite strong overall developmental parallels in these components of molecular evolution, 

protein and expression divergences were only weakly correlated across genes. We detected 

more rapid protein evolution on the X chromosome relative to the autosomes, while X-linked 

gene expression tended to be relatively more conserved likely reflecting chromosome-specific 

regulatory constraints. Using allele-specific FACS expression data from crosses between four 

strains, we found that the relative contributions of different regulatory mechanisms also differed 

between cell-types. Genes showing cis-regulatory changes were more common late in 

spermatogenesis, and tended to be associated with larger differences in expression levels and 

greater expression divergence between species. In contrast, genes with trans-acting changes 

were more common early and tended to be more conserved across species. Our findings 

advance understanding of gene evolution across spermatogenesis and underscore the 

fundamental importance of developmental context in molecular evolutionary studies.  
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Introduction 
Mature sperm are the most morphologically diverse animal cell type, likely as a consequence of 

intense selection on sperm form and function (Pitnick, et al. 2009). Genes involved in 

spermatogenesis also tend to evolve rapidly (Swanson, et al. 2003; Good and Nachman 2005; 

Turner, et al. 2008; Larson, et al. 2016; Finseth and Harrison 2018), suggesting that pervasive 

sexual selection also shapes molecular evolution (Swanson and Vacquier 2002; Harrison, et al. 

2015). However, direct genotype-to-phenotype connections remain elusive for primary sexually 

selected traits, and there are additional evolutionary forces acting during spermatogenesis that 

shape overall patterns of molecular evolution (Good and Nachman 2005; Burgoyne, et al. 2009; 

Dean, et al. 2009; Larson, et al. 2016; Schumacher and Herlyn 2018). For example, many 

spermatogenesis genes are highly specialized (Eddy 2002; Chalmel, et al. 2007; Green, et al. 

2018), which can relax pleiotropic constraint and contribute to rapid evolution even in the 

absence of positive directional selection (Winter, et al. 2004; Larracuente, et al. 2008; Meisel 

2011). Other components of spermatogenesis are highly conserved because small disruptions 

can lead to infertility (Burgoyne, et al. 2009). Thus, spermatogenesis genes are likely to 

experience strong and sometimes contradictory evolutionary pressures. Understanding how 

these processes interact to shape molecular evolution across spermatogenesis is essential to 

understanding how natural selection shapes the genetic determinants of male fertility. 

There are many components or levels of molecular evolution, spanning from protein 

sequence changes to differences in gene expression level, timing, and developmental specificity 

(King and Wilson 1975; Wray, et al. 2003; Larracuente, et al. 2008; Kaessmann 2010; Piasecka, 

et al. 2013; Cridland, et al. 2020). Many of these components have been shown to evolve 

relatively rapidly during spermatogenesis (Meiklejohn, et al. 2003; Khaitovich, et al. 2005; 

Voolstra, et al. 2007; Brawand, et al. 2011; Harrison, et al. 2015; Vicens, et al. 2017; Cridland, 

et al. 2020; Sánchez-Ramírez, et al. 2021), and generally trend towards increased divergence 

during the later stages of development (Good and Nachman 2005; Piasecka, et al. 2013; 

Larson, et al. 2016). Novel genes disproportionately arise with testis-specific expression 

(Levine, et al. 2006; Zhao, et al. 2014; Schroeder, et al. 2019; Cridland, et al. 2020; Lange, et al. 

2021), likely as a consequence of the more permissive regulatory environment of the later 

stages of sperm development (Kaessmann 2010; Soumillon, et al. 2013). Likewise, the later 

stages of spermatogenesis tend to be enriched for novel testis-specific genes (Eddy 2002; 

Chalmel, et al. 2007; Green, et al. 2018). These developmental signatures of novelty and 

specialization are further reflected in patterns of increased divergence of protein sequences 

(Good and Nachman 2005; Kousathanas, et al. 2014) and expression levels (Larson, et al. 
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2016) between species during the later stages of sperm development. Parallel signatures of 

rapid molecular evolution likely reflect both relaxed constraints during the late stages of 

spermatogenesis, and enhanced positive selection on late-developing sperm phenotypes (Eddy 

2002; Good and Nachman 2005; Larracuente, et al. 2008; Larson, et al. 2016; Cutter and 

Bundus 2020). However, it remains unclear how strongly different forms of molecular evolution 

are correlated. For example, changes in gene expression may often be cell or stage-specific 

and therefore may be less pleiotropic than protein-coding changes. This pleiotropic constraint 

hypothesis primarily applies to cis-regulatory changes, which likely affect one gene, whereas 

trans-regulatory changes can affect many genes across multiple cell types (Wray, et al. 2003; 

Carroll 2008; Cutter and Bundus 2020). 

The X chromosome provides a compelling example of how the conflicting selective 

pressures acting on spermatogenesis may shape different components of molecular evolution. 

Theory predicts that the X chromosome should evolve more rapidly than the autosomes, 

particularly if most beneficial mutations are recessive, because X-linked recessive beneficial 

mutations will always be exposed to selection in males (Charlesworth, et al. 1987; Vicoso and 

Charlesworth 2009). Differences in effective population size (Ne) on the X chromosome may 

also affect relative rates of fixation on the X chromosome and autosomes due to genetic drift, 

but the relative differences in Ne depend on the relative reproductive success of different sexes 

in a population (Vicoso and Charlesworth 2009). Consistent with more efficient X-linked 

selection, protein-coding evolution tends to be faster on the X chromosome compared to the 

autosomes in several taxa, and this effect is often strongest for genes with male-biased 

expression (Khaitovich, et al. 2005; Baines and Harr 2007; Baines, et al. 2008; Meisel and 

Connallon 2013; Parsch and Ellegren 2013; Larson, et al. 2016). Novel genes tend to arise 

more often on the X chromosome, and these are often expressed during spermatogenesis 

(Levine, et al. 2006; Kaessmann 2010). There is also some evidence for rapid expression 

evolution on the X chromosome in flies and mammals (Khaitovich, et al. 2005; Brawand, et al. 

2011; Meisel, et al. 2012; Coolon, et al. 2015), but X-linked expression in mice appears 

conserved relative to autosomal genes expressed during the later stages of spermatogenesis 

(Larson, et al. 2016). Stage-specific differences in relative rates of expression evolution on the X 

chromosome may result from the unique regulatory pattern that the sex chromosomes undergo 

during mammalian spermatogenesis. In males, the X chromosome is inactivated early in 

meiosis (i.e., meiotic sex chromosome inactivation, MSCI; McKee and Handel 1993) and 

remains partially repressed during the postmeiotic haploid stages of sperm development (i.e., 

postmeiotic sex chromosome repression, PSCR; Namekawa, et al. 2006). The theory 
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underlying faster-X protein coding evolution may also apply to cis-regulatory gene expression 

evolution, but X chromosome expression divergence is likely also affected by trans-regulatory 

changes on other chromosomes and regulatory constraints unique to the X chromosome (e.g., 

MSCI and PSCR, Meisel, et al. 2012). Thus, comparing relative expression divergence on the X 

chromosome compared to the autosomes can give insight into the types of mutations and 

selective forces affecting X chromosome expression. 

These stage-specific patterns highlight the importance of studying specific components 

of molecular evolution in a developmental framework (fig. 1A; Larson, et al. 2018a; Cutter and 

Bundus 2020). However, studies of molecular evolution have primarily focused on pairwise 

contrasts across nuanced aspects of tissue development (Good and Nachman 2005; Larson, et 

al. 2016), or examined protein-coding versus regulatory evolution in whole tissues (Khaitovich, 

et al. 2005; Voolstra, et al. 2007; Mack, et al. 2016; Vicens, et al. 2017; Cridland, et al. 2020), 

without combining both in a phylogenetic framework (but see Murat, et al. 2021). Relying on 

whole tissue expression comparisons may be particularly problematic for spermatogenesis, 

because differences in testis composition are expected to evolve rapidly between species 

(Ramm and Schärer 2014; Yapar, et al. 2021) and may confound patterns of expression level 

divergence (Good, et al. 2010; Larson, et al. 2016; Hunnicutt, et al. 2021). Nonetheless, 

collection of stage or cell-specific expression data remains technically demanding (da Cruz, et 

al. 2016; Green, et al. 2018), likely limiting widespread use in comparative studies. As a 

consequence, most evolutionary studies of gene expression have relied on whole tissue 

comparisons between closely related species pairs, instead of using more powerful 

phylogenetic approaches (Rohlfs and Nielsen 2015; Dunn, et al. 2018).  

In this study, we use a comparative developmental approach to gain a more 

comprehensive understanding of molecular evolution across spermatogenesis in house mice 

(Mus). Mice are the predominant laboratory model for mammalian reproduction (Phifer-Rixey 

and Nachman 2015; Firman 2020), with abundant genomic resources (Keane, et al. 2011; 

Thybert, et al. 2018), and established wild-derived inbred strains that can be crossed to resolve 

mechanisms underlying expression divergence (i.e., cis- versus trans-regulatory changes; 

Mack, et al. 2016). Mice also show divergence in sperm head morphologies across closely 

related species (Skinner, et al. 2019) and experience sperm competition in the wild (Dean, et al. 

