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Crystallization of bosonic quantum Hall 
states in a rotating quantum gas

Biswaroop Mukherjee1, Airlia Shaffer1, Parth B. Patel1, Zhenjie Yan1, Cedric C. Wilson1, 
Valentin Crépel1, Richard J. Fletcher1 & Martin Zwierlein1 ✉

The dominance of interactions over kinetic energy lies at the heart of strongly 
correlated quantum matter, from fractional quantum Hall liquids1, to atoms in optical 
lattices2 and twisted bilayer graphene3. Crystalline phases often compete with 
correlated quantum liquids, and transitions between them occur when the energy cost 
of forming a density wave approaches zero. A prime example occurs for electrons in 
high-strength magnetic fields, where the instability of quantum Hall liquids towards a 
Wigner crystal4–9 is heralded by a roton-like softening of density modulations at the 
magnetic length7,10–12. Remarkably, interacting bosons in a gauge field are also expected 
to form analogous liquid and crystalline states13–21. However, combining interactions 
with strong synthetic magnetic fields has been a challenge for experiments on bosonic 
quantum gases18,21. Here we study the purely interaction-driven dynamics of a Landau 
gauge Bose–Einstein condensate22 in and near the lowest Landau level. We observe a 
spontaneous crystallization driven by condensation of magneto-rotons7,10, excitations 
visible as density modulations at the magnetic length. Increasing the cloud density 
smoothly connects this behaviour to a quantum version of the Kelvin–Helmholtz 
hydrodynamic instability, driven by the sheared internal flow profile of the rapidly 
rotating condensate. At long times the condensate self-organizes into a persistent 
array of droplets separated by vortex streets, which are stabilized by a balance of 
interactions and effective magnetic forces.

When electrons are placed in a magnetic field, their kinetic energy is 
quenched. The single particle states form discrete, highly degenerate  
Landau levels, and correspond to wavepackets localized to the magnetic 
length ℓB. In the presence of interactions between electrons, owing to 
the absence of kinetic energy, one naturally expects the formation of a 
Wigner crystal of periodicity ~ ℓB (refs. 4–6,8,9,23). Famously, however, the 
interplay of the macroscopic degeneracy and interactions instead typi-
cally favours the strongly correlated fractional quantum Hall liquids, 
which host fractional charges, anyonic exchange statistics and topo-
logically protected transport properties1. The tendency to crystallize 
is still apparent in a pronounced minimum in the collective excitation 
spectrum at wavevectors k~1/ℓB (refs. 7,10–12). In analogy with the roton 
minimum in 4He, also considered a precursor of solidification24, these 
excitations are called magneto-rotons7,11,12.

The fate of interacting bosons in the presence of a gauge field is of 
fundamental importance in the classification of topological states 
of matter19. Quantum Hall states13,16,20, exotic vortex lattices14 and 
vortex-free states under extreme fields17 were predicted. Quantum 
phase transitions between such states were found to be signalled by 
the softening of a roton-like collective mode15,25.

Bosonic quantum gases in artificial magnetic fields18,21 have been 
generated via spin–orbit coupling21,26,27, phase imprinting in lattices28–32 
and by rotation of the trapped gas16,22,33,34. The latter approachuses the 
analogy between the Lorentz force on a charged particle in a magnetic 
field, and the Coriolis force on a massive particle in a frame rotating at 

frequency Ω, giving ωc = 2Ω and ℓ ħ mω= /( )B c  as the rotational ana-
logue of the cyclotron frequency and the magnetic length, respectively.

Signatures of physics near the lowest Landau level (LLL) have 
been observed in rotating Bose gases33,34. In recent work at MIT, 
condensates have been prepared directly in the lowest Landau 
gauge wavefunction using geometric squeezing22. In this mean-field 
quantum Hall regime13, all bosons occupy a single wavefunction, 
whose subsequent dynamics subject to a gauge field can be studied, 
offering a microscopic insight into the individual building blocks of 
quantum Hall systems. An advantage of rotation is that the interac-
tions between atoms are decoupled from the induced gauge poten-
tial, in contrast to other methods for which the effective magnetic 
field appears within a dressed-atom picture, leading to additional 
unwanted interaction terms35.

