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Abstract: Anthropogenic heat (AH) emission from buildings is a key contributor to the urban heat 13 

island (UHI) effect. Although an improved understanding of spatiotemporal patterns of building 14 

AH is highly needed for mitigating UHI effect, such information is still limited in high 15 

spatiotemporal resolution at the city level. In this study, a bottom-up city building heat emission 16 

model (CityBHEM) was developed to investigate temporal variations of building AH from three 17 

components (i.e., envelope convection, zone infiltration and exfiltration, and HVAC system) for 18 

all buildings in Boston, United States. First, buildings in Boston were grouped into eleven 19 

commercial and five residential building prototypes based on building type, construction year, and 20 

foundation type. Second, an end-use-based calibration was developed to calibrate CityBHEM 21 

using U.S. Energy Information Administration’s survey data. Finally, AH from all buildings in the 22 

city under actual weather conditions was calculated using the calibrated CityBHEM model 23 

together with building types and sizes. Results indicate that total building AH density of Back Bay 24 

neighborhood reaches the maximum value of 526 kWh/m2 in summer (56% of HVAC system and 25 

44% of envelope convection) and the minimum value of 369 kWh/m2 in winter (54% of HVAC 26 

system, 24% of envelope convection and 22% of zone infiltration and exfiltration). In contrast, 27 

total building AH density of suburban neighborhoods is lower than 30 kWh/m2 in summer and 20 28 

kWh/m2 in winter. Given that key inputs are publicly available, CityBHEM is transferable to other 29 

U.S. cities, enabling us to explore practical building energy-saving strategies for mitigating AH.  30 

Keywords: Anthropogenic heat; Building heat emissions; Building energy model; Spatiotemporal31 
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1. Introduction 32 

Anthropogenic heat (AH) plays an important role in urban surface energy balance and urban 33 

climate (Nie et al., 2014; Zhou et al., 2012). AH originates primarily from energy consumption of 34 

buildings (e.g., heating, ventilation, and air-conditioning (HVAC) system), industrial activities, 35 

fuel combustion of vehicular traffic, and human activities (Sailor, 2011). In particular, AH from 36 

building sector accounts for 50% to 65% of the total AH, depending on seasons (Luo et al., 2020). 37 

Sailor and Lu investigated spatiotemporal patterns of AH from three sectors in 12 large US cities, 38 

and the results showed that AH from building sector accounted for 60% of the total AH during 39 

winter months and 50% of the total AH in summer. Given the importance of AH from building 40 

sector, improving building energy use efficiency would be a potential way to significantly reduce 41 

AH (DOE, 2015), serving as a breakthrough point where government agencies and researchers can 42 

implement intervention practices towards total AH reduction in urban environments (Chrysoulakis 43 

and Grimmond, 2016). With the knowledge of building AH patterns at the city level, researchers 44 

can quantify its contribution to urban heat island (UHI) (Li et al., 2017), and estimate its impact 45 

on thermal comfort (Chrysoulakis and Grimmond, 2016) and air quality (Xie et al., 2016; Yu et 46 

al., 2014). Therefore, it facilitates smart city planning by developing diverse and customized 47 

strategies to mitigate UHI effect. Moreover, ongoing population growth and economic 48 

development lead to unprecedented urbanization (Zhou et al., 2018, 2014), which significant 49 

increases urban building AH. However, it is challenging to estimate building AH due to its high 50 

dependence on weather conditions and occupant behaviors (Luo et al., 2020).  51 

A variety of methods have been proposed to estimate building AH at various scales. These 52 

methods can be categorized into the top-down inventory-based and bottom-up physically-based 53 

(Sailor, 2011). The top-down inventory-based approaches have been widely used from regional 54 
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(Lu et al., 2016) to global scales (Dong et al., 2017). Based on the assumption that heat discharges 55 

from buildings highly correlate with energy consumption, monthly to annual government-reported 56 

energy consumption data were used to estimate building AH in top-down methods (Liu et al., 57 

2021). However, such methods rely on the availability of energy consumption-related variables, 58 

e.g., cooling and heating degree days (Sailor et al., 2015), population density (Lindberg et al., 59 

2013), local climate zones [10], and nighttime night radiance (Chen et al., 2019). As a result, the 60 

estimated building AH using top-down methods typically has coarse spatial resolution and limited 61 

temporal frequencies, which limits our understanding of spatiotemporal patterns of building AH 62 

at the city level. In addition, significantly differences between building AH and energy 63 

consumption has been found (Dhakal et al., 2004, 2003; Hong et al., 2019). To better capture 64 

building AH at finer spatial and temp scales, the bottom-up physically-based approach has been 65 

developed (Sailor, 2011) to calculate building AH and energy consumption separately, such as 66 

urban canopy meteorological models (e.g., the Building Effect Parameterization coupled with 67 

Building Energy Model (BEP + BEM) in Weather Research Forecasting (WRF) (Chow et al., 2014) 68 

and the town energy budget model (Masson, 2000)) and building energy models (e.g., EnergyPlus, 69 

eQuest, and DOE-2).  70 

Urban canopy meteorological models are simplified building energy models (Takane et al., 71 

2017). Buildings in urban canopy meteorological models are treated as simplified envelope 72 

structures containing physical attributes related to air conditioning system, thermal properties, and 73 

internal loads (e.g., occupants, lights, and appliances). Heat emissions from air conditioning 74 

consumption are estimated by solving an energy conservation equation (Chow et al., 2014). 75 

