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Given n demand points in a geographic area, the elliptical cover problem is to determine the location 

of p depots (anywhere in the area) so as to minimize the maximum distance of an economical delivery 

trip in which a delivery vehicle starts from the nearest depot to a demand point, visits the demand point 

and then returns to the second nearest depot to that demand point. We show that this problem is NP- 

hard, and adapt Cooper’s alternating locate-allocate heuristic to find locally optimal solutions for both 

the point-coverage and area-coverage scenarios. Experiments show that most locally optimal solutions 

perform similarly well, suggesting their sufficiency for practical use. The one-dimensional variant of the 

problem, in which the service area is reduced to a line segment, permits recursive algorithms that are 

more efficient than mathematical optimization approaches in practical cases. The solution also provides 

the best-known lower bound for the original problem at a negligible computational cost. 

© 2022 Elsevier B.V. All rights reserved. 
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. Introduction 

.1. Problem statement 

In this paper, we study the Euclidean p-Elliptical Cover prob- 

em, stated as follows. Given n demand points with coordinates 

a i , b i ) , i = 1 , . . . , n on the plane, find p depot locations X j , j =
 , . . . , p, in order to 

inimize X 1 , ... ,X p 

{
max 
1 ≤i ≤n 

{
min 

1 ≤ j < j ′ ≤p 

{
D i (X j ) + D i (X j ′ ) 

}}}
(1) 

here X j := (x j , y j ) for j = 1 , . . . , p is the location of depot j, and

 i (X j ) := [(x j − a i ) 
2 + (y j − b i ) 

2 ] 1 / 2 is the Euclidean distance be-

ween demand point i and depot j. We will refer to this problem 

imply as the Elliptical Cover problem in the sequel. 

The problem can be formulated into a mixed integer nonlinear 

rogramming (MINLP) model. Define the binary variable 

 i j = 

{
1 if demand point i is assigned to depot j 
0 otherwise 

hen problem (1) is equivalent to 
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inimize L (2) 

.t. L ≥
p ∑ 

j=1 

z i j [(x j − a i ) 
2 + (y j − b i ) 

2 ] 1 / 2 for i = 1 , . . . , n (3) 

p ∑ 

j=1 

z i j = k for i = 1 , . . . , n (4) 

z i j ∈ { 0 , 1 } for i = 1 , . . . , n ; j = 1 , . . . , p (5) 

x j , y j ∈ R for j = 1 , . . . , p (6) 

ith parameter k = 2 . The Euclidean p-center (EPC) problem 

 Megiddo & Supowit, 1984 ), which attempts to find p depots to 

inimize the maximum distance from a demand point to its re- 

pective nearest depot, has the same MINLP formulation with k = 

 . The minimum enclosing polyellipsoid (MEP) problem ( Blanco & 

uerto, 2021 ) can be viewed as a variant of the above model with

 = p and with additional constraints on foci locations. These and 

ther related problems and their solution ideas are reviewed in 

ection 1.3 . It is worth noting that in the former case ( k = 1 ) the

roblem is N P -hard, while in the latter case ( k = p) the problem is

onvex and polynomially solvable. Therefore, there is not a general 

onclusion about the problem’s complexity based on its mathemat- 

cal formulation, and good algorithms may have to exploit the geo- 

etric properties available under the particular problem setting. In 

his paper, we focus on analyzing the Elliptical Cover case ( k = 2 ),

how that it is an N P -hard problem, and propose algorithms for 

ifferent variants of the problem. 
 delivery network design and its solution algorithms, European 
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Fig. 1. A drone delivery service area having three depots and five customer loca- 

tions. Customer e is serviceable by 5 delivery routes while customer d is serviceable 

by only one route. In this paper, we require all customers to be serviceable by at 

least 3 routes, i.e., covered by an ellipse. 

1

o

&

t

W

b

e

J

s

l

M

p

t

t

l

s

i

t

t

d

t

A

a

w

o

s

s

p

m

p

fi

v

m

.2. Motivating application 

On-demand delivery of light goods by unmanned aerial vehi- 

les (UAVs, or drones) has emerged as a new mode of last-mile 

elivery, and has attracted great interest from both industrial and 

cademic communities. Several modes of drone delivery opera- 

ions have been explored, including drones launched from fixed 

nd moving depots, and drone routes having a single or multi- 

le stops for pickup and delivery, see, e.g., Agatz, Bouman, and 

chmidt (2018) ; Liu (2019) ; Murray and Chu (2015) ; Poikonen and 

ampbell (2020) . Given the limited battery and carrying capacities 

f multicopter drones, we believe that a feasible mode of opera- 

ion can be as simple as this: single delivery per trip, with the 

rone starting from a fixed depot, visiting the customer location 

or dropoff, then returning to (the same or a different) depot. Com- 

ercial operations of drone delivery services, including those pi- 

oted by Alphabet Wing ( Wing, 2021 ) and Zipline ( Zipline, 2021 ),

all under the “depot-customer-depot” paradigm with stationary 

epots. Even though Zipline currently adopts a hub-and-spoke net- 

ork with a single depot at the hub, optimally locating multiple 

epots will become relevant when its service region expands be- 

ond the round-trip flight range of the battery-powered drone in 

ts fleet. 

The location of depots across the service area is an important 

etwork design decision that will determine the initial infrastruc- 

ure cost as well as the safety, efficiency and service level in daily 

perations. Liu (2021, 2022) discussed the drone depot location 

roblem from the safety and emergency landing perspective, and 

mployed the p-center design to cover the service area with de- 

ots such that the required flight distance in a worst-case emer- 

ency landing is minimized. It is also important to examine the 

roblem from the cost and operation efficiency perspective. 

In designing the system, the flight range requirement on drones 

s a primary factor to consider. If depots and customer locations 

re too far apart, the drones must be equipped with heavier bat- 

ery packs to cover a longer range, which adds costs to the fleet 

quipment and maintenance activities. Like the depot location de- 

ision, the choice of battery capacity for the fleet is a system de- 

ign question that should be determined early on, because modify- 

ng the battery design may involve making changes to the airframe 

nd electrical system on each drone in the fleet, which can be very 

ostly. 

Here is how specifically the flight range of a drone, denoted 

y L , plays a role in the depot location decision. A delivery trip 

type 1) that starts and ends at the same depot must have the 

emand point lie in a circular area of radius L/ 2 centered at the

epot, while a delivery trip (type 2) that starts and ends at dif- 

erent depots must have the demand point lie in an elliptical area 

aving the depots as foci and the major axis length of L . Clearly,

 customer that is serviceable by a type 2 trip is also serviceable 

y a type 1 trip, but not vice versa. During service operations, a 

ustomer demand can be fulfilled only if the origin depot has the 

rdered item in stock and has an available drone to fly the delivery 

rip. Thus, everything else held equal, a customer location service- 

ble by a type 2 trip is twice as likely to have her demand fulfilled

ompared to a customer serviceable by only a type 1 trip. Ensuring 

ll customer locations to be serviceable by a type 2 trip is therefore 

 good objective in the network design. It not only increases ser- 

ice coverage, but also enables a higher operational efficiency. For 

nstance, it leaves more flexibility in drone-order matching in task 

ssignments, and permits more choices for drone re-locationing af- 

er a delivery task, to respond more quickly to the next customer 

emand. The relationship between depot location and service level 

nd flexibility is illustrated in Fig. 1 . This particular consideration 

n drone delivery network design motivates the Elliptical Cover 

roblem studied in this paper. 
2 
.3. Related problems and literature 

Determining the location of service depots falls in the class 

f facility location problems ( Aikens, 1985; Daskin, 1995; Klose 

 Drexl, 2005; Revelle & Laporte, 1996 ), and more specifically 

he continuous location problems ( Berman, Drezner, Tamir, & 

esolowsky, 2009; Blanco, Puerto, & Ben-Ali, 2014; 2016; Brim- 

erg & Salhi, 2005; Drezner & Brimberg, 2020; Rosing, 1992 ). Cov- 

ring problems in facility location have been surveyed by Schilling, 

ayaraman, and Barkhi (1993) and Farahani, Asgari, Heidari, Hos- 

eininia, and Goh (2012) . 