Here we directly observe the evolution of an interacting Bose–Einstein  
condensate occupying a single Landau gauge wavefunction in the LLL. 
We find that the Landau gauge condensate is unstable under the influ-
ence of interactions, exhibiting spontaneous growth of a snaking mode 
leading to a persistent density wave order at the magnetic length ℓB as 
illustrated in Fig. 1. At the heart of this crystallization is the coupling 
between the relative momentum and spatial overlap of two particles 
in a gauge field. This lowers the interaction energy cost of populating 
higher-momentum states, and leads to the dynamical instability of the 
lowest (Goldstone) collective excitation branch15 (see Supplementary 
Information). The ensuing proliferation of excitations at momenta near 
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ħ/ℓB can be viewed as condensation of magneto-rotons, in analogy with 
the Wigner crystal instability of quantum Hall systems4–9.

Condensation at non-zero momentum has been predicted in super-
fluid helium above a critical velocity36–38. Roton-like excitations and 
instabilities in Bose–Einstein condensates have been induced via 
cavity-mediated interactions39,40, spin–orbit coupling41,42, shaken 
optical lattices43,44, driven interactions45 and dipolar interactions46–48. 
These instabilities are tightly connected to evidence for supersolidity, 
the simultaneous existence of spatial and superfluid order38,40,42,49–51. 
In our case, the instability of density-wave order arises purely from 
the interplay of contact interactions and a gauge field. No external 

drive is present, nor is there any residual scalar potential in the rotating 
frame. The absence of kinetic energy in the LLL directly implies that 
the crystallization rate is set solely by the interaction energy of the gas.

By increasing the condensate density such that many Landau levels 
become populated, we observe a crossover from LLL behaviour to a 
hydrodynamic instability driven by the sheared internal velocity profile. 
Analogous phenomena are ubiquitous throughout hydrodynamics, 
from the diocotron instability in charged plasmas52 and fragmentation 
of electron beams53, to the Kelvin–Helmholtz instability in atmospheric 
and astrophysical systems54,55. In the context of superfluids, for which 
the circulation is quantized, the Kelvin–Helmholtz instability has been 
detected in liquid helium56, and theoretically predicted at the bound-
ary between counterflowing condensates57. In our superfluid hydro-
dynamic setting, we directly observe streets of quantized vortices 
separating emergent droplets, revealing the quantum nature of the 
instability at the most microscopic level.

To analyse the instability, consider the condensate in the frame rotat-
ing at the frequency ω of the isotropic harmonic trap, where it experi-
ences a synthetic magnetic field but no scalar potential (see Fig. 1a, b), 
and thus evolves under the Hamiltonian
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r  is the bosonic field operator, p̂ is the canonical momen-
tum, q and A are the charge and vector potential in the equivalent 
magnetic problem, and g is the two-dimensional mean-field coupling 
constant. Geometric squeezing prepares a translationally invariant 
condensate most conveniently described within the Landau gauge 
qA = (0, mωcx) (ref. 22) for which the Hamiltonian becomes

∫H r Ψ
p

m
mω x

p

ħ
g

Ψ Ψ Ψˆ = d ˆ
ˆ

2
+

1
2

ˆ −
ˆ

+
2

ˆ ˆ ˆ. (2)x y B2 †
2

c
2

2 2

†






























ℓ

Cyclotron motion of the atoms is reflected in an effective harmonic 
oscillator along the x-direction of frequency ωc = 2ω, the non-interacting 
energy states of which correspond to different Landau levels (see 
Fig. 1b). Each level is macroscopically degenerate since it costs no 
energy to translate the centres of cyclotron orbits. Initially, the 
y momentum of all atoms is zero, and their cyclotron motion is centred 
at x = 0 with a two-dimensional number density n2D(x). The condensate 
has uniform phase and thus features a sheared velocity profile  
v = −qA/m = (0, −ωcx) proportional to the vector potential (see Fig. 1c). 
We parameterize the crossover from LLL to hydrodynamic behaviour 
by the ratio gn

