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Given n demand points in a geographic area, the elliptical cover problem is to determine the location
of p depots (anywhere in the area) so as to minimize the maximum distance of an economical delivery
trip in which a delivery vehicle starts from the nearest depot to a demand point, visits the demand point
and then returns to the second nearest depot to that demand point. We show that this problem is NP-

Keywords: hard, and adapt Cooper’s alternating locate-allocate heuristic to find locally optimal solutions for both
Location the point-coverage and area-coverage scenarios. Experiments show that most locally optimal solutions
Area coverage perform similarly well, suggesting their sufficiency for practical use. The one-dimensional variant of the
Ellipses problem, in which the service area is reduced to a line segment, permits recursive algorithms that are

Drone delivery

more efficient than mathematical optimization approaches in practical cases. The solution also provides
NP-hard problem

the best-known lower bound for the original problem at a negligible computational cost.
© 2022 Elsevier B.V. All rights reserved.

1. Introduction minimize L (2)

P
1.1. Problem statement st. L> Zzij[(xj —a)?+ ;- b)2V2  fori=1,....n (3)
j=1

In this paper, we study the Euclidean p-Elliptical Cover prob-

P
lem, stated as follows. Given n demand points with coordinates ZZU —k fori=1,....n (4)
(a;,b;),i=1,...,n on the plane, find p depot locations X;j, j= =
1,...,p, in order to . .
zj €{0,1} fori=1,...,nm;j=1,....p (5)
minimizey, . Xp{max{ min {D;(X;) +Di(xj,)}}} (1) Xj, yjeR forj=1,....p (6)
1<i=n | 1=j<j'<p

with parameter k =2. The Euclidean p-center (EPC) problem
(Megiddo & Supowit, 1984), which attempts to find p depots to

where X; := (xj,y;) for j=1,..., p is the location of depot j, and
D;(X;) :=[(xj — a;)*> + (yj — b))?]'/? is the Euclidean distance be-
tween demand point i and depot j. We will refer to this problem
simply as the Elliptical Cover problem in the sequel.

The problem can be formulated into a mixed integer nonlinear
programming (MINLP) model. Define the binary variable

7 = 1 if demand point i is assigned to depot j
Y710 otherwise

then problem (1) is equivalent to
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minimize the maximum distance from a demand point to its re-
spective nearest depot, has the same MINLP formulation with k =
1. The minimum enclosing polyellipsoid (MEP) problem (Blanco &
Puerto, 2021) can be viewed as a variant of the above model with
k = p and with additional constraints on foci locations. These and
other related problems and their solution ideas are reviewed in
Section 1.3. It is worth noting that in the former case (k= 1) the
problem is A"P-hard, while in the latter case (k = p) the problem is
convex and polynomially solvable. Therefore, there is not a general
conclusion about the problem’s complexity based on its mathemat-
ical formulation, and good algorithms may have to exploit the geo-
metric properties available under the particular problem setting. In
this paper, we focus on analyzing the Elliptical Cover case (k = 2),
show that it is an AP-hard problem, and propose algorithms for
different variants of the problem.
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1.2. Motivating application

On-demand delivery of light goods by unmanned aerial vehi-
cles (UAVs, or drones) has emerged as a new mode of last-mile
delivery, and has attracted great interest from both industrial and
academic communities. Several modes of drone delivery opera-
tions have been explored, including drones launched from fixed
and moving depots, and drone routes having a single or multi-
ple stops for pickup and delivery, see, e.g., Agatz, Bouman, and
Schmidt (2018); Liu (2019); Murray and Chu (2015); Poikonen and
Campbell (2020). Given the limited battery and carrying capacities
of multicopter drones, we believe that a feasible mode of opera-
tion can be as simple as this: single delivery per trip, with the
drone starting from a fixed depot, visiting the customer location
for dropoff, then returning to (the same or a different) depot. Com-
mercial operations of drone delivery services, including those pi-
loted by Alphabet Wing (Wing, 2021) and Zipline (Zipline, 2021),
fall under the “depot-customer-depot” paradigm with stationary
depots. Even though Zipline currently adopts a hub-and-spoke net-
work with a single depot at the hub, optimally locating multiple
depots will become relevant when its service region expands be-
yond the round-trip flight range of the battery-powered drone in
its fleet.

The location of depots across the service area is an important
network design decision that will determine the initial infrastruc-
ture cost as well as the safety, efficiency and service level in daily
operations. Liu (2021, 2022) discussed the drone depot location
problem from the safety and emergency landing perspective, and
employed the p-center design to cover the service area with de-
pots such that the required flight distance in a worst-case emer-
gency landing is minimized. It is also important to examine the
problem from the cost and operation efficiency perspective.

In designing the system, the flight range requirement on drones
is a primary factor to consider. If depots and customer locations
are too far apart, the drones must be equipped with heavier bat-
tery packs to cover a longer range, which adds costs to the fleet
equipment and maintenance activities. Like the depot location de-
cision, the choice of battery capacity for the fleet is a system de-
sign question that should be determined early on, because modify-
ing the battery design may involve making changes to the airframe
and electrical system on each drone in the fleet, which can be very
costly.

Here is how specifically the flight range of a drone, denoted
by L, plays a role in the depot location decision. A delivery trip
(type 1) that starts and ends at the same depot must have the
demand point lie in a circular area of radius L/2 centered at the
depot, while a delivery trip (type 2) that starts and ends at dif-
ferent depots must have the demand point lie in an elliptical area
having the depots as foci and the major axis length of L. Clearly,
a customer that is serviceable by a type 2 trip is also serviceable
by a type 1 trip, but not vice versa. During service operations, a
customer demand can be fulfilled only if the origin depot has the
ordered item in stock and has an available drone to fly the delivery
trip. Thus, everything else held equal, a customer location service-
able by a type 2 trip is twice as likely to have her demand fulfilled
compared to a customer serviceable by only a type 1 trip. Ensuring
all customer locations to be serviceable by a type 2 trip is therefore
a good objective in the network design. It not only increases ser-
vice coverage, but also enables a higher operational efficiency. For
instance, it leaves more flexibility in drone-order matching in task
assignments, and permits more choices for drone re-locationing af-
ter a delivery task, to respond more quickly to the next customer
demand. The relationship between depot location and service level
and flexibility is illustrated in Fig. 1. This particular consideration
in drone delivery network design motivates the Elliptical Cover
problem studied in this paper.
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Fig. 1. A drone delivery service area having three depots and five customer loca-
tions. Customer e is serviceable by 5 delivery routes while customer d is serviceable
by only one route. In this paper, we require all customers to be serviceable by at
least 3 routes, i.e., covered by an ellipse.

1.3. Related problems and literature

Determining the location of service depots falls in the class
of facility location problems (Aikens, 1985; Daskin, 1995; Klose
& Drexl, 2005; Revelle & Laporte, 1996), and more specifically
the continuous location problems (Berman, Drezner, Tamir, &
Wesolowsky, 2009; Blanco, Puerto, & Ben-Ali, 2014; 2016; Brim-
berg & Salhi, 2005; Drezner & Brimberg, 2020; Rosing, 1992). Cov-
ering problems in facility location have been surveyed by Schilling,
Jayaraman, and Barkhi (1993) and Farahani, Asgari, Heidari, Hos-
seininia, and Goh (2012).

