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Abstract: Equipping stakeholders with advanced tools to make better decisions 
for sustainable production is a key to research in smart manufacturing in the 
21st century. A smart decision tool to select the optimal cleaning processes for 
remanufacturing is presented in this paper. The approach started from 
formulating the process selection problem to a linear programming model to 
minimise the cost while observing the constraints of part cleaning level, 
processing time, and energy consumption. In order to model the vague and 
uncertain information associated with contamination, cost, time and energy 
consumption, fuzzy sets were applied. Finally, a genetic algorithm was 
proposed to search for the optimal solution to the mathematical model. Further, 
a software prototype was coded in MATLAB® to validate the proposed 
approach. Two case study results show that the proposed approach can 
overcome the deficiency on handling information vagueness and multiple 
objectives when searching for optimal cleaning solutions in remanufacturing. 
The proposed approach is systematic; it can be integrated into process planning 
in remanufacturing. 
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1 Introduction 

Smart manufacturing applies advanced cyber technologies such as digital manufacturing 
with data analytics for operations and businesses to emphasise product life cycle design 
and manufacturing innovations. In smart manufacturing applications, enterprises digitise 
every part of a manufacturing enterprise with interoperability and enhanced productivity, 
connect devices and distribute intelligence for real-time control and flexible production 
of small batch products, collaborate supply chain management with fast responsiveness to 
market changes and supplying chain disruption, integrate optimal decision making for 
energy and resources efficiency, and apply sensors and big data analytics through product 
lifecycle to achieve fast innovation cycle (Lu et al., 2016 NIST report). The eight priority 
areas suggested by NIST to advance smart manufacturing include: 

1 smart manufacturing system reference model and reference architecture 

2 internet of things (IoT) reference architecture for manufacturing 

3 manufacturing service models 

4 machine to machine communication 

5 PLM/MES/ERP/SCM/CRM integration 

6 cloud manufacturing 

7 manufacturing sustainability 

8 manufacturing cybersecurity (Lu et al., 2016 NIST report). 
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Table 1 Summarisation of cleaning processes in remanufacturing 

Method Approach Contamination 
to be removed 

Typical 
work part 

Cost per 
part 

Energy 
consumption 

Immersion 
cleaning 

Uses convection currents 
and vibrations to remove the 
surface contamination. The 
approaches to use 
immersion cleaning include 
belt conveyors and rotary 
drums where the pieces are 
put inside the media. 
Mechanical agitation in the 
aqueous media can be used 
to improve results. Another 
alternative is to use high 
pressure pumps to generate 
a flow in the media to clean 
the piece. 

Soil particles, 
films and 
coating, oils, 
soils, carbon, 
rust, dirt and 
gaskets from 
solid surfaces 

Regular and 
complex 
shapes, 
pieces with 
holes and 
parts hard to 
reach 

$0.06 to 
$0.15 

0.18 Kwh 

Ultrasonic 
cleaning 

This method consists of a 
tank filled with aqueous 
media that may or may not 
contain chemicals. The tank 
is connected to a motor that 
generates frequencies. 
These frequencies create 
bubble inside the tank that 
impacts the surface of the 
piece removing the 
contaminant. 

Paint, oil, 
grease, 
carbon, rust 
and oxidation. 

Regular and 
irregular 
shapes. 
Shapes with 
many holes 
or hidden 
chambers 
may be 
difficult to 
clean. 

$0.035 to 
$0.45 

0.86 Kwh 

Molten 
salt 
cleaning 

Using the same principle as 
immersion cleaning, molten 
salt uses a bath of salt 
combinations and different 
temperatures to clean the 
surface. There are three 
types of molten salt: molten 
alkali metal nitrates or a 
mixture of nitrate ions, 
molten cyanide baths, and 
molten chloride salts. 

Organic soils 
that forms in 
cars, trucks 
and plane’s 
engines 

Regular and 
irregular 
shapes and 
it is good 
cleaning 
pieces with 
small holes 

$0.6 to 
$0.8 

0.1Kwh to 
0.2 Kwh per 

cycle 

Laser 
cleaning 

Uses a laser beam to remove 
contaminant from the 
surface. The laser is directed 
by a mirror that gives the 
necessary direction to the 
beam. The contamination 
can be remove layer by layer 
in a controlled basis. 

Any type of 
contaminant at 
any layer 

Regular and 
irregular 
shapes, 
irregular 
shapes may 
not be clean, 
especially 
pieces with 
holes 

$2 to $3 2Kwh to 12 
Kwh per 

cycle 

Source: Yagar (2012) 
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Table 1 Summarisation of cleaning processes in remanufacturing (continued) 

Method Approach Contamination 
to be removed 

Typical 
work part 

Cost per 
part 

Energy 
consumption 

Vibratory 
cleaning 

Consists of a container filled 
with media that uses a 
device to apply time variable 
forces to the container to 
develop a periodic motion. 
Based on the size and 
material of the particles, the 
media can be changed to 
provide different results. If 
the contamination is thick, 
then a bigger and harder 
particle is used. If the 
contamination is thin, fine 
and soft particles may be 
used. Moreover, the type of 
material in the piece to clean 
dictates the type of media to 
use to avoid damages. 

 Pieces with 
regular 
shapes. It is 
not suitable 
for irregular 
shapes if 
they have 
small holes 
in them. 