ħωc
, the condensate’s mean-field energy of ~ gn to the Lan-

dau level  spacing  ħωc, giving a measure for the number of occupied 
Landau levels22,33. Here n = n2D(0) is the peak density. In our experiment 

gn
ħωc

 varies from 0.6 to 7.3, corresponding to a central filling fraction ℓn B
2   

of 50 and higher, meaning the condensate lies within the mean-field 
quantum Hall regime13,16.

The dynamical instability illustrated in Fig. 1 can be understood in 
the low- and high-density limits as follows. When gn ≲ ħωc, the conden-
sate is restricted to the LLL and shows a Gaussian transverse density 
profile with a 1/e radius of ℓB (ref. 22; see Supplementary Information). 
A Bogoliubov analysis around this state generically results in a Ham-
iltonian of the form15
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where âk is the annihilation operator for a particle with momentum ħk 
along the y-direction. This Hamiltonian describes pairs of modes ±k 
with natural frequency Ak/ħ and coupled by a pair-creation operator 
of strength Bk, which corresponds to a two-mode squeezing interaction 
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Fig. 1 | Spontaneous crystallization of an interacting Bose–Einstein 
condensate in an artificial magnetic field. a, In the laboratory frame, the 
condensate freely rotates in a circularly symmetric harmonic trap at the 
trapping frequency ω. Occupied states in the energy spectrum are sketched  
(Lz, angular momentum). b, In the rotating frame, the condensate experiences 
an effective magnetic field B but no scalar potential. The energy spectrum is 
flattened into Landau levels (k, momentum along y). Only the k = 0 Landau 
gauge wavefunction is occupied. c, The irrotationality of the condensate in the 
laboratory frame imposes a sheared velocity profile in the rotating frame, 
which is dynamically unstable towards a periodic density modulation. Motion 
with momentum ħk along the y-direction is tied to sideways displacement of 
the wavefunction along x. The reduced overlap of |k| > 0 states with the  
k = 0 condensate lowers the interaction energy cost of collective excitations, 
leading to spontaneous population of ±k pairs whose interference with the 
condensate results in a density modulation. d, This dynamical instability is 
reflected in a (Goldstone) collective excitation branch, which is imaginary 
across a range of wavevectors, shown by a red line. The spectrum shown is 
calculated for a condensate in the LLL, for which the interaction energy gn 
provides the only relevant energy scale and the magnetic length ℓB = 1.6 μm sets 
the lengthscale. Here g is the mean-field coupling constant, and n = n2D(0) is the 
peak two-dimensional density. e, Absorption images of the evolution of the 
condensate density in the rotating frame, displaying a snake-like instability and 
the formation of droplet arrays. Here the cloud width is R = 2.34ℓB, and the 
frames are taken at 0, 5, 6.2, 8.5 and 10 cyclotron periods (2π/ωc = 5.6 ms).  
The magnification reveals vortex streets between adjacent droplets (grey 
crosses), indicating counterflow at their interface.
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in the language of quantum optics. In a non-rotating uniform conden-

sate, A gn= +k
ħ k

m2

2 2
 and Bk = gn (ref. 58), and hence pair creation is  

always weaker than the mode energy, leading to stable excitations. 
However, the effective magnetic field profoundly changes this picture. 
First, in the LLL there is no kinetic energy contribution to Ak. Second, 
as illustrated in Fig. 1c, the coupling between momentum and position 
means that states with k ≠ 0 have a reduced overlap with the condensate 
and a correspondingly lower interaction energy. One finds15 
A gn k= [2 exp(− /2) − 1]/ 2k B