The problem of covering demand points on a plane by ellipsis- 

ike shapes has been investigated in recent literature. Canbolat and 

assow (2009) studied the problem of selecting k out of m axis- 

arallel ellipses of given sizes and costs and determining their cen- 

er locations to cover a subset of demand points on the plane in 

he most economical way. The authors presented a MINLP formu- 

ation which was shown to be difficult to solve even for small in- 

tances, and proposed an algorithm based on Simulated Anneal- 

ng for practical solutions. Andretta and Birgin (2013) investigated 

he same problem and proposed an enumeration approach for ob- 

aining its global solution. In this approach, each plausible ellipsis- 

emand matching pattern was examined whereas the feasibility of 

he matching was checked by solving a convex nonlinear program. 

 tree-like data structure was employed to organize the search 

nd to skip unpromising candidates. However, when the ellipses 

ere permitted to be oriented freely (i.e., not fixed to axis-parallel 

rientation as studied in Canbolat and Massow (2009) ), the fea- 

ibility subproblem became nonconvex and thus more difficult to 

olve. On the same problems, Tedeschi and Andretta (2021) further 

roved that the number of possible locations of the m ellipses that 

ay appear in the optimal solution to the problem with n demand 

oints is upper bounded by n 2 m and n 3 m , when the ellipses have 

xed and flexible orientations, respectively. The authors then de- 

eloped enumeration algorithms with several algorithmic improve- 

ents to find the optimal solutions faster than those in the prior 
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ork, i.e., Andretta and Birgin (2013) . There are several notable dif- 

erences between the problem studied in the above-mentioned lit- 

rature and the one presented in this paper. First, the former prob- 

em seeks a maximal (profit) coverage solution while our problem 

eeks a full coverage solution; second, the number and shapes (in 

erms of the semi-major and semi-minor axis lengths) of the cov- 

ring ellipses are given in the former problem, whereas in our 

roblem neither the number nor the shapes of the covering el- 

ipses is known a priori as they depend on the location of the foci

oints. As a result, the geometric analysis approach that was useful 

or enumerating the possible solutions of the former problem (sim- 

lar ideas were also found in Church (1984) , Drezner (1984) and 

hazelle & Lee (1986) ) is not applicable (at least to the author’s 

nowledge) to the Elliptical Cover problem studied in this paper. 

Blanco and Puerto (2021) investigated the problem of determin- 

ng the location of p depots to cover a finite set of demand points 

o that the largest weighted sum of the distances from a demand 

oint to all depots is minimized. The authors termed this prob- 

em Minimum Radius Enclosing Polyellipsoid Problem with Given 

oci (and short for MEP). Using the same notations in (1) , the MEP 

roblem can be mathematically stated as follows. 

inimize 
X 

{ 

max 
1 ≤i ≤n 

p ∑ 

j=1 

w j D i (X + X 

′ 
j ) 

} 

(7) 

here for each j ∈ { 1 , . . . , p} , X ′ 
j 

is a given coordinate associated

ith depot j and w j ≥ 0 is a given weight associated with depot 

j, with 

∑ p 
j=1 

w j = 1 1 . Compared to the Elliptical Cover problem 

f (1) , the MEP problem does not involve the assignment of de- 

and points to nearest depots by the minimum distance principle 

i.e., the innermost min operator in (1) is forgone), and thus it can 

e formulated as a continuous optimization problem. The authors 

roved that the problem is solvable in polynomial time and de- 

eloped a solution algorithm with time complexity O (n d+2 ) , where 

is the fixed data dimension (on a plane, d = 2 ). The idea was

o decompose the task of solving the original problem into solv- 

ng a polynomial number of smaller (convex optimization) prob- 

ems. On large instances (i.e., potentially to arise in data mining 

ontexts), the decomposition approach was demonstrated to run 

aster than Gurobi solving a second order cone (SOC) formulation 

f the problem. A similar decomposition approach also underlies 

ur proposed method for solving the Elliptical Cover problem, but 

he number of possible subproblem to solve is indefinite. In brief, 

e will solve (7) using a local solver (i.e., CONOPT, since the prob- 

em is convex) in a locate-allocate algorithm for obtaining local so- 

utions to the Elliptical Cover problem. Note that the decomposi- 

ion approach proposed by Blanco and Puerto (2021) could poten- 

ially be used for expediting the solution of (7) as a subproblem in 

ur context. However, given that the locate-allocate algorithm usu- 

lly take a limited number of iterations to converge (see Fig. 11 ), 

n this paper we adopt an off-the-shelf solver for simplicity. 

Another related problem is the α-neighbor p-center problem 

n a Euclidean plane ( Chen & Chen, 2013 ), in which the goal is

o cover the demand points with p circles such that each demand 

oint is covered by at least α circles and that the radius of the 

argest circle is minimized. This problem permits a mathematical 

ormulation similar to (2) to (6) - specifically, rewrite constraint 

3) as 

 ≥ z i j 

[
(x j − a i ) 

2 + (y j − b i ) 
2 
]1 / 2 

, for i = 1 , . . . , n ; j = 1 , . . . , p 

nd one can obtain the MINLP formulation for the k -neighbor p- 

enter problem. For the same set of demand points and a given 
1 The authors discussed the problem in a general d dimensional space catering to 

pplications in data science, where we set d = 2 in formulation (7) for the ease of 

omparison with (1) for planar applications. 

p

q

k

3 
p, the optimal objective value of the 2-neighbor p-center problem 

s clearly a lower bound for the Elliptical Cover problem. However, 

here is no known polynomial algorithm for globally solving the 

ormer problem. Khuller, Pless, and Sussmann (1997) provided a 

olynomial time approximation algorithm for the problem defined 

n a graph and achieved an approximation factor of 2 for α < 4 ,

ut an approximate solution can not serve as a lower bound. The 

est known exact algorithm is proposed by Chen and Chen (2013) . 

he idea is solving a finite series of set covering problems via inte- 

er programming, similar to those proposed by Minieka (1970) and 

rezner (1984) for solving the EPC problem. Numeric experiments 

erformed by the authors showed that the optimal solution to the 

-neighbor p-center problem often coincides with the optimal so- 

ution to the EPC problem with 2 p centers - by placing two cen- 

ers at the same location to meet the 2-neighbor requirement. This 

bservation indicates that the solution to the 2-neighbor p-center 

roblem is unlikely to be a valuable starting point (that is worth 

he effort of obtaining it) for the locate-allocate algorithm to be 

roposed in Section 3 for solving the p-Elliptical Cover problem. 

Overall, to our knowledge, the Elliptical Cover problem has not 

een studied in the facility location literature. Our contributions 

an be summarized to include: (1) a mixed integer nonlinear for- 

ulation of the problem, (2) a proof that the problem is N P -hard, 

3) an adaptation of a well-known locate-allocate algorithm to lo- 

ally solve the problem with both discrete and continuous demand 

ets, (4) an examination of a one-dimensional variant of the prob- 

em (the shortest covering interval (SCI) problem), an exact algo- 

ithm to solve this problem, which then provides a lower bound 

or the Elliptical Cover problem, and (5) computational results and 

elevant discussions. 

The remainder of the paper is organized as follows. In Section 2 , 

e prove that the Elliptical Cover problem is N P -hard, and present 

he unique challenges it poses to analytical approaches that have 

ound success on similar problems, such as the Euclidean p-center 

roblem. In Section 3 , we propose a locate-allocate algorithm, 

long with its convergence proof, for finding locally optimal so- 

utions. In Section 4 , we formulate the one-dimensional version of 

he Elliptical Cover problem whose solution will provide a valid 

ower bound to the original problem. We furthermore show sev- 

ral useful insights into this problem, and develop an exact and a 

euristic algorithm, respectively, for solving it much faster than the 

athematical optimization approach. Section 5 extends the locate- 

llocate approach to cover an area, instead of discrete points, with 

llipses. All proposed algorithms are validated in numeric experi- 

ents in Section 6 , where we also present a comparison between 

he Elliptical Cover and the EPC solutions in the drone delivery net- 

ork design context. Finally, Section 7 concludes the paper with 

ointers for future research. 

. Complexity analysis 

Circle Covering : Given n unit circles in the plane and an integer 

p > 0 , decide whether there exist p points such that each circle 

ontains at least one point (we say that a circle contains a point if 

he point lies on, or in the interior of, the circle). 

Megiddo and Supowit (1984) proved the N P -hardness of the 

uclidean p-center problem by first noting its equivalence to Cir- 

le Covering, then reducing 3-satisfiability ( Garey & Johnson, 1978 ) 

o Circle Covering, thereby proving that Circle Covering is N P - 

omplete. To prove the N P -hardness of (1) (and more generally, of 

roblem (2) - (6) ), we will reduce Circle Covering to another deci- 

ion problem, called Concentric k -Circle Covering, the optimization 

roblem counterpart to which is equivalent to (1) when k = 2 . 

