Poster: Approximate Caching for Mobile Image Recognition

James Mariani, Yongqi Han, Li Xiao
Department of Computer Science
Michigan State University
East Lansing, United States of America
mariani4 @msu.edu, hanyongg@msu.edu, Ixiao @ cse.msu.edu

Abstract—Many emerging mobile applications rely heavily
upon image recognition of both static images and live video
streams. Image recognition is commonly achieved using deep
neural networks (DNNs) which can achieve high accuracy but
also incur significant computation latency and energy consump-
tion on resource-constrained smartphones. We introduce an
in-memory caching paradigm that supports infrastructure-less
collaborative computation reuse in smartphone image recogni-
tion.We propose using the inertial movement of smartphones,
the locality inherent in video streams, as well as information
from nearby, peer-to-peer devices to maximize the computation
reuse opportunities in mobile image recognition. Experimental
results show that our system lowers the average latency of
standard mobile neural network image recognition applications
by up to 94% with minimal loss of recognition accuracy.

Keywords-Image Recognition, Approximate Caching, Device-
to-device Communication

I. INTRODUCTION

Emerging mobile applications are more focused on tech-
nology interacting with, and augmenting the real-world
environment the user occupies. This interaction with the real-
world relies heavily on image recognition, or the ability for
a smartphone to be able to determine what it is looking at
through its camera. For example, augmented reality appli-
cations span navigation [6], gaming [1], education [7], etc.
The main issue plaguing mobile augmented reality is the
computational intensity of running large neural networks on
resource constrained smartphones.

Most techniques for mitigating the latency and com-
putation restrictions of smartphones include offloading to
cloud or edge servers [5], reducing the complexity of the
deep neural networks (DNNs) often used for mobile image
recognition [2], and caching results for reuse [3].

We propose a system built on in-memory approximate
caching to reduce the latency of mobile image recognition
to an acceptable level for a seamless user experience. In
this paper we propose an approximate caching system that
introduces caching strategies built around the inertial move-
ment of mobile devices and allows for infrastructure-less
collaboration between nearby devices through creation of
ad-hoc peer-to-peer networks. In contrast to current work,
our solution optimizes cache management using the inherent
mobility and collaborative nature of smartphones. We offer a
suite of inertial-driven optimization tools to both reduce the
latency of image recognition and maintain high accuracy.

This work was partially supported by the US National Science Founda-
tion (NSF) under grant CCF-2007159

II. SYSTEM DESIGN

A. Overview

ST T T T T T T T T T T T TT T T T T T T T T TT T T TT T TTT T T ~
{/ Local Cache Management Module \

1
! [cache Update -‘ Accelerometer
i Search =
-{vawpe Magnetomete}

| | =L

N
f Collaborative Network
| Communication
yvy : Module
|
|
|

1
|
|

’ Recognition Cache |—ﬂ DNN Recognition | Wi-Fi Direct Peer- | |

Cache to-peer Manager |
|
|
|
/

Cache Miss
Hit | L | (‘Bluetooth Proximity
\ 4 \ Detection
/

N
Camera | Return Results |

Input

Cache Entry
Feature

Extraction

P

Figure 1. System Architecture

Our system is an in-memory approximate caching system
that facilitates the reuse of image recognition computations
to improve the overall latency and efficiency of DNN image
recognition on mobile devices. We leverage the collaborative
nature and inertial movement of mobile devices, as well
as the temporal, spatial, and semantic locality of real-
world video feeds, to both optimize cache searching and
also ensure that the correct computations are cached for
reuse. Approximate caching uses image similarity instead
of exact matches to determine cache hits or misses, which
is perfect for real-world situations with video streams. Our
approximate cache is built on a Locality Sensitive Hashing
data structure.

The core of our contributions lie in the Local Cache
Management and Collaborative Network Communication
Modules, seen in Figure 1. The Local Cache Management
Module handles all cache searching, cache insertion and
replacement, sampling the on-device accelerometer, gyro-
scope, and magnetometer, and updating the cache entry reuse
scores. The Collaborative Network Communication Module
houses both the Wi-Fi Direct and Bluetooth components of
our system. This includes the Bluetooth proximity detection
used for sensing the relative movement between users, and
the Wi-Fi Direct peer-to-peer logic for actually sending over
cache entries based on the Bluetooth proximity readings.