2 2ℓ  and B gn k= exp(− )/ 2 ,k B
2 2ℓ  and the  

resulting dispersion ε A B= | | − | |k k k
2 2  is shown in Fig. 1d. The spectrum 

is imaginary for an entire range of wavevectors k > 0 beyond the zero-
energy Goldstone mode at k = 0, indicating dynamical instability of 
the Goldstone branch and correlated exponential growth of ±k pairs 
of these modes. Their interference with the k = 0 condensate results 
in a density modulation (see Fig. 1c). The fastest growth occurs at a 
wavevector ~1/ℓB giving a spatial modulation wavelength ~ 2π times the 
magnetic length. This mode eventually becomes macroscopically 
occupied, corresponding to condensation of magneto-rotons and 
yielding a density modulation contrast of order unity. Crucially, since 
interactions provide the only energy scale in the LLL, the instability 
growth rate is determined purely by the interaction energy gn.

In the high-density limit where gn ≫ ħωc, a hydrodynamic description 
that neglects quantum pressure is valid. In this regime, the condensate 
initially exhibits a Thomas–Fermi density profile n x R∝ 1 − /2D

2
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 (ref. 59; see Supplementary Information). 

The Coriolis force 2mv × Ω on each fluid element resulting from the 
shear flow v = (0, −ωcx) perfectly balances the local gradient of mean-
field energy, resulting in an inhomogeneous equilibrium density 
despite the absence of any scalar potential. Our hydrodynamic stability  
analysis about this equilibrium state reveals a dynamical snaking insta-
bility of the cloud (see Supplementary Information), in analogy with 
the Kelvin–Helmholtz instability of counterflow in fluid layers54,55, and 
the diocotron instability of charged plasmas and electron beams52,53. 
The absence of quantum pressure means that the Thomas–Fermi radius 
and cyclotron frequency provide the only lengthscale and rate. Within 
the hydrodynamic analysis the instability develops at a wavevector set 
by the condensate width, as in the LLL, but at a density-independent 
rate proportional to ωc, in striking qualitative contrast to the growth 
rate in the LLL.

From these arguments, for all condensate densities we anticipate 
an emergent density modulation with a lengthscale set by the width 
of the initial cloud. For a quantitative analysis, from our experimental 
images (see Fig. 1e) we obtain the static structure factor Sk ≡ |nk|2/N, 
where nk = ∫dy n1D(y)e−iky is the Fourier transform of the one-dimensional 
number density  n1D(y) and N = ∫dy n1D(y) (ref. 47). In Fig. 2a we show exam-
ples of Sk obtained once the density modulation has fully developed, 
which show a well defined peak at a wavevector kmax. We attribute the 
much smaller secondary peak at 2kmax to the contiguous traces of con-
densate linking adjacent droplets. In Fig. 2c we show kmax as a function 
of the condensate density, which is parameterized by the ratio R/ℓB 
where R is the full-width at half-maximum of the initial cloud divided 
by 2 log 2 . This normalization is chosen such that R/ℓB → 1 for vanish-
ing gn, and in the high-density limit ℓR gn ħω/ = /( log 2)B c . At all den-
sities, we indeed find an instability lengthscale of order the cloud width, 
kmax ~1/R. The star indicates the LLL prediction kmax = 0.98/ℓB and the 
dashed line shows the hydrodynamic result kmax = 0.95/R neglecting 
quantum pressure (see Supplementary Information). The solid line 
presents kmax that we obtain from a numerical solution of the Bogoli-
ubov equations (see Supplementary Information) showing excellent 
agreement with the data without any free parameters.