First, let us define the concept of the ring used in the subse- 

uent problem description. We say that k concentric circles form 

 ring areas (or rings) defined as follows: points enclosed by the 
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Fig. 2. Illustration of concentric rings. Left: two concentric circles of different diameters form two rings: the first ring is the red circular area, and the second ring is the blue 

are. Right: two concentric circle of equal diameter also form two rings, but only one ring (blue) includes the interior area, while the other ring (red) is simply the boundary 

circle. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 3. The Concentric 2-ring problem is equivalent to the decision problem of El- 

liptical Cover. If both rings centered at c contain a point, X 1 and X 2 , respectively, 

then c is covered by the ellipse with X 1 and X 2 as foci; and vice versa. 
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mallest circle (including points that lie on the circle) are said to 

e in the first ring, points enclosed by the second smallest circle 

ut outside the interior of the first ring are said to be in the sec-

nd ring, and so forth. If two (or more) circles have the same ra- 

ius, an arbitrary rank order is assigned to them so that points in 

he common interior are said to be in the smallest rank-ordered 

ing and the points that lie on the circles are said to be in both

all) rings. An illustration is given in Fig. 2 . 

Concentric k -Ring Covering : Given n points on the plane, an inte- 

er k > 0 and an integer p > 0 , decide whether there exist p points,

nd n groups of circles arranged in such a way that each group has

 concentric circles centered at one of the n given points (no two 

roups share the same center) and the sum of the radii of the k

ircles is no more than k , such that each of the nk rings formed by

he nk circles contains at least one of the p points. 

roposition 1. Concentric k -Ring Covering is N P -complete. 

roof. Given an instance, say n points { c i , . . . , c n } , and a proposed

olution, say p points { X 1 , . . . , X p } , we can check whether the pro-

osed solution constitutes a “yes” answer to the instance as fol- 

ows: calculate d(c i , X j ) for each i ∈ { 1 , . . . , n } and j ∈ { 1 , . . . , p} ,
hen for each i rank the distances { d(c i , X 1 ) , . . . , d(c i , X p ) } and cal-

ulate the sum of the smallest k members in the set and denote 

he sum by d i . The “yes” condition is satisfied if and only if d i ≤ k

or all i ∈ { 1 , . . . , n } . The overall time complexity is bounded by

 (n · p · log (k )) . Therefore, the problem is in N P . 

We now reduce Circle Covering to Concentric k -Ring Covering. 

or each instance of Circle Covering, say n unit circles { C 1 , . . . , C n }
entered at points { c 1 , . . . , c n } respectively, we can construct an in-

tance of the Concentric k -Ring Covering for a given k by using 

he same given n points and the same p. Given a solution to the

ormer instance we can construct a solution to the latter instance. 

pecifically, if C i contains a point X , we can choose the radii of the

 circles centered at c i to be d(c i , X ) , thus all k rings contain X 

nd the sum of the radii is no more than k (because d(c i , X ) ≤ 1 ).

n the other hand, a solution to the Concentric k -Ring Covering 

nstance also leads to a solution to the Circle Covering instance. 

pecifically, the knowledge that each of the k rings centered at c i 
ontains at least one of the p points indicates that the smallest 

ing (i.e., the inner most circular area) centered at c i contains one 

f the points. Also, the radius of the smallest ring cannot exceed 

 (the unit length) since the sum of the k radii is no more than

 . Therefore, the unit circle C i must contain at least one of the p

oints. Since Circle Covering is known to be N P -complete and the 

ransformation is polynomial, the conclusion follows. �

Concentric k -Ring Covering is a decision problem counterpart 

o the optimization problem (2) to (6) , in the same way as Cir-

le Covering being a counterpart to EPC. The optimization problem 

s at least as hard as the decision problem, hence is N P -hard. In 
4 
his paper, we focus on the problem with k = 2 for its real-world

pplication. This problem permits a geometric description: find p

epots such that each demand point is covered by a number of el- 

ipses each having some pair of depots as foci and the major axis 

f the largest ellipse used in the coverage is minimized. Therefore, 

t is termed as the Elliptical Cover problem. Its equivalence to the 

oncentric 2-Ring Covering problem is illustrated in Fig. 3 . 

Globally solving the optimization problem (2) to (6) is ex- 

remely difficult even for small instances. When a global MINLP 

olver, such as BARON ( Sahinidis, 1996 ), is used to solve an in-

tance, the lower bound starts at a useless level (i.e., 0) and im- 

roves extremely slowly. Indeed, relaxing the integrality of the bi- 

ary variables would not make the problem convex. Though one 

ould reformulate the problem (e.g., use the binary variable z i j j ′ 
o indicate if demand i is assigned to the ellipse of foci j and j ′ )
o avoid the bilinear terms z i j D i (X j ) , the use of big M constants

ould substantially weaken the reformulation, and the presence of 

he Euclidean distance calculation, e.g., in D i (X j ) , would still call 

or the use of a global MINLP solver rather than an MIP solver. 

oreover, the isomorphism in the problem’s graph structure cre- 

tes excessive symmetry that is inexpressible in algebraic formula- 

ions. For instance, for a problem with n = 5 and p = 3 , the follow-

ng three demand-depot assignments, 

Assignment 1: z i j = 1 for { i ∈ { 1 , 2 } , j ∈ { 1 , 2 }} or { i ∈
{ 3 , 4 , 5 } , j ∈ { 2 , 3 }} 
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Assignment 2: z i j = 1 for { i ∈ { 1 , 2 } , j ∈ { 1 , 3 }} or { i ∈
{ 3 , 4 , 5 } , j ∈ { 2 , 3 }} 

Assignment 3: z i j = 1 for { i ∈ { 1 , 2 } , j ∈ { 2 , 3 }} or { i ∈
{ 3 , 4 , 5 } , j ∈ { 1 , 3 }} 

re equivalent for the geometric problem, but they are (unneces- 

arily) distinguished in the algebraic formulation. Eliminating one 

ould not automatically eliminate the other two in the branch and 

ound framework, causing redundant computations. 

The same issue would exist in the mathematical formulation of 

ther geometric location problems such as the EPC problem. Con- 

equently, successful algorithms invariably exploited some geomet- 

ic and combinatorial insights into the problem structure, rather 

han relying on mathematical optimization approaches. For in- 

tance, Drezner (1984) uncovered two geometric properties of the 

PC’s optimal solution which ultimately led to good algorithms. 

ne is the fact that the largest circle in the solution is defined by 

t most three demand points hence there are O (n 3 ) possible radii 

ith one of them being the solution radius. The other is that for 

 given radius there are only O (n 2 ) possible locations where the 

p circles can center at. Using these insights, the author developed 

n exact algorithm for the EPC by solving a set-covering problem 

olynomial number of times. Vijay (1985) proposed another ex- 

ct algorithm for EPC based on similar principles and was able 

o generate the set-covering subproblems more efficiently. Hwang, 

ee, and Chang (1993) further improved the time bound for EPC 

o O (n O ( 
√ 

p ) ) , by inventing a new algorithm to solve the circle-

overing subproblem (which is at the bottleneck of the EPC al- 

orithm, and is stated as “given a set of n demand points and 

wo parameters p and r, determine whether there exist p circles 

f radius r which can cover all demand points”) in time O (n O ( 
√ 

p ) ) .

allaghan, Salhi, and Nagy (2017) devised a series of means, includ- 

ng exploiting early termination opportunities in subproblem solu- 

ion and eliminating unpromising candidate solutions on the fly, 

o speed up execution of the EPC algorithm proposed in Drezner 

1984) . 

. A locate-allocate algorithm that converges 

While the EPC is a special case ( k = 1 ) of the problem (2) to

6) , none of the geometric insights that sped up the EPC solution is 

pplicable to the general cases of 2 ≤ k < p. The key reason is this:

 given demand-depot allocation (i.e., fixing values for z i j ) would 

ecompose the EPC problem into p separate 1-center problems of 

he same nature, but would not do the same decomposition to the 

eneral case (i.e., k > 1 ) - the location variables for all the p points

ould still be coupled in a single nonlinear program (NLP). Fortu- 

ately, this NLP is convex. 

emma 2. With variables z i j , i ∈ { 1 , . . . , n } and j ∈ { 1 , . . . , p} , fixed

o any binary assignment { 0 , 1 } n ×p , the problem (2) to (6) is reduced

o a convex optimization problem. 

roof. Let J(i ) := { j : z i j = 1 } , then the problem becomes 

minimize 
L, (x j ,y j ) , j=1 , ... ,p 

L (8) 

.t. L ≥
∑ 

j∈ J(i ) 

[(x j − a i ) 
2 + (y j − b i ) 

2 ] 1 / 2 for i = 1 , . . . , n (9) 

he right side of constraint (9) is a convex function of the variables 

x, y ) on R 

2 p because each summand (being an L 2 norm) is convex, 

nd the inequality (for each i ) describes the epigraph of that con- 

ex function and hence forms a convex set on R 

2 p+1 . Minimizing 

 linear function over the intersection of n convex sets is a convex 

ptimization problem. �
5 
In fact, the problem (8) - (9) is a second order cone prob- 

em (SOCP), a type of convex optimization problem solvable by 

nterior-point methods in polynomial time, see, e.g., Nesterov and 

emirovskii (1994) . 