The problem of covering demand points on a plane by ellipsis-
like shapes has been investigated in recent literature. Canbolat and
Massow (2009) studied the problem of selecting k out of m axis-
parallel ellipses of given sizes and costs and determining their cen-
ter locations to cover a subset of demand points on the plane in
the most economical way. The authors presented a MINLP formu-
lation which was shown to be difficult to solve even for small in-
stances, and proposed an algorithm based on Simulated Anneal-
ing for practical solutions. Andretta and Birgin (2013) investigated
the same problem and proposed an enumeration approach for ob-
taining its global solution. In this approach, each plausible ellipsis-
demand matching pattern was examined whereas the feasibility of
the matching was checked by solving a convex nonlinear program.
A tree-like data structure was employed to organize the search
and to skip unpromising candidates. However, when the ellipses
were permitted to be oriented freely (i.e., not fixed to axis-parallel
orientation as studied in Canbolat and Massow (2009)), the fea-
sibility subproblem became nonconvex and thus more difficult to
solve. On the same problems, Tedeschi and Andretta (2021) further
proved that the number of possible locations of the m ellipses that
may appear in the optimal solution to the problem with n demand
points is upper bounded by n?™ and n3", when the ellipses have
fixed and flexible orientations, respectively. The authors then de-
veloped enumeration algorithms with several algorithmic improve-
ments to find the optimal solutions faster than those in the prior
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work, i.e., Andretta and Birgin (2013). There are several notable dif-
ferences between the problem studied in the above-mentioned lit-
erature and the one presented in this paper. First, the former prob-
lem seeks a maximal (profit) coverage solution while our problem
seeks a full coverage solution; second, the number and shapes (in
terms of the semi-major and semi-minor axis lengths) of the cov-
ering ellipses are given in the former problem, whereas in our
problem neither the number nor the shapes of the covering el-
lipses is known a priori as they depend on the location of the foci
points. As a result, the geometric analysis approach that was useful
for enumerating the possible solutions of the former problem (sim-
ilar ideas were also found in Church (1984), Drezner (1984) and
Chazelle & Lee (1986)) is not applicable (at least to the author’s
knowledge) to the Elliptical Cover problem studied in this paper.

Blanco and Puerto (2021) investigated the problem of determin-
ing the location of p depots to cover a finite set of demand points
so that the largest weighted sum of the distances from a demand
point to all depots is minimized. The authors termed this prob-
lem Minimum Radius Enclosing Polyellipsoid Problem with Given
Foci (and short for MEP). Using the same notations in (1), the MEP
problem can be mathematically stated as follows.

P
minimize { max » w;D; !
X lsisnz J I(X+X]) (7)
j=1
where for each je{1,...,p}, X} is a given coordinate associated

with depot j and w; > 0 is a given weight associated with depot
Jj, with Zf:] wj = 1!, Compared to the Elliptical Cover problem
of (1), the MEP problem does not involve the assignment of de-
mand points to nearest depots by the minimum distance principle
(i.e., the innermost min operator in (1) is forgone), and thus it can
be formulated as a continuous optimization problem. The authors
proved that the problem is solvable in polynomial time and de-
veloped a solution algorithm with time complexity 0(n?+2), where
d is the fixed data dimension (on a plane, d = 2). The idea was
to decompose the task of solving the original problem into solv-
ing a polynomial number of smaller (convex optimization) prob-
lems. On large instances (i.e., potentially to arise in data mining
contexts), the decomposition approach was demonstrated to run
faster than Gurobi solving a second order cone (SOC) formulation
of the problem. A similar decomposition approach also underlies
our proposed method for solving the Elliptical Cover problem, but
the number of possible subproblem to solve is indefinite. In brief,
we will solve (7) using a local solver (i.e., CONOPT, since the prob-
lem is convex) in a locate-allocate algorithm for obtaining local so-
lutions to the Elliptical Cover problem. Note that the decomposi-
tion approach proposed by Blanco and Puerto (2021) could poten-
tially be used for expediting the solution of (7) as a subproblem in
our context. However, given that the locate-allocate algorithm usu-
ally take a limited number of iterations to converge (see Fig. 11),
in this paper we adopt an off-the-shelf solver for simplicity.

Another related problem is the «-neighbor p-center problem
on a Euclidean plane (Chen & Chen, 2013), in which the goal is
to cover the demand points with p circles such that each demand
point is covered by at least « circles and that the radius of the
largest circle is minimized. This problem permits a mathematical
formulation similar to (2) to (6) - specifically, rewrite constraint
(3) as

1/2
L>zj[(x —a)® + (v; —b)*] ™,
and one can obtain the MINLP formulation for the k-neighbor p-
center problem. For the same set of demand points and a given

fori=1,....n; j=1,...,p

1 The authors discussed the problem in a general d dimensional space catering to
applications in data science, where we set d = 2 in formulation (7) for the ease of
comparison with (1) for planar applications.
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p, the optimal objective value of the 2-neighbor p-center problem
is clearly a lower bound for the Elliptical Cover problem. However,
there is no known polynomial algorithm for globally solving the
former problem. Khuller, Pless, and Sussmann (1997) provided a
polynomial time approximation algorithm for the problem defined
on a graph and achieved an approximation factor of 2 for « < 4,
but an approximate solution can not serve as a lower bound. The
best known exact algorithm is proposed by Chen and Chen (2013).
The idea is solving a finite series of set covering problems via inte-
ger programming, similar to those proposed by Minieka (1970) and
Drezner (1984) for solving the EPC problem. Numeric experiments
performed by the authors showed that the optimal solution to the
2-neighbor p-center problem often coincides with the optimal so-
lution to the EPC problem with 2p centers - by placing two cen-
ters at the same location to meet the 2-neighbor requirement. This
observation indicates that the solution to the 2-neighbor p-center
problem is unlikely to be a valuable starting point (that is worth
the effort of obtaining it) for the locate-allocate algorithm to be
proposed in Section 3 for solving the p-Elliptical Cover problem.

Overall, to our knowledge, the Elliptical Cover problem has not
been studied in the facility location literature. Our contributions
can be summarized to include: (1) a mixed integer nonlinear for-
mulation of the problem, (2) a proof that the problem is AP-hard,
(3) an adaptation of a well-known locate-allocate algorithm to lo-
cally solve the problem with both discrete and continuous demand
sets, (4) an examination of a one-dimensional variant of the prob-
lem (the shortest covering interval (SCI) problem), an exact algo-
rithm to solve this problem, which then provides a lower bound
for the Elliptical Cover problem, and (5) computational results and
relevant discussions.

The remainder of the paper is organized as follows. In Section 2,
we prove that the Elliptical Cover problem is A"P-hard, and present
the unique challenges it poses to analytical approaches that have
found success on similar problems, such as the Euclidean p-center
problem. In Section 3, we propose a locate-allocate algorithm,
along with its convergence proof, for finding locally optimal so-
lutions. In Section 4, we formulate the one-dimensional version of
the Elliptical Cover problem whose solution will provide a valid
lower bound to the original problem. We furthermore show sev-
eral useful insights into this problem, and develop an exact and a
heuristic algorithm, respectively, for solving it much faster than the
mathematical optimization approach. Section 5 extends the locate-
allocate approach to cover an area, instead of discrete points, with
ellipses. All proposed algorithms are validated in numeric experi-
ments in Section 6, where we also present a comparison between
the Elliptical Cover and the EPC solutions in the drone delivery net-
work design context. Finally, Section 7 concludes the paper with
pointers for future research.

2. Complexity analysis

Circle Covering: Given n unit circles in the plane and an integer
p > 0, decide whether there exist p points such that each circle
contains at least one point (we say that a circle contains a point if
the point lies on, or in the interior of, the circle).