Although the cloud width sets the instability lengthscale in both the 
LLL and hydrodynamic regimes, the growth rate shows qualitatively  
different behaviour. In Fig. 3a, we show Sk as a function of time for several 

different condensate densities. In addition to the decrease in the instabil-
ity lengthscale at lower densities, we observe a concurrent reduction of 
the growth rate. At each wavevector we fit the time evolution of the struc-
ture factor with the theoretically expected function Sk(t) = Acosh(2Γt) 
(see Supplementary Information), and extract the instability growth 
rate Γ(k). This is reported in Fig. 3b, along with the imaginary component 
of the corresponding Bogoliubov spectrum, which shows good agree-
ment without any free parameters. We note that the experimental data 
also reveal some growth in Sk at higher wavevectors than the unstable 
region predicted by the linear Bogoliubov analysis. We attribute this 
to nonlinear effects, and have performed numerical simulations of the 
Gross–Pitaevskii equation, finding that these exhibit the same behaviour 
(see Supplementary Information).

We capture the typical crystallization rate corresponding to a particular  
condensate density by the growth rate of the dominant instability, 
Γ(kmax), and in Fig. 3c plot this as a function of R/ℓB. When R/ℓB ≫ 1 the rate 
is density-independent and consistent with our hydrodynamic result 
Γ = 0.14ωc, shown by the dashed line. However, for lower interaction 
energies the gas enters the LLL where gn provides the only energy scale. 
We observe a concurrent slowing down of the instability, and the data 
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Fig. 2 | Structure factor and lengthscale of the emergent crystal. a, The 
static structure factor, Sk, measured once the density modulation has reached 
steady state for condensates with initial widths R/ℓB = 2.58, 1.75, 1.59, 1.28 and 
1.22 (top to bottom). The prominent peak reflects the periodic modulation of 
the cloud density. b, Corresponding images of the steady-state crystal, 
illustrating the decrease in the modulation lengthscale with falling condensate 
density. c, Dependence of the dominant modulation wavevector, kmax, on the 
cloud width, R/ℓB. The LLL and hydrodynamic results are indicated by the star 
and dashed line, respectively (see text). The solid line shows the prediction of 
our Bogoliubov analysis (see Supplementary Information), which shows 
excellent agreement with our data with no free parameters.
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approach the LLL prediction Γ = 0.21gn/ħ indicated by a dotted line. 
At all densities, the data show good agreement with the rate obtained 
from our Bogoliubov analysis, reported as the solid line.

After its initial hyperbolic growth, Sk reaches a steady state, as shown 
in the inset of Fig. 3c. The emergent crystal is long-lived, with each drop-
let stabilized by a balance of the outward mean-field pressure and an 
inwards Coriolis force. This arises from the circulating flow within each 
droplet which is imposed by the gauge field, and is evident from vortices  
intersecting adjacent droplets (see Fig. 1e). The counterflow speed at 
the interface of two droplets of radius R is ~ωcR, giving a gradient of 
mωcR/ħ in the relative phase and a vortex spacing of ℓ R2π /B

2 . Adjacent 
droplets are therefore separated by ~(R/ℓB)2 vortices. In the limit  

of classical hydrodynamics this number is large and the quantization 
of circulation is irrelevant, whereas in the LLL adjacent droplets are 
separated by a single vortex15.