The original problem can be viewed as a combinatorial assign- 

ent problem, i.e., assigning each demand point to two depots, 

n which the performance of a candidate assignment must be as- 

essed via solving a convex NLP. There are 
(

p 
k 

)n 
possible assign- 

ents, an exponential function of inputs unless k = p. To see the 

omplexity of enumerating all unique assignments, let us make 

uch an attempt on an instance with n = 10 , p = 4 and k = 2 ; that

s, to cover 10 demand points by a collection of ellipses whose foci 

re from a set of four depots. Each pair of depots can serve as 

he foci for an ellipse, so we can think of the covering ellipses as 

dges in a graph in which depots are unlabeled nodes. There are 

en graphs with a non-empty edge set on four unlabeled nodes, 

llustrated in Fig. 4 . 

Assigning n demand points to a number, say h , of covering el- 

ipses (i.e., edges in the graph) is equivalent to partitioning n la- 

eled objects into h nonempty unlabeled subsets, and the number 

f ways to do so is the Stirling number of the second kind, denoted 

y S(n, h ) and calculated by 

(n, h ) = 

1 

h ! 

h ∑ 

i =0 

(−1) i 
(

h 

i 

)
(h − i ) n 

mong the ten possible arrangements of covering ellipse(s), one 

as h = 1 , two h = 2 , three h = 3 , two h = 4 , one h = 5 and one

 = 6 , so the total number of unique demand-depot assignments 

omes down to 

(10 , 1) + 2 · S(10 , 2) + 3 · S(10 , 3) + 2 · S(10 , 4) + S(10 , 5) 

+ S(10 , 6) = 162575 . 

ven though this number is two orders of magnitude smaller than 

4 
2 

)10 = 60466176 , the size of the search space modeled by the al- 

ebraic constraints (4) and (5) , it is still impractical to evaluate 

uch a large number of possibilities, whereas the evaluation of 

ach possibility would require solving a nonlinear, though convex, 

ptimization problem. 

We propose the following iterative locate-allocate algorithm for 

pproximately solving the Elliptical Cover problem. Let ε > 0 be a 

mall number. 

Locate-Allocate Algorithm : 

Step 1 : Initialize L ∗ = ∞ and randomly sample p depot loca- 

tions on the plane, X 1 , . . . , X p . 

Step 2 : For each demand point i , compute the dis- 

tances D i (X j ) , j = 1 , . . . , p and let J(i ) = { j i , j ′ i } where

j i = argmin { 1 , ... ,p} D i (X j ) and j ′ 
i 
= argmin { 1 , ... ,p}\{ j i } D i (X j ) . 

Step 3 : Solve the problem (8) - (9) using an NLP solver, to ob- 

tain the optimal value ˆ L and optimal solution 

ˆ X j , j = 1 , . . . , p. 

Step 4 : If ˆ L − L ∗ < −ε, stop and return { ̂  X 1 , . . . , ˆ X p } as solution;

otherwise, update L ∗ ← ̂

 L , { X 1 , . . . , X p } ← { ̂  X 1 , . . . , ˆ X p } , go to

Step 2. 

roposition 3. The locate-allocate algorithm will terminate in finite 

terations. 

roof. There are only a finite number of assignments 

 J (1) , . . . , J (n ) } , and each assignment gives a definite optimal

alue L due to convexity. Each iteration produces a new assign- 

ent whose optimal value L is strictly smaller than that of the 

revious iteration. Since the algorithm iterates over a finite set, 

ome assignment value must eventually be revisited. The revisit 

ycle length (i.e., number of iterations between the 1st and 2nd 

isit to the same assignment value) must be 1 and the algorithm 
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Fig. 4. Ten ways to form covering ellipses whose foci are chosen from a set of four depots. 
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ust terminate when the revisit happens, because any other 

ssignment visited between the 1st and 2nd visit would give an 

bjective value strictly greater and strictly smaller than the objec- 

ive value of the revisited assignment, hence a contradiction. �

The idea of alternate location-allocation is not new. Cooper 

1964) proposed an iterative method employing this idea to solve 

he multisource Weber Problem ( Brimberg, Hansen, Mladenovi ́c, & 

aillard, 20 0 0; Hansen, Mladenovi ́c, & Taillard, 1998; Raeisi Dehko- 

di, 2019; Wesolowsky, 1993 ), which concerns finding the coordi- 

ates of p depots from a continuous feasible space to minimize the 

um of weighted distances from a finite set of destinations to their 

losest depot. The same idea underpinned the Voronoi heuristic 

ethod proposed by Suzuki and Drezner (1996) to solve the p cen- 

er problem in an area, as well as the K-means clustering algorithm 

idely used in machine learning. 

Each run of the algorithm, starting from a random starting point 

i.e., p depot locations), will produce a “local optimum”, in the 

ense that unilaterally changing either the location or the alloca- 

ion would not lead to a better objective value. However, there 

re indefinitely many (upper bounded by the number of unique 

ssignments) local optima. The multistart search strategy, which 

nvolves running the algorithm many times (optionally in paral- 

el), can be employed to generate a pool of local optima, the best 

f which is then used as the final solution. The starting point 

trategy proposed in Drezner and Brimberg (2020) and the trans- 

er follow-up step proposed in Drezner, Brimberg, Mladenovi ́c, and 

alhi (2015) for expediting the locate-allocate algorithm and im- 

roving the local solution for the planar p-median problem can 

otentially be applied here, though we have not tested them in our 

mplementation. Our computational experience has shown that the 

umber of unique local optima identified via multistart is typically 

ery limited even after a large number of runs. In other words, 

he chance that a better solution turns up decays exponentially as 

ore and more runs are executed. In practice, if no better solution 

urns up in the last, say, 20 runs, then the search can stop and the

est solution identified thus far is to be accepted. 

. The one-dimensional variant and its solution algorithms 

There is no polynomial-time algorithm (unless P = N P ) to 

ompute and systematically improve the lower bound, hence to 

stablish global optimality. Computing the lower bound involves 

olving a relaxed version of the problem, such as one that relaxes 

he integrality of z i j in the MINLP formulation. However, as dis- 

ussed in Section 2 , this kind of relaxation is either still difficult to

olve or too weak to be valuable. As mentioned in Section 1.3 , the

-neighbor p-center problem ( Chen & Chen, 2013 ) can be viewed 

s a relaxation of the Elliptical Cover problem, and hence its op- 

imal objective value can serve as a lower bound. However, solv- 

ng that problem to global optimality is by itself an N P -hard task, 

hich does not simplify the task at hand. 
6 
We propose a dimension relaxation approach. The idea is based 

n this fact: if the demand points on the plane are enclosed by a 

umber of ellipses, then the projection of the demand points onto 

ny straight line on the plane must also be enclosed by the pro- 

ection (line segments) of those ellipses onto the same line. Fur- 

hermore, the length of the projected line segment of an ellipse is 

maller than or equal to the length of the major axis of the ellipse, 

hich is in turn smaller than or equal to the distance between the 

oci of the ellipse. This means that for any given straight line, we 

an solve an alternative covering problem on the line, the optimal 

alue of which will serve as a lower bound of the original prob- 

em. On top of this, some search procedure can be employed to 

nd the straight line such that the resulting lower bound is great- 

st. The idea is illustrated in Fig. 5 , and the alternative covering 

roblem, called Shortest Covering Interval (SCI) problem, is stated 

s follows. 

Shortest Covering Interval (SCI) problem: given the location of 

 ≥ 1 demand points on the real line and an integer p ≥ 2 , deter-

ine the location of p depots on the line such that the maximum 

um of distances from a demand point to its two nearest depots is 

inimized. 