2006), providing a compelling system for understanding the evolution of spermatogenesis. 

We used fluorescence activated cell sorting (FACS) to resolve patterns of gene 

expression in two enriched spermatogenic cell populations across several mouse strains, 

species, and cross-types (fig. 1A). Our study used two main comparisons. First, we evaluated 
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divergence in spermatogenic protein sequences and gene expression levels across thirteen 

inbred strains of mice, including two subspecies of the house mouse (Mus musculus) and two 

other Mus species spanning seven million years of evolution (fig. 1B; Chevret, et al. 2005). 

Second, we used published data from reciprocal crosses between a subset of these inbred 

strains to resolve the relative contribution of cis- versus trans-regulatory changes to expression 

divergence. We used these data to address five main questions: (i) Is gene expression more 

lineage-specific during late spermatogenesis? (ii) Do protein-coding sequences and gene 

expression levels evolve faster during the later stages of spermatogenesis? (iii) Is the rate of 

molecular evolution elevated on the X chromosome compared to the autosomes, and does this 

relationship change across spermatogenesis? (iv) To what extent are protein-coding and gene 

expression divergence correlated, and does this relationship change across developmental 

stages? (v) Are there differences in the relative contributions of regulatory mechanisms (cis- 

versus trans-regulatory changes) across spermatogenesis? 

 
Results  
Spermatogenesis Gene Expression by Cell Type and Lineage 

We collected spermatogenesis expression data from 34 mice representing four different species 

or subspecies: Mus musculus musculus, Mus musculus domesticus, Mus spretus, and Mus 

pahari. We will use the abbreviations mus, dom, spr, and pah to reference the four major 

groups, and refer to all taxa as “lineages” for concision (fig. 1B). For each sample, we generated 

expression data for two spermatogenic cell types, an early meiotic cell type (leptotene-zygotene 

cells from early prophase of meiosis I, hereafter “early”) and a post-meiotic cell type (round 

spermatids, hereafter “late”). We identified 23,164 one-to-one orthologs, including both protein-

coding and non-protein-coding genes, that were annotated in all four mouse lineages and the 

mouse reference (GRCm38). From this set, we defined expressed genes as those with an 

FPKM > 1 in all samples of a given cell type. Expression variance cleanly separated samples by 

cell type and lineage (supplementary fig. S1, Supplementary Material online), indicating 

successful enrichment of different cell types. Most expressed genes were detected in both cell 

types (table 1). However, approximately one third of the detected genes were preferentially 

expressed or “induced” in a given cell type (transcripts with > 2X median expression level in one 

cell type across all lineages; table 1). We also identified expressed genes that show testis-

specific expression based on published multi-tissue expression data (Chalmel, et al. 2007). We 

found that 493 testis-specific genes were induced late, while only 65 testis-specific genes were 

induced early (table 1), consistent with increased specificity late in spermatogenesis (Eddy 
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2002; Larson, et al. 2016; Green, et al. 2018). To distinguish experimental noise from 

biologically meaningful expression, we also used a Bayesian approach to determine if a gene 

was “active” in a tissue or cell type (Thompson, et al. 2020) and found broad overlap with genes 

in the expressed dataset (table 1). Using the same framework, we identified genes showing 

evidence for lineage-specific expression (“active” in a single lineage or subset of lineages). We 

tested for lineage-specificity in each cell type separately, so a gene that we considered lineage-

specific in one cell type may be expressed in other lineages during other spermatogenesis 

stages. 

We found that lineage-specificity was rare overall, but more common for autosomal 

genes active during late spermatogenesis (Pearson’s χ2 test; dom: P << 0.0001, mus: P << 

0.0001, spr: P << 0.0001, dom-mus common ancestor: P << 0.0001; fig. 2A). X-linked genes 

showed no significant differences in lineage-specificity between early and late cell types (fig. 

2B), which could reflect a lack of specialization on the sex chromosomes, or reduced power to 

detect differences between cell types given small sample sizes. Few genes were lineage-

specific in both cell types, and all were autosomal (dom: 9 genes, mus: 24 genes, spr: 24 

genes, dom-mus: 21 genes). We found similar results using a log fold-change (logFC) approach 

with different logFC cutoff values to identify lineage-specific genes (supplementary fig. S2, 

supplementary table S1, Supplementary Material online). Lineage-specific genes were not 

enriched for any processes specifically related to male reproduction. We also tested if lineage-

specific genes tended to have higher or lower associations with co-expression networks using 

weighted gene co-expression network analysis (WGCNA, Langfelder and Horvath 2008). We 

did not see a general pattern across all lineage-specific genes, but genes specific to a given 

lineage tended to have higher association with co-expression modules associated with that 

lineage (supplementary fig. S3A, Supplementary Material online). Our results suggest that 

lineage-specific expression of spermatogenic genes is relatively uncommon at these shallow 

phylogenetic scales, but more likely to arise later in spermatogenesis. 

 
Greater Protein-Coding and Gene Expression Divergence during Late Spermatogenesis  
Having detected subtle increases in lineage-specificity late in spermatogenesis, we next tested 

if rates of protein sequence evolution (dN/dS) and expression level divergence were also 

elevated during the postmeiotic stage, as has been reported previously (Larson, et al. 2016). 

Genes induced late in spermatogenesis showed significantly higher rates of protein-coding 

divergence on both the autosomes (n = 2046 genes induced early, median dN/dS = 0.11; n = 

1711 genes induced late, median dN/dS = 0.20; Wilcoxon rank sum test P << 0.0001) and the X 
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chromosome (n = 54 genes induced early, median dN/dS = 0.25; n = 61 genes induced late, 

median dN/dS = 0.41; Wilcoxon rank sum test P = 0.049; fig. 3A, supplementary tables S2 and 

S3, Supplementary Material online). The 489 testis-specific genes showed elevated dN/dS 

overall, but most testis-specific genes were expressed in both cell types and there was no 

significant difference between genes expressed early and late for the autosomes (n = 350 

genes expressed early, median dN/dS = 0.28; n = 424 genes expressed late, median dN/dS = 

0.30; Wilcoxon rank sum test P = 1) or the X chromosome (n = 16 genes expressed early; 

median dN/dS = 0.59; n = 24 genes expressed late, median dN/dS = 0.58; Wilcoxon rank sum 

test P = 1). However, 348 testis-specific genes were preferentially expressed in the late cell 

type, representing ~20% of all genes induced late for which we were able to calculate dN/dS. 

Taken together, these results confirm that tissue specificity plays an important role in the rapid 

protein-coding divergence of spermatogenic genes, and that most of this signature involves 

genes induced during postmeiotic spermatogenesis. 

We used a phylogenetic ANOVA to estimate expression divergence while controlling for 

phylogenetic relatedness and variance within lineages [i.e., the Expression Variance and 

Evolution (EVE) model; Rohlfs and Nielsen 2015]. We report expression divergence from EVE 

as − log(𝑏𝑒𝑡𝑎𝑖), where betai is a metric from EVE that represents the ratio of within-lineage 

variance to between-lineage evolutionary divergence, and higher positive − log(𝑏𝑒𝑡𝑎𝑖) values 

correspond to greater divergence between lineages. Expression divergence was higher for 

genes induced late in spermatogenesis on both the autosomes (n = 2461 genes induced early, 

median EVE divergence = -1.09; n = 2305 genes induced late, median EVE divergence = -0.70; 

Wilcoxon rank sum test P << 0.0001) and the X chromosome (n = 44 genes induced early, 

median EVE divergence = -2.04; n = 68 genes induced late, median EVE divergence = -0.80; 

Wilcoxon rank sum test P = 0.00019; fig. 3B). This pattern held for all expressed genes, testis-

specific genes, and different threshold cutoffs for considering genes induced (supplementary 

table S4, supplementary table S5, Supplementary Material online). We also found higher 

divergence late for expressed and induced autosomal genes (supplementary table S5, 

Supplementary Material online) based on pairwise expression divergences using logFC and the 

metric from (Meisel, et al. 2012); however, the pairwise framework did not give a consistent 

pattern on the X chromosome. When looking at all genes, most pairwise comparisons showed 

higher divergence late, but induced genes showed no difference between early and late 

spermatogenesis for most comparisons. However, the dom versus spr comparison had lower 

divergence late for all expressed genes and induced genes (supplementary table S5, 

Supplementary Material online).  
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Next, we tested if pleiotropic constraint imposed by protein-protein interactions 

contributed to less divergence during early spermatogenesis. We compared EVE expression 

divergence and dN/dS protein sequence divergence to the number of protein-protein 

interactions for genes in the mouse interactome database (MIPPIE, Alanis-Lobato, et al. 2020). 

We found that genes induced early had fewer high-scoring protein-protein interactions (FDR-

corrected Wilcoxon rank sum P-value << 0.0001, supplementary fig. S4, Supplementary 

Material online), suggesting that these genes may actually be less constrained by protein-

protein interactions. However, this difference was subtle, and protein-protein interactions are 

only one measure of potential pleiotropy, so genes induced early may still be constrained by 

their roles in other tissues or cell types. For both cell types, the number of protein-protein 

interactions was significantly negatively correlated with dN/dS (early: Spearman’s rho =  -0.122, 

P << 0.001; late: Spearman’s rho = -0.143, P << 0.001), but not EVE divergence (early: 

Spearman’s rho = -0.032, P = 0.5; late: Spearman’s rho = -0.060, P = 0.5), consistent with 

hypotheses that protein sequence evolution is more constrained by pleiotropy and protein-

protein interactions compared to gene expression evolution (Carroll 2008). 