Although the dynamical instability drives the growth of a density 
modulation, the initial seeding of the unstable mode must arise from 
thermal or quantum fluctuations in the gas density at t = 0 (see Supple-
mentary Information). Since the phase of these fluctuations is random, 
this results in spontaneous breaking of the initial translational sym-
metry of the condensate. In Fig. 4 we show the phase and visibility of 
the density modulation observed in different iterations of our experi-
ment. To account for small fluctuations in the overall cloud position, 
we fit the one-dimensional density profile with a sinusoidal function 
modulated by a Gaussian envelope, and obtain the modulation phase 
ϕ relative to the centre of mass of the cloud. At all densities we find 
that the phase is uncorrelated between different experimental reali-
zations, indicating spontaneous breaking of the initial translational  
symmetry.
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structure factor, Sk(t), for condensates with different initial widths, which 
reveals a density dependence of both the modulation lengthscale and the 
growth rate. b, The measured instability growth rate, Γ, as a function of 
wavevector. The solid line shows the rate obtained from our Bogoliubov 
analysis (see Supplementary Information) and captures the data well with no 
free parameters. c, The instability growth rate at the dominant unstable 
wavevector shown as a function of the condensate width. The growth rate is 
obtained by averaging points from the shaded regions in b. At high densities  
we find good agreement with the density-independent hydrodynamic rate 
Γ = 0.14ωc (dashed line). As the density falls, we observe a crossover to the  
LLL scaling Γ = 0.21gn/ħ (dotted line). Solid line, Bogoliubov analysis 
(see Supplementary Information). The inset shows Sk(t) at kmax for condensates 
in the hydrodynamic regime (dark red) and the LLL (light red), along with the 
corresponding fits used to extract the rate (see text).
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Fig. 4 | Spontaneous breaking of translational symmetry. a, Images of the 
emergent crystal in three experimental iterations, along with the integrated 
one-dimensional density profiles n1D( y). The vertical dashed line shows the 
position of the centre-of-mass of the cloud, relative to which the modulation 
phase is random. b, An image of the cloud averaged over 60 iterations, in which 
the density modulation is no longer visible. c, The phase, ϕ, and visibility of the 
density modulation measured for multiple iterations of the experiment, for 
two different initial condensate densities. The visibility appears largely 
independent of the phase chosen by the modulation. The phase is randomly 
distributed between 0 and 2π, indicating spontaneous breaking of the initial 
translational symmetry of the cloud.
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The emergent crystallization observed here offers a pristine example 

of collective physics arising purely from the interplay of interparticle 
interactions and a gauge field. The steady state breaks both the U(1) 
symmetry associated with the phase of the wavefunction and transla-
tional symmetry, and thus displays supersolid properties38. A natural 
immediate direction concerns the Goldstone mode associated with 
the spontaneous breaking of translational symmetry, corresponding 
to magneto-phonons in the droplet array9. This would be a remarkable 
instance of a propagating mode arising intrinsically from interactions, 
in the absence of any single-particle dynamics. Although the densi-
ties in our experiment correspond to tens of atoms per flux quantum, 
our protocol can be straightforwardly extended to prepare clouds of 
lower filling fractions, which are expected to host beyond-mean-field, 
strongly correlated bosonic quantum Hall states13–17,19,20,59.
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Methods

Preparation of Landau gauge condensates
We prepare condensates occupying a single Landau gauge wave-
function using the geometric squeezing protocol described in ref. 22.  
We begin with a condensate of 8.1(1) × 105 atoms of 23Na in an elliptical 
time-orbiting-potential (TOP) trap60, with an root-mean-square (r.m.s.) 
radial frequency ω = 2π × 88.6(1) Hz, ellipticity 0.125(4), and axial fre-
quency 2.8ω. We then rotate the ellipticity of the trap, ramping the rota-
tion frequency from zero to ω. In the rotating frame, atoms experience 
both a synthetic magnetic field and a scalar saddle potential. Isopotential 
flow on this saddle, in analogy to the E × B Hall drift of electromagnetism, 
leads to elongation and contraction of the condensate along orthogo-
nal directions and effecting unitary squeezing of the atomic density 
distribution22. We then turn off the saddle potential by setting the trap 
ellipticity to zero, which halts the outward flow of atoms. This results in 
an equilibrium, quasi-translationally invariant condensate freely rotating 
at ω, which we allow to evolve for a variable time t. Finally, we obtain an 
absorption image of the in situ density distribution.

