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Abstract: Equipping stakeholders with advanced tools to make better decisions
for sustainable production is a key to research in smart manufacturing in the
21st century. A smart decision tool to select the optimal cleaning processes for
remanufacturing is presented in this paper. The approach started from
formulating the process selection problem to a linear programming model to
minimise the cost while observing the constraints of part cleaning level,
processing time, and energy consumption. In order to model the vague and
uncertain information associated with contamination, cost, time and energy
consumption, fuzzy sets were applied. Finally, a genetic algorithm was
proposed to search for the optimal solution to the mathematical model. Further,
a software prototype was coded in MATLAB® to validate the proposed
approach. Two case study results show that the proposed approach can
overcome the deficiency on handling information vagueness and multiple
objectives when searching for optimal cleaning solutions in remanufacturing.
The proposed approach is systematic; it can be integrated into process planning
in remanufacturing.
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1

Smart manufacturing applies advanced cyber technologies such as digital manufacturing
with data analytics for operations and businesses to emphasise product life cycle design
and manufacturing innovations. In smart manufacturing applications, enterprises digitise
every part of a manufacturing enterprise with interoperability and enhanced productivity,
connect devices and distribute intelligence for real-time control and flexible production
of small batch products, collaborate supply chain management with fast responsiveness to
market changes and supplying chain disruption, integrate optimal decision making for
energy and resources efficiency, and apply sensors and big data analytics through product
lifecycle to achieve fast innovation cycle (Lu et al., 2016 NIST report). The eight priority

Introduction

areas suggested by NIST to advance smart manufacturing include:

1
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smart manufacturing system reference model and reference architecture
internet of things (IoT) reference architecture for manufacturing
manufacturing service models

machine to machine communication

PLM/MES/ERP/SCM/CRM integration

cloud manufacturing

manufacturing sustainability

manufacturing cybersecurity (Lu et al., 2016 NIST report).
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Table 1 Summarisation of cleaning processes in remanufacturing
Method Approach Contamination  Typical Cost per Energy.
to be removed  work part part consumption
Immersion Uses convection currents Soil particles, Regularand $0.06to  0.18 Kwh
cleaning and vibrations to remove the films and complex $0.15
surface contamination. The coating, oils,  shapes,
approaches to use soils, carbon, pieces with
immersion cleaning include rust, dirt and  holes and
belt conveyors and rotary ~ gaskets from  parts hard to
drums where the pieces are  solid surfaces reach
put inside the media.
Mechanical agitation in the
aqueous media can be used
to improve results. Another
alternative is to use high
pressure pumps to generate
a flow in the media to clean
the piece.
Ultrasonic  This method consists of a Paint, oil, Regular and $0.035to  0.86 Kwh
cleaning  tank filled with aqueous grease, irregular $0.45
media that may or may not carbon, rust  shapes.
contain chemicals. The tank and oxidation. Shapes with
is connected to a motor that many holes
generates frequencies. or hidden
These frequencies create chambers
bubble inside the tank that may be
impacts the surface of the difficult to
piece removing the clean.
contaminant.
Molten Using the same principle as  Organic soils Regularand $0.6to  0.1Kwh to
salt immersion cleaning, molten that forms in  irregular $0.8 0.2 Kwh per
cleaning  salt uses a bath of salt cars, trucks shapes and cycle
combinations and different  and plane’s it is good
temperatures to clean the engines cleaning
surface. There are three pieces with
types of molten salt: molten small holes
alkali metal nitrates or a
mixture of nitrate ions,
molten cyanide baths, and
molten chloride salts.
Laser Uses a laser beam to remove Any type of  Regularand $2to $3 2Kwhto 12
cleaning  contaminant from the contaminant at irregular Kwh per
surface. The laser is directed any layer shapes, cycle
by a mirror that gives the irregular
necessary direction to the shapes may

beam. The contamination
can be remove layer by layer
in a controlled basis.

not be clean,

especially
pieces with
holes

Source:

Yagar (2012)
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Summarisation of cleaning processes in remanufacturing (continued)

Method

Contamination

Approach to be removed

Typical
work part

Cost per
part

Energy
consumption

Vibratory Consists of a container filled

cleaning

Abrasive

cleaning

with media that uses a
device to apply time variable
forces to the container to
develop a periodic motion.
Based on the size and
material of the particles, the
media can be changed to
provide different results. If
the contamination is thick,
then a bigger and harder
particle is used. If the
contamination is thin, fine
and soft particles may be
used. Moreover, the type of
material in the piece to clean
dictates the type of media to
use to avoid damages.

Dirt, soluble
salt, carbon,
oxidation,
paint, gaskets,
rust, ash, or
even a layer of
the part’s
surface

Shoots particles into the
piece to remove the
contaminants in the surface.
The process can be dry or
wet. The dry process does
not use liquid or chemicals,
just the dry particles. Dry
abrasive cleaning uses sand,
slags (copper, nickel, iron),
minerals, glass, ceramic,
sponges, pellets, natural
products, carbon oxide or
aluminium oxide grit. Wet
blasting uses water with
chemicals (sand, mild
alkaline cleaners, detergents,
diluted acids, baking soda
granules and other more) to
remove the contaminants.
The abrasive cleaning may
be adapted to different needs
by changing the nozzles
through which the particles
are shot. Bigger nozzles
have more shotgun effect
while a smaller nozzle is
used for more detailed
cleaning.

$0.04 to
$0.07

Pieces with
regular
shapes. It is
not suitable
for irregular
shapes if
they have
small holes
in them.

Good for
regular and
irregular
shapes that
do not have
hidden
chambers.
Small holes
may be hard
to clean.

$0.2 to
$0.45, but
it can go
to $10 if
using
expensive
chemical,
or if a big
piece
needs
more
process
time

0.1 Kwh to
0.2 Kwh per
cycle

Source: Yagar (2012)
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Table 1 Summarisation of cleaning processes in remanufacturing (continued)
Contamination  Typical Cost per Energy
Method Approach to be removed  work part part consumption
Thermal  Uses high temperatures in ~ Organic $0.08to 0.3 Kwh to
cleaning  ovens to burn the contaminants, $1.55 0.6 Kwh

contaminants and convert gasket
them into ashes or gases. A material,
convection oven is used rubber seals
when direct flames cannot  and heavy
be used. The bottom part of grease

the oven is heated and the

radiated heat is what makes

contact with the piece.