Collectively, we found strong evidence for more rapid protein-coding and gene 

expression level divergence during postmeiotic spermatogenesis, suggesting that these general 

patterns hold after controlling for phylogeny and at deeper divergence levels than had 

previously been shown in mice (Larson, et al. 2016). Despite our expanded phylogenetic 

sample, we still lacked the power to determine if more rapid expression and protein-coding 

divergence is due to positive directional selection (supplementary fig. S5, Supplementary 

Material online). 

 
Weak Positive Correlation between Gene Expression and Protein-Coding Divergence 

We next tested for more general relationships between protein-coding and expression 

divergence across sets of genes expressed or induced during spermatogenesis (supplementary 

fig. S6, supplementary table S6, Supplementary Material online). Across all autosomal genes 

expressed early, there was a weak positive correlation between dN/dS and pairwise expression 

divergence (ρ = 0.13-0.17, Spearman’s rank correlation P << 0.0001). For induced genes, this 

correlation was weaker but still significant (ρ = 0.07-0.11, Spearman’s rank correlation P < 

0.05). For the late cell type, there was also a weak positive correlation between pairwise 

expression divergence and dN/dS on the autosomes, but the correlation was weaker than that 

seen in the early cell type (ρ = 0.03-0.05, Spearman’s rank correlation P < 0.05). There was no 

correlation for the set of genes induced late. When looking only at genes with evidence for 
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positive directional selection at the protein-coding level after correction for multiple tests (366 

genes), the correlation was stronger on the autosomes late for the dom vs spr (n = 250 genes, ρ 

= 0.17, Spearman’s rank correlation P = 0.02) and mus vs spr comparisons (n = 249 genes, ρ = 

0.18, Spearman’s rank correlation P << 0.0001). When comparing dN/dS to EVE expression 

divergence, we only saw a significant positive correlation for genes expressed late that were 

also under positive selection at the protein-coding level (n = 160 genes, ρ = 0.18, Spearman’s 

rank correlation P = 0.04). We also tested if dN/dS was correlated with module eigengene 

values in our WGCNA. There was a weak positive correlation for eigengene values in the late 

cell type module (ρ = 0.033, FDR-corrected P value = 0.03, Supplementary fig. S3C, 

Supplementary Material online), but not the early cell type module (ρ = 0.026, FDR-corrected P 

value = 0.07). In summary, we tended to observe a positive relationship between protein-coding 

and expression level divergence, but the strength of this relationship was weak and varied by 

gene set and divergence metric. 

 

Faster-X Protein-Coding but Not Gene Expression Evolution 

In addition to comparisons between spermatogenesis cell types, we compared relative rates of 

molecular evolution between X-linked and autosomal genes within a cell type. We found that 

protein-coding divergence was higher on the X chromosome, both early and late, across all 

gene sets (fig. 3A, supplementary tables S3 and S4, Supplementary Material online) consistent 

with several previous studies (Khaitovich, et al. 2005; Baines, et al. 2008; Meisel and Connallon 

2013; Kousathanas, et al. 2014; Larson, et al. 2016). For expression evolution, we found lower 

divergence on the X chromosome early using EVE (n = 2461 autosomal genes, median EVE 

divergence = -1.09; n = 44 X-linked genes, median EVE divergence = -2.04; Wilcoxon rank sum 

test P =0.00015; fig. 3B), but higher X-linked divergence when using pairwise comparisons 

(supplementary table S5, Supplementary Material online). A major difference between these 

approaches was that EVE calculates divergence across a phylogeny, so genes that show 

divergent expression levels in one lineage may still be conserved across the entire phylogeny. 

We detected significant correlations between pairwise divergence values for different pairwise 

comparisons on the autosomes, and during late spermatogenesis, but lower or non-significant 

correlations on the X early (table 2). Thus, many genes on the X chromosome expressed early 

showed relatively high divergence between two particular lineages, but lower divergence across 

other pairwise comparisons and across the phylogeny as a whole. This lineage-specific 

variance underscores the importance of evaluating gene expression divergence in a 

phylogenetic framework (Rohlfs and Nielsen 2015; Dunn, et al. 2018). 
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 In late spermatogenic cells (i.e., round spermatids), X-linked expression divergence was 

similar to or lower than on the autosomes depending on the contrast and approach. Using EVE, 

we found similar divergence on the X chromosome and autosomes late (n = 2305 autosomal 

genes, median EVE divergence = -0.70; n = 68 X-linked genes, median EVE divergence = -

0.80; Wilcoxon rank sum test P = 0.34; fig. 3B), while pairwise comparisons gave mixed results, 

depending on which two lineages were compared (supplementary table S5, Supplementary 

Material online). There were proportionally fewer differentially expressed genes on the X 

chromosome (fig. 4, supplementary fig. S7, Supplementary Material online), and this pattern 

was strongest for the more closely related comparisons (hypergeometric test; mus versus dom 

P << 0.0001, spr versus dom P << 0.0001, spr versus mus P << 0.0001). Across all metrics of 

expression divergence and both developmental stages, there was no evidence for pervasive 

faster-X gene expression level evolution. We also asked if there were differences in the degree 

of module association for X chromosome and autosomal genes based on WGCNA. X-linked 

genes tended to have higher eigengene values for the early cell type module (Wilcoxon rank 

sum test P << 0.001), but lower values for the late cell type module (Wilcoxon rank sum test P 

<< 0.001, supplementary fig. S3B, Supplementary Material online). Because the X chromosome 

is repressed during late spermatogenesis, these differences in module association are likely a 

consequence of overall differences in expression level. 

 
Relative Contributions of cis- and trans-Regulatory Evolution Vary across 
Spermatogenesis 

Having shown differences in expression divergence between cell types, we next asked if there 

were differences in the types of regulatory mutations (e.g., cis- versus trans-regulatory changes) 

underlying expression divergence of autosomal genes in each cell type. Note that allele-specific 

expression cannot be examined for X-linked genes in hemizygous males. We used whole testis 

(Mack, et al. 2016) and FACS-sorted (Larson, et al. 2017) data from reciprocal crosses between 

house mouse subspecies (dom x mus) to estimate allele-specific expression (ASE) and assign 

genes to eight different regulatory categories: cis, trans, cis X trans, compensatory, cis + trans 

opposite, cis + trans same, other, and conserved (Coolon, et al. 2014; Mack, et al. 2016).  

Across all cell types and genotypes, 50-90% of genes were conserved. Comparing the 

two spermatogenic stages, we saw striking differences in the proportions of non-conserved 

genes within each regulatory category (fig. 5, supplementary table S7, Supplementary Material 

online). Trans was more common than cis early, whereas trans and cis made up a similar 

proportion of regulatory changes late (fig. 5, supplementary table S7, Supplementary Material 
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online). Compensatory changes (compensatory and cis+trans opposite) were more common 

than reinforcing (cis+trans same) in both cell types, but there was a higher relative proportion of 

reinforcing late (fig. 5, supplementary table S7, Supplementary Material online). Correlated error 

can lead to an overestimation of compensatory effects in some instances; therefore we verified 

our result showing a bias towards compensatory changes using a subtraction approach with 

cross-replicate analysis (Fraser 2019; see Supplementary Methods for details, Supplementary 

Material online). We found significant negative correlations between cis and trans effects, with a 

trend towards more negative correlations early (early: r = -0.13 to -0,16, P << 0.0001; late: r = -

0.12 to -0.15 P << 0.0001). We also asked if genes tended to be assigned to the same 

regulatory category or switch categories between the two cell types. Overall, most genes 

assigned to a given regulatory category in one cell type were either not expressed or conserved 

in the other cell type (supplementary table S8, Supplementary Material online). Of the 1052 

genes that were assigned to a regulatory category in both cell types, 501 remained in the same 

category and 551 switched categories, indicating that different types of mutations may shift the 

regulation of the same genes in different cell types. 

We focused on results for the dom (LEWES)♀ X mus (PWK)♂ cross (fig. 5) because 

these F1 hybrids are more fertile and therefore less likely to have misexpressed genes due to 

hybrid incompatibilities (Good, et al. 2010). However, the subfertile reciprocal hybrids also 

showed similar overall proportions of genes in each regulatory category. The proportions of 

different regulatory mechanisms in whole testes were more similar to the late cell type 

(supplementary table S7, Supplementary Material online), consistent with previous studies 

showing high overlap in expression profiles between whole testes and spermatid stage cells 

(Soumillon, et al. 2013). We further verified our results using pure strain (LEWES and PWK) 

expression data from our phylogenetic expression dataset to determine differences in parental 

strain expression levels (supplementary table S7, Supplementary Material online). Finally, we 

evaluated the relative contributions of regulatory mechanisms contributing to expression 

differences between strains within each M. musculus subspecies using expression data from 

within-subspecies F1s (WSB X LEWES and CZECHII X PWK) and from the respective parental 

inbred strains. Consistent with results from the more divergent F1 hybrids, there was more trans 

than cis early but some variation depending on subspecies and cross-type (cis early: 8-14%, 

trans early: 46-59%, cis late: 12-22%, trans late: 28-29%; supplementary table S7, 

Supplementary Material online). In summary, early and late spermatogenesis differed in the 

types of regulatory mutations contributing to expression divergence, with a proportionally higher 
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contribution of trans-regulatory changes early. This pattern was consistent across different 

degrees of evolutionary divergence and between reciprocal crosses. 