Megiddo and Supowit (1984) proved the ANP-hardness of the
Euclidean p-center problem by first noting its equivalence to Cir-
cle Covering, then reducing 3-satisfiability (Garey & Johnson, 1978)
to Circle Covering, thereby proving that Circle Covering is NP-
complete. To prove the AP-hardness of (1) (and more generally, of
problem (2) - (6)), we will reduce Circle Covering to another deci-
sion problem, called Concentric k-Circle Covering, the optimization
problem counterpart to which is equivalent to (1) when k = 2.

First, let us define the concept of the ring used in the subse-
quent problem description. We say that k concentric circles form
k ring areas (or rings) defined as follows: points enclosed by the
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Fig. 2. Illustration of concentric rings. Left: two concentric circles of different diameters form two rings: the first ring is the red circular area, and the second ring is the blue
are. Right: two concentric circle of equal diameter also form two rings, but only one ring (blue) includes the interior area, while the other ring (red) is simply the boundary
circle. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

smallest circle (including points that lie on the circle) are said to
be in the first ring, points enclosed by the second smallest circle
but outside the interior of the first ring are said to be in the sec-
ond ring, and so forth. If two (or more) circles have the same ra-
dius, an arbitrary rank order is assigned to them so that points in
the common interior are said to be in the smallest rank-ordered
ring and the points that lie on the circles are said to be in both
(all) rings. An illustration is given in Fig. 2.

Concentric k-Ring Covering: Given n points on the plane, an inte-
ger k > 0 and an integer p > 0, decide whether there exist p points,
and n groups of circles arranged in such a way that each group has
k concentric circles centered at one of the n given points (no two
groups share the same center) and the sum of the radii of the k
circles is no more than k, such that each of the nk rings formed by
the nk circles contains at least one of the p points.

Proposition 1. Concentric k-Ring Covering is N'P-complete.

Proof. Given an instance, say n points {c;, ..., cp}, and a proposed
solution, say p points {Xj,...,Xp}, we can check whether the pro-
posed solution constitutes a “yes” answer to the instance as fol-
lows: calculate d(c;, X;) for each ie{1,...,n} and je{1,...,p},
then for each i rank the distances {d(c;, X;)....,d(c;,Xp)} and cal-
culate the sum of the smallest k members in the set and denote
the sum by d;. The “yes” condition is satisfied if and only if d; < k
for all ie {1,...,n}. The overall time complexity is bounded by
O(n- p-log(k)). Therefore, the problem is in N'P.

We now reduce Circle Covering to Concentric k-Ring Covering.
For each instance of Circle Covering, say n unit circles {Cy,..., Gy}
centered at points {cy, ..., cn} respectively, we can construct an in-
stance of the Concentric k-Ring Covering for a given k by using
the same given n points and the same p. Given a solution to the
former instance we can construct a solution to the latter instance.
Specifically, if G; contains a point X, we can choose the radii of the
k circles centered at ¢; to be d(c;, X), thus all k rings contain X
and the sum of the radii is no more than k (because d(c;, X) < 1).
On the other hand, a solution to the Concentric k-Ring Covering
instance also leads to a solution to the Circle Covering instance.
Specifically, the knowledge that each of the k rings centered at ¢;
contains at least one of the p points indicates that the smallest
ring (i.e., the inner most circular area) centered at ¢; contains one
of the points. Also, the radius of the smallest ring cannot exceed
1 (the unit length) since the sum of the k radii is no more than
k. Therefore, the unit circle G; must contain at least one of the p
points. Since Circle Covering is known to be NP-complete and the
transformation is polynomial, the conclusion follows. O

Concentric k-Ring Covering is a decision problem counterpart
to the optimization problem (2) to (6), in the same way as Cir-
cle Covering being a counterpart to EPC. The optimization problem
is at least as hard as the decision problem, hence is AP-hard. In

Fig. 3. The Concentric 2-ring problem is equivalent to the decision problem of El-
liptical Cover. If both rings centered at ¢ contain a point, X; and X, respectively,
then c is covered by the ellipse with X; and X, as foci; and vice versa.

this paper, we focus on the problem with k =2 for its real-world
application. This problem permits a geometric description: find p
depots such that each demand point is covered by a number of el-
lipses each having some pair of depots as foci and the major axis
of the largest ellipse used in the coverage is minimized. Therefore,
it is termed as the Elliptical Cover problem. Its equivalence to the
Concentric 2-Ring Covering problem is illustrated in Fig. 3.

Globally solving the optimization problem (2) to (6) is ex-
tremely difficult even for small instances. When a global MINLP
solver, such as BARON (Sahinidis, 1996), is used to solve an in-
stance, the lower bound starts at a useless level (i.e.,, 0) and im-
proves extremely slowly. Indeed, relaxing the integrality of the bi-
nary variables would not make the problem convex. Though one
could reformulate the problem (e.g., use the binary variable z;;;
to indicate if demand i is assigned to the ellipse of foci j and j)
to avoid the bilinear terms z;;D;(X;), the use of big M constants
would substantially weaken the reformulation, and the presence of
the Euclidean distance calculation, e.g., in D;(X;), would still call
for the use of a global MINLP solver rather than an MIP solver.
Moreover, the isomorphism in the problem’s graph structure cre-
ates excessive symmetry that is inexpressible in algebraic formula-
tions. For instance, for a problem with n =5 and p = 3, the follow-
ing three demand-depot assignments,

Assignment 1:
{3.4,5},je{2,3}}

zij=1for {ie (1,2}, je{1.2}} or {ie
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Assignment 2: zi=1for{ie{l,2},je{1.3}}or{ie
{3.4,5},j€{2,3}}
Assignment 3: zij=1for{ie{l.2}.je{2.3}}or{ie

{3,4,5},j e {1,3}}

are equivalent for the geometric problem, but they are (unneces-
sarily) distinguished in the algebraic formulation. Eliminating one
would not automatically eliminate the other two in the branch and
bound framework, causing redundant computations.

The same issue would exist in the mathematical formulation of
other geometric location problems such as the EPC problem. Con-
sequently, successful algorithms invariably exploited some geomet-
ric and combinatorial insights into the problem structure, rather
than relying on mathematical optimization approaches. For in-
stance, Drezner (1984) uncovered two geometric properties of the
EPC’s optimal solution which ultimately led to good algorithms.
One is the fact that the largest circle in the solution is defined by
at most three demand points hence there are O(n3) possible radii
with one of them being the solution radius. The other is that for
a given radius there are only O(n?) possible locations where the
p circles can center at. Using these insights, the author developed
an exact algorithm for the EPC by solving a set-covering problem
polynomial number of times. Vijay (1985) proposed another ex-
act algorithm for EPC based on similar principles and was able
to generate the set-covering subproblems more efficiently. Hwang,
Lee, and Chang (1993) further improved the time bound for EPC
to 0(n°WP), by inventing a new algorithm to solve the circle-
covering subproblem (which is at the bottleneck of the EPC al-
gorithm, and is stated as “given a set of n demand points and
two parameters p and r, determine whether there exist p circles
of radius r which can cover all demand points”) in time 0(n°WP),
Callaghan, Salhi, and Nagy (2017) devised a series of means, includ-
ing exploiting early termination opportunities in subproblem solu-
tion and eliminating unpromising candidate solutions on the fly,
to speed up execution of the EPC algorithm proposed in Drezner
(1984).

3. A locate-allocate algorithm that converges

While the EPC is a special case (k = 1) of the problem (2) to
(6), none of the geometric insights that sped up the EPC solution is
applicable to the general cases of 2 < k < p. The key reason is this:
a given demand-depot allocation (i.e., fixing values for z;;) would
decompose the EPC problem into p separate 1-center problems of
the same nature, but would not do the same decomposition to the
general case (i.e., k > 1) - the location variables for all the p points
would still be coupled in a single nonlinear program (NLP). Fortu-
nately, this NLP is convex.