$0.04 to 
$0.07 

0.1 Kwh to 
0.2 Kwh per 

cycle 

Abrasive 
cleaning 

Shoots particles into the 
piece to remove the 
contaminants in the surface. 
The process can be dry or 
wet. The dry process does 
not use liquid or chemicals, 
just the dry particles. Dry 
abrasive cleaning uses sand, 
slags (copper, nickel, iron), 
minerals, glass, ceramic, 
sponges, pellets, natural 
products, carbon oxide or 
aluminium oxide grit. Wet 
blasting uses water with 
chemicals (sand, mild 
alkaline cleaners, detergents, 
diluted acids, baking soda 
granules and other more) to 
remove the contaminants. 
The abrasive cleaning may 
be adapted to different needs 
by changing the nozzles 
through which the particles 
are shot. Bigger nozzles 
have more shotgun effect 
while a smaller nozzle is 
used for more detailed 
cleaning. 

Dirt, soluble 
salt, carbon, 
oxidation, 
paint, gaskets, 
rust, ash, or 
even a layer of 
the part’s 
surface 

Good for 
regular and 
irregular 
shapes that 
do not have 
hidden 
chambers. 
Small holes 
may be hard 
to clean. 

$0.2 to 
$0.45, but 
it can go 
to $10 if 

using 
expensive 
chemical, 
or if a big 

piece 
needs 
more 

process 
time 

 

Source: Yagar (2012) 
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Table 1 Summarisation of cleaning processes in remanufacturing (continued) 

Method Approach Contamination 
to be removed 

Typical 
work part 

Cost per 
part 

Energy 
consumption 

Thermal 
cleaning 

Uses high temperatures in 
ovens to burn the 
contaminants and convert 
them into ashes or gases. A 
convection oven is used 
when direct flames cannot 
be used. The bottom part of 
the oven is heated and the 
radiated heat is what makes 
contact with the piece. 
Another oven is the open 
flames oven. This type can 
reach higher temperatures 
because of the exposure of 
the flames but can harm the 
piece. Due to high 
temperatures, the piece can 
melt, the material property 
may be changed or the piece 
can be damaged and not 
usable in the next process. 

Organic 
contaminants, 
gasket 
material, 
rubber seals 
and heavy 
grease 

 $0.08 to 
$1.55 

0.3 Kwh to 
0.6 Kwh 

Minor 
cleaning 
processes 

These kinds of processes are 
used to perform the initial 
cleaning or to finalise 
cleaning from the surface of 
the piece. Spray wash, rinse, 
brush cleaning and any other 
that prepares the piece either 
to initial cleaning or finish it 
for the next step in the 
remanufacturing process. 

Last part of 
the 
contaminants, 
clean residues, 
clean 
chemicals 

Used on 
past 
cleaning 
method 
and/or 
perform the 
final details 
of the 
cleaning 

  

Source: Yagar (2012) 

Equipping stakeholders with advanced tools for better decision-making for 
environmentally sustainable production is a key research area for smart manufacturing 
(Edgar et al., 2015, NSF smart manufacturing workshop report; Bernstein et al., 2018). 

Remanufacturing is a vital component for sustainable manufacturing because of many 
new opportunities that are provided such as: sustainability, job creation, and affordable 
prices, etc. The remanufacturing process receives used/retired products and puts  
in processes to deliver ‘like-new’ products with increased life-cycles and better  
reliability (Junior and Filho, 2012). In general remanufacturing processes the used 
products go through a series of steps including inspection, disassembly, cleaning, 
recondition/replenish, and re-assembly. Tests and inspections are done throughout the 
remanufacturing to achieve the quality desired. When parts are received for 
remanufacturing, its surfaces are covered with contamination that may decrease the 
performance of the product or that should not be on the surface. For example, the piston 
of the engine needs oil and grease to avoid high temperatures and wear due to friction. 
But as time passes using the engine, oil and grease start to stick on the walls of the piston 
chamber that mixed with the combustion and high temperature creating soot. Another 
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example is painting and coating. Even though they are used to protect for the original 
product, when it comes to remanufacturing, those protections are considered 
contamination because a new paint and coat will be applied. 

The cleaning process is critical to remanufacturing in that it delivers products which 
are ready for reprocessing. The main purpose of cleaning in remanufacturing is to 
facilitate inspection and damage correction, and thus make the parts like new in 
condition. However, it is difficult to measure the level of cleaning irrespectively as there 
is no standard available. In practice, it is mostly done by visual inspection and then 
determining which is good enough by experience of the workers. This also causes a 
difference in cleaning efforts and costs for each remanufacturer (Gamage et al., 2013). A 
survey ranks the cleaning process among the most costly process in remanufacturing 
(Hammond et al., 1998). It is ranked second (29%) just after part replacement (43%). 
While parts cleaning in regular manufacturing productions is serving as a prelude to 
surface finishing or protecting sensitive components. The cleaning level in regular 
manufacturing is measurable. For example, using procedures recommended by ASTM 
B322. 

The contaminants are categorised as organic or inorganic. Organic contaminants 
include: organic particles, paints, lubricants, oils, grease, coatings, bacteria and fungi. 
Inorganic contaminants include: oxide scale, wear debris, dust, moisture and inorganic 
lubricants (Long et al., 2014). Cleaning processes to contaminants are generally classified 
into the following groups based on the technology or clean media used: immersion 
cleaning, ultrasonic cleaning, abrasive cleaning, laser cleaning, thermal cleaning, 
chemical cleaning, etc. Not all the cleaning processes can clean all the different 
contaminations at the same rate of time and cost. Table 1 summarises the cleaning 
approach, contamination to be removed, typical workpiece, cost, and energy consumption 
for each cleaning process. Different cleaning processes produce different cleaning results 
depending on the initial condition. Due to the uncertainty of the product condition and 
product usage condition at the moment of reception, the same cleaning method cannot be 
used all the time. Many evaluations on the cleaning methods need to be performed to 
decide which one can be used to achieve a desired cleanness level demanded by the 
remanufacturing process. The remanufacturers have to comprehensively understand the 
different decision parameters and performance measures in order to select the best 
cleaning processes. The decision parameters of a cleaning process generally involve: 
contamination level, contamination type, cleaning system type, material type, cleaning 
chemicals, temperature, and process cycle time. Performance measures may include: 
efficiency, system energy consumption, operating cost per part, system cost, emission 
levels, and cleaning effectiveness. Other factors that may also affect the performance and 
adoption of cleaning method include condition and geometry of the parts, clean media 
restriction, energy consumption, environment impact, quantity and types of contaminants, 
material resistance, etc. Further, most information available for the cleaning processes is 
vague and is only provided in ranges for equipment cost, energy consumption, cost per 
piece, etc. 