 

cis-Regulatory Changes Tended to Have Larger Effects on Expression Level Divergence 
Given that trans-regulatory changes were proportionally more common during early 

spermatogenesis (fig. 5), and that expression levels tended to be more conserved early (fig. 3), 

we hypothesized that trans-regulatory changes would have smaller effect sizes (Coolon, et al. 

2014; Hill, et al. 2020). Consistent with this, genes with trans changes showed lower median 

divergence than those with cis changes (fig. 6). We saw higher divergence for reinforcing 

mutations based on logFC, but not EVE (fig. 6), suggesting that genes with reinforcing changes 

specific to the dom and mus comparison may not accumulate more divergence at deeper 

phylogenetic levels. For the early cell type, 26% of genes in the reinforcing category overlapped 

with genes that had high pairwise divergence between dom and mus, whereas only 10-16% of 

genes in this category overlapped with high divergence genes in other pairwise comparisons 

(supplementary table S9, Supplementary Material online). Similar patterns were observed for 

late cell type genes, with 22% of genes in the reinforcing category overlapping those with high 

divergence between dom and mus but only 10-14% overlapping with genes showing high 

divergence in other pairwise comparisons (supplementary table S9, Supplementary Material 

online). Collectively, cis-regulatory changes tended to have larger effects on expression 

divergence than trans-regulatory changes, and reinforcing mutations tended to have large 

effects on expression divergence between mus and dom, but not at deeper levels of 

evolutionary divergence. 

 
Discussion 

Developmental stage and context play an important role in shaping the molecular evolution of 

reproductive genes (Dean, et al. 2009; Larson, et al. 2016; Finseth and Harrison 2018; 

Schumacher and Herlyn 2018), with genes expressed in later developmental stages evolving 

more rapidly (Good and Nachman 2005; Larson, et al. 2016). However, comparing gene 

expression and protein divergence across developmental stages has rarely been done in a 

phylogenetic framework. In this study, we combined comparative genomics with cell sorting in 

four species to understand mouse spermatogenesis evolution across a common developmental 

framework. Our results give insight into how evolution proceeds at different stages of sperm 

development, at different molecular levels, and on different chromosome types. 
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Molecular Divergence across Development 
There is a long-standing prediction that early developmental stages should be more 

constrained, with evolutionary divergence gradually increasing across development (Abzhanov 

2013), which likely contributes to more rapid molecular evolution during the later stages of 

sperm development. In addition, the postmeiotic stages are enriched for genes with narrower 

expression profiles or highly specific biological functions and are therefore expected to 

experience relaxed pleiotropic constraint (Eddy 2002; Good and Nachman 2005; Green, et al. 

2018), also motivating our general hypothesis that the postmeiotic round spermatid stage would 

diverge more rapidly. Sexual selection is also likely to be a primary determinant of 

spermatogenic evolution, but variation in the intensity of sexual selection across 

spermatogenesis is not well understood (White-Cooper, et al. 2009). Sperm competition and 

cryptic female choice can select for changes in sperm production rate, form, or function, and 

many aspects of sperm morphology correlate with the intensity of post-mating sexual selection 

(Lüpold, et al. 2016; McLennan, et al. 2017; Pahl, et al. 2018). Rates of mitotic and initial meiotic 

divisions during early spermatogenesis can control the overall rate of sperm production (Ramm 

and Schärer 2014). Therefore, selection for increased sperm production likely acts during the 

development of spermatogonia (diploid mitotic cells; White-Cooper, et al. 2009). In contrast, 

sexual selection shaping the form and function of mature sperm (e.g., sperm swimming speed 

and fertilization ability) likely acts on later developmental stages such as haploid spermatids 

(Alavioon, et al. 2017). However, many genes involved in mature spermatozoa functions are 

also highly expressed during early meiosis (da Cruz, et al. 2016), suggesting that spermatozoa 

may be shaped by regulatory networks operating throughout spermatogenesis. 

All aspects of molecular evolution that we considered showed more divergence when 

considering genes induced in late spermatogenesis: lineage-specific expression (fig. 2), protein-

coding divergence, and expression level divergence (fig. 3). On first principles, these likely 

result from a combination of positive selection and relaxed developmental and pleiotropic 

constraint (Eddy 2002; Swanson and Vacquier 2002; Winter, et al. 2004; Good and Nachman 

2005; Abzhanov 2013; Green, et al. 2018). However, our study was underpowered to formally 

test for positive selection using likelihood ratio test approaches (Anisimova, et al. 2001; Rohlfs 

and Nielsen 2015). Thus, the relative contributions of positive selection and relaxed constraint to 

rapid spermatogenesis evolution remain unclear, especially for gene expression phenotypes. 

Induced genes provided strong evidence for rapid evolution late, but results were less 

clear when looking at other genes. Spermatogenesis is a transcriptionally complex process, with 

most genes in the genome expressed in the testes (Soumillon, et al. 2013) and high overlap 
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between genes expressed early and late in our dataset (table 1). For protein-coding divergence, 

we saw more rapid evolution late only when looking at the induced dataset, but not when 

looking at all expressed genes, likely because most genes in our dataset were expressed in 

both cell types. For expression divergence, there was more rapid evolution late even when 

looking at all expressed genes. This suggests that even genes with broader (i.e., non-induced) 

expression patterns tended to show more conserved expression early in spermatogenesis.  

Testis-specific genes tended to be both induced late and rapidly evolving at the protein-

coding level. Testis-specific and male-biased gene sequences often evolve rapidly, which could 

be the result of positive selection on genes with specific spermatogenesis functions as well as 

relaxed constraint because these genes tend to have highly specific functions (Meiklejohn, et al. 

2003; Baines, et al. 2008; Meisel 2011; Parsch and Ellegren 2013). However, we did not see a 

significant faster late pattern for protein-coding or pairwise expression divergence when looking 

only at testis-specific genes. Although there were relatively few testis-specific genes, it appears 

that they tended to be rapidly evolving regardless of which spermatogenesis stage they were 

expressed in. If generally true, more rapid divergence late in spermatogenesis may partially 

reflect a higher proportion of testis-specific genes induced in the late cell type (table 1). 

In addition to these broad patterns of molecular evolution, we explored the potential 

functional relevance of rapid divergence for specific genes (supplementary table S10, 

Supplementary Material online). We detected 20 genes with high (>2.5) EVE divergence in 

either cell type, and of these 15 were broadly expressed, but five may have specific roles in 

spermatogenesis (The UniProt Consortium 2020). For example, Rnf19a had an EVE value of 

4.2 in the late cell type and has a known role in the formation of the sex body, which isolates the 

sex chromosomes in the nucleus during meiosis, a process that is required for proper 

spermatogenesis (Párraga and del Mazo 2000) and appears to be disrupted in sterile hybrid 

mice (Bhattacharyya, et al. 2013). 

 
Gene Expression versus Protein-Coding Divergence 
Protein-coding changes alter a gene in every tissue and developmental stage in which it is 

expressed, whereas expression changes have the potential to be more specific (Wray, et al. 

2003; Carroll 2008). Expression changes, specifically cis-regulatory changes, should be less 

constrained by pleiotropy and may underlie evolutionary changes when purifying selection acts 

more strongly against protein-coding divergence (Wray, et al. 2003; Carroll 2008). Under this 

model, we might expect to see less pronounced differences in relative expression levels when 

comparing early versus late stages. However, more recent work has shown that cis-regulatory 
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elements such as enhancers can be highly pleiotropic, so cis-regulatory changes may be more 

constrained than once thought (Sabarís, et al. 2019; Hill, et al. 2020). If gene expression and 

protein-coding are subject to similar constraints, we would expect them to show similar 

evolutionary patterns across spermatogenesis, as we observed for autosomal genes (fig. 3).  

Interestingly, despite parallel trends in relative divergence across spermatogenesis, 

expression level divergence and protein-coding divergence were not strongly correlated across 

genes, suggesting that these two types of molecular changes mostly evolve independently 

(Khaitovich, et al. 2005). Perhaps surprisingly, there was no overlap between genes with very 

rapid protein-coding divergence (dN/dS > 1.5) and high expression divergence (EVE divergence 

> 2.5). Likewise, only 26 genes with high pairwise expression divergence in at least one 

comparison (pairwise divergence metric > 1) also had high protein-coding divergence (dN/dS > 

1.5; supplementary table S10, Supplementary Material online). Whether expression or protein-

coding is more rapid for a particular gene may depend on factors such as expression breadth 

and protein function, but rarely did spermatogenic genes appear to be rapidly evolving for both 

gene expression and protein sequences. 