Lemma 2. With variables z;;, i€ {1,....,n} and je{1,..., p}, fixed
to any binary assignment {0, 1}"*P, the problem (2) to (6) is reduced
to a convex optimization problem.

Proof. Let J(i) :={j : z; = 1}, then the problem becomes

minimize L (8)
L.(xj.y;), j=1....p

st L= > [(xj—a)*+ @ —b)*]V* fori=1,....n (9)
Jjel(®)

The right side of constraint (9) is a convex function of the variables
(x,y) on R2P because each summand (being an L, norm) is convex,
and the inequality (for each i) describes the epigraph of that con-
vex function and hence forms a convex set on R2P*!, Minimizing
a linear function over the intersection of n convex sets is a convex
optimization problem. O
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In fact, the problem (8) - (9) is a second order cone prob-
lem (SOCP), a type of convex optimization problem solvable by
interior-point methods in polynomial time, see, e.g., Nesterov and
Nemirovskii (1994).

The original problem can be viewed as a combinatorial assign-
ment problem, i.e., assigning each demand point to two depots,
in which the performance of a candidate assignment must be as-
sessed via solving a convex NLP. There are (f:)n possible assign-
ments, an exponential function of inputs unless k = p. To see the
complexity of enumerating all unique assignments, let us make
such an attempt on an instance with n =10, p =4 and k = 2; that
is, to cover 10 demand points by a collection of ellipses whose foci
are from a set of four depots. Each pair of depots can serve as
the foci for an ellipse, so we can think of the covering ellipses as
edges in a graph in which depots are unlabeled nodes. There are
ten graphs with a non-empty edge set on four unlabeled nodes,
illustrated in Fig. 4.

Assigning n demand points to a number, say h, of covering el-
lipses (i.e., edges in the graph) is equivalent to partitioning n la-
beled objects into h nonempty unlabeled subsets, and the number
of ways to do so is the Stirling number of the second kind, denoted
by S(n, h) and calculated by

1 i h .
S(n,h):mZ(—l) (i)(h—l)
T i=0

Among the ten possible arrangements of covering ellipse(s), one
has h=1, two h=2, three h=3, two h=4, one h=5 and one
h =6, so the total number of unique demand-depot assignments
comes down to

5(10,1) + 2-5(10,2) +3-5(10,3) + 2 -5(10,4) + S(10, 5)
+ S(10, 6) = 162575.

Even though this number is two orders of magnitude smaller than

(‘2‘)10 = 60466176, the size of the search space modeled by the al-
gebraic constraints (4) and (5), it is still impractical to evaluate
such a large number of possibilities, whereas the evaluation of
each possibility would require solving a nonlinear, though convex,
optimization problem.

We propose the following iterative locate-allocate algorithm for
approximately solving the Elliptical Cover problem. Let € > 0 be a
small number.

Locate-Allocate Algorithm:

Step 1: Initialize L* = co and randomly sample p depot loca-
tions on the plane, Xy, ..., Xp.

Step 2: For each demand point i, compute the dis-
tances D;j(X;), j=1,...,p and let J(i) = {jj/} where
Ji =argming  n D;(X;) and j,f = argming IV D;(X;).

Step 3: Solve the problem (8) - (9) using an NLP solver, to ob-
tain the optimal value [ and optimal solution )Zj, j=1,....p.

Step 4: If L — L* < —¢, stop and return {X;,...,X,} as solution;

otherwise, update [* < L, {X;,...,Xp} < {X;,...,Xp}, g0 to
Step 2.

Proposition 3. The locate-allocate algorithm will terminate in finite
iterations.

Proof. There are only a finite number of assignments
{gam,..., J(n)}, and each assignment gives a definite optimal
value L due to convexity. Each iteration produces a new assign-
ment whose optimal value L is strictly smaller than that of the
previous iteration. Since the algorithm iterates over a finite set,
some assignment value must eventually be revisited. The revisit
cycle length (i.e., number of iterations between the 1st and 2nd
visit to the same assignment value) must be 1 and the algorithm
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Fig. 4. Ten ways to form covering ellipses whose foci are chosen from a set of four depots.

must terminate when the revisit happens, because any other
assignment visited between the 1st and 2nd visit would give an
objective value strictly greater and strictly smaller than the objec-
tive value of the revisited assignment, hence a contradiction. O

The idea of alternate location-allocation is not new. Cooper
(1964) proposed an iterative method employing this idea to solve
the multisource Weber Problem (Brimberg, Hansen, Mladenovi¢, &
Taillard, 2000; Hansen, Mladenovi¢, & Taillard, 1998; Raeisi Dehko-
rdi, 2019; Wesolowsky, 1993), which concerns finding the coordi-
nates of p depots from a continuous feasible space to minimize the
sum of weighted distances from a finite set of destinations to their
closest depot. The same idea underpinned the Voronoi heuristic
method proposed by Suzuki and Drezner (1996) to solve the p cen-
ter problem in an area, as well as the K-means clustering algorithm
widely used in machine learning.

Each run of the algorithm, starting from a random starting point
(i.e., p depot locations), will produce a “local optimum”, in the
sense that unilaterally changing either the location or the alloca-
tion would not lead to a better objective value. However, there
are indefinitely many (upper bounded by the number of unique
assignments) local optima. The multistart search strategy, which
involves running the algorithm many times (optionally in paral-
lel), can be employed to generate a pool of local optima, the best
of which is then used as the final solution. The starting point
strategy proposed in Drezner and Brimberg (2020) and the trans-
fer follow-up step proposed in Drezner, Brimberg, Mladenovic, and
Salhi (2015) for expediting the locate-allocate algorithm and im-
proving the local solution for the planar p-median problem can
potentially be applied here, though we have not tested them in our
implementation. Our computational experience has shown that the
number of unique local optima identified via multistart is typically
very limited even after a large number of runs. In other words,
the chance that a better solution turns up decays exponentially as
more and more runs are executed. In practice, if no better solution
turns up in the last, say, 20 runs, then the search can stop and the
best solution identified thus far is to be accepted.

4. The one-dimensional variant and its solution algorithms

There is no polynomial-time algorithm (unless P = NP) to
compute and systematically improve the lower bound, hence to
establish global optimality. Computing the lower bound involves
solving a relaxed version of the problem, such as one that relaxes
the integrality of z;; in the MINLP formulation. However, as dis-
cussed in Section 2, this kind of relaxation is either still difficult to
solve or too weak to be valuable. As mentioned in Section 1.3, the
2-neighbor p-center problem (Chen & Chen, 2013) can be viewed
as a relaxation of the Elliptical Cover problem, and hence its op-
timal objective value can serve as a lower bound. However, solv-
ing that problem to global optimality is by itself an AP-hard task,
which does not simplify the task at hand.

We propose a dimension relaxation approach. The idea is based
on this fact: if the demand points on the plane are enclosed by a
number of ellipses, then the projection of the demand points onto
any straight line on the plane must also be enclosed by the pro-
jection (line segments) of those ellipses onto the same line. Fur-
thermore, the length of the projected line segment of an ellipse is
smaller than or equal to the length of the major axis of the ellipse,
which is in turn smaller than or equal to the distance between the
foci of the ellipse. This means that for any given straight line, we
can solve an alternative covering problem on the line, the optimal
value of which will serve as a lower bound of the original prob-
lem. On top of this, some search procedure can be employed to
find the straight line such that the resulting lower bound is great-
est. The idea is illustrated in Fig. 5, and the alternative covering
problem, called Shortest Covering Interval (SCI) problem, is stated
as follows.