Another oven is the open

flames oven. This type can

reach higher temperatures

because of the exposure of

the flames but can harm the

piece. Due to high

temperatures, the piece can

melt, the material property

may be changed or the piece

can be damaged and not

usable in the next process.

Minor These kinds of processes are Last part of ~ Used on
cleaning  used to perform the initial ~ the past
processes  cleaning or to finalise contaminants, cleaning
cleaning from the surface of clean residues, method
the piece. Spray wash, rinse, clean and/or
brush cleaning and any other chemicals perform the
that prepares the piece either final details
to initial cleaning or finish it of the
for the next step in the cleaning

remanufacturing process.

Source: Yagar (2012)

Equipping stakeholders with advanced tools for better decision-making for
environmentally sustainable production is a key research area for smart manufacturing
(Edgar et al., 2015, NSF smart manufacturing workshop report; Bernstein et al., 2018).
Remanufacturing is a vital component for sustainable manufacturing because of many
new opportunities that are provided such as: sustainability, job creation, and affordable
prices, etc. The remanufacturing process receives used/retired products and puts
in processes to deliver ‘like-new’ products with increased life-cycles and better
reliability (Junior and Filho, 2012). In general remanufacturing processes the used
products go through a series of steps including inspection, disassembly, cleaning,
recondition/replenish, and re-assembly. Tests and inspections are done throughout the
remanufacturing to achieve the quality desired. When parts are received for
remanufacturing, its surfaces are covered with contamination that may decrease the
performance of the product or that should not be on the surface. For example, the piston
of the engine needs oil and grease to avoid high temperatures and wear due to friction.
But as time passes using the engine, oil and grease start to stick on the walls of the piston
chamber that mixed with the combustion and high temperature creating soot. Another
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example is painting and coating. Even though they are used to protect for the original
product, when it comes to remanufacturing, those protections are considered
contamination because a new paint and coat will be applied.

The cleaning process is critical to remanufacturing in that it delivers products which
are ready for reprocessing. The main purpose of cleaning in remanufacturing is to
facilitate inspection and damage correction, and thus make the parts like new in
condition. However, it is difficult to measure the level of cleaning irrespectively as there
is no standard available. In practice, it is mostly done by visual inspection and then
determining which is good enough by experience of the workers. This also causes a
difference in cleaning efforts and costs for each remanufacturer (Gamage et al., 2013). A
survey ranks the cleaning process among the most costly process in remanufacturing
(Hammond et al., 1998). It is ranked second (29%) just after part replacement (43%).
While parts cleaning in regular manufacturing productions is serving as a prelude to
surface finishing or protecting sensitive components. The cleaning level in regular
manufacturing is measurable. For example, using procedures recommended by ASTM
B322.

The contaminants are categorised as organic or inorganic. Organic contaminants
include: organic particles, paints, lubricants, oils, grease, coatings, bacteria and fungi.
Inorganic contaminants include: oxide scale, wear debris, dust, moisture and inorganic
lubricants (Long et al., 2014). Cleaning processes to contaminants are generally classified
into the following groups based on the technology or clean media used: immersion
cleaning, ultrasonic cleaning, abrasive cleaning, laser cleaning, thermal cleaning,
chemical cleaning, etc. Not all the cleaning processes can clean all the different
contaminations at the same rate of time and cost. Table 1 summarises the cleaning
approach, contamination to be removed, typical workpiece, cost, and energy consumption
for each cleaning process. Different cleaning processes produce different cleaning results
depending on the initial condition. Due to the uncertainty of the product condition and
product usage condition at the moment of reception, the same cleaning method cannot be
used all the time. Many evaluations on the cleaning methods need to be performed to
decide which one can be used to achieve a desired cleanness level demanded by the
remanufacturing process. The remanufacturers have to comprehensively understand the
different decision parameters and performance measures in order to select the best
cleaning processes. The decision parameters of a cleaning process generally involve:
contamination level, contamination type, cleaning system type, material type, cleaning
chemicals, temperature, and process cycle time. Performance measures may include:
efficiency, system energy consumption, operating cost per part, system cost, emission
levels, and cleaning effectiveness. Other factors that may also affect the performance and
adoption of cleaning method include condition and geometry of the parts, clean media
restriction, energy consumption, environment impact, quantity and types of contaminants,
material resistance, etc. Further, most information available for the cleaning processes is
vague and is only provided in ranges for equipment cost, energy consumption, cost per
piece, etc.

Given all the issues discussed, it is difficult for the remanufacturers to choose the best
processes that reduce cost and time meanwhile achieving maximum cleanliness level. A
literature search has revealed a lack of rigorous models to select optimised cleaning
processes that can relate input conditions with the outputs such as cost, cleaning
performance, and energy consumption. Initiated by this, a smart decision making tool that
helps the remanufacturers develop process planning with their desired goal is proposed in
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this paper. The overall methodology is based on mathematical programming model (PM)
with fuzzy sets (FS) and genetic algorithm (GA) as the solution approach. The PM is
used to model the objective function with the constraints and decisions variables. The FS
are used to deal with the different uncertainties and lack of ‘exact’ information that exists
in remanufacturing. FS help to work with ranges that the remanufacturer can establish
depending on their need and knowledge of the process. The GA is used to find the best
possible solution (close to optimal) that subjects to different constraints.

The rest of the paper is organised into the following sections. Section 2 reviews the
related literature on intelligent decision making in process planning for remanufacturing.
A research gap is identified at the end of this section. Section 3 covers the proposed
approach on PM model, FS, membership functions, fuzzy inference and the input/output
of the model and the GA. Section 4 presents a prototype software and case studies to
validate the proposed approach. Section 5 concludes the paper and presents outlooks on
the future research.

2 Literature review

The related literature was searched on artificial intelligence in remanufacturing process
planning.