Given all the issues discussed, it is difficult for the remanufacturers to choose the best 
processes that reduce cost and time meanwhile achieving maximum cleanliness level. A 
literature search has revealed a lack of rigorous models to select optimised cleaning 
processes that can relate input conditions with the outputs such as cost, cleaning 
performance, and energy consumption. Initiated by this, a smart decision making tool that 
helps the remanufacturers develop process planning with their desired goal is proposed in 
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this paper. The overall methodology is based on mathematical programming model (PM) 
with fuzzy sets (FS) and genetic algorithm (GA) as the solution approach. The PM is 
used to model the objective function with the constraints and decisions variables. The FS 
are used to deal with the different uncertainties and lack of ‘exact’ information that exists 
in remanufacturing. FS help to work with ranges that the remanufacturer can establish 
depending on their need and knowledge of the process. The GA is used to find the best 
possible solution (close to optimal) that subjects to different constraints. 

The rest of the paper is organised into the following sections. Section 2 reviews the 
related literature on intelligent decision making in process planning for remanufacturing. 
A research gap is identified at the end of this section. Section 3 covers the proposed 
approach on PM model, FS, membership functions, fuzzy inference and the input/output 
of the model and the GA. Section 4 presents a prototype software and case studies to 
validate the proposed approach. Section 5 concludes the paper and presents outlooks on 
the future research. 

2 Literature review 

The related literature was searched on artificial intelligence in remanufacturing process 
planning. 

The stochastic and sporadic nature of the condition and quantity of the returned 
products impacts many levels of process planning and control for remanufacturing. NIST 
has investigated the sustainable process analytics formalism (SPAF) for “formal 
modelling of modular, extensible and reusable process components and enables the 
optimization of sustainability performance based on mathematical programming” 
(Brodsky et al., 2016). Based on the SPAF, they further developed a decision support 
system (DSS) that enables manufacturers to formulate optimisation problems at multiple 
manufacturing levels, to represent various manufacturing data, to create compatible and 
reusable models and to derive easily optimal solutions for improving sustainability 
performance (Shin et al., 2017). Kernbaum et al. (2009) presented an approach for the 
design and evaluation of the remanufacturing processes for a facility. A mixed integer 
programming (MIP) approach is used for the optimisation of a remanufacturing process 
plan from cleaning to reassembly by considering all the relevant costs. Jiang et al. (2011) 
defined reconditioning system planning as being made up of three closely related aspects, 
namely, restoration planning, process planning and technology planning. Assuming that 
the restoration and process planning have already been performed, a multi-criteria 
decision-making method was formulated to consider the economic and environmental 
aspects for the selection of the manufacturing technology portfolio. The analytical 
hierarchy process (AHP) was used to assign weights to the various criteria and capture 
the singular and synergistic benefits of each technology for decision making. Wang et al. 
(2008) presented a method to solve disassembly sequence planning problem. They 
proposed a disassembly feasibility information graph (DFIG) to describe the product 
disassembly sequence and operation information. Then, disassembly sequence planning 
problem was formulated onto the DFIG as an optimal path-searching problem, a GA was 
applied to find out feasible and optimal disassembly solutions efficiently. Gao et al. 
(2004) proposed a fuzzy reasoning Petri net (FRPN) model to represent related decision 
making rules in disassembly process. Using the proposed fuzzy reasoning algorithm 
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based on the FRPN model, the multi-criterion disassembly rules can be considered in the 
parallel way to make the decision automatically and quickly. Instead of producing the 
disassembly sequences before disassembling a whole product, the proposed method 
makes intelligent decisions based on dynamically updated status of components in the 
product at each disassembly step. A fuzzy logic-genetic algorithm (FL-GA) methodology 
was proposed to the automatic assembly and disassembly sequence planning of products 
(Galantucci et al., 2004). The GA-fuzzy logic approach was implemented in two levels. 
The first level was to develop a Fuzzy controller for the parameters of an assembly or 
disassembly planner based on GAs. This controller acted on mutation probability and 
crossover rate in order to adapt their values dynamically while the algorithm was running. 
The second level was identified as the optimal assembly or disassembly sequence by a 
fuzzy function, in order to obtain a closer control of the technological knowledge of the 
assembly and disassembly processes. A fuzzy multi-criteria decision making algorithm 
was developed to evaluate alternative recycling activities of an e-waste recycling job 
under of the sustainability criteria on the environmental, economic, and social dimensions 
(Yeh and Xu, 2013). This decision making model meets the best sustainability interests 
for sustainable planning of e-waste recycling activities. A series of optimal weighting 
models are developed to determine the optimal weights for the three sustainability 
dimensions and their associated criteria. It contributes to the methodological development 
of weighting the three corporate sustainability dimensions for planning decisions. 
Researchers designed a remanufacturing cell for the automated rework of fine pitch 
components for electronics manufacturing. This remanufacturing cell can finish the 
processes of: component removal, solder cleaning, solder paste dispensing, pick and 
place components, solder reflow, and laser soldering (Fidan et al., 1998). They further 
developed a computer aided process planning (CAPP) tool (Fidan et al., 2003) and an 
intelligent simulation environment (Fidan et al., 2004) for electronics remanufacturing 
systems. According to recent research (Liu et al., 2013), the availability, quality, 
remanufacturing cost and the remaining life of the remanufactured product are directly 
influenced by various cleaning methods and the corresponding cleaning quality. They 
also pointed that unified standards for cleanliness judgment and the knowledge base of 
remanufacturing cleaning are insufficient in spite of simplification and effectiveness of 
present remanufacturing cleaning process. This gap is complemented with an existing 
problem in cleaning efficiency due to the low level of process automation. Additionally, 
the cleaning needs to have many important quality measures to assure the overall 
cleaning of the product/piece. One of the challenges to the remanufacturing industry is 
the lack of decision making tools that helps the remanufacturers decide which cleaning 
method will achieve the desired level of cleanliness at lower cost/time possible. This 
knowledge gap needs to be filled in order to contribute to the cleaning processes for 
remanufacturing. 