Shortest Covering Interval (SCI) problem: given the location of
n>1 demand points on the real line and an integer p > 2, deter-
mine the location of p depots on the line such that the maximum
sum of distances from a demand point to its two nearest depots is
minimized.

Apart from providing lower bounds to the Elliptical Cover prob-
lem, the SCI problem has its own applications. For instance, UAVs
have been used to inspect power transmission lines and railroads.
Locating battery charging depots along such infrastructure lines to
cover points of interest along the lines can be formulated as a SCI
problem. Therefore, it is important to understand the properties of
the SCI problem and develop effective algorithms for solving it.

4.1. An MIP formulation for the SCI problem

As a one-dimensional special case of the Elliptical Cover prob-
lem, the SCI problem has the same MINLP formulation of (2) to
(6) with the terms (y; — b;)? in constraint (3) removed. Moreover,
it also permits a linear mixed integer programming (MIP) formula-
tion as follows.

minimize L

s.t. L= [ —a| + |xy —ai] = (1 —z55)
M, fori<i<n 1<j<j<p

p-1 p

Yo zyy=1. for1<i<n

=1 j=j+1

zjj € {0,1}, forl<i<n 1<j<j<p

where M is a big positive number. Letting M = 2(a, — ay) is valid
and most reasonable. The first constraint involving absolute func-
tions can be expanded to four linear inequalities. The MIP model
is much more amenable than the MINLP formulation. In Section 6,
we will use this model to benchmark the more efficient solution
method for SCI presented in the following section.
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Fig. 5. Lower bounding the Elliptical Cover Problem by solving the SCI problem.
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Fig. 6. Two instances, along with their optimal solutions, of the SCI problem with n =8 and p = 5. Demand points are solid dots and depots are vertical bars. The upper

solution has two clusters and the lower solution has one cluster.

4.2. Exact and heuristic algorithms for the SCI problem

The location of p depots that minimizes the objective value
(i.e., the maximum sum of distances from a demand point to its
two nearest depots) is called the optimal solution and the objec-
tive value at the optimal solution is called the optimal value. Let
A:={ay,...,an} be a set of n real numbers (without loss of gen-
erality, assume that the numbers are arranged in ascending order),
then an instance of the problem can be denoted as SCI(A, p). Fur-
thermore, let us denote the optimal value of SCI(A4, p) as V(A, p).

We can think of the demands and depots as two sets of vertices
of a graph, in which an edge connecting a demand and a depot is
present if the depot is either closest or second closest to the de-
mand point among all depots. In this way, any location of p depots
for an SCI(A4, p) instance will correspond to a bipartite graph. Such
a graph may consist of one or multiple connected subgraphs. In
this problem context, we call each connected subgraph a cluster.
The notion of cluster is illustrated in Fig. 6.

Proposition 4. For a given set of real numbers A, V(A,p)>
v(A,p+1), for any p > 2.

Proof. Given an instance SCI(A, p) and its optimal solution, we can
place an extra depot at the same location of any existing depot, to
construct an instance of SCI(4, p+ 1) along with a feasible solution
having objective value v (A, p). Since it is an arbitrary solution, the
objective value cannot exceed the optimal value, which is by defi-
nition equal to v(A,p+1). O

Proposition 5. If we knew that the optimal solution to SCI(A, p)
would have m > 1 clusters which would partition A into A4, ..., Am,

then there must exist m integers, p1, ..., Pm, that satisfy the following
three conditions: (1) p; =2 for j=1,...,m; (2) Z;”:l pj=p and (3)

V(A p) = 121]?;{”(“41" P}

Proof. When m = 1, then we must have p; = p and the conclusion
follows. Suppose m > 1. Given that an optimal solution to SCI(A,
p) consists of m clusters, by the definition of cluster, the p depots
in this optimal solution can be partitioned into m subsets, such
that each subset j, j=1,...,m, consists of p/, > 2 depots serving
the demand set A;. Conditions (1) and (2) are clearly satisfied.
Moreover, this set of integers, i.e., {pg.}, j=1,...,m, must also sat-
isfy condition (3). If not, then either v(A, p) < max;{v(A4;, p;.)} or
V(A, p) > max;{v(A4;, p’j)}. The former case means that for some

cluster, say j/, the best objective value of using p i depots to cover
Aj is greater than the optimal value v(A, p), which contradicts the
fact that (Ay, py) is a cluster in the optimal solution. The latter
case is also impossible, because it implies that an objective value
smaller than v(A, p) can be achieved given the cluster assignment
at the optimal solution. O

We call an optimal solution to the SCI problem a regular solu-
tion if no demand point has both of its nearest depots fall strictly
on the same side of it along the line. At a regular solution, each de-
mand point is “covered” by the interval formed by its two nearest
depots. In terms of finding a regular solution, the SCI problem is
equivalent to determining a set of intervals formed by p cut points
so as to minimize the length of the longest demand-covering in-
terval.
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Fig. 7. Upper: The two nearest depots, X and Y, to the demand point A both fall on the right side of A. This is not a regular solution, and can be changed to a regular

solution (Lower) without affecting the objective value.

Proposition 6. Let A ={aq,...,a,} be a set of real numbers ar-
ranged in ascending order, i.e., a; < a; whenever i < j, and p > 2 be a
given integer. The following statements are true for SCI( A, p).

1. There exists a regular solution.

2. At a regular solution, one depot must be located at a; and an-
other depot must be located at ay.

3. Suppose we divide the interval [aq, an] into p — 1 equal-length
sub-intervals, [ay,cq], [c1.¢2]. ..., [cp-3. Cp_2], [Cp_2.an], and
say that a sub-interval is empty if it does not contain any el-
ement of A in its interior (i.e., the open interval between the
two end points), either of these two cases will ensue:

(a) If none of the sub-intervals is empty, then the cut points
ay, Cq, ..., Cp_2, An constitute a regular solution, and the op-
timal value is equal to the length of the sub-interval, i.e.,
V(A p) = (an—ay)/(p—1).

(b) If some sub-interval(s) is empty, then any optimal solution
must consist of more than one clusters, with optimal value
smaller than (ap —ay)/(p—1).

Proof. Let us first define a concept: if the sum of distances from
a demand point to its two nearest depots is equal to the objective
value, this demand point is called a binding point at the solution.

For 1: We will show that if an optimal solution does not sat-
isfy the regularity condition, we can always find another optimal
solution that does. Specifically, suppose that we are at an optimal
solution with optimal value v, and demand point A finds both its
nearest and second nearest depots, denoted by X and Y, respec-
tively, on its right side, see Fig. 7 (upper part) for illustration. If A
is not a binding point, then moving depot X to A can cause an in-
crease in the objective value only if there is a demand point, say
B, on the left of Y whose second nearest depot is X, which will be-
come binding as X moves leftward before reaching A. (Note that if
such a point B does not exist, then we can move X to A without
affecting the objective value and the proof is done.) Let us move X
leftward until point B becomes binding, that is BY + BX = v. Now
let us move Y rightward until point A becomes binding, that is
AX 4+ AY = v. At this point, Y must still be on the left of B be-
cause X is on the right of A. In fact, the above two equations to-
gether with the equation that AB = AX + XB = AY + YB indicates
that AX = BY. Now if we simultaneously move X leftward to A and
move Y rightward to B, we will still have AX +AY = BY + BX = .
Any demand point that lies between X and Y will never become
binding in the process. On the other hand, if A is a binding point in
the first place, we can simultaneously move X leftward and move
Y rightward by the same distance until X reaches A. For the same
reason above, such a move will not cause an increase in the objec-
tive value. The same process can be applied to any other demand
point having both of its nearest depots fall on the same side of it.
By the end, we will have created an optimal solution that satisfies
the stated condition.