The stochastic and sporadic nature of the condition and quantity of the returned
products impacts many levels of process planning and control for remanufacturing. NIST
has investigated the sustainable process analytics formalism (SPAF) for “formal
modelling of modular, extensible and reusable process components and enables the
optimization of sustainability performance based on mathematical programming”
(Brodsky et al., 2016). Based on the SPAF, they further developed a decision support
system (DSS) that enables manufacturers to formulate optimisation problems at multiple
manufacturing levels, to represent various manufacturing data, to create compatible and
reusable models and to derive easily optimal solutions for improving sustainability
performance (Shin et al., 2017). Kernbaum et al. (2009) presented an approach for the
design and evaluation of the remanufacturing processes for a facility. A mixed integer
programming (MIP) approach is used for the optimisation of a remanufacturing process
plan from cleaning to reassembly by considering all the relevant costs. Jiang et al. (2011)
defined reconditioning system planning as being made up of three closely related aspects,
namely, restoration planning, process planning and technology planning. Assuming that
the restoration and process planning have already been performed, a multi-criteria
decision-making method was formulated to consider the economic and environmental
aspects for the selection of the manufacturing technology portfolio. The analytical
hierarchy process (AHP) was used to assign weights to the various criteria and capture
the singular and synergistic benefits of each technology for decision making. Wang et al.
(2008) presented a method to solve disassembly sequence planning problem. They
proposed a disassembly feasibility information graph (DFIG) to describe the product
disassembly sequence and operation information. Then, disassembly sequence planning
problem was formulated onto the DFIG as an optimal path-searching problem, a GA was
applied to find out feasible and optimal disassembly solutions efficiently. Gao et al.
(2004) proposed a fuzzy reasoning Petri net (FRPN) model to represent related decision
making rules in disassembly process. Using the proposed fuzzy reasoning algorithm
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based on the FRPN model, the multi-criterion disassembly rules can be considered in the
parallel way to make the decision automatically and quickly. Instead of producing the
disassembly sequences before disassembling a whole product, the proposed method
makes intelligent decisions based on dynamically updated status of components in the
product at each disassembly step. A fuzzy logic-genetic algorithm (FL-GA) methodology
was proposed to the automatic assembly and disassembly sequence planning of products
(Galantucci et al., 2004). The GA-fuzzy logic approach was implemented in two levels.
The first level was to develop a Fuzzy controller for the parameters of an assembly or
disassembly planner based on GAs. This controller acted on mutation probability and
crossover rate in order to adapt their values dynamically while the algorithm was running.
The second level was identified as the optimal assembly or disassembly sequence by a
fuzzy function, in order to obtain a closer control of the technological knowledge of the
assembly and disassembly processes. A fuzzy multi-criteria decision making algorithm
was developed to evaluate alternative recycling activities of an e-waste recycling job
under of the sustainability criteria on the environmental, economic, and social dimensions
(Yeh and Xu, 2013). This decision making model meets the best sustainability interests
for sustainable planning of e-waste recycling activities. A series of optimal weighting
models are developed to determine the optimal weights for the three sustainability
dimensions and their associated criteria. It contributes to the methodological development
of weighting the three corporate sustainability dimensions for planning decisions.
Researchers designed a remanufacturing cell for the automated rework of fine pitch
components for electronics manufacturing. This remanufacturing cell can finish the
processes of: component removal, solder cleaning, solder paste dispensing, pick and
place components, solder reflow, and laser soldering (Fidan et al., 1998). They further
developed a computer aided process planning (CAPP) tool (Fidan et al., 2003) and an
intelligent simulation environment (Fidan et al., 2004) for electronics remanufacturing
systems. According to recent research (Liu et al.,, 2013), the availability, quality,
remanufacturing cost and the remaining life of the remanufactured product are directly
influenced by various cleaning methods and the corresponding cleaning quality. They
also pointed that unified standards for cleanliness judgment and the knowledge base of
remanufacturing cleaning are insufficient in spite of simplification and effectiveness of
present remanufacturing cleaning process. This gap is complemented with an existing
problem in cleaning efficiency due to the low level of process automation. Additionally,
the cleaning needs to have many important quality measures to assure the overall
cleaning of the product/piece. One of the challenges to the remanufacturing industry is
the lack of decision making tools that helps the remanufacturers decide which cleaning
method will achieve the desired level of cleanliness at lower cost/time possible. This
knowledge gap needs to be filled in order to contribute to the cleaning processes for
remanufacturing.

A review of literature identifies that current research lacks enough consideration on
the questions below for selecting the optimal cleaning processes in remanufacturing:

1 Can the factors, including contamination, work piece material and shape, processing
time, cleanliness level, and cost etc., be incorporated into the cleaning process
selection model?

2 Can the process vagueness and uncertainties on the decision variables be processed
in the selection modelling?
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3 Can an efficient optimisation algorithm to properly select the cleaning process be
developed that considers the multiple objectives including cost, cleaning effect,
process time, involved in cleaning for remanufacturing while subjecting to
constraints?

These three issues form our research questions to be solved in the following sections.

3 Smart decision support model for process planning in remanufacturing

The proposed model of smart decision making for optimal cleaning process planning in
remanufacturing is presented in this section. First, the mathematical PM with decision
variables, objective function and constraints are formed. Second, the FS with the
membership functions are illustrated. Third, the GA is explained on searching optimal
solution to the proposed model; and fourth, the decision support model is explained in a
flowchart. It is important to note that every remanufacture process has different criteria,
different measurements, and different needs. Thus these FS and membership functions
need to be implemented to better understand the current knowledge. Also, the proposed
decision support model should be generic to help the remanufacturer make a good
decision; however, the technical information should be modified according to their own
process.
The following terms are used throughout the model.

e Sequence of cleaning processes (Y;). This refers to the cleaning chosen to perform
the study. The index ‘i’ is used to differentiate from other sequence. It is modelled as
an array of processes that contains the sequence. Y; = [y, ... ;]. For example, Y; =
[1 2 3 4], in which the sequence is ultrasonic, abrasive, laser and thermal. Each jth
term represents one cleaning method and the i array represents the sequence in
which will be performed. This variable is randomly created.

e Process cycle time (7;). Similar to Y}, it refers to the time in which each cleaning
process will be used. It is also an array and each position refers to the time that a
process of the array Y; will be used. T; = [t, ... £;]. For example, T; = [15 20 25 30]
refers to process time of the cleaning processes. Also, the index 7; has a relationship
to the index ¥;. Each /™ term represents the time of each method and the i array
represents the process time.