A review of literature identifies that current research lacks enough consideration on 
the questions below for selecting the optimal cleaning processes in remanufacturing: 

1 Can the factors, including contamination, work piece material and shape, processing 
time, cleanliness level, and cost etc., be incorporated into the cleaning process 
selection model? 

2 Can the process vagueness and uncertainties on the decision variables be processed 
in the selection modelling? 
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3 Can an efficient optimisation algorithm to properly select the cleaning process be 
developed that considers the multiple objectives including cost, cleaning effect, 
process time, involved in cleaning for remanufacturing while subjecting to 
constraints? 

These three issues form our research questions to be solved in the following sections. 

3 Smart decision support model for process planning in remanufacturing 

The proposed model of smart decision making for optimal cleaning process planning in 
remanufacturing is presented in this section. First, the mathematical PM with decision 
variables, objective function and constraints are formed. Second, the FS with the 
membership functions are illustrated. Third, the GA is explained on searching optimal 
solution to the proposed model; and fourth, the decision support model is explained in a 
flowchart. It is important to note that every remanufacture process has different criteria, 
different measurements, and different needs. Thus these FS and membership functions 
need to be implemented to better understand the current knowledge. Also, the proposed 
decision support model should be generic to help the remanufacturer make a good 
decision; however, the technical information should be modified according to their own 
process. 

The following terms are used throughout the model. 

 Sequence of cleaning processes (Yi). This refers to the cleaning chosen to perform 
the study. The index ‘i’ is used to differentiate from other sequence. It is modelled as 
an array of processes that contains the sequence. Yi = [y1 … yj]. For example, Y1 =  
[1 2 3 4], in which the sequence is ultrasonic, abrasive, laser and thermal. Each jth 
term represents one cleaning method and the ith array represents the sequence in 
which will be performed. This variable is randomly created. 

 Process cycle time (Ti). Similar to Yi, it refers to the time in which each cleaning 
process will be used. It is also an array and each position refers to the time that a 
process of the array Yi will be used. Ti = [t1 … tj]. For example, T1 = [15 20 25 30] 
refers to process time of the cleaning processes. Also, the index Ti has a relationship 
to the index Yi. Each jth term represents the time of each method and the ith array 
represents the process time. 

 Acceptable process time (Tw). This is the maximum process time allowed for the 
combination of cleaning process. It is given by the user with a number or by a subset 
of the set time. It serves as the upper limit. 

 Acceptable clean level (CLp). This is the minimum cleaning level that the piece 
should meet in order to be suitable for the next processes. It is given by the user by a 
number or by a subset of the set cleanliness level. It serves as the lower limit. 

 Acceptable energy consumption (Ev). Similar to time Tw, Ev is the maximum energy 
consumption that can be used in the cleaning process. It is given by the user. 

 Fuzzy inference output (Pi). This refers to the results given the fuzzy inference after 
evaluating the necessary rules. The output is cleaning result (CL), energy 
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consumption result (EC) and cost result (CR). Later in the process, the Yi and Ti are 
combined to check the constraints with the input given by the user. 

 ,jy  represents the binary element for the array Yi. If an element of the array is bigger 

than zero, the 1.jy   Otherwise, 0.jy   

 Contamination type (CT). It is a user input that refers to the type of contaminant that 
is located on the surface of the piece. May be organic, inorganic, mixed, etc. 

 Contamination level (CTh). It is a user input that refers to the amount of contaminant 
located in the surface of the piece. 

 Material type (MT). It is a user input that describes the type of material that is 
contained in the piece. The material may be metal, ceramic, polymer, and composite, 
etc. For the study, the material type may be metal or non-metal. 

 Piece shape (PS). It is a user input that gives information about the form of the piece. 
It may be flat, round, may contain holes. For the study, PS is used as a fuzzy set with 
sub-sets of simple, complex and very complex. 

 Feasible solutions (Qi). This term is an output after checking the constraints. It 
contains information about the inputs of the user, sequence of cleaning processes, 
processing time and output of the fuzzy inference. This array is built each generation 
with the processes that only met the constraints. 

 Best solution (si). This refers to the best solution of each generation that is contained 
in Qi. 

3.1 The model 

3.1.1 Decision variables 

The decision variables are Yi and Ti. These two variables give the sequence of process 
and the time in which processing of the sequence is performed. They will initiate the 
model to evaluate cleaning processes in terms of cleanliness level, energy consumption 
and cost. After the evaluation, it is important to calculate the cleanness level achieved, 
the energy consumed and the cost incurred. The first two and the Ti are used in the 
constraints checking to assure that the sequences of processes are suitable. 