Apart from providing lower bounds to the Elliptical Cover prob- 

em, the SCI problem has its own applications. For instance, UAVs 

ave been used to inspect power transmission lines and railroads. 

ocating battery charging depots along such infrastructure lines to 

over points of interest along the lines can be formulated as a SCI 

roblem. Therefore, it is important to understand the properties of 

he SCI problem and develop effective algorithms for solving it. 

.1. An MIP formulation for the SCI problem 

As a one-dimensional special case of the Elliptical Cover prob- 

em, the SCI problem has the same MINLP formulation of (2) to 

6) with the terms (y j − b i ) 
2 in constraint (3) removed. Moreover, 

t also permits a linear mixed integer programming (MIP) formula- 

ion as follows. 

inimize L 

.t. L ≥ | x j − a i | + | x j ′ − a i | − (1 − z i j j ′ ) 

, for 1 ≤ i ≤ n, 1 ≤ j < j ′ ≤ p 

p−1 ∑ 

j=1 

p ∑ 

j ′ = j+1 

z i j j ′ = 1 , for 1 ≤ i ≤ n 

 i j j ′ ∈ { 0 , 1 } , for 1 ≤ i ≤ n, 1 ≤ j < j ′ ≤ p 

here M is a big positive number. Letting M = 2(a n − a 1 ) is valid

nd most reasonable. The first constraint involving absolute func- 

ions can be expanded to four linear inequalities. The MIP model 

s much more amenable than the MINLP formulation. In Section 6 , 

e will use this model to benchmark the more efficient solution 

ethod for SCI presented in the following section. 
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Fig. 5. Lower bounding the Elliptical Cover Problem by solving the SCI problem. 

Fig. 6. Two instances, along with their optimal solutions, of the SCI problem with n = 8 and p = 5 . Demand points are solid dots and depots are vertical bars. The upper 

solution has two clusters and the lower solution has one cluster. 
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.2. Exact and heuristic algorithms for the SCI problem 

The location of p depots that minimizes the objective value 

i.e., the maximum sum of distances from a demand point to its 

wo nearest depots) is called the optimal solution and the objec- 

ive value at the optimal solution is called the optimal value . Let 

 := { a 1 , . . . , a n } be a set of n real numbers (without loss of gen-

rality, assume that the numbers are arranged in ascending order), 

hen an instance of the problem can be denoted as SCI( A , p). Fur-

hermore, let us denote the optimal value of SCI( A , p) as ν(A , p) . 

We can think of the demands and depots as two sets of vertices 

f a graph, in which an edge connecting a demand and a depot is 

resent if the depot is either closest or second closest to the de- 

and point among all depots. In this way, any location of p depots 

or an SCI( A , p) instance will correspond to a bipartite graph. Such 

 graph may consist of one or multiple connected subgraphs. In 

his problem context, we call each connected subgraph a cluster . 

he notion of cluster is illustrated in Fig. 6 . 

roposition 4. For a given set of real numbers A , ν(A , p) ≥
(A , p + 1) , for any p ≥ 2 . 

roof. Given an instance SCI( A , p) and its optimal solution, we can

lace an extra depot at the same location of any existing depot, to 

onstruct an instance of SCI( A , p + 1 ) along with a feasible solution

aving objective value ν(A , p) . Since it is an arbitrary solution, the

bjective value cannot exceed the optimal value, which is by defi- 

ition equal to ν(A , p + 1) . �

roposition 5. If we knew that the optimal solution to SCI( A , p)

ould have m ≥ 1 clusters which would partition A into A , . . . , A m 

,
1 

7

hen there must exist m integers, p 1 , . . . , p m 

, that satisfy the following

hree conditions: (1) p j ≥ 2 for j = 1 , . . . , m ; (2) 
∑ m 

j=1 p j = p, and (3)

(A , p) = max 
1 ≤ j≤m 

{ ν(A j , p j ) } 

roof. When m = 1 , then we must have p 1 = p and the conclusion

ollows. Suppose m > 1 . Given that an optimal solution to SCI( A ,

p) consists of m clusters, by the definition of cluster, the p depots 

n this optimal solution can be partitioned into m subsets, such 

hat each subset j, j = 1 , . . . , m , consists of p ′ 
j 
≥ 2 depots serving

he demand set A j . Conditions (1) and (2) are clearly satisfied. 

oreover, this set of integers, i.e., { p ′ 
j 
} , j = 1 , . . . , m , must also sat-

sfy condition (3). If not, then either ν(A , p) < max j { ν(A j , p 
′ 
j 
) } or

(A , p) > max j { ν(A j , p 
′ 
j 
) } . The former case means that for some

luster, say j ′ , the best objective value of using p j ′ depots to cover 

 j ′ is greater than the optimal value ν(A , p) , which contradicts the 

act that (A j ′ , p j ′ ) is a cluster in the optimal solution. The latter

ase is also impossible, because it implies that an objective value 

maller than ν(A , p) can be achieved given the cluster assignment 

t the optimal solution. �

We call an optimal solution to the SCI problem a regular solu- 

ion if no demand point has both of its nearest depots fall strictly 

n the same side of it along the line. At a regular solution, each de-

and point is “covered” by the interval formed by its two nearest 

epots. In terms of finding a regular solution, the SCI problem is 

quivalent to determining a set of intervals formed by p cut points 

o as to minimize the length of the longest demand-covering in- 

erval. 
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Fig. 7. Upper: The two nearest depots, X and Y , to the demand point A both fall on the right side of A . This is not a regular solution, and can be changed to a regular 

solution (Lower) without affecting the objective value. 
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roposition 6. Let A = { a 1 , . . . , a n } be a set of real numbers ar-

anged in ascending order, i.e., a i < a j whenever i < j, and p ≥ 2 be a

iven integer. The following statements are true for SCI( A , p). 

1. There exists a regular solution. 

2. At a regular solution, one depot must be located at a 1 and an- 

other depot must be located at a n . 

3. Suppose we divide the interval [ a 1 , a n ] into p − 1 equal-length

sub-intervals, [ a 1 , c 1 ] , [ c 1 , c 2 ] , . . . , [ c p−3 , c p−2 ] , [ c p−2 , a n ] , and

say that a sub-interval is empty if it does not contain any el- 

ement of A in its interior (i.e., the open interval between the 

two end points), either of these two cases will ensue: 

(a) If none of the sub-intervals is empty, then the cut points 

a 1 , c 1 , . . . , c p−2 , a n constitute a regular solution, and the op- 

timal value is equal to the length of the sub-interval, i.e., 

ν(A , p) = (a n − a 1 ) / (p − 1) . 

(b) If some sub-interval(s) is empty, then any optimal solution 

must consist of more than one clusters, with optimal value 

smaller than (a n − a 1 ) / (p − 1) . 

roof. Let us first define a concept: if the sum of distances from 

 demand point to its two nearest depots is equal to the objective 

alue, this demand point is called a binding point at the solution. 

For 1: We will show that if an optimal solution does not sat- 

sfy the regularity condition, we can always find another optimal 

olution that does. Specifically, suppose that we are at an optimal 

olution with optimal value v , and demand point A finds both its 

earest and second nearest depots, denoted by X and Y , respec- 

ively, on its right side, see Fig. 7 (upper part) for illustration. If A

s not a binding point, then moving depot X to A can cause an in-

rease in the objective value only if there is a demand point, say 

 , on the left of Y whose second nearest depot is X , which will be-

ome binding as X moves leftward before reaching A . (Note that if 

uch a point B does not exist, then we can move X to A without

ffecting the objective value and the proof is done.) Let us move X

eftward until point B becomes binding, that is BY + BX = v . Now 

et us move Y rightward until point A becomes binding, that is 

X + AY = v . At this point, Y must still be on the left of B be-

ause X is on the right of A . In fact, the above two equations to-

ether with the equation that AB = AX + XB = AY + Y B indicates 

hat AX = BY . Now if we simultaneously move X leftward to A and 

ove Y rightward to B , we will still have AX + AY = BY + BX = v .
ny demand point that lies between X and Y will never become 

inding in the process. On the other hand, if A is a binding point in

he first place, we can simultaneously move X leftward and move 

 rightward by the same distance until X reaches A . For the same 

eason above, such a move will not cause an increase in the objec- 

ive value. The same process can be applied to any other demand 

oint having both of its nearest depots fall on the same side of it. 

y the end, we will have created an optimal solution that satisfies 

he stated condition. 