e Acceptable process time (7w). This is the maximum process time allowed for the
combination of cleaning process. It is given by the user with a number or by a subset
of the set time. It serves as the upper limit.

e  Acceptable clean level (CLp). This is the minimum cleaning level that the piece
should meet in order to be suitable for the next processes. It is given by the user by a
number or by a subset of the set cleanliness level. It serves as the lower limit.

e Acceptable energy consumption (Ev). Similar to time 7w, Ev is the maximum energy
consumption that can be used in the cleaning process. It is given by the user.

e Fuzzy inference output (P;). This refers to the results given the fuzzy inference after
evaluating the necessary rules. The output is cleaning result (CL), energy
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consumption result (EC) and cost result (CR). Later in the process, the Y; and T; are
combined to check the constraints with the input given by the user.

e ;, represents the binary element for the array Y;. If an element of the array is bigger

than zero, the ¥; =1. Otherwise, y; = 0.

e Contamination type (CT). It is a user input that refers to the type of contaminant that
is located on the surface of the piece. May be organic, inorganic, mixed, etc.

e Contamination level (CTh). It is a user input that refers to the amount of contaminant
located in the surface of the piece.

e  Material type (MT). It is a user input that describes the type of material that is
contained in the piece. The material may be metal, ceramic, polymer, and composite,
etc. For the study, the material type may be metal or non-metal.

e  Piece shape (PS). It is a user input that gives information about the form of the piece.
It may be flat, round, may contain holes. For the study, PS is used as a fuzzy set with
sub-sets of simple, complex and very complex.

e Feasible solutions (Q,). This term is an output after checking the constraints. It
contains information about the inputs of the user, sequence of cleaning processes,
processing time and output of the fuzzy inference. This array is built each generation
with the processes that only met the constraints.

e Best solution (s;). This refers to the best solution of each generation that is contained

in Q,‘.

3.1 The model

3.1.1 Decision variables

The decision variables are Y; and 7;. These two variables give the sequence of process
and the time in which processing of the sequence is performed. They will initiate the
model to evaluate cleaning processes in terms of cleanliness level, energy consumption
and cost. After the evaluation, it is important to calculate the cleanness level achieved,
the energy consumed and the cost incurred. The first two and the 7; are used in the
constraints checking to assure that the sequences of processes are suitable.

3.1.2 Constraints

The constraints serve as the filter to disregard any options that do not meet user
expectation (given in the input). CLp, Tw, and Ev are limits that need to be met. The user
implements the constraints on the inputs of the acceptable process time, Acceptable
cleaning level, and acceptable energy consumption. The output P; = [CL, EC, CR] given
by the fuzzy inference is used to check the constraints. CR is not part of the constraints,
but it is part of the array. The time constraint is checked with the array 7.

As explained before, CL is the cleaning level achieved by the sequence of process.
The cleaning output has to be higher than the user input CLp. The output EC and the
process time generated 7; are needed to be lower than the user input 7w and Ev. The
constraints are set as follows:
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CL>CLp ()
T STw—)Z‘]::T)_/jt,- =R <Tw @)
J= :
ECSEv—)Z‘/::T)_;,«E, < Ev 3)
j=1o

3.1.3 Objective function

The objective function is to minimise the cost given by the function:

Min(Z) = 2’] "',C; - Min(Z) = CR o

3.2 FS and membership functions

Because of the imprecise and vague information involved with input variables, FS and
membership functions are used to explain first a variable and to convert a crisp value to a
specific degree of membership (Chen and Pham, 2000).

The sets used for the decision model are:

o Contamination type (CT). There are three categories of contamination type in the
model: organic, inorganic, and mixed, which were modelled with discrete values as
Table 2 shows.

Table 2 Description of contamination types
Contamination type Description
1 Organic only (oil, grease, organic paints, etc.)
2 Inorganic only (oxidation, rust, dust, etc)
3 Mixed contaminations — organic and inorganic

o Contamination levels (CTh). For the model, the set has five subsets as Table 3
describing the amount of contaminant on work piece surface. The membership
function is as Figure 1.

Table 3 Description of contamination levels
Contamination level Description
0 Contamination cannot be seen by the human eye
1 Very thin layers of contaminants
2 Thin layers of contaminants
3 Medium layer of contaminants
4 High presence of contaminants. Very thick layers

e Product shape (PS) and material type (MT). This relates to product properties. It is
important to understand the shape/size of the product and also the material on which
was built. The main reason is because different cleaning methods support different
kind of materials and shapes (explained in Table 1). Product shape is a set of three
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subsets: simple, complex, and very complex as illustrated in Figure 2. The material
types are discrete values: 1 = metal and 2 = non-metal.

Figure 1 Contamination levels membership function (see online version for colours)

l %
0.8 E
0.6
0.4
o \
0
0 1 2 3 4

Low Contamination -Medium Contamination

High Contamination

Table 4 Description of piece shape index

Piece shape index Description

0 Very simple shape, i.e., sheet of metal, plane.

1 Some presence of complicated part, i.e., curves, depth, spikes
2 Presence of complicated shapes and holes

3 Very complicated shape — many holes, spikes, lack of support.

Figure 2 Piece shape membership function (see online version for colours)

1.2 Complex Very

K, Simple Complex

0 0.5 1 1.5 2 2.5 3

Piece Shape Index

e Time. This set is used for process time and acceptable process time defined by the
user. Both use the same membership function. The difference between the two times
is that the time given by the user is for constraints purposes (total process time) and
the time used for the cleaning method is for ‘cleaning processing’ time. The set time
has membership function as Figure 3.

e Cleanliness level. This set refers to the overall cleaning output after a cleaning
method is used. The cleanliness level is measured by how clean the surface of piece
is. Less contaminants or undesired components are on the surface, the cleaner the
piece is. The range for the model is between 0 and 10 as Table 5, where 0 is not
cleaned at all and 10 is completely clean. The numbers in between refers to partial
cleaning in which some contaminants were removed but unwanted components are
still in the surface. This set is used to evaluate the user input to the model and then
used as constraint in order to evaluate the cleaning performance of the different



A smart decision making tool for cleaning process planning 179

cleaning methods. The set of cleanliness level has the membership function as
Figure 4.