For 2: If the leftmost depot is located on the right side of ay,
then a; must have both of its nearest depots fall on its right side,
and the solution cannot be a regular solution, a contradiction. Sup-

pose the leftmost depot is located on the left side of ay, if a; is a
binding point, then moving the leftmost depot rightward would re-
duce the objective value, leading to a contradiction; if a; is not a
binding point, suppose a; is a binding point, then simultaneously
moving all depots on the left of a; rightward for the same (small)
distance would reduce the objective value, leading to a contradic-
tion. So the left most depot must be located exactly at a;. The
same arguments apply to the case of a.

For 3: Claim 1 and 2 imply that any regular solution takes the
form of dividing the interval [aq, a,] into p — 1 sub-intervals (zero-
length sub-interval is allowed), and the objective value is equal to
the length of the longest non-empty sub-interval. If we knew a
priori that there is a regular solution in which all the p—1 sub-
intervals are non-empty, then the best solution having this prop-
erty is the one that equally divides the interval [a;, ay] into p—1
segments so the longest segment is minimized. This proves case
(a). A better solution (i.e., one that gives an objective value smaller
than (a;, —ay)/(p—1)) is possible only if at least one of the p—1
sub-intervals has an empty interior (i.e., no element of A takes the
two end points of this interval as its two nearest depots) and si-
multaneously has a length greater than (a;, —a;)/(p — 1), making
room for other intervals to become shorter than (a, —a;)/(p —1).
By definition of cluster and regularity, the two end points of such
an interval must belong to different clusters. This proves case
(b). O

The above properties of the SCI problem suggest a recursive ap-
proach for solving the problem. Specifically, Proposition 6 Claim 3
says that either the equispaced depot location is optimal or the
input points are separated into at least two clusters. As a corol-
lary of Claim 3, if the input points are to be broken into two
clusters, the break point can only occur between successive in-
put points that are more than (a, —a;)/(p — 1) apart. There are at
most min{n — 1, p — 2} such break points. Given the cluster com-
position, Proposition 5 then promises the existence of a specific
allocation of the p depots to clusters so that when each clus-
ter’s SCI problem is solved independently, the original problem is
solved. Finally, Proposition 4 together with the condition (3) in
Proposition 5 suggests that a greedy incremental allocation of de-
pots to clusters will lead to the optimal allocation.

Algorithm 1 outlines a recursive function that returns the op-
timal value and optimal solution to the SCI instance given by (A,
p). In Line 2, the function Linspace returns p equispaced numbers
spanning the interval [a;, ay] as a candidate solution. Line 3 checks
the condition in Proposition 6 Claim 3(a). If the condition is met,
the solution is returned in Line 4; otherwise, Lines 6 - 7 identify
all possible two-cluster break points and store them in 3. All two-
cluster scenarios are evaluated and the best one will be picked and
returned, whereas each scenario is evaluated in a recursive fashion.
Specifically, in a given scenario k, each cluster j, j =1, 2, is initial-
ized with p; =2 depots located at the minimum and maximum el-
ements of the cluster, respectively, and the cluster’s optimal value
v; is calculated. Line 11 calculates the number of remaining de-
pots to be allocated to clusters. Lines 12 - 15 allocate the available
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Algorithm 1 Exact Algorithm for the Shortest Covering Interval
Problem.

Algorithm 2 Heuristic Algorithm for the Shortest Covering Interval
Problem.

Require: A :={ay,...,an}, sorted in ascending order, p > 2
1: function SCI(A, p)

2 {c1.....cp} < Linspace(ay, an, p), v < (@n—a7)/(p—1)
3: if An[cj,cjyq]# @ forall j=1,..., p—1 then

4 return (v, {cy, ..., Cp})

5: end if

6: Initialize B < ¢, V' < o0, C" < ¢

7 fori=1,..., n—1do

8 if ;.1 —a; > v then B < BU{i}

9: end if

10: end for

11: for k € B do

12: ¢ < f{ag, ..., agh vi < (ag—ap), G < {ag, @}, p1 <2
13: Cr <, an}, v < (@n— i), G < {aiiq, anl,

p2 <2

14: f < (p—4), v <~ max{vy, vy}

15: while f > 0 do

16: j* < argmax{vq, v}, v* < max{vq, vy}

17: pjr <D+ 1, f < f-1

18: (U]*,C*) <« SC](C*,pJ*)

19: end while
20: if v* <V’ then

21: Vv, 0« GUG
22: end if

23: end for
24: return (v/,C’)
25: end function

depots, one at a time, to whichever cluster that sets the objective
value v* at the time, in order to further reduce v*. The optimal
value and optimal solution are updated for the chosen cluster via
a call to the SCI function. The v* value upon exiting the while loop
is the best objective value achievable in the current two-cluster
scenario. It is then compared to v/, the best value found so far
(over all scenarios evaluated), to update the incumbent solution,
in Lines 16 - 17. In essence, the algorithm performs an exhaustive
search for the optimal two-cluster scenario, whereas each clus-
ter in each scenario is subject to the same evaluation scheme via
recursion. In this way, all credible clustering scenarios are evalu-
ated. Therefore, the algorithm is guaranteed to return the optimal
solution.

Algorithm 1 can become quite intractable when the set B is big,
usually caused by a relatively large p compared to n. We propose
a heuristic variant of the algorithm, Algorithm 2, which restricts
the exploration of optimal clusters to those possibilities identified
by the initial equispaced cut points. Lines 3 - 8 generates these
candidate clusters, and lines 10 - 17 finds the best depot allo-
cation among these candidates in the same recursive fashion as
in Algorithm 1. Being a heuristic, Algorithm 2 is able to find the
global solution in most cases within a fraction of the time taken
for Algorithm 1. Their performance comparison is demonstrated in
Section 6.

5. Extension for area coverage

Area coverage is a useful extension of Euclidean p-center prob-
lems. Instead of covering a finite set of demand points on the
plane, the area coverage problem aims to cover all points in a
given area, see Suzuki and Drezner (1996), Wei, Murray, and Xiao
(2006) and Liu (2021) for algorithms based on Voronoi diagrams.
The Elliptical Cover problem for an area is stated as follows: given
an area R on the plane, find p depot locations X;, j=1,...,p, in

Require: A :={ay,...,an}, sorted in ascending order, p > 2
1: function SCI(A, p)

2: Generate  equispaced cut

Linspace(ay, an, p)

3 Initialize cluster set C <- ¢ and head index h < 1
4 fori=1,...,p—1do

5: if ¢;;1 < a, then Continue
6

7

8

points {c1.....cp) <

end if
if An[c, Ci+1] = ¢ then
C«~CcullaeAla,<a<ql}
Q> Ciy1}
9: end if
10: end for
11: Add the last cluster C < CU {{a, ..

h < min{l <k<n|

., an}}

12: if |C| =1 then return ((a, —a;)/(p—1),{c1,....cn})

13: end if

14: for j=1,....|C| do

15: Cj < j-th element of C

16: Vj < max(C;) — min(C;), C; < {min(C;), max(Cj)}, p; <
2

17: end for
18: f<@®@=-2c), v «max{v; | j=1.....[C|}
19: while f > 0 do

20: Jj* < argmax{v; | j=1,....[c|}, V¥« max{y; | j=
1,...,lcl}

21: pjr <P+ 1, f < f-1

22: (vj«.Cje) < SCI(Cjs, pj+)

23: end while
24: return (v*, U‘jczl]cj)
25: end function

order to

minimizey, . x, {max { min {D(r,X;) + D(r, Xj)} ”
reR | 1<j<j'<p

where D(r,X) denotes the Euclidean distance between the two
points r and X. In the drone delivery application, a solution to this
problem ensures that any possible demand point located in an area
can be served by a route that starts from a depot and ends at a dif-
ferent depot, and that the battery capacity needed to support such
a service mode is minimized.