3.1.2 Constraints 

The constraints serve as the filter to disregard any options that do not meet user 
expectation (given in the input). CLp, Tw, and Ev are limits that need to be met. The user 
implements the constraints on the inputs of the acceptable process time, Acceptable 
cleaning level, and acceptable energy consumption. The output Pi = [CL, EC, CR] given 
by the fuzzy inference is used to check the constraints. CR is not part of the constraints, 
but it is part of the array. The time constraint is checked with the array Ti. 

As explained before, CL is the cleaning level achieved by the sequence of process. 
The cleaning output has to be higher than the user input CLp. The output EC and the 
process time generated Ti are needed to be lower than the user input Tw and Ev. The 
constraints are set as follows: 
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CL CLp  (1) 

1
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i j j i

j
T Tw y t R Tw




     (2) 

1

j n
j j

j
EC Ev y E Ev




    (3) 

3.1.3 Objective function 

The objective function is to minimise the cost given by the function: 

1
( ) ( )

j n
j j

j
Min Z y C Min Z CR




    (4) 

3.2 FS and membership functions 

Because of the imprecise and vague information involved with input variables, FS and 
membership functions are used to explain first a variable and to convert a crisp value to a 
specific degree of membership (Chen and Pham, 2000). 

The sets used for the decision model are: 

 Contamination type (CT). There are three categories of contamination type in the 
model: organic, inorganic, and mixed, which were modelled with discrete values as 
Table 2 shows. 

Table 2 Description of contamination types 

Contamination type Description 

1 Organic only (oil, grease, organic paints, etc.) 

2 Inorganic only (oxidation, rust, dust, etc) 

3 Mixed contaminations – organic and inorganic 

 Contamination levels (CTh). For the model, the set has five subsets as Table 3 
describing the amount of contaminant on work piece surface. The membership 
function is as Figure 1. 

Table 3 Description of contamination levels 

Contamination level Description 

0 Contamination cannot be seen by the human eye 

1 Very thin layers of contaminants 

2 Thin layers of contaminants 

3 Medium layer of contaminants 

4 High presence of contaminants. Very thick layers 

 Product shape (PS) and material type (MT). This relates to product properties. It is 
important to understand the shape/size of the product and also the material on which 
was built. The main reason is because different cleaning methods support different 
kind of materials and shapes (explained in Table 1). Product shape is a set of three 
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subsets: simple, complex, and very complex as illustrated in Figure 2. The material 
types are discrete values: 1 = metal and 2 = non-metal. 

Figure 1 Contamination levels membership function (see online version for colours) 

 

Table 4 Description of piece shape index 

Piece shape index Description 

0 Very simple shape, i.e., sheet of metal, plane. 

1 Some presence of complicated part, i.e., curves, depth, spikes 

2 Presence of complicated shapes and holes 

3 Very complicated shape – many holes, spikes, lack of support. 

Figure 2 Piece shape membership function (see online version for colours) 

 

 Time. This set is used for process time and acceptable process time defined by the 
user. Both use the same membership function. The difference between the two times 
is that the time given by the user is for constraints purposes (total process time) and 
the time used for the cleaning method is for ‘cleaning processing’ time. The set time 
has membership function as Figure 3. 

 Cleanliness level. This set refers to the overall cleaning output after a cleaning 
method is used. The cleanliness level is measured by how clean the surface of piece 
is. Less contaminants or undesired components are on the surface, the cleaner the 
piece is. The range for the model is between 0 and 10 as Table 5, where 0 is not 
cleaned at all and 10 is completely clean. The numbers in between refers to partial 
cleaning in which some contaminants were removed but unwanted components are 
still in the surface. This set is used to evaluate the user input to the model and then 
used as constraint in order to evaluate the cleaning performance of the different 
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cleaning methods. The set of cleanliness level has the membership function as  
Figure 4. 

Figure 3 Time membership function (see online version for colours) 

 

Table 5 Cleaning level index 

Cleaning level index Description 

0 High presence of contaminants 

1 Super minor removal of contaminants 

2 Minor removal of contaminants 

3 Minor cleaning – presence of cleaned spots starts to appear 

4 Minor cleaning – small presence of cleaned spots 

5 Medium cleaning – still many contaminants 

6 Medium cleaning – spots with contaminants 

7 Good cleaning – some major spot with contaminants 

8 Very good cleaning – still some spots with contaminants 

9 Excellent cleaning – contaminant cannot be seen by human eye 

10 Very excellent cleaning – no contamination at any level 

Figure 4 Cleanliness level membership function (see online version for colours) 

 

 Energy consumption. This set refers to the energy consumed by the different 
cleaning methods in process. Also, it refers to the user input for the expected energy 
consumption that wants to be consumed. The user input is used to evaluate the 
energy consumption constraint (explained later in the PM) with the energy consumed 
by the cleaning processes. The energy is measured in kWh. It has the membership 
function as Figure 5. 
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Figure 5 Energy consumption membership function (see online version for colours) 

 

 Cost. This set refers to the cost per cleaning process and the overall cost. The cost 
includes designs, machines, implementation of the process and every cost that is 
incurs when implementing the cleaning process. It can be refer as ‘system cost’ also. 
It does not include the cost per piece. It will be used to build the objective function in 
the model. The set is divided into five subsets: very low, low, medium, high, and 
very high. It ranges from $10,000 to $460,000. The set cost has the membership 
function as Figure 6. 

Figure 6 Cost membership function (see online version for colours) 

 

3.3 GA and genetic operators 

The GA serves as the optimisation tool in the proposed DSS. It goes through the steps of: 

1 input 

2 seeds generation 

3 process evaluation 

4 constraint checking 

5 crossover and mutation 

6 stopping. 
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3.3.1 Inputs 

The user input is an array named as I = [CT, CTh, MT, PS, Tw, CLp, Ev] which consists of 
contaminant type, contaminant thickness, material type, shape of the piece, expected 
process time, expected cleaning level and expected energy consumption. The first four 
elements of the array are used to perform the fuzzy inference. The last three are to 
evaluate the constraints. The user needs to input this information in order to calculate the 
best possible combination of cleaning processes that results in the possibly lower cost. 