We also investigated the evolution of lineage-specificity. Testes and sperm tend to be 

enriched for lineage-specific genes (Brawand, et al. 2011) and novel genes (Schroeder, et al. 

2019; Cridland, et al. 2020; Lange, et al. 2021). Lineage-specific and novel genes may be 

common in spermatogenesis because testes are highly transcriptionally active and have a high 

tissue-specific expression profile, which may allow new genes to arise without disrupting other 

processes (Levine, et al. 2006; Kaessmann 2010; Soumillon, et al. 2013; Zhao, et al. 2014). We 

found that late spermatogenesis also had proportionally more lineage-specific genes (fig. 2). 

Increased lineage-specificity late is consistent with and likely contributed to higher protein and 

expression level divergence late, as all results suggest that spermatogenesis can tolerate more 

genetic changes during the late stages without impacting fertility. 

 
X Chromosome Evolution 
The X chromosome is predicted to evolve faster than the autosomes because it is hemizygous 

in males so beneficial recessive mutations will fix more quickly (Charlesworth, et al. 1987; 

Vicoso and Charlesworth 2009). Empirical studies show evidence for a faster-X effect at the 

protein-coding level in many taxa, particularly for male reproductive genes (Khaitovich, et al. 

2005; Baines, et al. 2008; Meisel and Connallon 2013; Parsch and Ellegren 2013; Larson, et al. 

2016; but see Whittle, et al. 2020). Our data provide strong evidence for faster-X protein-coding 
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evolution for both early and late spermatogenesis, demonstrating that the faster-X effect applies 

across genes involved in different spermatogenesis stages in mice.  

Our results were more complex for expression evolution, with phylogenetic (Rohlfs and 

Nielsen 2015) and pairwise approaches (Meisel, et al. 2012) sometimes yielding contrasting 

results. In the early cell type, pairwise comparisons supported a faster-X effect, while the 

phylogenetic model did not (fig. 3B, supplementary table S5, Supplementary Material online). 

Correlations between different pairwise divergence values were relatively low on the X 

chromosome early, suggesting that X-linked genes with high expression level divergence in one 

pairwise comparison did not tend to have high divergence in other comparisons (table 2). In the 

late cell type, both phylogenetic and pairwise divergence metrics supported a similar rate of X-

linked and autosomal expression evolution (fig. 3B, supplementary table S5, Supplementary 

Material online). It is well-established that lineage-specific changes can create false signatures 

of rapid divergence in pairwise comparisons (Felsenstein 1985), including in studies of gene 

expression evolution (Dunn, et al. 2018). Thus, our results highlight the importance of 

accounting for shared evolutionary history when inferring general evolutionary trends (Rohlfs 

and Nielsen 2015; Dunn, et al. 2018). 

Overall, our results did not support a faster-X effect for testis gene expression evolution, 

in contrast to several previous studies (Khaitovich, et al. 2005; Brawand, et al. 2011; Meisel, et 

al. 2012). These studies were in other systems and used whole testes samples, which are made 

up of different cell types, so signals of expression divergence may partially reflect differences in 

cell type composition rather than true per cell changes in expression levels (Good, et al. 2010; 

Hunnicutt, et al. 2021; Yapar, et al. 2021). One previous study used cell-type specific data and 

found that the X chromosome showed fewer differentially expressed genes during late 

spermatogenesis between mus and dom (Larson, et al. 2016), and our phylogenetic sampling 

demonstrates that this result likely applies across mouse species.  

Theoretical predictions for the faster-X effect on protein-coding evolution may also apply 

to gene expression changes, but only for cis-regulatory changes or trans-regulatory changes 

where both the causative mutations and affected loci are on the X chromosome (Meisel and 

Connallon 2013; Larson, et al. 2016). The lack of faster-X effect for gene expression could 

indicate that trans-regulatory changes on other chromosomes play an important role in X 

chromosome spermatogenesis expression evolution. Unfortunately, we are unable to 

differentiate allele-specific testis expression for X-linked genes in hemizygous males and thus 

the contribution of cis- versus trans-regulatory changes remain speculative. Nonetheless, it is 

plausible that contrasting patterns of expression level and protein sequence divergence on the 
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X chromosome could also reflect the fact that X-linked regulatory phenotypes experience 

additional constraints during spermatogenesis (Larson, et al. 2016). For example, the sex 

chromosomes undergo MSCI and PSCR, which likely imposes an overall repressive regulatory 

environment that constrains gene expression levels but not protein-coding changes. Disruption 

of MSCI and PSCR strongly impairs male fertility, so evolutionary constraints on X chromosome 

expression during spermatogenesis are expected to be strong (Burgoyne, et al. 2009; Good, et 

al. 2010; Larson, et al. 2017). These stage-specific mechanisms would not explain lower 

regulatory divergence early, which we also observed (fig. 3B). Overall, our results support the 

hypothesis that regulatory constraints reduce X-linked expression level divergence during at 

least some stages of spermatogenesis, while still allowing rapid protein-coding divergence 

(Larson, et al. 2016; Larson, et al. 2018a). This finding underscores how different components 

of molecular evolution may experience unique evolutionary pressures that result in distinct 

patterns of divergence (Brawand, et al. 2011; Halligan, et al. 2013; Larson, et al. 2016). 

 
Regulatory Mechanisms Underlying Expression Divergence 
Resolving the relative contributions of cis- versus trans-acting mutations underlying expression 

divergence is an important step towards understanding the genetic architecture of expression 

phenotypes and how different evolutionary forces may act on gene expression (Benowitz, et al. 

2020; Hill, et al. 2020). Although considerable progress has been made in a few key model 

systems on this important question (Goncalves, et al. 2012; Coolon, et al. 2014; Mack, et al. 

2016; Benowitz, et al. 2020; Cridland, et al. 2020; Sánchez-Ramírez, et al. 2021), available data 

mostly come from whole tissues or organisms. Our results showed that the relative contribution 

of underlying regulatory mechanisms can differ dramatically between two cell types within a 

single complex tissue. Genes assigned to a regulatory category in one cell type were often 

conserved, not expressed, or assigned to a different category in the other cell type, suggesting 

that most regulatory mutations were cell-type-specific in our experiments. This finding supports 

the hypothesis that regulatory changes may experience less pleiotropic constraint than protein 

coding changes, even for genes that are expressed in multiple cell types (Carroll 2008). While 

these striking differences are perhaps an expected consequence of different selective pressures 

acting on cellular function and developmental stage, they also underscore how difficult it is to 

resolve regulatory phenotypes from complex tissues. 

Trans-regulatory changes acting during early development are more likely to cause 

wide-ranging disruptions to regulatory networks, which are more likely to have detrimental 

effects on downstream developmental stages. Thus, trans-regulatory changes altering 
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expression during early development are predicted to be removed by purifying selection, while 

cis-regulatory changes are generally thought to be less pleiotropic and therefore more common 

in early stages (Carroll 2008; Hill, et al. 2020). Based on this simple logic, we predicted that cis-

regulatory mutations may be proportionally more common in early spermatogenesis, but we 

found the opposite pattern (fig. 5, supplementary table S7, Supplementary Material online). The 

relative contributions of cis- and trans-regulatory changes to expression divergence likely 

depend on other factors, including a tendency of cis mutations to have larger individual effect 

sizes (Coolon, et al. 2014; Hill, et al. 2020). We did observe proportionally more cis-regulatory 

changes of large effect during late spermatogenesis (fig. 6D) underlying higher overall 

expression divergence at this stage (fig. 3). Thus, differences in individual effect sizes of cis- 

versus trans-acting changes likely play a central role in shaping regulatory evolution across 

mouse spermatogenesis. 

Cis- and trans-regulatory mutations can combine to affect the expression of a single 

gene, either in the same direction (reinforcing) or in opposite directions (compensatory; 

Goncalves, et al. 2012; Coolon, et al. 2014; Mack, et al. 2016). We observed a higher proportion 

of compensatory mutations than reinforcing mutations across both spermatogenesis cell types 

and in whole testes. Even after controlling for correlated error (Fraser 2019), we observed a 

negative correlation between cis- and trans-regulatory effects, supporting our result that 

compensatory mutations were more common than reinforcing mutations. This was expected 

given that gene expression tends to evolve under stabilizing selection (Rohlfs and Nielsen 

2015), and it is consistent with previous studies across many tissue types in mice (Goncalves, 

et al. 2012; Mack, et al. 2016), flies (Coolon, et al. 2014; Benowitz, et al. 2020), and 

roundworms (Sánchez-Ramírez, et al. 2021). We also saw relatively more reinforcing mutations 

during postmeiotic spermatogenesis. Reinforcing mutations tended to have a larger effect size 

based on expression differences (logFC) between mus and dom (fig. 6D), thus large-effect 

reinforcing changes also likely contribute to higher expression level divergence in late 

spermatogenesis. 