We now propose a heuristic algorithm to find elliptical covers
for a convex polygon. The idea is to repeatedly solve the Elliptical
Cover problem for a growing set of demand points that approxi-
mate the polygonal area.

Area Coverage Algorithm:

Step 1: Take all corner points of the convex polygon and ran-
domly sample a small number of points within the polygon.
These points will be used as the initial set of demand points,
denoted by C.

Step 2: Run the Locate-Allocate algorithm on C to obtain the
optimal value L* and the optimal solution X7, ..., X;.

Step 3: Solve the following convex optimization problem on
variables r € R? and d € R, which is to compute the maxi-
mum route distance to serve a demand in region R based on
the current depot locations.

maximize,; d
s.t. d<D(rX))+D(rX;) forl<j<j<p
reR

Let r* be the optimal solution and d* be the optimal objec-
tive value of this problem.
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Table 1
Time comparison between MIP and the recursive methods for solving the SCI problem.
n p MIP Algl NC n p MIP Algl NC n p MIP Algl NC
10 3 0.2 0.0 1 20 3 0.2 0.0 1 50 3 0.5 0.0 1
10 4 0.2 0.0 1 20 4 0.2 0.0 1 50 5 2.5 0.0 1
10 5 0.5 0.0 1 20 5 0.8 0.0 1 50 7 37.8 0.0 1
10 6 0.9 0.0 1 20 6 4.7 0.0 1 50 9 205.5 0.0 1
10 7 2.2 0.0 1 20 7 6.4 0.0 1 100 3 0.3 0.0 1
10 8 2.6 0.0 19 20 8 10.8 0.0 1 100 5 156 0.0 1
10 9 6.6 0.0 32 20 9 284 0.0 1 100 7 461.2 0.0 1
10 10 22.5 0.0 50 20 10 129.8 0.0 1 100 9 - 0.0 1
Step 4: If d* — L* < ¢, stop and return the solution {X}, ..., X;}. Table 2

Otherwise, C < C U {r*}, go to Step 2.

Note that in each iteration, the depot locations updated in the
preceding iteration should be used as the starting point for the
Locate-Allocate algorithm. This ensures that the new point r* is not
covered by the incumbent solution, forcing the discovery of a new
solution that covers all points (including the new point) in C. Like
the Voronoi heuristic for the area-covering EPC problem (Suzuki
& Drezner, 1996), the above algorithm is a heuristic method for
finding good feasible solutions for the area-covering elliptical cover
problem. In numerical experiments, the algorithm never failed to
converge to a reasonable solution within relatively few iterations.

6. Numerical experiments

In this section, we demonstrate the performance of the pro-
posed algorithms using simulated data cases. For the SCI problem,
we generate random instances of different sizes to compare the
MIP approach and the recursive algorithms in Algorithm 1 and 2.
Specifically, each value in the input vector {ay, ..., ap} is uniformly
sampled from the interval [0,100]. For the Elliptical Cover prob-
lem, we focus on a fictitious scenario of locating drone depots to
serve geographically scattered customers in a city. We use the city
of Troy, Michigan, in the backdrop, which spans an approximately
10km by 10km square area. All experiments were run on a Dell
Precision Tower 8520 with an Intel(R) Core(TM) i9-9900X CPU @
3.50 GHz, 64 GB RAM on Windows 10 Enterprise Operating System.
The computer programs and data files used in the experiments are
available at https://github.com/profyliu/elliptical_cover.

6.1. Solving the SCI problem

Table 1 lists the time taken (in seconds) for the MIP model (via
CPLEX 12.10) and the Algorithm 1, respectively, to solve random
instances of size n and p. The column NC lists the number of calls
to the SCI function in Algorithm 1’s recursive process. Both meth-
ods return the same optimal values for all cases, as expected. For
the case of (n, p) = (100, 9), the MIP was not solved within 1800
seconds. We can see that Algorithm 1 scales much better than the
MIP method. In particular, when p is relatively small compared to
n, it is likely that the equispaced cut points are indeed the optimal
solution, hence, only one call to the SCI function is required, re-
gardless of how big n is. When p approaches n, however, the curse
of nested recursion starts to take effect, as exhibited in the cases
with n=10 and p=38,9 and 10. Indeed, the greater p is com-
pared to n, the more cluster break points there will be, hence, the
larger the search space will become. In such cases, Algorithm 2 can
be used to find a near-optimal solution more quickly. The perfor-
mances of the exact and heuristic algorithms in cases with large
p values are compared in Table 2. We can see that the number of
function calls in the exact algorithm increased exponentially as p
increases. In contrast, the heuristic algorithm invoked much fewer
function calls, and was able to find the optimal solution for nine

10

Efficiency comparison between the exact and heuristic algorithms for solving the
SCI problem.

Alg1 (Exact) Alg2 (Heuristic)

g P Objval Time NC Objval Time NC
10 2 91.030 0.0 1 91.030 0.0 1
10 4 30.343 0.0 1 30.343 0.0 1
10 6 18.206 0.0 1 18.206 0.0 1
10 8 12.003 0.0 19 12.003 0.0 3
10 10 8.893 0.0 50 9.003 0.0 5
10 12 5.230 0.0 519 5.230 0.0 5
10 14 3.570 0.1 2537 3.570 0.0 11
10 16 1.785 0.5 7978 1.785 0.0 9
10 18 0.650 1.2 20320 0.650 0.0 46
10 20 0.000 2.7 45310 0.000 0.0 32
Table 3
Performance of the locate-allocate algorithm with multistart.

n p When NUnig Min Med Max Time Objval LB

20 3 13 24 2 3 5 0.70  7977.61 4610.22
20 4 4 55 2 4 9 1.37 6435.75 3073.48
20 5 39 90 2 4 10 150 5366.45 2305.11
20 6 13 125 2 5 12 2.81 464592 1844.09
50 3 4 29 2 3 7 0.96 8502.95 5467.31
50 4 16 55 2 4 11 1.23 698837 3644.87
50 5 12 120 2 5 11 1.52  5846.27 2733.65
50 6 31 185 2 6 12 1.92 518591 2186.92
100 3 5 31 2 4 8 1.19 924464 6263.97
100 4 30 48 2 5 11 141  7590.22 4175.98
100 5 29 115 2 6 17 1.84 6381.85 3131.99
100 6 9 232 2 6 15 1.80 5622.63 2505.59

out of the ten cases. The MIP method was unable to complete in
1800 seconds for all cases with p > 6, so its performance was not
included in the table. These results suggest that practical instances
of the SCI problem, i.e., when n is reasonably larger than p, is easy
to solve. For artificial cases where p is larger than n, Algorithm 2 is
faster, and can find the optimal solution most of the time.

6.2. Solving the elliptical cover problem

We generated three scenarios by randomly scattering n = 20, 50
and 100 demand points in the city’s perimeter. The latitude and
longitude of each demand point were generated independently us-
ing a uniform distribution in the applicable range, points that fell
outside the city’s perimeter were discarded. For each demand sce-
nario, we solved the Elliptical Cover problem for different p values
ranging between 3 and 6. Table 3 lists the results. While solving
an instance, the locate-allocate algorithm was repeated 500 times,
each time starting from random depot locations generated via a
uniform distribution, and the solution having the minimum objec-
tive value was returned. In Table 3, the column When represents
in which (out of the 500) iteration the best found solution first
appeared and NUniq is the number of unique local optima encoun-
tered in all 500 iteration. The overall small values (as compared to
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Fig. 8. The number of local optima found increases slowly over repeated runs of the random-start locate-allocate algorithm for a small p value, and increases more quickly

for larger p values.
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Fig. 9. The distribution of objective values found in the case n = 100, p = 6. The
skewness suggests that most local optima are near-optimal.