Figure 3 Time membership function (see online version for colours)

1.00 ast Fast Medium , Slow Very,
2 0.80
£ 060
€ 040
< 0.20 \
0.00
0 10 20 30 40 50
Time (minutes)
Table 5 Cleaning level index
Cleaning level index Description

High presence of contaminants
Super minor removal of contaminants
Minor removal of contaminants
Minor cleaning — presence of cleaned spots starts to appear
Minor cleaning — small presence of cleaned spots
Medium cleaning — still many contaminants
Medium cleaning — spots with contaminants
Good cleaning — some major spot with contaminants

Very good cleaning — still some spots with contaminants

O© 0 3 & L A W DN~ O

—_
o

Excellent cleaning — contaminant cannot be seen by human eye

Very excellent cleaning — no contamination at any level

Figure 4

Cleanliness level membership function (see online version for colours)
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Clealiness Level

o Energy consumption. This set refers to the energy consumed by the different
cleaning methods in process. Also, it refers to the user input for the expected energy
consumption that wants to be consumed. The user input is used to evaluate the
energy consumption constraint (explained later in the PM) with the energy consumed
by the cleaning processes. The energy is measured in kWh. It has the membership
function as Figure 5.
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Figure 5 Energy consumption membership function (see online version for colours)

1.00 i
Low e High

Membership
o © o
8 3 8

o
b
S

\

0 5 10
Energy Consumption (kWh)

o
8

e (ost. This set refers to the cost per cleaning process and the overall cost. The cost
includes designs, machines, implementation of the process and every cost that is
incurs when implementing the cleaning process. It can be refer as ‘system cost’ also.
It does not include the cost per piece. It will be used to build the objective function in
the model. The set is divided into five subsets: very low, low, medium, high, and
very high. It ranges from $10,000 to $460,000. The set cost has the membership
function as Figure 6.

Figure 6 Cost membership function (see online version for colours)
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3.3 GA and genetic operators
The GA serves as the optimisation tool in the proposed DSS. It goes through the steps of:
1 input
seeds generation

process evaluation

2

3

4  constraint checking
5  crossover and mutation
6

stopping.
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3.3.1 Inputs

The user input is an array named as / = [CT, CTh, MT, PS, T, CL,, E,] which consists of
contaminant type, contaminant thickness, material type, shape of the piece, expected
process time, expected cleaning level and expected energy consumption. The first four
elements of the array are used to perform the fuzzy inference. The last three are to
evaluate the constraints. The user needs to input this information in order to calculate the
best possible combination of cleaning processes that results in the possibly lower cost.

3.3.2 Generation of seeds

The seeds are generated randomly for Y; and 7;. Each element of the array is random
integer number between 0 and n, representing the different cleaning processes available
to choose from. If the remanufacturer has four cleaning processes available, then n = 4.
The zero should be included to represent that ‘no cleaning process’ is used. Similarly, 7;
has random numbers between 0 and m, where ‘m’ represents the upper limit for the time
range. Later, this number is turn to linguistic terms with the fuzzy inference rules.

3.3.3 Process evaluation loop

After gathering all the inputs and generated seeds, it is necessary to evaluate the
performance of sequence of the cleaning processes dictated by Y;. The inputs to this
operation are: CT, CTh, MT, PS, y; and ¢. The fuzzy inference engine does the
performance evaluation giving the result in terms of cleaning level, energy consumption,
cost and a term called ‘new contamination levels’ with the name 7,,.,. This new term serve
as an input for the next element in the Y;. After the first element of the array is evaluated,
the results need to be storage and evaluation of the next element of Y;. The input for the
evaluation of the next element are: C7, 1,.,, MT, PS, y;1; and ¢:;.

The increment ‘j + 1° is to evaluate all the elements in the arrays Y; and 7;. In the case
than an element of the array is equal to zero, the solutions for that given iterations is
going to be zero. After all the elements are evaluated, the final result for the array Y; is
storage in the array P; that was explained before.

3.3.4 Constraints checking

After gathering all the results from the process evaluation loop, these results are checked
to determine whether they satisfy the customer requirements.

As explained before, CLp, Tw and Ev are the user input and represent the limits of the
user requirements. CLp is the lower boundary. Tw and Ev are the upper boundary. The
constraints are checked by equations (1), (2) and (3). Any array Y; that does not meet any
of the constraint is disregarded and no longer taken in consideration as a feasible
solution. This step of the model is to filter which solutions that are suitable from those
that are not. Finally, the objective function is calculated and it is stored as part of the
array ‘Q;’. At the end, this array has all the information from the user input to the overall
results.

O =[CT CTh MT PS Y, T; CR R; CLp Ev]
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3.3.5 Crossover and mutation

Crossover and mutation have a rate given by the term Pc and Pm. The first one is set
around 0.7 and the second one around 0.1. In other words, 70% of the feasible solutions
are going to be set for crossover operations and 10% of those are going to mutate. The
mutation is set to be randomly to any ;™ of the arrays Y; and T, The crossover is
performed between the best ‘s’ solutions to generate new population. The term ‘s’ stands
for a number of best solutions. It may be 10, 20, 30 or any number that represents the best
solutions. This is set by later in order to optimise the computation time. The crossover
point is set randomly. Before performing any operations, the best ‘s’ solutions are going
to be saved. The best solutions may be contained in past generations. All new generations
are entered in the loop to evaluate the process performance, the constraints and save the
solutions of the feasible ones.

3.3.6 Stopping

All the solutions that are crossover and mutated are entered again in the model to
evaluate the performance and check the constraints. The last part of the loop is to choose
the best solution based on the stopping conditions. The GA has the stop conditions as
following:

e The numbers of generations are met.

e The objective function has not improved in the past two generations or is between
the +/— N%. The ‘N’ stands for the tolerance of the user.

When the stopping conditions are met, the best solution is chosen and given to the user.

3.4 Decision model flowchart

Finally the flowchart for the decision model is shown in Figure 7. In Figure 7, the process
of the software is simple and includes the following function blocks:

1 User input and constraints.
2 Generation of first seed. The size can be changed inside the code.

3 Evaluation of the element of the seed with the fuzzy toolbox to predict cost, energy
consumption and cleaning level achieved.