For 2: If the leftmost depot is located on the right side of a 1 ,

hen a 1 must have both of its nearest depots fall on its right side, 

nd the solution cannot be a regular solution, a contradiction. Sup- 
8 
ose the leftmost depot is located on the left side of a 1 , if a 1 is a

inding point, then moving the leftmost depot rightward would re- 

uce the objective value, leading to a contradiction; if a 1 is not a 

inding point, suppose a j is a binding point, then simultaneously 

oving all depots on the left of a j rightward for the same (small) 

istance would reduce the objective value, leading to a contradic- 

ion. So the left most depot must be located exactly at a 1 . The

ame arguments apply to the case of a n . 

For 3: Claim 1 and 2 imply that any regular solution takes the 

orm of dividing the interval [ a 1 , a n ] into p − 1 sub-intervals (zero-

ength sub-interval is allowed), and the objective value is equal to 

he length of the longest non-empty sub-interval. If we knew a 

riori that there is a regular solution in which all the p − 1 sub-

ntervals are non-empty, then the best solution having this prop- 

rty is the one that equally divides the interval [ a 1 , a n ] into p − 1

egments so the longest segment is minimized. This proves case 

a). A better solution (i.e., one that gives an objective value smaller 

han (a n − a 1 ) / (p − 1) ) is possible only if at least one of the p − 1

ub-intervals has an empty interior (i.e., no element of A takes the 

wo end points of this interval as its two nearest depots) and si- 

ultaneously has a length greater than (a n − a 1 ) / (p − 1) , making

oom for other intervals to become shorter than (a n − a 1 ) / (p − 1) .

y definition of cluster and regularity, the two end points of such 

n interval must belong to different clusters. This proves case 

b). �

The above properties of the SCI problem suggest a recursive ap- 

roach for solving the problem. Specifically, Proposition 6 Claim 3 

ays that either the equispaced depot location is optimal or the 

nput points are separated into at least two clusters. As a corol- 

ary of Claim 3, if the input points are to be broken into two 

lusters, the break point can only occur between successive in- 

ut points that are more than (a n − a 1 ) / (p − 1) apart. There are at 

ost min { n − 1 , p − 2 } such break points. Given the cluster com-

osition, Proposition 5 then promises the existence of a specific 

llocation of the p depots to clusters so that when each clus- 

er’s SCI problem is solved independently, the original problem is 

olved. Finally, Proposition 4 together with the condition (3) in 

roposition 5 suggests that a greedy incremental allocation of de- 

ots to clusters will lead to the optimal allocation. 

Algorithm 1 outlines a recursive function that returns the op- 

imal value and optimal solution to the SCI instance given by ( A ,

p). In Line 2, the function Linspace returns p equispaced numbers 

panning the interval [ a 1 , a n ] as a candidate solution. Line 3 checks

he condition in Proposition 6 Claim 3(a). If the condition is met, 

he solution is returned in Line 4; otherwise, Lines 6 - 7 identify 

ll possible two-cluster break points and store them in B. All two- 

luster scenarios are evaluated and the best one will be picked and 

eturned, whereas each scenario is evaluated in a recursive fashion. 

pecifically, in a given scenario k , each cluster j, j = 1 , 2 , is initial-

zed with p j = 2 depots located at the minimum and maximum el- 

ments of the cluster, respectively, and the cluster’s optimal value 

j is calculated. Line 11 calculates the number of remaining de- 

ots to be allocated to clusters. Lines 12 - 15 allocate the available 
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Algorithm 1 Exact Algorithm for the Shortest Covering Interval 

Problem. 

Require: A := { a 1 , . . . , a n } , sorted in ascending order, p ≥ 2 

1: function SCI ( A , p) 

2: { c 1 , . . . , c p } ← Linspace( a 1 , a n , p), ν ← (a n − a 1 ) / (p − 1) 

3: if A ∩ [ c j , c j+1 ] � = ∅ for all j = 1 , . . . , p − 1 then 

4: return 

(
ν, { c 1 , . . . , c p } 

)
5: end if 

6: Initialize B ← ∅ , ν ′ ← ∞ , C ′ ← ∅ 
7: for i = 1 , . . . , n − 1 do 

8: if a i +1 − a i > ν then B ← B ∪ { i } 
9: end if 

10: end for 

11: for k ∈ B do 

12: C 1 ← { a 1 , . . . , a k } , ν1 ← (a k − a 1 ) , C 1 ← { a 1 , a k } , p 1 ← 2 

13: C 2 ← { a k +1 , . . . , a n } , ν2 ← (a n − a k +1 ) , C 2 ← { a k +1 , a n } , 
p 2 ← 2 

14: f ← (p − 4) , ν∗ ← max { ν1 , ν2 } 
15: while f > 0 do 

16: j ∗ ← argmax { ν1 , ν2 } , ν∗ ← max { ν1 , ν2 } 
17: p j ∗ ← p j ∗ + 1 , f ← f − 1 

18: (ν j ∗ , C j ∗ ) ← SCI( C j ∗ , p j ∗ ) 

19: end while 

20: if ν∗ < ν′ then 

21: ν′ ← ν∗, C ′ ← C 1 ∪ C 2 
22: end if 

23: end for 

24: return (ν ′ , C ′ ) 
25: end function 
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Algorithm 2 Heuristic Algorithm for the Shortest Covering Interval 

Problem. 

Require: A := { a 1 , . . . , a n } , sorted in ascending order, p ≥ 2 

1: function SCI ( A , p) 

2: Generate equispaced cut points { c 1 , . . . , c p } ← 

Linspace( a 1 , a n , p) 

3: Initialize cluster set C ← ∅ and head index h ← 1 

4: for i = 1 , . . . , p − 1 do 

5: if c i +1 < a h then Continue 

6: end if 

7: if A ∩ [ c i , c i +1 ] = ∅ then 

8: C ← C ∪ {{ a ∈ A | a h ≤ a < c i }} , h ← min { 1 ≤ k ≤ n | 
a k > c i +1 } 

9: end if 

10: end for 

11: Add the last cluster C ← C ∪ {{ a h , . . . , a n }} 
12: if |C| = 1 then return ( (a n − a 1 ) / (p − 1) , { c 1 , . . . , c n } ) 
13: end if 

14: for j = 1 , . . . , |C| do 

15: C j ← j-th element of C 
16: ν j ← max (C j ) − min (C j ) , C j ← { min (C j ) , max (C j ) } , p j ← 

2 

17: end for 

18: f ← (p − 2 |C| ) , ν∗ ← max { ν j | j = 1 , . . . , |C|} 
19: while f > 0 do 

20: j ∗ ← argmax { ν j | j = 1 , . . . , |C|} , ν∗ ← max { ν j | j = 

1 , . . . , |C|} 
21: p j ∗ ← p j ∗ + 1 , f ← f − 1 

22: (ν j ∗ , C j ∗ ) ← SCI( C j ∗ , p j ∗ ) 

23: end while 

24: return (ν∗, ∪ 

|C| 
j=1 

C j ) 

25: end function 
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epots, one at a time, to whichever cluster that sets the objective 

alue ν∗ at the time, in order to further reduce ν∗. The optimal 

alue and optimal solution are updated for the chosen cluster via 

 call to the SCI function. The ν∗ value upon exiting the while loop 

s the best objective value achievable in the current two-cluster 

cenario. It is then compared to ν′ , the best value found so far 

over all scenarios evaluated), to update the incumbent solution, 

n Lines 16 - 17. In essence, the algorithm performs an exhaustive 

earch for the optimal two-cluster scenario, whereas each clus- 

er in each scenario is subject to the same evaluation scheme via 

ecursion. In this way, all credible clustering scenarios are evalu- 

ted. Therefore, the algorithm is guaranteed to return the optimal 

olution. 

Algorithm 1 can become quite intractable when the set B is big, 

sually caused by a relatively large p compared to n . We propose 

 heuristic variant of the algorithm, Algorithm 2 , which restricts 

he exploration of optimal clusters to those possibilities identified 

y the initial equispaced cut points. Lines 3 - 8 generates these 

andidate clusters, and lines 10 - 17 finds the best depot allo- 

ation among these candidates in the same recursive fashion as 

n Algorithm 1 . Being a heuristic, Algorithm 2 is able to find the

lobal solution in most cases within a fraction of the time taken 

or Algorithm 1 . Their performance comparison is demonstrated in 

ection 6 . 