Given the striking differences that we saw between just two cell types, it is likely that 

complex tissues composed of many cell types may often give different results than isolated cell 

populations. Consistent with this prediction, our observed proportions of genes in each 

regulatory category differ from some other published results in house mouse whole tissues (i.e., 

liver, Goncalves, et al. 2012; whole testes, Mack, et al. 2016), primarily in that we saw a higher 

proportion of genes in the trans category. We also found some different patterns when 

reanalyzing whole testes expression data from (Mack, et al. 2016) that likely reflect technical 
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differences in the analytical pipelines used between studies (supplementary table S7, see 

Supplementary Methods for details, Supplementary Material online). In general, our analysis 

used more conservative approaches to test for significant DE or ASE. Thus, only genes showing 

relatively pronounced differences in expression levels between genotypes or alleles were 

assigned to regulatory mechanisms in our study. 

We also found that the relative proportion of cis- and trans-regulatory changes were 

similar between whole testes and the late cell type in the fertile F1 hybrid (supplementary table 

S7, Supplementary Material online), consistent with the observation that postmeiotic spermatids 

have a disproportionately large contribution to mouse whole testes expression patterns 

(Hunnicutt, et al. 2021). These results suggest that changes in the relative intensities of different 

selective pressures acting across spermatogenesis not only change the extent of expression 

level divergence, but also select for different mechanisms of regulatory evolution underlying 

these expression changes. Given this, analyzing such patterns at the level of whole organisms 

or tissues seems unlikely to provide a clear understanding of how mechanisms of regulatory 

evolution proceed in underlying cells. Indeed, even enriched cell populations as we have 

generated may be limited by relative purities. 

By considering both expression divergence across the Mus phylogeny and underlying 

mechanisms of regulatory divergence between two lineages (mus and dom), our study also 

provided a novel opportunity to connect different types of regulatory changes to patterns of 

expression divergence at a deeper phylogenetic scale. Although trans-acting changes were 

relatively common (fig. 5), genes with cis-regulatory changes between mus and dom tended to 

have higher phylogeny-wide expression divergence than those with trans-regulatory changes for 

both cell types (fig. 6A, 6B). This suggests that genes showing cis-regulatory changes were also 

more likely to accumulate regulatory differences over time, resulting in phylogeny-wide 

expression divergence, whereas genes showing trans-regulatory changes at relatively shallow 

evolutionary scales tended to be relatively conserved across the Mus phylogeny. Genes with 

reinforcing changes also had relatively low phylogeny-wide expression level divergence (fig. 6A, 

6B), in contrast to their high pairwise divergence between mus and dom (fig. 6C, 6D). Genes in 

this category likely have large-effect, lineage-specific changes in expression that may be under 

purifying selection over deeper phylogenetic levels. Finally, our phylogenetic contrast revealed 

rapid expression level divergence late in spermatogenesis. By combining these data with allele-

specific expression data, we further showed that cis-regulatory changes are likely to underlie 

this rapid phylogeny-wide expression divergence in late spermatogenesis. 
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Materials and Methods 
Mouse Resources 
We investigated gene expression and protein-coding evolution in 12 Mus musculus domesticus 

(dom) individuals from four inbred strains (2 BIK/g, 3 DGA, 3 LEWES/EiJ, 4 WSB/EiJ), 8 M. m. 

musculus (mus) individuals from three inbred strains (2 CZII/EiJ, 3 MBS, 3 PWK/PhJ), 11 M. 

spretus (spr) individuals from three inbred strains (5 SEG, 2 SFM, 4 STF), and 3 M. pahari (pah) 

individuals from one inbred strain (3 PAHARI/EiJ; fig. 1B). By using multiple wild-derived inbred 

strains of dom, mus, and spr, we sampled natural within-species variation while also having 

biological replicates of genetically similar individuals. These mice were maintained in breeding 

colonies at the University of Montana (UM) Department of Laboratory Animal Resources 

(IACUC protocol 002-13). These colonies were initially established from mice purchased from 

The Jackson Laboratory, Bar Harbor, ME (CZECHII/EiJ, PWK/PhJ, WSB/EiJ, LEWES/EiJ, 

PAHARI/EiJ) or acquired from Matthew Dean’s colonies at University of Southern California 

which were derived from François Bonhomme’s stocks at the University of Montpellier, 

Montpellier, France (MBS, BIK, DGA, STF, SFM, SEG). We weaned males at ~21 days 

postpartum (dpp) into same sex sibling groups and caged males individually at least 15 days 

prior to euthanization to avoid dominance effects on testes expression. We euthanized mice at 

60-160 dpp by CO2 followed by cervical dislocation.  

For expression data from reciprocal F1 males, we used FACS enriched expression data 

from (Larson, et al. 2017). These data include males from reciprocal F1 crosses between 

different inbred strains within each M. musculus subspecies (mus: CZECHII females X PWK 

males, dom: WSB females X LEWES males), as well as reciprocal mus and dom F1 hybrids 

(LEWES females X PWK males and PWK females X LEWES males), allowing us to compare 

results at two different levels of divergence (i.e., within and between lineages). We also 

analyzed whole testes expression data from (Mack, et al. 2016) to compare FACS enriched cell-

types to whole testes, including crosses between different strains within each M. musculus 

subspecies (LEWES females X WSB males and PWK females X CZII males) and the same 

reciprocal F1 hybrid crosses to those in (Larson, et al. 2017). 

 
Testis Cell Sorting and RNAseq 
We collected testes from mice immediately following euthanization and isolated cells at different 

stages of spermatogenesis using Fluorescence Activated Cell Sorting (FACS; Getun, et al. 

2011). The full FACS protocol is available on GitHub (https://github.com/goodest-goodlab/good-

protocols/tree/main/protocols/FACS). Briefly, we decapsulated testes and washed them twice 

https://github.com/goodest-goodlab/good-protocols/tree/main/protocols/FACS
https://github.com/goodest-goodlab/good-protocols/tree/main/protocols/FACS
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with 1mg/mL collagenase (Worthington Biochemical), 0.004mg/mL DNase I (Qiagen), and 

GBSS (Sigma), followed by disassociation with 1mg/mL trypsin (Worthington Biochemical) and 

0.004mg/mL DNase I. We then inactivated trypsin with 0.16mg/mL fetal calf serum (Sigma). For 

each wash and disassociation step, we incubated and agitated samples at 33°C for 15 minutes 

on a VWR minishaker at 120 rpm. We stained cells with 0.36mg/mL Hoechst 33324 (Invitrogen) 

and 0.002mg/mL propidium iodide, filtered with a 40μm cell filter, and sorted using a FACSAria 

IIu cell sorter (BD Biosciences) at the UM Center for Environmental Health Sciences 

Fluorescence Cytometry Core. We periodically added 0.004mg/mL DNase I as needed during 

sorting to prevent DNA clumps from clogging the sorter. We sorted cells into 15μL beta-

mercaptoethanol (Sigma) per 1mL of RLT lysis buffer (Qiagen) and kept samples on ice 

whenever they were not in the incubator or the cell sorter. For this study, we focused on two cell 

populations: early meiotic spermatocytes (leptotene/zygotene) and postmeiotic round 

spermatids. We extracted RNA using the Qiagen RNeasy Blood and Tissue Kit and checked 

RNA integrity with a Bioanalyzer 2000 (Agilent) or TapeStation 2200 (Agilent). All samples 

except one had RIN ≥ 7 (supplementary table S11, Supplementary Material online). We 

prepared RNAseq libraries using the Agilent SureSelect protocol and sequenced samples at the 

Hudson Alpha Institute for Biotechnology using Illumina NextSeq (75bp single end). All sample 

libraries were prepared and sequenced together to minimize batch effects. 

 
Mus strain phylogeny 
We generated the phylogeny in fig. 1B using available exome (Chang, et al. 2017; Sarver, et al. 

2017) and whole genome (Keane, et al. 2011; Thybert, et al. 2018) sequence data 

(PRJNA326865, PRJNA323493, PRJEB2003, PRJEB14896). Genotypes were based on 

iterative mapping assemblies relative to the house mouse reference genome (mm10) conducted 

using pseudo-it v3.0 (Sarver, et al. 2017) that restricts genotyping to targeted exons. We ran 

pseudo-it with one iteration to generate consensus fasta files for each sample. We then 

extracted exons, aligned these regions using MAFFT v7.271 (Katoh and Standley 2013), 

converted to PHYLIP format using AMAS (Borowiec 2016), and inferred a maximum likelihood 

concatenated tree using IQ-TREE v2.1.4-beta (Nguyen, et al. 2014). 

 
Processing of Gene Expression Data 
We used R version 3.6.3 and Bioconductor version 3.10 for all analyses. We trimmed raw reads 

for adaptors and low-quality bases using expHTS (Streett, et al. 2015) and mapped trimmed 

reads with TopHat version 2.1.0 (Kim, et al. 2013). Genome assemblies were previously 
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published for all four lineages (Keane, et al. 2011; Thybert, et al. 2018), allowing us to map 

reads to the correct assembly and reduce reference bias (Sarver, et al. 2017). Mapping rates 

were consistent across lineages (supplementary table S11, Supplementary Material online). To 

select orthologous genes among the four lineages, we used BiomaRt (Durinck, et al. 2005; 

Durinck, et al. 2009) to identify one-to-one Ensembl orthologs and retained only those that were 

present in all genome assemblies and the mouse reference build GRCm38.  

We counted reads using featureCounts and included multiply-mapping reads (Liao, et al. 