3.3.2 Generation of seeds 

The seeds are generated randomly for Yi and Ti. Each element of the array is random 
integer number between 0 and n, representing the different cleaning processes available 
to choose from. If the remanufacturer has four cleaning processes available, then n = 4. 
The zero should be included to represent that ‘no cleaning process’ is used. Similarly, Ti 
has random numbers between 0 and m, where ‘m’ represents the upper limit for the time 
range. Later, this number is turn to linguistic terms with the fuzzy inference rules. 

3.3.3 Process evaluation loop 

After gathering all the inputs and generated seeds, it is necessary to evaluate the 
performance of sequence of the cleaning processes dictated by Yi. The inputs to this 
operation are: CT, CTh, MT, PS, yj and tj. The fuzzy inference engine does the 
performance evaluation giving the result in terms of cleaning level, energy consumption, 
cost and a term called ‘new contamination levels’ with the name Inct. This new term serve 
as an input for the next element in the Yi. After the first element of the array is evaluated, 
the results need to be storage and evaluation of the next element of Yi. The input for the 
evaluation of the next element are: CT, Inct, MT, PS, yj+1 and tj+1. 

The increment ‘j + 1’ is to evaluate all the elements in the arrays Yi and Ti. In the case 
than an element of the array is equal to zero, the solutions for that given iterations is 
going to be zero. After all the elements are evaluated, the final result for the array Yi is 
storage in the array Pi that was explained before. 

3.3.4 Constraints checking 

After gathering all the results from the process evaluation loop, these results are checked 
to determine whether they satisfy the customer requirements. 

As explained before, CLp, Tw and Ev are the user input and represent the limits of the 
user requirements. CLp is the lower boundary. Tw and Ev are the upper boundary. The 
constraints are checked by equations (1), (2) and (3). Any array Yi that does not meet any 
of the constraint is disregarded and no longer taken in consideration as a feasible 
solution. This step of the model is to filter which solutions that are suitable from those 
that are not. Finally, the objective function is calculated and it is stored as part of the 
array ‘Qi’. At the end, this array has all the information from the user input to the overall 
results. 

 i i i iQ CT CTh MT PS Y T CR R CLp Ev  
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3.3.5 Crossover and mutation 

Crossover and mutation have a rate given by the term Pc and Pm. The first one is set 
around 0.7 and the second one around 0.1. In other words, 70% of the feasible solutions 
are going to be set for crossover operations and 10% of those are going to mutate. The 
mutation is set to be randomly to any jth of the arrays Yi and Ti. The crossover is 
performed between the best ‘s’ solutions to generate new population. The term ‘s’ stands 
for a number of best solutions. It may be 10, 20, 30 or any number that represents the best 
solutions. This is set by later in order to optimise the computation time. The crossover 
point is set randomly. Before performing any operations, the best ‘s’ solutions are going 
to be saved. The best solutions may be contained in past generations. All new generations 
are entered in the loop to evaluate the process performance, the constraints and save the 
solutions of the feasible ones. 

3.3.6 Stopping 

All the solutions that are crossover and mutated are entered again in the model to 
evaluate the performance and check the constraints. The last part of the loop is to choose 
the best solution based on the stopping conditions. The GA has the stop conditions as 
following: 

 The numbers of generations are met. 

 The objective function has not improved in the past two generations or is between 
the +/– N%. The ‘N’ stands for the tolerance of the user. 

When the stopping conditions are met, the best solution is chosen and given to the user. 

3.4 Decision model flowchart 

Finally the flowchart for the decision model is shown in Figure 7. In Figure 7, the process 
of the software is simple and includes the following function blocks: 

1 User input and constraints. 

2 Generation of first seed. The size can be changed inside the code. 

3 Evaluation of the element of the seed with the fuzzy toolbox to predict cost, energy 
consumption and cleaning level achieved. 

4 Performing evaluation of the different elements of the array to check which ones 
meets the constraints. 

5 If a certain number of generations are created, then entering to the stop condition 
loop to check if the cost variance is significant enough to stop the solution. 

6 If the stop conditions have not triggered, going to the GA process. 

7 Performing the crossover and mutation operations. Checking that a solution it is not 
repeated inside the same generation. 

8 Setting the new population of possible solutions. 
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9 Going to step 3 to begin the prediction of performance of the new population and 
evaluation. Stopping when the stop conditions are met. 

Based on Figure 7, the software prototype and case studies were developed as in  
Section 4. The details of each function block in Figure 7 will be described in Section 4. 

Figure 7 Decision model flowchart (see online version for colours) 

 

4 Software, case study, and discussions 

This section describes the development of a software to validate the proposed decision 
support model. Two case studies with results demonstrated how the smart decision 
making model works. 

4.1 Prototype 

The software was coded in MATLAB® with its ‘fuzzy toolbox’ and the GA functions in 
the ‘optimisation toolbox’. The software consists of four main sections including: user 
inputs and first seed generation, FS, processes evaluation, crossover and mutation 
operations, and finally stop conditions. 
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4.1.1 User inputs and first seed generation 

Figure 8 is a graphical view of the user inputs of initial parameters and constraints in the 
software model. User inputs four initial condition parameters [contamination type, 
contamination level, material type, piece shape, cleanness level]. Also, the user gives the 
inputs for the constraints on: [total processing time allowed, minimum cleaning level 
needed, maximum energy consumption allowed]. Then, the fuzzy toolbox reads these 
inputs for next steps. 