4 Performing evaluation of the different elements of the array to check which ones
meets the constraints.

5 If a certain number of generations are created, then entering to the stop condition
loop to check if the cost variance is significant enough to stop the solution.

6  If the stop conditions have not triggered, going to the GA process.

7  Performing the crossover and mutation operations. Checking that a solution it is not
repeated inside the same generation.

8  Setting the new population of possible solutions.
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9  Going to step 3 to begin the prediction of performance of the new population and
evaluation. Stopping when the stop conditions are met.

Based on Figure 7, the software prototype and case studies were developed as in
Section 4. The details of each function block in Figure 7 will be described in Section 4.

Figure 7 Decision model flowchart (see online version for colours)
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4 Software, case study, and discussions

This section describes the development of a software to validate the proposed decision
support model. Two case studies with results demonstrated how the smart decision
making model works.

4.1 Prototype

The software was coded in MATLAB® with its ‘fuzzy toolbox’ and the GA functions in
the ‘optimisation toolbox’. The software consists of four main sections including: user
inputs and first seed generation, FS, processes evaluation, crossover and mutation
operations, and finally stop conditions.
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4.1.1 User inputs and first seed generation

Figure 8 is a graphical view of the user inputs of initial parameters and constraints in the
software model. User inputs four initial condition parameters [contamination type,
contamination level, material type, piece shape, cleanness level]. Also, the user gives the
inputs for the constraints on: [total processing time allowed, minimum cleaning level
needed, maximum energy consumption allowed]. Then, the fuzzy toolbox reads these
inputs for next steps.

Figure 8 User input and constraints input GUI (see online version for colours)
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4.1.2 Fuzzy sets

The user inputs and outs of [cost, cleanness level, energy consumption, and new
contamination level] go through the steps of:

1 fuzzification of variables (membership function)
2 evaluation of rules

3 fuzzy inference
4

defuzzification of output.



A smart decision making tool for cleaning process planning 185

The fuzzy inference is established by the ‘If-Then’ rules. Outputs are the final answer to
the case evaluated. Also, the toolbox leaves the users to decide different parameters such
as: defuzzification method, aggregation method, implication method, etc. For the
software all the parameters are used in their default values. The membership function of
the inputs and outputs are very easy to set up.

Figure 9 shows an example of membership functions and Figure 10 shows the fuzzy
inference process. An example of fuzzy inference in the model is: ‘IF contamination type
is organic, and contamination level is low, and material type is metal, and piece shape is
simple, and cleaning process is ultrasonic and is fast’, THEN, ‘cost is low, cleaning level
is excellent, energy consumption is low and new contamination level is super low’.

Figure 9 Example of the membership function in the Fuzzy Toolbox® (see online version
for colours)
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4.1.3 Process evaluation

The process evaluation consists of checking the seed generated to ensure that the
sequence of cleaning processes associated with the seed meets the constraints set by the
user. Figure 11 shows the flow of process evaluation in the software. Each element of the
seed, with the results from the FS, is compared with the processing time constraint,
minimum cleaning level constraint and maximum energy consumption constraint. The
checking is performed by a binary operation. The constraint that is met is assigned a
number ‘1°. If not, a number ‘0’ is assigned. When all three constraints are check, it
begins a multiplication between the binaries number. An element that has all the numbers
as ‘1’ will be considered as feasible solution. Those which has a ‘0’ are disregarded. For
example, constraint check 1 x constraint check 2 x constraint check 3 =1x1x1=1=
feasible solution. In other case, constraint check 1 x constraint check 2 x constraint check
3 =1 x 0 x 1 =0 = non-feasible solution. At the end, the ones that meet all the necessary
constraints are kept as a feasible solution. The elements that do not meet the constraints
are disregarded.
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Process evaluation loop (see online version for colours)
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4.1.4 Genetic algorithm

If the simulation has run for a specific number of generations and the user is
satisfied, then the solutions should be used. At the end, the user can decide to run
again the simulation or keep the solutions found.

If the simulation has run for small amount of generations, then it should start over.

This GA intends to find better solutions generation by generation. The GA mixes the
solutions obtained in the current generation to capture the best characteristic of each
array. From here, a new generation of possible solutions is created and it is submitted to
the fuzzy toolbox and the process evaluation. Figure 12 shows the GA process.

The crossover rate is set to 0.7. Many articles and previous studies has shown that the

crossover rate should be around 0.6 to 0.75 of the population. The mutation rate is set up
to 10% of the population that perform a crossover. It is important to mention that the
crossover point is done randomly. Sometimes it is done at one position, sometimes in
another. This helps to simulate the ‘randomness’ that exist in nature. Also, it helps to
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cover more possible solutions that may be a good fit. The GA also checks if a solution is
repeated in the same generation. In case that happens, one of the elements repeated is
eliminated and another is created using crossover operation.

Figure 12 Genetic algorithm (see online version for colours)
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The user can decide how big the population is in each generation. This is to set the
counter of the GA when creating the elements of the next generation. If the user decides
that a population of 50 is wanted every generation, then the counter is set to 50. In case a
solution is repeated when creating the generation, the counter returns to the previous
value. The checking process of repeated solutions is performed after the second element
of the generation is created and continues until the number of elements set by the user is
met.

When performing the crossover operation, the software selects two populations of the
solution, then sets the crossover point randomly and creates the new element of the
population.

4.1.5 Stop condition

This part of the software is designed to stop simulation if the conditions are met. For this
model, the stop conditions depend on the number of generations performed and variance
of the cost. The stop condition is set up to meet both requirements. In case there is no
feasible solution during any generation, a display is shown to let the user decide whether
he will run the simulation again or use the feasible solutions found.