2013). We used edgeR 3.28.1 (Robinson, et al. 2010) to normalize expression data, calculate 

fragments per kilobase per million reads (FPKM), and perform differential expression (DE) 

analyses. A gene was defined as “expressed” in our dataset if it had an FPKM > 1 in at least 

eight samples. We tested different FPKM cutoffs for considering a gene “expressed” as well as 

different ways of handling multiply mapped reads, and our results were consistent across these 

approaches (supplementary table S4, Supplementary Material online). A gene was expressed in 

a particular lineage and cell type if it had an FPKM > 1 in all samples of that lineage and cell 

type. A gene was considered induced in a particular cell type if its median FPKM in that cell type 

across all lineages was greater than two times its median FPKM in the other cell type across all 

lineages. We also tested different threshold cutoffs for considering a gene induced. Testis-

specific genes were those only expressed in testis based on the mouse tissue expression data 

from (Chalmel, et al. 2007).  

We defined lineage-specific genes in two ways. First, we used a log fold change (logFC) 

method in which a gene was considered lineage-specific if its median expression level in a 

lineage was greater than two times its median expression level in any of the other three 

lineages. We tested different logFC threshold cutoffs ranging from 1.5 to 10 and saw similar 

results as the logFC > 2 cutoff (Supplementary Table S1, Supplementary Material online). 

Second, we used a Bayesian approach to determine if a gene is active or inactive in an 

expression dataset based on transcript levels as implemented with the program Zigzag 

(Thompson, et al. 2020). Genes identified as being active (posterior P > 0.5) in one lineage and 

inactive (posterior P < 0.5) in the other lineages were considered lineage-specific. We ran 

Zigzag twice and only included genes with consistent active or inactive assignments between 

the two runs. Both the logFC and Zigzag analyses were performed for each cell type, so a gene 

could be lineage-specific in one cell type but not the other. For each lineage, we determined the 

proportion of expressed (logFC) or active (Zigzag) genes that were lineage-specific and used a 

Pearson’s χ2 test to determine if one cell type had greater lineage-specificity than the other. We 
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used the R package topGO with the default algorithm and Fisher’s Exact Test to do a gene 

ontology (GO) enrichment test on lineage-specific genes. 

 
Protein-Coding Divergence 
We used the “iqtree-omp” command in IQTree version 1.5.5 (Nguyen, et al. 2014) to infer a 

mouse species tree based on gene trees estimated from the reference sequences for all four 

mouse lineages (Keane, et al. 2011; Thybert, et al. 2018). We took the longest transcript for all 

one-to-one orthologs and aligned these using MAFFT v7.271 (Katoh and Standley 2013) and 

converted to PHYLIP format using AMAS (Borowiec 2016). We used a custom script to exclude 

genes that did not begin with a start codon, had early stop codons, or had sequence lengths 

that were not multiples of three. We then used the Codeml program in the PAML package to 

calculate protein-coding divergence and test for positive selection on protein-coding genes 

(Yang 2007). We used the M0 model to calculate phylogeny-wide dN/dS for each gene, which 

we report as the overall protein-coding divergence values. We also performed a likelihood ratio 

test between the M8 and M8a site-based models to test for positive directional selection on 

each gene (Swanson, et al. 2003). 

 
Differential Expression 
We performed all analyses of expression level divergence for three different gene sets: 

expressed genes, induced genes, and testis-specific genes. To calculate expression divergence 

in a phylogenetic framework, we used the EVE model (Rohlfs and Nielsen 2015), which 

performs a phylogenetic ANOVA using an Ornstein-Uhlenbeck model to evaluate divergence 

while controlling for evolutionary relatedness. We report expression divergence from EVE as 

− log(𝑏𝑒𝑡𝑎𝑖), where betai is a metric from EVE that represents the ratio of within-lineage 

variance to between-lineage evolutionary divergence. By taking the negative log, higher positive 

numbers correspond to greater evolutionary divergence. We excluded genes with extremely low 

divergence values [− log(𝑏𝑒𝑡𝑎𝑖) < −5] because this subset did not show a linear relationship 

between evolutionary divergence and population variance and therefore violated underlying 

assumptions of the EVE model (supplementary fig. S8, Supplementary Material online). 

We also calculated expression divergence in a pairwise framework (Meisel, et al. 2012). 

This method takes the difference in expression level between two lineages and normalizes 

based on the average expression of the gene in both lineages: 

𝐷𝑎,𝑖𝑗 =
|𝑆𝑎,𝑖−𝑆𝑎,𝑗|

(𝑆𝑎,𝑖+𝑆𝑎,𝑗)/2
     (1) 
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Da,ij is the divergence of gene a between lineages i and j. Sa,i is the median FPKM of gene a in 

lineage i, and Sa,j is the median FPKM of gene a in lineage j. We also calculated the logFC in 

expression between every pairwise comparison of lineages as an additional pairwise divergence 

metric (Robinson, et al. 2010). For the EVE, pairwise divergence, and logFC methods, we 

compared relative expression divergence between cell types and between the X chromosome 

and autosomes using a Wilcoxon rank-sum test. We tested if certain cell types or chromosome 

types showed greater correlation among pairwise divergence values using Spearman’s rank 

correlation.  

To compare rates of divergence with number of protein-protein interactions, we 

downloaded publicly available data from the mouse integrated protein–protein interaction 

reference (MIPPIE, Alanis-Lobato, et al. 2020). We used scripts provided by MIPPIE to 

calculate the number of protein-protein interactions among genes induced early and among 

genes induced late based on MIPPIE data, only counting interactions with high (>0.6) MIPPIE 

scores. We then compared the median number of interactions between early and late genes 

using a Wilcoxon rank-sum test and tested if the number of interactions was correlated with 

EVE expression divergence or dN/dS protein sequence divergence using Spearman’s rank 

correlation tests. We also tested if groups of genes had higher co-expression network 

association using a co-expression network analysis implemented in the R package WGCNA 

(Langfelder and Horvath 2008). We tested if WGCNA modules were associated with cell types 

or lineages using linear models with post-hoc Tukey tests implemented in the R package 

multcomp. We then used Wilcoxon rank-sum tests with FDR-correction for multiple tests to 

compare gene eigenvalues between the X chromosome and autosomes, and between lineage-

specific and non-lineage-specific genes to test if certain groups of genes had higher module 

associations. 

 We also compared relative expression divergence on the X chromosome versus the 

autosomes using the proportion of DE genes on each chromosome (Good, et al. 2010; Larson, 

et al. 2016). First, we calculated the proportion of expressed genes that are DE across all 

autosomes. We then multiplied this proportion by the number of genes expressed on each 

chromosome to calculate the expected number of DE genes for each chromosome. We plotted 

the observed number of DE genes against the expected number and used a hypergeometric 

test to evaluate if each chromosome is over- or under-enriched for DE genes. 

 
Allele-Specific Expression and Regulatory Divergence 
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We used the modtools and lapels-suspenders pipelines (Huang, et al. 2014) to reduce mapping 

bias and to assign the parental origin of reads in F1 individuals (See Supplementary Methods 

for details, Supplementary Material online). This approach requires mapping to pseudogenomes 

generated using modtools to resolve differences in genome coordinates between different 

references. We used published pseudogenomes for WSB and PWK, which incorporate single 

nucleotide variants (SNVs) and indels from these strains into the GRCm38 mouse reference 

build (Huang, et al. 2014). For LEWES and CZECHII, we generated our own pseudogenomes 

with modtools version 1.0.2 using published VCF files (Morgan, et al. 2016; Larson, et al. 

2018b). We developed a custom pipeline (See Supplementary Methods for details, 

Supplementary Material online) to assign autosomal genes to regulatory categories following 

previous recommendations (Coolon, et al. 2014; Mack, et al. 2016; Combs and Fraser 2018; 

Benowitz, et al. 2020). To determine significant differences between cell types, we performed a 

Pearson’s χ2 test followed by false discovery rate correction for multiple tests. 