500) in these columns suggest that the chance of finding a better
solution in the next iteration rapidly decreases as more iterations
are performed; thus, an economical search need not consist of too
many iterations. To demonstrate this point more clearly, Fig. 8 plots
how the number of unique solutions found increases over the iter-
ations, which, in addition, reveals that the value of p plays a more
important role than n in determining the intractability of the prob-
lem - each increment in p would substantially enlarge the solution
space, hence, making it more difficult to obtain a good solution
within limited number of iterations. This observation agrees with
those in the SCI experiments.

Despite the large number of local optima, the distribution of the
local optima is extremely skewed, with the majority concentrated
in the lower (better) end. For instance, in the case of (n,p) =
(100, 6), 400 out of the 500 iterations (i.e., 80%) returned a local
optima only 5% worse than the best-found solution. The distribu-
tion of local optima in this case is plotted in Fig. 9. This trend en-
hances the evidence that the multistart locate-allocate algorithm is
quite effective at discovering satisfactory local solutions.

The columns Min, Med and Max in Table 3 are the minimum,
median and maximum number of iterations taken for the location-
allocation process to converge to a local optimum, and the column
Time is the average time (in seconds) taken for the process to con-
verge. The small numbers suggest that convergence of the location-
allocation process has been consistently fast. Note that € =50 m
(less than 1% of the objective value) has been used for the termi-

1

nation condition. The columns Objval and LB are the best objective
value and the lower bound value, in meters. The lower bounds are
obtained via solving the SCI problem using Algorithm 1, which are
the best lower bounds achievable within 0.1 second. Finding tight
lower bounds is an A’P-hard problem, though novel relaxation ap-
proaches that are Pareto better than the SCI approach may be ex-
plored in future research.

Fig. 10 visualizes the best-found solutions for n = 100 and p = 3
and 6. All demand points are covered by some ellipse whose foci
are a pair of depots in the solution. The number of covering el-
lipses formed by the p depots is uncertain until a solution is pre-
sented, as this number depends on the actual location of the de-
pots. The lengths of the major axes of all ellipses involved in the
solution are the same, which are equal to the objective value. This
property is intuitive, and is to be expected in all “single-cluster”
solutions found by the locate-allocate algorithm.

6.3. Area coverage using ellipses and comparison with the p-center
solution

We applied the area coverage algorithm presented in
Section 5 to the area of Troy, for various p values, to demon-
strate the algorithm’s effectiveness. The goal is to find ellipses
based on p foci to cover all points in the area. The initial small set
of points consisted of the corners of the region’s convex hull and
2p other points randomly sampled in the interior of the region.
Fig. 11 plots the convergence paths for 20 runs for the case p = 6.
The Gap shown along the vertical axis is the value of d* —L*
calculated in Step 4 of the algorithm. The non-monotone reduction
in the gap is expected, since L* is not intended to be the global
minimum in any iteration. Overall, the solution process terminated
successfully in all cases attempted, and for the 20 runs exhibited
in the figure, they all terminated within 55 iterations, whereas the
termination tolerance € was set to 50m. The best solution found
in the 20 runs, along with the dummy demand points generated
in the solution process, is demonstrated on the left part of Fig. 12.

To demonstrate the practical significance of the Elliptical Cover
solution in drone delivery network design, we also obtained the
EPC solution (with p =6) using the algorithm developed in Liu
(2021). The goal of the EPC problem is to place the depots such
that the distance from any point in the area to its nearest depot is
minimized. We ran the algorithm 20 times and presented the best
found solution on the right part of Fig. 12. The dashed ellipses are
formed by taking the depots as foci and having major axis length
equal to the (common) diameter of the EPC covering circles. We
can see that the required flight ranges (or battery capacities) from
the two solutions do not differ much, i.e., 5766 m by the Elliptical
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Fig. 10. Demonstration of using 3 and 6 depots to cover 100 demand points in the Troy area.
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Fig. 11. Convergence pattern of the area coverage algorithm applied to Troy with p = 6 depots.

Fig. 12. Comparison between the p-Elliptical Cover and Euclidean p-center solutions. Left: The best Elliptical Cover solution found to cover the area of Troy with 6 depots,
with objective value (required flight range) 5776 m. Right: The best p-center solution to cover the area with 6 depots, with circle diameter (required flight range) 5662 m.
Note that the ellipses formed by the p-center solution cannot cover the whole area, leaving an appreciable portion of the area serviceable by only a type 1 trip of a single
depot.
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Cover solution versus 5662 m by the EPC solution. However, the
depot locations suggested by the EPC solution are unable to pro-
vide full, type-2 trip coverage for the whole service area - an ap-
preciable portion of the demand area is only serviceable by a type
1 trip. For instance, if the demanded item is out of stock in the
southeast depot, then customer demands near the southeast cor-
ner of Troy cannot be fulfilled if the system (including the depot
location and the fleet’s battery capacity) is configured according
to the EPC solution. In comparison, if the system is configured by
the Elliptical Cover solution, the service will be robust against this
kind of stock-out situations. Furthermore, the Elliptical Cover so-
lution always allows a drone to relocate to a different depot (in
preparation for the next delivery task starting from that depot) af-
ter performing a delivery task but the EPC solution does not guar-
antee such flexibility.

7. Conclusion

In this paper, we have studied a novel geometric facility lo-
cation problem, namely, the Euclidean p-Elliptical Cover problem,
motivated by the network design of drone delivery systems. We
have proven the NP-hardness of this problem and analyzed the
unique challenges it poses to known algorithms for similar prob-
lems, due to its graph isomorphism and non-decomposibility. We
have proposed a locate-allocate algorithm that is able to converge
to a local optimum typically in a few iterations. Repeatedly running
this fast algorithm from random starting points has been the only
viable approach for pumping up satisfactory solutions, for both the
point-coverage problem and the area-coverage problem. We have
furthermore investigated the one-dimensional variant of the prob-
lem, the Shortest Covering Interval problem, which not only pro-
vides a Pareto best (in terms of performance and computing time)
lower bound to the Elliptical Cover problem, but also finds its ap-
plication when the service area is reduced to a line segment, such
as one along a power transmission line or a railway line. We have
developed an exact and a heuristic algorithm based on proven
properties of the solution. The proposed algorithms have been val-
idated to be effective and efficient in practical data cases.

Compared to covering the demand locations with circles, cover-
ing them with ellipses enables higher levels of service availability,
network connectivity and vehicle utilization. Future research could
develop methods to optimally cover a density map of the service
area, i.e., requiring regions with higher demand rates to be cov-
ered by more service routes, or to cover a service area having for-
bidden areas, such as lakes and no-fly zones. The depot network
topology and connectivity may impose explicit constraints in cer-
tain application scenarios. For instance, in case of highly clustered
demand distribution or of irregularly shaped demand regions, the
elliptical cover solution may contain “weak” coverage links, e.g.,
two demand centers connected by a single pair of depots, which
may cause air traffic congestion for drones shuttling between the
depots. Additional constraints would be needed to address such is-
sues. The elliptical cover idea could also be extended to the prob-
lem of locating and routing “moving depots” intended to cover
probabilisitic and time-varying demand point locations. Finally, the
mathematical formulation of the p-Elliptical Cover problem per-
mits the use of other distance metrics other than the Euclidean
distance. An investigation into the solution approaches as well as
into data mining applications could be interesting future work.
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