. Extension for area coverage 

Area coverage is a useful extension of Euclidean p-center prob- 

ems. Instead of covering a finite set of demand points on the 

lane, the area coverage problem aims to cover all points in a 

iven area, see Suzuki and Drezner (1996) , Wei, Murray, and Xiao 

2006) and Liu (2021) for algorithms based on Voronoi diagrams. 

he Elliptical Cover problem for an area is stated as follows: given 

n area R on the plane, find p depot locations X j , j = 1 , . . . , p, in
9 
rder to 

inimize X 1 , ... ,X p 

{
max 

r∈ R 

{
min 

1 ≤ j < j ′ ≤p 
{ D (r, X j ) + D (r, X j ′ ) } 

}}
here D (r, X ) denotes the Euclidean distance between the two 

oints r and X . In the drone delivery application, a solution to this 

roblem ensures that any possible demand point located in an area 

an be served by a route that starts from a depot and ends at a dif-

erent depot, and that the battery capacity needed to support such 

 service mode is minimized. 

We now propose a heuristic algorithm to find elliptical covers 

or a convex polygon. The idea is to repeatedly solve the Elliptical 

over problem for a growing set of demand points that approxi- 

ate the polygonal area. 

Area Coverage Algorithm : 

Step 1: Take all corner points of the convex polygon and ran- 

domly sample a small number of points within the polygon. 

These points will be used as the initial set of demand points, 

denoted by C. 

Step 2: Run the Locate-Allocate algorithm on C to obtain the 

optimal value L ∗ and the optimal solution X ∗
1 
, . . . , X ∗p . 

Step 3: Solve the following convex optimization problem on 

variables r ∈ R 

2 and d ∈ R , which is to compute the maxi-

mum route distance to serve a demand in region R based on 

the current depot locations. 

maximize r,d d 

s.t. d ≤ D (r, X 

∗
j ) + D (r, X 

∗
j ′ ) for 1 ≤ j < j ′ ≤ p 

r ∈ R 

Let r ∗ be the optimal solution and d ∗ be the optimal objec- 

tive value of this problem. 
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Table 1 

Time comparison between MIP and the recursive methods for solving the SCI problem. 

n p MIP Alg1 NC n p MIP Alg1 NC n p MIP Alg1 NC 

10 3 0.2 0.0 1 20 3 0.2 0.0 1 50 3 0.5 0.0 1 

10 4 0.2 0.0 1 20 4 0.2 0.0 1 50 5 2.5 0.0 1 

10 5 0.5 0.0 1 20 5 0.8 0.0 1 50 7 37.8 0.0 1 

10 6 0.9 0.0 1 20 6 4.7 0.0 1 50 9 205.5 0.0 1 

10 7 2.2 0.0 1 20 7 6.4 0.0 1 100 3 0.3 0.0 1 

10 8 2.6 0.0 19 20 8 10.8 0.0 1 100 5 15.6 0.0 1 

10 9 6.6 0.0 32 20 9 28.4 0.0 1 100 7 461.2 0.0 1 

10 10 22.5 0.0 50 20 10 129.8 0.0 1 100 9 - 0.0 1 
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Table 2 

Efficiency comparison between the exact and heuristic algorithms for solving the 

SCI problem. 

n p

Alg1 (Exact) Alg2 (Heuristic) 

Objval Time NC Objval Time NC 

10 2 91.030 0.0 1 91.030 0.0 1 

10 4 30.343 0.0 1 30.343 0.0 1 

10 6 18.206 0.0 1 18.206 0.0 1 

10 8 12.003 0.0 19 12.003 0.0 3 

10 10 8.893 0.0 50 9.003 0.0 5 

10 12 5.230 0.0 519 5.230 0.0 5 

10 14 3.570 0.1 2537 3.570 0.0 11 

10 16 1.785 0.5 7978 1.785 0.0 9 

10 18 0.650 1.2 20320 0.650 0.0 46 

10 20 0.000 2.7 45310 0.000 0.0 32 

Table 3 

Performance of the locate-allocate algorithm with multistart. 

n p When NUniq Min Med Max Time Objval LB 

20 3 13 24 2 3 5 0.70 7977.61 4610.22 

20 4 4 55 2 4 9 1.37 6435.75 3073.48 

20 5 39 90 2 4 10 1.50 5366.45 2305.11 

20 6 13 125 2 5 12 2.81 4645.92 1844.09 

50 3 4 29 2 3 7 0.96 8502.95 5467.31 

50 4 16 55 2 4 11 1.23 6988.37 3644.87 

50 5 12 120 2 5 11 1.52 5846.27 2733.65 

50 6 31 185 2 6 12 1.92 5185.91 2186.92 

100 3 5 31 2 4 8 1.19 9244.64 6263.97 

100 4 30 48 2 5 11 1.41 7590.22 4175.98 

100 5 29 115 2 6 17 1.84 6381.85 3131.99 

100 6 9 232 2 6 15 1.80 5622.63 2505.59 
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Step 4: If d ∗ − L ∗ < ε, stop and return the solution { X ∗
1 
, . . . , X ∗p } .

Otherwise, C ← C ∪ { r ∗} , go to Step 2. 

Note that in each iteration, the depot locations updated in the 

receding iteration should be used as the starting point for the 

ocate-Allocate algorithm. This ensures that the new point r ∗ is not 

overed by the incumbent solution, forcing the discovery of a new 

olution that covers all points (including the new point) in C. Like 

he Voronoi heuristic for the area-covering EPC problem ( Suzuki 

 Drezner, 1996 ), the above algorithm is a heuristic method for 

nding good feasible solutions for the area-covering elliptical cover 

roblem. In numerical experiments, the algorithm never failed to 

onverge to a reasonable solution within relatively few iterations. 

. Numerical experiments 

In this section, we demonstrate the performance of the pro- 

osed algorithms using simulated data cases. For the SCI problem, 

e generate random instances of different sizes to compare the 

IP approach and the recursive algorithms in Algorithm 1 and 2 . 

pecifically, each value in the input vector { a 1 , . . . , a n } is uniformly

ampled from the interval [0,100]. For the Elliptical Cover prob- 

em, we focus on a fictitious scenario of locating drone depots to 

erve geographically scattered customers in a city. We use the city 

f Troy, Michigan, in the backdrop, which spans an approximately 

0 km by 10 km square area. All experiments were run on a Dell

recision Tower 8520 with an Intel(R) Core(TM) i9-9900X CPU @ 

.50 GHz, 64 GB RAM on Windows 10 Enterprise Operating System. 

he computer programs and data files used in the experiments are 

vailable at https://github.com/profyliu/elliptical _ cover . 

.1. Solving the SCI problem 

Table 1 lists the time taken (in seconds) for the MIP model (via 

PLEX 12.10) and the Algorithm 1 , respectively, to solve random 

nstances of size n and p. The column NC lists the number of calls

o the SCI function in Algorithm 1 ’s recursive process. Both meth- 

ds return the same optimal values for all cases, as expected. For 

he case of (n, p) = (100 , 9) , the MIP was not solved within 1800

econds. We can see that Algorithm 1 scales much better than the 

IP method. In particular, when p is relatively small compared to 

 , it is likely that the equispaced cut points are indeed the optimal

olution, hence, only one call to the SCI function is required, re- 

ardless of how big n is. When p approaches n , however, the curse 

f nested recursion starts to take effect, as exhibited in the cases 

ith n = 10 and p = 8 , 9 and 10. Indeed, the greater p is com-

ared to n , the more cluster break points there will be, hence, the 

arger the search space will become. In such cases, Algorithm 2 can 

e used to find a near-optimal solution more quickly. The perfor- 

ances of the exact and heuristic algorithms in cases with large 

p values are compared in Table 2 . We can see that the number of

unction calls in the exact algorithm increased exponentially as p

ncreases. In contrast, the heuristic algorithm invoked much fewer 

unction calls, and was able to find the optimal solution for nine 
10 
ut of the ten cases. The MIP method was unable to complete in 

800 seconds for all cases with p ≥ 6 , so its performance was not 

ncluded in the table. These results suggest that practical instances 

f the SCI problem, i.e., when n is reasonably larger than p, is easy

o solve. For artificial cases where p is larger than n , Algorithm 2 is

aster, and can find the optimal solution most of the time. 