Figure 8 User input and constraints input GUI (see online version for colours) 

 

4.1.2 Fuzzy sets 

The user inputs and outs of [cost, cleanness level, energy consumption, and new 
contamination level] go through the steps of: 

1 fuzzification of variables (membership function) 

2 evaluation of rules 

3 fuzzy inference 

4 defuzzification of output. 
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The fuzzy inference is established by the ‘If-Then’ rules. Outputs are the final answer to 
the case evaluated. Also, the toolbox leaves the users to decide different parameters such 
as: defuzzification method, aggregation method, implication method, etc. For the 
software all the parameters are used in their default values. The membership function of 
the inputs and outputs are very easy to set up. 

Figure 9 shows an example of membership functions and Figure 10 shows the fuzzy 
inference process. An example of fuzzy inference in the model is: ‘IF contamination type 
is organic, and contamination level is low, and material type is metal, and piece shape is 
simple, and cleaning process is ultrasonic and is fast’, THEN, ‘cost is low, cleaning level 
is excellent, energy consumption is low and new contamination level is super low’. 

Figure 9 Example of the membership function in the Fuzzy Toolbox® (see online version  
for colours) 

 

4.1.3 Process evaluation 

The process evaluation consists of checking the seed generated to ensure that the 
sequence of cleaning processes associated with the seed meets the constraints set by the 
user. Figure 11 shows the flow of process evaluation in the software. Each element of the 
seed, with the results from the FS, is compared with the processing time constraint, 
minimum cleaning level constraint and maximum energy consumption constraint. The 
checking is performed by a binary operation. The constraint that is met is assigned a 
number ‘1’. If not, a number ‘0’ is assigned. When all three constraints are check, it 
begins a multiplication between the binaries number. An element that has all the numbers 
as ‘1’ will be considered as feasible solution. Those which has a ‘0’ are disregarded. For 
example, constraint check 1  constraint check 2  constraint check 3 = 1  1  1 = 1 = 
feasible solution. In other case, constraint check 1  constraint check 2  constraint check 
3 = 1  0  1 = 0 = non-feasible solution. At the end, the ones that meet all the necessary 
constraints are kept as a feasible solution. The elements that do not meet the constraints 
are disregarded. 
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Figure 10 Fuzzy inference example (see online version for colours) 
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Figure 11 Process evaluation loop (see online version for colours) 

 

There are two options when there is no feasible solutions. 

1 If the simulation has run for small amount of generations, then it should start over. 

2 If the simulation has run for a specific number of generations and the user is 
satisfied, then the solutions should be used. At the end, the user can decide to run 
again the simulation or keep the solutions found. 

4.1.4 Genetic algorithm 

This GA intends to find better solutions generation by generation. The GA mixes the 
solutions obtained in the current generation to capture the best characteristic of each 
array. From here, a new generation of possible solutions is created and it is submitted to 
the fuzzy toolbox and the process evaluation. Figure 12 shows the GA process. 

The crossover rate is set to 0.7. Many articles and previous studies has shown that the 
crossover rate should be around 0.6 to 0.75 of the population. The mutation rate is set up 
to 10% of the population that perform a crossover. It is important to mention that the 
crossover point is done randomly. Sometimes it is done at one position, sometimes in 
another. This helps to simulate the ‘randomness’ that exist in nature. Also, it helps to 
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cover more possible solutions that may be a good fit. The GA also checks if a solution is 
repeated in the same generation. In case that happens, one of the elements repeated is 
eliminated and another is created using crossover operation. 

Figure 12 Genetic algorithm (see online version for colours) 

 

The user can decide how big the population is in each generation. This is to set the 
counter of the GA when creating the elements of the next generation. If the user decides 
that a population of 50 is wanted every generation, then the counter is set to 50. In case a 
solution is repeated when creating the generation, the counter returns to the previous 
value. The checking process of repeated solutions is performed after the second element 
of the generation is created and continues until the number of elements set by the user is 
met. 

When performing the crossover operation, the software selects two populations of the 
solution, then sets the crossover point randomly and creates the new element of the 
population. 

4.1.5 Stop condition 

This part of the software is designed to stop simulation if the conditions are met. For this 
model, the stop conditions depend on the number of generations performed and variance 
of the cost. The stop condition is set up to meet both requirements. In case there is no 
feasible solution during any generation, a display is shown to let the user decide whether 
he will run the simulation again or use the feasible solutions found. 

4.2 Case studies 

Two case studies were developed to demonstrate the proposed DSS and software. 
Different inputs received from a remanufacturing company at Laredo TX (Long et al., 
2014) were used in each case. At the end of each case, the best solutions of each 
generation are shown on a cost plot. 
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Case 1: The input from the Case 1 is as Table 6. 

Table 6 Case 1 input 

Inputs Index Description 

Contamination type 1 Organic 

Contamination levels 2.4 Medium 

Material type 1 Metal 

Piece shape 1.5 Complex 

Cleaning level constraint 8 Min. allowed 

Energy constraint (KWh) 20 Max. allowed 

Time constraint (min) 80 Max. allowed 

With this input to the decision model, stop condition was met at generation 9. From 
Figure 13, the best solution is located in generation 7. Table 7 illustrates the selection of 
cleaning process in each generation. In Table 7, the cell in black means that it did not 
select any cleaning process, generation 7 selected the best process of immersion cleaning, 
which will clean the part for 23 minutes to achieve the performance in generation 7, 
Table 8. 