4.2 Case studies

Two case studies were developed to demonstrate the proposed DSS and software.
Different inputs received from a remanufacturing company at Laredo TX (Long et al.,
2014) were used in each case. At the end of each case, the best solutions of each
generation are shown on a cost plot.
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Case 1: The input from the Case 1 is as Table 6.
Table 6 Case 1 input

189

Inputs Index Description
Contamination type 1 Organic
Contamination levels 24 Medium
Material type 1 Metal
Piece shape 1.5 Complex
Cleaning level constraint 8 Min. allowed
Energy constraint (KWh) 20 Max. allowed
Time constraint (min) 80 Max. allowed

With this input to the decision model, stop condition was met at generation 9. From
Figure 13, the best solution is located in generation 7. Table 7 illustrates the selection of
cleaning process in each generation. In Table 7, the cell in black means that it did not
select any cleaning process, generation 7 selected the best process of immersion cleaning,
which will clean the part for 23 minutes to achieve the performance in generation 7,

Table 8.

Figure 13  Case 1 cost plot of best solutions (see online version for colours)
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Table 7 Case 1 best solutions

. Cleaning process  Cleaning process  Cleaning process
Generation &p gp &p

Cleaning process

1 2 3 4

1 No process Thermal Abrasive Molten salt
2 Immersion No process Vibratory Thermal

3 Immersion Abrasive No process No process
4 No process No process Abrasive Vibratory

5 Vibratory Vibratory No process No process
6 No process Abrasive No process Molten salt
7 No process No process No process Immersion
8 No process No process No process Immersion
9 No process No process No process Immersion




190 J.C. Martinez et al.

Table 8 Case 1 results
Generation Cost ($) Total time (min) Cleaning level Energy cons. (kWh)
1 114,029.84 68.00 9.07 12.09
2 117,816.36 68.00 9.14 6.69
3 80,247.49 21.00 9.05 4.55
4 75,554.32 43.00 9.07 10.09
5 78,720.27 19.00 9.02 4.47
6 75,896.18 26.00 8.89 4.32
7 35,964.97 23.00 9.17 2.06
8 40,345.00 16.00 9.05 2.28
9 40,218.75 20.00 9.05 2.28

In Table 8, the optimised process gives a cleaning level of 9.17 (excellent cleaning) and
energy consumption of 2.06 kWh. The system cost predicted is $35,964.97. It is
important to mention that generation 8 and 9 have a little higher cost than generation 7,
although the process time is a little shorter. The reason for this is that the software it is
not entirely perfect and some solutions may be lost when performing the crossover and
mutation operations. Also, the fuzzy inference is used to predict the result. Even though
the best effort is done to have a consistent prediction, sometimes it may go just a little

differently than expected. This is one of the risks taken when using fuzzy inference.

Case 2: The input to the second case study is as Table 9.

Table 9 Case 2 input
Inputs Index Description
Contamination type 3 Mixed
Contamination level 32 High
Material type 1 Metal
Piece shape 2.1 Complex
Cleaning level constraint 7 Minimum allowed
Energy constraint (KWh) 20 Max. allowed
Time constraint (min) 100 Max. allowed
Table 10  Case 2 best solutions
Generation Cleaning; process  C leam’n‘g process  C leam’ng process  C leam’ni process
1 Abrasive Thermal No process Molten salt
2 No process Immersion No process Molten salt
3 No process Immersion No process Vibratory
4 No process Immersion No process Vibratory
5 No process No process No process Vibratory
6 No process No process No process Vibratory
7 No process No process No process Vibratory
8 No process No process No process Molten salt
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Table 11 Case 2 results

Generation Cost (3) Total time (min) Cleaning level Energy cons. (kWh)
1 114,537.79 65.00 9.17 12.30
2 79,352.14 70.00 9.11 10.16
3 79,820.01 61.00 7.76 4.52
4 79,820.01 35.00 7.76 4.52
5 38,694.36 33.00 7.76 2.20
6 38,694.36 56.00 7.76 2.20
7 38,694.36 33.00 7.76 2.20
8 35,964.97 56.00 9.17 7.84

The stop condition was met at generation 8. From Figure 14, the best solution is located
in generation 8, and Table 10 illustrated the best solutions of cleaning process is molten
salt cleaning for 56 minutes. Table 11 shows it will achieve a cleaning level of 9.17
(excellent cleaning) and energy consumption of 2.06 kWh. The system cost predicted is
$35,964.97. There is no increase between generations that happened in case 1.

Figure 14  Case 2 cost plot of best solutions (see online version for colours)
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In both cases, the cost was reducing during the simulation. The solution may have been
repeated in terms of cleaning processes chosen, but processing time and cleanness level
changed. The comparison is not only among different processes, but also in different
processing times of a same cleaning process. The method and software give the users a
better idea of which cleaning processes should be used when planning the processes.

5 Conclusions and future research

A smart decision making tool was presented in this paper to select optimal cleaning
processes. A linear programming mathematical model on selecting cleaning process was
first formulated. Fuzzy set theory was then applied to process the vague and uncertain
decision variables in the mathematical model. In order to find the optimal solution in the
decision making, a GA algorithm was proposed. Further, the proposed approach was
prototyped in MATLAB®. Two case studies demonstrate that the combination of fuzzy
set and GA is promising to make optimal decision for selecting the cleaning approach.
This model could be used in the process planning to remanufacturing for 21st century. It
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will reduce process time and cost, achieving a desired level of cleanliness to
remanufacture ‘like new’ products.

For future research, validation on physical experiments and more parameters will be
investigated. The two case studies received initial inputs from remanufacturing industry,
but did not validate in real productions. Physical experiments can help better understand
the decision making process. Besides this, this decision mode has variables uncovered
that are important for remanufacturing such as surface finish, batch sizes, measure of
contamination layers, etc. For example, some cleaning processes may not be as incisive
as others on the surface finish. An abrasive method may leave a bad surface, but the
ultrasonic method leaves an untouched surface. This decides how much reprocessing of
the workpiece would need after the cleaning. Further, the software calculates the cost
based on the information from literature. The cost range may change depending on the
size of returned product batches and the quality level of equipment.

To apply this approach to real production, the decision model focuses on
implementing a completely new cleaning process. In case that the remanufacturer has
some established cleaning processes or other processes not showing here, the user has to
include those processes in the fuzzy toolbox and eliminate those that are not part of their
process. Sometimes, cost is not the only important process performance; overall cleaning
level may be important also. By setting the utility functions for cost and cleaning level,
the user is going to look for the solution that has the better measure in terms of utility.
The solution may not be the lower cost or the highest cleaning level, but the combination
of both factors that the user feels good about it at the end.