B. Caching Optimizations

To optimize our cache management, we introduce many
inertial-driven techniques that make use of a smartphone’s

on-board inertial measurement unit. We better inform our
cache replacement algorithms with inertial data from a user’s
device to make accurate guesses about what objects might
currently be in the view of the camera based on how the
user has moved through space while recognizing objects.
Additionally, we determine the rotation of a user’s smart-
phone and use this information to cache more effectively,
as our initial experimentation has shown that this rotation is
indicative of certain cache patterns.

Additionally, we use ad-hoc WiFi to connect nearby users
together who then share information about known objects in
the user’s vicinity. We augment our device-to-device WiFi
network with proximity detection using Bluetooth’s discov-
ery feature. Determining the proximity of a user in relation
to other users helps us weight the object recommendations
we’ve received, based on how close a neighbor is to us
physically. Users in our system share only cache entries with
each other. Cache entries only contain the extracted features
of an image as well as the image’s label. It is not possible to
reconstruct a raw image based only on the features extracted
from that image, so we do not foresee any security issues
with our system.

III. PRELIMINARY IMPLEMENTATION AND EVALUATION

A. Evaluation Methodology

To test the viability of our design, we develop an image
recognition Android application built upon various popular
DNN models. The application was developed using Java,
OpenCV, and TensorFlow to facilitate the usage of multiple
DNNS.

We developed a prototype that we test on five different
smartphones, ranging in age, cost, and computational capa-
bility. We compare against a baseline of raw neural network
recognition with no optimizations. We use the ResNet [4]
and Inception v4 [8] models for testing and average the
results.

We supports both local caching and collaborative caching.
Figure 2 shows the latency reduction achieved by our in
cases from one to four users. With only one device, we
achieve latency reduction of anywhere from 80% to 84%
depending on what device is being used. With two devices
collaborating, we achieve latency reduction anywhere from
87% to 90%. With three users we see latency reduction in
the range of 89% to 92%. Finally, with four devices we
achieve latency reduction anywhere from 91% to 94%. To
achieve these results, our cache has a reuse rate of 94% and
an error rate of 12%.

These results are significant in two areas. First, when
there are many neighbors nearby, we can achieve very small
latencies, and even in situations when there are no neighbors,
our system still achieves significant latency reduction, which
is important as it is not always viable to have neighbors
nearby to communicate with.

B Pixel4 XL W Note 10+
10

Mi8 Lite B Galaxy S9 B Pixel

=

]

Reduction Ratio
o =] o
(=] -~ -]

=

LocalCo- Two Devices Three Four Devices
Cache Devices
Figure 2. Latency Reduction with Multiple Users

IV. CONCLUSION

In this paper we introduce an inertial-driven collaborative
approximate caching system where computation results of
similar images can be reused to improve the latency of
mobile image recognition. Approximate caching enhanced
with our optimizations can achieve low latency without
sacrificing overall accuracy. We build a prototype system and
evaluate its effectiveness in a realistic real-world situation.
Our evaluation shows that our system can reduce the overall
latency of image recognition on smartphones by up to 94%.

REFERENCES

[1] Pokemon go augmented reality game, 2016.

[2] Biyi Fang, Xiao Zeng, and Mi Zhang. Nestdnn: Resource-
aware multi-tenant on-device deep learning for continuous
mobile vision. In Proceedings of the 24th Annual International
Conference on Mobile Computing and Networking, pages 115—
127, 2018.

[3] Peizhen Guo, Bo Hu, Rui Li, and Wenjun Hu. Foggycache:
Cross-device approximate computation reuse. In Proceedings
of the 24th Annual International Conference on Mobile Com-
puting and Networking, pages 19-34, 2018.

[4] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceedings
of the IEEE conference on computer vision and pattern recog-
nition, pages 770-778, 2016.

[5] Luyang Liu, Hongyu Li, and Marco Gruteser. Edge assisted
real-time object detection for mobile augmented reality. In The
25th Annual International Conference on Mobile Computing
and Networking, MobiCom 19, New York, NY, USA, 2019.
Association for Computing Machinery.

[6] Wolfgang Narzt, Gustav Pomberger, Alois Ferscha, Dieter
Kolb, Reiner Miiller, Jan Wieghardt, Horst Hortner, and
Christopher Lindinger. Augmented reality navigation systems.
Universal Access in the Information Society, 4(3):177-187,
2006.

[7] Iulian Radu. Augmented reality in education: a meta-review
and cross-media analysis. Personal and Ubiquitous Computing,
18(6):1533-1543, 2014.

[8] Christian Szegedy, Sergey loffe, Vincent Vanhoucke, and Alex
Alemi. Inception-v4, inception-resnet and the impact of resid-
ual connections on learning, 2016.