.2. Solving the elliptical cover problem 

We generated three scenarios by randomly scattering n = 20 , 50 

nd 100 demand points in the city’s perimeter. The latitude and 

ongitude of each demand point were generated independently us- 

ng a uniform distribution in the applicable range, points that fell 

utside the city’s perimeter were discarded. For each demand sce- 

ario, we solved the Elliptical Cover problem for different p values 

anging between 3 and 6. Table 3 lists the results. While solving 

n instance, the locate-allocate algorithm was repeated 500 times, 

ach time starting from random depot locations generated via a 

niform distribution, and the solution having the minimum objec- 

ive value was returned. In Table 3 , the column When represents 

n which (out of the 500) iteration the best found solution first 

ppeared and NUniq is the number of unique local optima encoun- 

ered in all 500 iteration. The overall small values (as compared to 

https://github.com/profyliu/elliptical_cover
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Fig. 8. The number of local optima found increases slowly over repeated runs of the random-start locate-allocate algorithm for a small p value, and increases more quickly 

for larger p values. 

Fig. 9. The distribution of objective values found in the case n = 100 , p = 6 . The 

skewness suggests that most local optima are near-optimal. 
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00) in these columns suggest that the chance of finding a better 

olution in the next iteration rapidly decreases as more iterations 

re performed; thus, an economical search need not consist of too 

any iterations. To demonstrate this point more clearly, Fig. 8 plots 

ow the number of unique solutions found increases over the iter- 

tions, which, in addition, reveals that the value of p plays a more 

mportant role than n in determining the intractability of the prob- 

em - each increment in p would substantially enlarge the solution 

pace, hence, making it more difficult to obtain a good solution 

ithin limited number of iterations. This observation agrees with 

hose in the SCI experiments. 

Despite the large number of local optima, the distribution of the 

ocal optima is extremely skewed, with the majority concentrated 

n the lower (better) end. For instance, in the case of (n, p) =
10 0 , 6) , 40 0 out of the 500 iterations (i.e., 80%) returned a local

ptima only 5% worse than the best-found solution. The distribu- 

ion of local optima in this case is plotted in Fig. 9 . This trend en-

ances the evidence that the multistart locate-allocate algorithm is 

uite effective at discovering satisfactory local solutions. 

The columns Min, Med and Max in Table 3 are the minimum, 

edian and maximum number of iterations taken for the location- 

llocation process to converge to a local optimum, and the column 

ime is the average time (in seconds) taken for the process to con- 

erge. The small numbers suggest that convergence of the location- 

llocation process has been consistently fast. Note that ε = 50 m 

less than 1% of the objective value) has been used for the termi- 
11 
ation condition. The columns Objval and LB are the best objective 

alue and the lower bound value, in meters. The lower bounds are 

btained via solving the SCI problem using Algorithm 1 , which are 

he best lower bounds achievable within 0.1 second. Finding tight 

ower bounds is an N P -hard problem, though novel relaxation ap- 

roaches that are Pareto better than the SCI approach may be ex- 

lored in future research. 

Fig. 10 visualizes the best-found solutions for n = 100 and p = 3

nd 6. All demand points are covered by some ellipse whose foci 

re a pair of depots in the solution. The number of covering el- 

ipses formed by the p depots is uncertain until a solution is pre- 

ented, as this number depends on the actual location of the de- 

ots. The lengths of the major axes of all ellipses involved in the 

olution are the same, which are equal to the objective value. This 

roperty is intuitive, and is to be expected in all “single-cluster”

olutions found by the locate-allocate algorithm. 

.3. Area coverage using ellipses and comparison with the p-center 

olution 

We applied the area coverage algorithm presented in 

ection 5 to the area of Troy, for various p values, to demon- 

trate the algorithm’s effectiveness. The goal is to find ellipses 

ased on p foci to cover all points in the area. The initial small set 

f points consisted of the corners of the region’s convex hull and 

 p other points randomly sampled in the interior of the region. 

ig. 11 plots the convergence paths for 20 runs for the case p = 6 .

he Gap shown along the vertical axis is the value of d ∗ − L ∗

alculated in Step 4 of the algorithm. The non-monotone reduction 

n the gap is expected, since L ∗ is not intended to be the global

inimum in any iteration. Overall, the solution process terminated 

uccessfully in all cases attempted, and for the 20 runs exhibited 

n the figure, they all terminated within 55 iterations, whereas the 

ermination tolerance ε was set to 50 m. The best solution found 

n the 20 runs, along with the dummy demand points generated 

n the solution process, is demonstrated on the left part of Fig. 12 . 

To demonstrate the practical significance of the Elliptical Cover 

olution in drone delivery network design, we also obtained the 

PC solution (with p = 6 ) using the algorithm developed in Liu 

2021) . The goal of the EPC problem is to place the depots such 

hat the distance from any point in the area to its nearest depot is 

inimized. We ran the algorithm 20 times and presented the best 

ound solution on the right part of Fig. 12 . The dashed ellipses are

ormed by taking the depots as foci and having major axis length 

qual to the (common) diameter of the EPC covering circles. We 

an see that the required flight ranges (or battery capacities) from 

he two solutions do not differ much, i.e., 5766 m by the Elliptical 
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Fig. 10. Demonstration of using 3 and 6 depots to cover 100 demand points in the Troy area. 

Fig. 11. Convergence pattern of the area coverage algorithm applied to Troy with p = 6 depots. 

Fig. 12. Comparison between the p-Elliptical Cover and Euclidean p-center solutions. Left: The best Elliptical Cover solution found to cover the area of Troy with 6 depots, 

with objective value (required flight range) 5776 m. Right: The best p-center solution to cover the area with 6 depots, with circle diameter (required flight range) 5662 m. 

Note that the ellipses formed by the p-center solution cannot cover the whole area, leaving an appreciable portion of the area serviceable by only a type 1 trip of a single 

depot. 

12 
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over solution versus 5662 m by the EPC solution. However, the 

epot locations suggested by the EPC solution are unable to pro- 

ide full, type-2 trip coverage for the whole service area - an ap- 

reciable portion of the demand area is only serviceable by a type 

 trip. For instance, if the demanded item is out of stock in the 

outheast depot, then customer demands near the southeast cor- 

er of Troy cannot be fulfilled if the system (including the depot 

ocation and the fleet’s battery capacity) is configured according 

o the EPC solution. In comparison, if the system is configured by 

he Elliptical Cover solution, the service will be robust against this 

ind of stock-out situations. Furthermore, the Elliptical Cover so- 

ution always allows a drone to relocate to a different depot (in 

reparation for the next delivery task starting from that depot) af- 

er performing a delivery task but the EPC solution does not guar- 

ntee such flexibility. 

. Conclusion 

In this paper, we have studied a novel geometric facility lo- 

ation problem, namely, the Euclidean p-Elliptical Cover problem, 

otivated by the network design of drone delivery systems. We 

ave proven the N P -hardness of this problem and analyzed the 

nique challenges it poses to known algorithms for similar prob- 

ems, due to its graph isomorphism and non-decomposibility. We 

ave proposed a locate-allocate algorithm that is able to converge 

o a local optimum typically in a few iterations. Repeatedly running 

his fast algorithm from random starting points has been the only 

iable approach for pumping up satisfactory solutions, for both the 

oint-coverage problem and the area-coverage problem. We have 

urthermore investigated the one-dimensional variant of the prob- 

em, the Shortest Covering Interval problem, which not only pro- 

ides a Pareto best (in terms of performance and computing time) 

ower bound to the Elliptical Cover problem, but also finds its ap- 

lication when the service area is reduced to a line segment, such 

s one along a power transmission line or a railway line. We have 

eveloped an exact and a heuristic algorithm based on proven 

roperties of the solution. The proposed algorithms have been val- 

dated to be effective and efficient in practical data cases. 

Compared to covering the demand locations with circles, cover- 

ng them with ellipses enables higher levels of service availability, 

etwork connectivity and vehicle utilization. Future research could 

evelop methods to optimally cover a density map of the service 

rea, i.e., requiring regions with higher demand rates to be cov- 

red by more service routes, or to cover a service area having for- 

idden areas, such as lakes and no-fly zones. The depot network 

opology and connectivity may impose explicit constraints in cer- 

ain application scenarios. For instance, in case of highly clustered 

emand distribution or of irregularly shaped demand regions, the 

lliptical cover solution may contain “weak” coverage links, e.g., 

wo demand centers connected by a single pair of depots, which 

ay cause air traffic congestion for drones shuttling between the 

epots. Additional constraints would be needed to address such is- 

ues. The elliptical cover idea could also be extended to the prob- 

em of locating and routing “moving depots” intended to cover 

robabilisitic and time-varying demand point locations. Finally, the 

athematical formulation of the p-Elliptical Cover problem per- 

its the use of other distance metrics other than the Euclidean 

istance. An investigation into the solution approaches as well as 

nto data mining applications could be interesting future work. 
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