Figure 13 Case 1 cost plot of best solutions (see online version for colours) 

 

Table 7 Case 1 best solutions 

Generation 
Cleaning process 

1 
Cleaning process 

2 
Cleaning process 

3 
Cleaning process 

4 

1 No process Thermal Abrasive Molten salt 

2 Immersion No process Vibratory Thermal 

3 Immersion Abrasive No process No process 

4 No process No process Abrasive Vibratory 

5 Vibratory Vibratory No process No process 

6 No process Abrasive No process Molten salt 

7 No process No process No process Immersion 

8 No process No process No process Immersion 

9 No process No process No process Immersion 
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Table 8 Case 1 results 

Generation Cost ($) Total time (min) Cleaning level Energy cons. (kWh) 

1 114,029.84 68.00 9.07 12.09 

2 117,816.36 68.00 9.14 6.69 

3 80,247.49 21.00 9.05 4.55 

4 75,554.32 43.00 9.07 10.09 

5 78,720.27 19.00 9.02 4.47 

6 75,896.18 26.00 8.89 4.32 

7 35,964.97 23.00 9.17 2.06 

8 40,345.00 16.00 9.05 2.28 

9 40,218.75 20.00 9.05 2.28 

In Table 8, the optimised process gives a cleaning level of 9.17 (excellent cleaning) and 
energy consumption of 2.06 kWh. The system cost predicted is $35,964.97. It is 
important to mention that generation 8 and 9 have a little higher cost than generation 7, 
although the process time is a little shorter. The reason for this is that the software it is 
not entirely perfect and some solutions may be lost when performing the crossover and 
mutation operations. Also, the fuzzy inference is used to predict the result. Even though 
the best effort is done to have a consistent prediction, sometimes it may go just a little 
differently than expected. This is one of the risks taken when using fuzzy inference. 

Case 2: The input to the second case study is as Table 9. 

Table 9 Case 2 input 

Inputs Index Description 

Contamination type 3 Mixed 

Contamination level 3.2 High 

Material type 1 Metal 

Piece shape 2.1 Complex 

Cleaning level constraint 7 Minimum allowed 

Energy constraint (KWh) 20 Max. allowed 

Time constraint (min) 100 Max. allowed 

Table 10 Case 2 best solutions 

Generation 
Cleaning process 

1 
Cleaning process 

2 
Cleaning process 

3 
Cleaning process 

4 

1 Abrasive Thermal No process Molten salt 

2 No process Immersion No process Molten salt 

3 No process Immersion No process Vibratory 

4 No process Immersion No process Vibratory 

5 No process No process No process Vibratory 

6 No process No process No process Vibratory 

7 No process No process No process Vibratory 

8 No process No process No process Molten salt 



   

 

   

   
 

   

   

 

   

    A smart decision making tool for cleaning process planning 191    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

Table 11 Case 2 results 

Generation Cost ($) Total time (min) Cleaning level Energy cons. (kWh) 

1 114,537.79 65.00 9.17 12.30 

2 79,352.14 70.00 9.11 10.16 

3 79,820.01 61.00 7.76 4.52 

4 79,820.01 35.00 7.76 4.52 

5 38,694.36 33.00 7.76 2.20 

6 38,694.36 56.00 7.76 2.20 

7 38,694.36 33.00 7.76 2.20 

8 35,964.97 56.00 9.17 7.84 

The stop condition was met at generation 8. From Figure 14, the best solution is located 
in generation 8, and Table 10 illustrated the best solutions of cleaning process is molten 
salt cleaning for 56 minutes. Table 11 shows it will achieve a cleaning level of 9.17 
(excellent cleaning) and energy consumption of 2.06 kWh. The system cost predicted is 
$35,964.97. There is no increase between generations that happened in case 1. 

Figure 14 Case 2 cost plot of best solutions (see online version for colours) 

 

In both cases, the cost was reducing during the simulation. The solution may have been 
repeated in terms of cleaning processes chosen, but processing time and cleanness level 
changed. The comparison is not only among different processes, but also in different 
processing times of a same cleaning process. The method and software give the users a 
better idea of which cleaning processes should be used when planning the processes. 

5 Conclusions and future research 

A smart decision making tool was presented in this paper to select optimal cleaning 
processes. A linear programming mathematical model on selecting cleaning process was 
first formulated. Fuzzy set theory was then applied to process the vague and uncertain 
decision variables in the mathematical model. In order to find the optimal solution in the 
decision making, a GA algorithm was proposed. Further, the proposed approach was 
prototyped in MATLAB®. Two case studies demonstrate that the combination of fuzzy 
set and GA is promising to make optimal decision for selecting the cleaning approach. 
This model could be used in the process planning to remanufacturing for 21st century. It 
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will reduce process time and cost, achieving a desired level of cleanliness to 
remanufacture ‘like new’ products. 

For future research, validation on physical experiments and more parameters will be 
investigated. The two case studies received initial inputs from remanufacturing industry, 
but did not validate in real productions. Physical experiments can help better understand 
the decision making process. Besides this, this decision mode has variables uncovered 
that are important for remanufacturing such as surface finish, batch sizes, measure of 
contamination layers, etc. For example, some cleaning processes may not be as incisive 
as others on the surface finish. An abrasive method may leave a bad surface, but the 
ultrasonic method leaves an untouched surface. This decides how much reprocessing of 
the workpiece would need after the cleaning. Further, the software calculates the cost 
based on the information from literature. The cost range may change depending on the 
size of returned product batches and the quality level of equipment. 

To apply this approach to real production, the decision model focuses on 
implementing a completely new cleaning process. In case that the remanufacturer has 
some established cleaning processes or other processes not showing here, the user has to 
include those processes in the fuzzy toolbox and eliminate those that are not part of their 
process. Sometimes, cost is not the only important process performance; overall cleaning 
level may be important also. By setting the utility functions for cost and cleaning level, 
the user is going to look for the solution that has the better measure in terms of utility. 
The solution may not be the lower cost or the highest cleaning level, but the combination 
of both factors that the user feels good about it at the end. 
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