Imaging setup
Our imaging resolution is sufficient to observe vortices in situ with a 
contrast of ~60% (ref. 22). In the Thomas–Fermi regime, these have a 
characteristic size set by the healing length, which is ~300 nm in our 
system. This is substantially smaller than the quantum mechanical 
ground state size of cyclotron orbits, set by the rotational analogue of 
the magnetic length, ℓ ħ mω= /(2 ) = 1.6 μmB .

Coupling constant
Given interaction energies close to the LLL, the axial motion at fre-
quency 2.8ω is predominantly in its ground state. The coupling constant 
is then ∫g z ϕ z= d | ( )|ħ a

m
4π 4

2
, where a is the three-dimensional s-wave 

scattering length, m denotes the atomic mass of 23Na and ϕ(z) is the 
axial wavefunction with normalization ∫dz|ϕ(z)|2 = 1.

Stability analysis
To theoretically investigate the crystallization process, we perform 
a stability analysis of the initial Landau gauge condensate. In the 
Thomas–Fermi limit, we may neglect the quantum pressure term in 
the superfluid hydrodynamic equations. We linearize the equations 
about the original unperturbed condensate61, and find an exact analyti-
cal solution for the density and the velocity perturbations in terms of 
the Heun function62. The initial counterflow leads to an instability of 
Kelvin–Helmholtz type, and the analysis displays a dynamical instabil-
ity with a most critical wavevector at kmax = 1.12/RTF = 0.95/R and a rate 
Γ = 0.14ωc. To treat the entire region from the LLL to the Thomas–Fermi 
regime, we perform a numerical Bogoliubov analysis. In the LLL limit, 
the crystallization growth rate is given by Γ = 0.21gn/ħ, and the most 
critical wavevector is kmax → 0.981/ℓB. The Bogoliubov analysis shows 
that the growth rate of the dominant wavevector evolves smoothly 
from being interaction-dominated (Γ ≈ 0.21gn/ħ) in the LLL regime, 
to being set by the cyclotron frequency (Γ ≈ ωc) in the Thomas–Fermi 
regime. Further details are provided in the Supplementary Information.

Gross–Pitaevskii simulation
To provide insight into the crystallization dynamics beyond what can 
be captured in the linear stability analysis, we perform a numerical 
simulation of our experiment based upon the Gross–Pitaevskii (GP) 
equation. Within a single-mode approximation, the condensate wave-
function ψ(r, t) evolves in the rotating frame as













ħ
t

ψ
ħ

m
V g ψ ψi

∂
∂

=
− ∇

2
+ + | | − ⋅ . (4)
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2 Ω L

Here g = 8π
ħ a
mlz

2
s  is the two-dimensional mean-field coupling  

constant, as = 3.3 nm is the scattering length, l =z
ħ

mω z
 is the harmonic 

oscillator length of the axial trap, ωz = 2.8ω is the trap frequency in the 
zdirection, ω = 2π × 88.6 Hz is the r.m.s. radial trap frequency, Ω t z= ( )ˆΩ  
is the angular velocity, L is the angular momentum operator, and V is a 
complex scalar potential. The real part V mω ε x ε yRe( ) = [(1 + ) + (1 − ) ]1

2
2 2 2  

is the radial trapping potential with ellipticity ε, and the imaginary part 
V r R σIm( ) ∝ 1 + erf[( − )/ )]∞  serves as an absorbing circular boundary.  

The absorbing radius R∞ is chosen to be much larger than the transverse 
size of the condensate, and we use a wall thickness σ = R∞/10. We imple-
ment the evolution of equation (4) on a square grid using the time-splitting 
spectral method63 and accelerate the simulation by performing the bulk 
of the computation on a graphics processing unit (GPU).

The simulated experimental sequence is identical to the experiment. 
We first perform geometric squeezing of an initially circular conden-
sate22, before setting the trap ellipticity ε → 0 after which the condensate 
evolves freely for a time t in the rotating frame.