 
Data Availability 
RNAseq data generated for this project are available through the National Center for 

Biotechnology Information under accession PRJNA735780. Individual sample accessions are in 

supplementary table S11. A table of genes in our analyses and whether they were considered 

expressed, induced, or active in each cell type is available in supplementary table S12. Scripts 

used for expression divergence and allele-specific expression analyses are available on GitHub: 

https://github.com/ekopania/mus_spermatogenesis_analyses and 

https://github.com/ekopania/cis-trans-pipeline.  
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Tables 
Table 1. Counts of genes in each dataset and cell type across spermatogenesis. Numbers in 

parentheses represent the percent of genes in the “active” datasets that were also in the 

“expressed” dataset. 

 aearly blate both early and late 
expressed 9570  8986 7670 

induced 3375 2769 0 
ctestis-specific (TS) 544 655 524 

induced and TS 65 493 0 

active (dom) 8206 (98.2%) 8581 (90.4%) 6355 

active (mus) 8782 (97.5%) 10098 (83.4%) 7289 

active (spr) 8728 (97.1%) 9509 (86.0%) 7227 

active (pah) 8124 (97.6%) 9563 (83.9%) 6682 
aearly = spermatocytes (leptotene/zygotene) 
blate = round spermatids 
ctestis-specific inferred from (Chalmel, et al. 2007) 
 

Table 2. Correlation between pairwise expression divergence values for all possible pairwise 

comparisons. Numbers presented are ρ values from a Spearman’s rank correlation test. We 

tested for correlations in pairwise expression divergence value among induced genes in each 

stage and chromosome group (early X, early autosomal, late X, and late autosomal). Gray 

boxes indicate no significant correlation between pairwise divergence values after FDR 
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correction (Spearman’s rank correlation P > 0.05). Bolded values indicate the lowest 

Spearman’s ρ value for each pairwise comparison across the four stages and chromosome 

groups. 

    dom vs mus dom vs spr mus vs spr dom vs pah mus vs pah 
Early, X-
linked dom vs spr 0.34      
  mus vs spr 0.07 0.28     
  dom vs pah 0.07 0.14 0.19    
  mus vs pah 0.16 0.10 0.03 0.62   
  spr vs pah 0.14 0.27 0.16 0.58 0.67 
Early, 
autosomal dom vs spr 0.32         
  mus vs spr 0.32 0.61     
  dom vs pah 0.28 0.28 0.27    
  mus vs pah 0.29 0.26 0.30 0.74   
  spr vs pah 0.24 0.32 0.34 0.55 0.57 
Late, X-
linked dom vs spr 0.36         
  mus vs spr 0.50 0.45     
  dom vs pah 0.20 0.23 0.22    
  mus vs pah 0.28 0.28 0.36 0.74   
  spr vs pah 0.15 0.20 0.20 0.73 0.72 
Late, 
autosomal dom vs spr 0.35         
  mus vs spr 0.37 0.59     
  dom vs pah 0.30 0.33 0.30    
  mus vs pah 0.30 0.30 0.33 0.76   
  spr vs pah 0.25 0.32 0.33 0.64 0.63 
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Figure Legends 
Fig. 1. (A) Predictive framework depicting the major stages of spermatogenesis and expected 

relative expression levels of the X chromosome and autosomes at each stage (Namekawa, et 

al. 2006). The two cell populations used in this study are leptotene-zygotene (“early”, second 

from left, orange) and round spermatids (“late”, second from right, blue). The relative thickness 

of the gray bar represents the predicted cell type specificity at each stage (Eddy 2002; Chalmel, 

et al. 2007; Larson, et al. 2016; Green, et al. 2018). (B) Maximum likelihood tree of 

concatenated exome data from the four Mus species or subspecies used in this study: Mus 

musculus musculus (mus), Mus musculus domesticus (dom), Mus spretus (spr), Mus pahari 

(pah). Tips are labeled with the inbred strains from each lineage, with select crosses used to 

generate F1 hybrids indicated with arrows. Number of individuals sampled for each strain 

indicated in parentheses. Approximate divergence times are placed at each major node 

(Chevret, et al. 2005). All nodes had 100% bootstrap support.  

 
Fig. 2. Number of genes that were lineage-specific on each internal branch of the mouse 

phylogeny used in this study. Numbers in parentheses are the percent of active genes that were 

lineage-specific. Results are presented separately for the autosomes (A) and X chromosome 

(B). Orange values above each branch represent the early cell type and blue values below 

represent the late cell type. Asterisks indicate a significant difference between early and late on 

that branch based on a Pearson’s χ2 test. 

 
Fig. 3. (A) Protein-coding and (B) expression divergence on the autosomes and X chromosome 

for genes induced in each cell type. Expression divergence values on the y-axis are 

−log(𝑏𝑒𝑡𝑎𝑖), where betai is the measure of expression divergence from EVE. Higher values on 

the y-axis represent higher divergence. The center of each violin plot is a standard boxplot, with 

the center horizontal line representing the median divergence value. The violins show the 

probability density of divergence values for each group. A wider part of the violin at a given 

value means genes expressed in that group are more likely to have that divergence value. The 

letters above each violin indicate significant differences between the cell types and chromosome 

types based on a Wilcoxon rank-sum test. 

 
Fig. 4. Observed versus expected number of genes differentially expressed (DE) in late 

spermatogenesis for three pairwise comparisons at different levels of evolutionary divergence: 

(A) dom versus mus, (B) spr versus mus, and (C) pah versus mus. Each point represents a 
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different chromosome. The diagonal line is the one-to-one line at which the observed number of 

DE genes equals the expected number. P-values are shown for the X chromosome only. They 

are based on a hypergeometric test for enrichment and corrected for multiple tests using a false 

discovery rate correction. A significant p-value indicates that the observed number of DE genes 

is different from the expected number.  

 
Fig. 5. Regulatory category results for the fertile F1 hybrid (LEWES♀ X PWK♂). (A) Percent of 

non-conserved genes in each regulatory category both early and late. (B and C) Expression 

logFC between alleles within the fertile F1 (y-axis) plotted against the expression logFC 

between the parental subspecies (x-axis). Each point represents a single gene. Colors 

correspond to (A) and indicate the regulatory category to which that gene was assigned. cXt = 

cis X trans; comp = compensatory; c+t opp = cis + trans opposite; c+t same = cis + trans same 

 
Fig. 6. Expression divergence violin plots by regulatory category for the fertile hybrid. 

Expression divergence is calculated using the value from EVE (A and B) and as the absolute 

value of the logFC in expression between parental subspecies (C and D). Plots (A) and (C) 

correspond to the early cell type and plots (B) and (D) correspond to the late cell type. Letters 

indicate significant differences between categories based on a pairwise Wilcoxon rank sum test.  
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Figures 

 

Fig. 1. (A) Predictive framework depicting the major stages of spermatogenesis and expected 

relative expression levels of the X chromosome and autosomes at each stage (Namekawa, et 

al. 2006). The two cell populations used in this study are leptotene-zygotene (“early”, second 

from left, orange) and round spermatids (“late”, second from right, blue). The relative thickness 

of the gray bar represents the predicted cell type specificity at each stage (Eddy 2002; Chalmel, 

et al. 2007; Larson, et al. 2016; Green, et al. 2018). (B) Maximum likelihood tree of 

concatenated exome data from the four Mus species or subspecies used in this study: Mus 

musculus musculus (mus), Mus musculus domesticus (dom), Mus spretus (spr), Mus pahari 

(pah). Tips are labeled with the inbred strains from each lineage, with select crosses used to 

generate F1 hybrids indicated with arrows. Number of individuals sampled for each strain 

indicated in parentheses. Approximate divergence times are placed at each major node 

(Chevret, et al. 2005). All nodes had 100% bootstrap support.   
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Fig. 2. Number of genes that were lineage-specific on each internal branch of the mouse 

phylogeny used in this study. Numbers in parentheses are the percent of active genes that were 

lineage-specific. Results are presented separately for the autosomes (A) and X chromosome 

(B). Orange values above each branch represent the early cell type and blue values below 

represent the late cell type. Asterisks indicate a significant difference between early and late on 

that branch based on a Pearson’s χ2 test. 
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Fig. 3. (A) Protein-coding and (B) expression divergence on the autosomes and X chromosome 

for genes induced in each cell type. Expression divergence values on the y-axis are 

−log(𝑏𝑒𝑡𝑎𝑖), where betai is the measure of expression divergence from EVE. Higher values on 

the y-axis represent higher divergence. The center of each violin plot is a standard boxplot, with 

the center horizontal line representing the median divergence value. The violins show the 

probability density of divergence values for each group. A wider part of the violin at a given 

value means genes expressed in that group are more likely to have that divergence value. The 

letters above each violin indicate significant differences between the cell types and chromosome 

types based on a Wilcoxon rank-sum test. 
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Fig. 4. Observed versus expected number of genes differentially expressed (DE) in late 

spermatogenesis for three pairwise comparisons at different levels of evolutionary divergence: 

(A) dom versus mus, (B) spr versus mus, and (C) pah versus mus. Each point represents a 

different chromosome. The diagonal line is the one-to-one line at which the observed number of 

DE genes equals the expected number. P-values are shown for the X chromosome only. They 

are based on a hypergeometric test for enrichment and corrected for multiple tests using a false 

discovery rate correction. A significant p-value indicates that the observed number of DE genes 

is different from the expected number.  
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 1 

Fig. 5. Regulatory category results for the fertile F1 hybrid (LEWES♀ X PWK♂). (A) Percent of 2 

non-conserved genes in each regulatory category both early and late. (B and C) Expression 3 

logFC between alleles within the fertile F1 (y-axis) plotted against the expression logFC 4 

between the parental subspecies (x-axis). Each point represents a single gene. Colors 5 

correspond to (A) and indicate the regulatory category to which that gene was assigned. cXt = 6 

cis X trans; comp = compensatory; c+t opp = cis + trans opposite; c+t same = cis + trans same 7 

 8 

 9 
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 10 

Fig. 6. Expression divergence violin plots by regulatory category for the fertile hybrid. 11 

Expression divergence is calculated using the value from EVE (A and B) and as the absolute 12 

value of the logFC in expression between parental subspecies (C and D). Plots (A) and (C) 13 

correspond to the early cell type and plots (B) and (D) correspond to the late cell type. Letters 14 

indicate significant differences between categories based on a pairwise Wilcoxon rank sum test. 15 
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