Acknowledgements

We thank Caterpillar Reman Laredo for providing data amongst other support for this
work. One of the authors (ZW) thanks National Science Foundation for partially support
his research in this manuscript through the Grant No. 1818655, any opinions, findings,
and conclusions or recommendations expressed in this material are those of the author(s)
and do not necessarily reflect the views of the National Science Foundation. The authors
also would like to sincerely thank the anonymous reviewers for their many invaluable
comments and suggestions, which have greatly improved the quality of this article.

References

Bernstein, W.Z., Subramaniyan, A.B., Brodsky, A., Garretson, 1.C., Haapala, K., Libes, D.E.,
Morris, K.C., Pan, R., Prabhu, V., Sarkar, A., Raman, A.S. and Wu, Z. (2018) ‘Research
directions for an open unit manufacturing process repository: a collaborative vision’,
Manufacturing Letters, Vol. 15, Part B: Special Issue-Industry 4.0 and Smart Manufacturing,
pp.71-75

Brodsky, A., Shao, G. and Riddick, F. (2016) ‘Process analytics formalism for decision guidance in
sustainable manufacturing’, Journal of Intelligent Manufacturing, Vol. 27, No. 3, pp.561-580.

Chen, G. and Pham, T. (2000) Introduction to Fuzzy Sets, Fuzzy Logic and Fuzzy Control Systems,
Ist ed., CRC Press LLC, 2000 N.W. Corporate Blvd., Boca Raton, Florida 33431.

Edgar, T., Davis, J. and Burka, M. (2015) Report on NSF Workshop on Research Needs in
advanced Sensors, Controls, Platforms and Modeling (ASCPM) for Smart Manufacturing,
Atlanta, Georgia.



A smart decision making tool for cleaning process planning 193

Fidan, 1., Kraft, R., Ruff, L. and Derby, S. (1998) ‘Integration steps of a fully-automated
remanufacturing cell system used for fine-pitch surface mounted devices’, IEEE Transactions
on Components, Packaging and Manufacturing Technology, Vol. 21, No. 1, pp.71-78.

Fidan, 1., Roush, E.M., Tumkor, S. and Kraft, R.P. (2004) ‘Intelligent simulation environment for
electronics remanufacturing systems’, Proceedings of the 29th IEEE/CPMT/SEMI
International Electronics Manufacturing Technology Symposium, San Jose, CA, 14-16 July,
pp-160-164.

Fidan, 1., Tumkor, S. and Kraft, R.P. (2003) ‘The development of a computer-aided process
planning tool for electronics manufacturing education’, Proceedings of 2003 ASEE Annual
Conference, Nashville, TN, 22-25 June.

Galantucci, L.M., Percoco, G. and Spina, R. (2004) ‘Assembly and disassembly by using fuzzy
logic & genetic algorithms’, International Journal of Advanced Robotic Systems, Vol. 1,
No. 2, pp.67-74.

Gamage, J.R., [jomah, W.L. and Windmill, J. (2013) ‘“What makes cleaning a costly operation in
remanufacturing?’, Proceedings of 11th Global Conference on Sustainable Manufacturing,
Berlin, Germany.

Gao, M., Zhou, M-C. and Tang, Y. (2004) ‘Intelligent decision making in disassembly process
based on fuzzy reasoning Petri nets’, [EEE Transactions on Systems, Man and
Cybernetics-Part B: Cybernetics, Vol. 34, No. 5, pp.2029-2034.

Hammond, R., Amezquita, T. and Bras, B.A. (1998) ‘Issues in the automotive parts
remanufacturing industry-a discussion of results from surveys performed among
remanufacturers’, International Journal of Engineering Design and Automation-Special Issue
on Environmentally Conscious Design and Manufacturing, Vol. 4, No. 1, pp.27-46.

Jiang, Z., Zhang, H. and Sutherland, J.W. (2011) ‘Development of multicriteria decision making
model for remanufacturing technology portfolio selection’, Journal of Cleaner Production,
Vol. 19, Nos. 17-18, pp.1939-1945.

Junior, M.L. and Filho, M.G. (2012) ‘Production planning and control for remanufacturing:
literature review and analysis’, Journal of Production Planning & Control, Vol. 23, No. 6,
pp-419-435.

Kernbaum, S., Heyer, S., Chiotellis, S. and Seliger, G. (2009) ‘Process planning for IT-equipment
remanufacturing’, CIRP Journal of Manufacturing Science and Technology, Vol. 2, No. 1,
pp-13-20.

Liu, W.W., Zhang, B., Li, M.Z., Li, Y.Z. and Zhang, H-C. (2013) ‘Study on remanufacturing
cleaning technology in mechanical equipment remanufacturing process’, 20th CIRP
International Conference on Life Cycle Engineering, in Nee, A., Song, B. and Ong, S.K.
(Eds.), Re-engineering Manufacturing for Sustainability, Springer, Singapore, pp.647—648.

Long, Y., Li, J., Timmer, D., Jones, R. and Gonzalez, M. (2014) ‘Modelling and optimization of
the molten salt cleaning process’, Journal of Cleaner Production, 1 April, Vol. 68,
pp-243-251.

Lu, Y., Morris, K.C. and Frechette, S. (2016) Current Standards Landscape for Smart
Manufacturing Systems, NIST Technique report.

Shin, S.J., Kim, D.B., Shao, G., Brodsky, A. and Lechevalier, D. (2017) ‘Developing a decision

support system for improving sustainability performance of manufacturing processes’, Journal
of Intelligent Manufacturing, Vol. 28, No. 6, pp.1421-1440.

Wang, H., Xiang, D. and Duan, G.H. (2008) ‘A genetic algorithm for product disassembly
sequence planning’, Neurocomputing, Vol. 71, Nos. 13-15, pp.2720-2726.

Yagar, O. (2012) Remanufacturing Cleaning Process Evaluation, Comparison and Planning,
Master’s thesis, the University of Texas Pan-American, pp.18-81, 122-125.

Yeh, C-H. and Xu, Y. (2013) ‘Sustainable planning of e-waste recycling activities using fuzzy
multicriteria decision making’, Journal of Cleaner Production, 1 August, Vol. 52,
pp-194-204.