We find that without the explicit addition of noise, the condensate 
does not exhibit any instability except near the boundaries, owing 
to residual edge effects not mitigated by the absorbing potential  
(see Extended Data Fig. 1a). On the other hand, seeding of the dynamical 
instability by the addition of Gaussian phase noise at time t = 0 results 
in a very similar simulated evolution (Extended Data Fig. 1b) compared 
to the experiment (Extended Data Fig. 1c).

We perform an identical analysis procedure as in the experiment  
(see main text) on the simulated density profiles in order to 
obtain the structure factor Sk(t), shown in Extended Data Fig. 1d, e,  
and the instability growth rate shown in Extended Data Fig.  1f. 
The red points show the experimental instability growth rate as 
a function of wavevector k, and the black line shows the predic-
tion of our Bogoliubov analysis. For comparison, the blue line 
shows the rate extracted from the simulation, which captures the 
observed growth at higher wavevectors than the unstable range  
predicted by the Bogoliubov approach. This suggests that such growth 
can indeed be attributed to nonlinear effects, which are not captured 
by the perturbative Bogoliubov approach. In addition to oscillations in 
Sk at the cyclotron frequency ωc, a slower modulation is also observed. 
We attribute this oscillation to rotation of the individual droplets in 
the crystal.

In both experiment and simulation the emergent crystal is long-lived, 
persisting for ωct/(2π) > 20. In the experiment the lifetime is only limited 
by the weak ∝r4 anharmonicities in the trapping potential, leading to a 
slow S-shaped distortion of the linear crystal, similar to the Kerr effect 
on nonclassical states in quantum optics.

Vortex detection and phase profile
In the rotating frame, each droplet exhibits an irrotational flow profile, 
with vortices surrounding the droplets. These vortices are directly vis-
ible in the experimental density image, and can be used to reconstruct 
the phase profile of the crystal in the rotating frame (see Extended Data 
Fig. 2a, c, e). The phase is determined by the locations of the vortices, 
which are assumed to each have a single unit of circulation 2πħ/m. 
Most vortices are outside of the bulk of the condensate, making their 
detection challenging. Nevertheless, a numerical solution of the GP 
equation shows similarly located vortices (Extended Data Fig. 2d), as 
well as a similar irrotational flow profile in the rotating frame (Extended 
Data Fig. 2f).

Data availability
All data files are available from the corresponding author upon request. 
Accompanying data, including those for figures, are available from 
Zenodo (https://doi.org/10.5281/zenodo.5533142).
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Code availability
The simulation and analysis code are available from the corresponding 
author upon reasonable request.
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Simulation: No noise seed

Simulation: With noise seed

Experiment

Extended Data Fig. 1 | Numerical GP simulation of the condensate evolution 
in the rotating frame. a–c, Time evolution of the condensate density without 
the addition of noise (top), with added phase noise (middle), and in the 
experiment (bottom). The frames correspond to times ωct/(2π) = 0, 4 and 6.  
d–e, Evolution of the structure factor Sk(t) extracted from the simulation  
(d) and the experiment (e) which show good agreement. f, The extracted 

instability growth rate as a function of wavevector k. The experimental 
measurements are shown by red points, and the Bogoliubov prediction by the 
black line. The blue line shows the result of the GP simulation. Here, the blue 
shading and the red error bars indicate 1σ standard error. This model captures 
the experimentally measured growth at wavevectors above the instability 
region provided by the linear Bogoliubov description.
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e f

Extended Data Fig. 2 | Phase profile of the crystal. a, b, The density profiles of 
the crystals in the experiment (a) and GP simulation (b) appear to contain 
vortices, which are marked in c and d. e, The phase of the macroscopic 
wavefunction can be inferred from the locations of the vortices in the 

experimental image. Note that additional contributions from undetected 
vortices may exist. f, The simulated phase profile from a GP simulation shows a 
similar structure of irrotational flow within each segment of the crystal. In both 
e and f, the phase shown is in the rotating frame.
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