However, different occupant behaviors, thermal properties, and HVAC equipment types and 76 

efficiencies for different building types are not considered in these models even though they have 77 



5 
 

significant impact on spatiotemporal patterns of building AH (Hong et al., 2020). Compared to 78 

simplified envelope structures in urban canopy meteorological models, building energy models 79 

simulate AH more realistically with more detailed descriptions about construction materials, 80 

thermal zones, HVAC systems, occupancy characteristics, and operation schedules for different 81 

commercial and residential building prototypes (Crawley et al., 2001). Integrating these building 82 

energy models with GIS databases containing building types and sizes allows us to investigate 83 

spatiotemporal patterns of building AH at the city level with consideration of building types. For 84 

example, Hisieh et al. (Hsieh et al., 2007) used EnergyPlus and a total of 10 building prototypes 85 

(4 residential and 6 commercial) to interpret spatiotemporal patterns of AH discharged from 86 

HVAC system on a summer day in Taipei, Taiwan. Sailor et al. (Sailor et al., 2007) conducted a 87 

similar study in Houston, USA using eQuest and a total of 13 building prototypes (2 residential 88 

and 11 commercial).  89 

However, existing city-wide building AH estimation and analyses mainly focus on total 90 

building AH (Dhakal et al., 2004, 2003; Luo et al., 2020) or AH from HVAC system (Hsieh et al., 91 

2007; Sailor et al., 2007). Except for HVAC system, AH also occurs as convective heat due to 92 

temperature difference between exterior surface of buildings and outdoor air as well as heat 93 

released from infiltration (e.g., exhaust fans in kitchens, bathrooms, and laundry rooms) and 94 

exfiltration (e.g., opening windows and doors and unintended airflow through cracks) 95 

(Chrysoulakis and Grimmond, 2016; Hong et al., 2020). Hong et al. (Hong et al., 2020) estimated 96 

building AH from these three components, i.e., envelope convection, zone infiltration and 97 

exfiltration, and HVAC system, in four weather conditions for 16 buildings prototypes (15 98 

commercial and one residential). Ferrando et al. (Ferrando et al., 2021) evaluated the impact of 99 

energy-saving strategies on these three AH components in three weather conditions for 2 100 
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residential building prototypes to improve the understanding of the relationship between heat 101 

emission and the corresponding strategies. Compared to the total AH, an improved understanding 102 

of its components is of great help for policymakers in developing strategies tailored to a specific 103 

city or region. 104 

While previous studies showed promising results on estimating building AH, an improved 105 

understanding of building AH from various components resolved at high spatial and temporal 106 

resoultions at the city level is still highly needed. In this study, we aimed to address this challenge 107 

by developing a bottom-up city building heat emission model (CityBHEM) to investigate 108 

spatiotemporal patterns of building AH from all components in Boston, U.S. The model was built 109 

upon the first and popular building energy model EnergyPlus version 9.4, where we capitalized on 110 

its ability to directly integrating the calculation of energy consumption with the quantification of 111 

AH. The remainder of this paper describes the study area and data (Section 2), the selection of 112 

building prototypes (Section 3.1) the end-use-based calibration (Section 3.2), the building AH 113 

estimation (Section 3.3), results (Section 4), discussion (Section 5), and concluding remarks 114 

(Section 6). 115 

2. Study area and data  116 

The study area is Boston, the largest city in  Massachusetts, located in American Society of 117 

Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) Climate Zone 5A with warm, 118 

humid summers and cold, stormy winters (Melaas et al., 2016). As one of the most populous 119 

metropolitans in the U.S., Boston has about 4.5 million inhabitants in 2018 (Chang et al., 2021). 120 

In terms of urban morphology, there are skyscrapers in downtown Boston and low-lying residential 121 

areas in suburbs (Figure 1). Due to its dense population and complex urban morphology, 122 

observational studies indicated strong UHI effects in Boston (Wang et al., 2017).  123 
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 124 

Figure 1. Study area of Boston, U.S. with 3D building information. 125 

The key data used in this study include building prototypes, building footprints, assessor’s 126 

parcels, and building energy consumption survey data (Table 1). Building footprints and assessor’s 127 

parcels in circa 2017 were obtained from Boston government online data portal. While the 128 

footprint data shows building location and shape, the assessor’s parcel data provides detailed 129 

information on building types, construction year, and the number of floors. Sixteen building 130 

prototypes (fifteen commercial and one residential) with three construction year categories 131 

[existing buildings constructed before 1980 (“pre-1980”), existing buildings constructed in or after 132 

1980 (“post-1980”), and new construction (“new-2004”)] were developed by the U.S. Department 133 

of Energy (DOE). Four residential building prototypes with four foundation types (i.e., slab, 134 

crawlspace, heated basement, and unheated basement) and five versions (i.e., 2006, 2009, 2012, 135 

2015, 2018) of the International Energy Conservation Code (IECC) were developed by the Pacific 136 

Northwest National Laboratory (PNNL). Building energy consumption surveys were obtained 137 

from U.S. Energy Information Administration (EIA), including the Residential Energy 138 
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Consumption Survey (RECS) dataset from 2009 and the Commercial Building Energy 139 

Consumption Survey (CBECS) from 2012.  140 

Table 1. Summary of data sources in this study. 141 

Data Source Year 

Commercial building prototypes https://www.energy.gov/eere/buildings/comm

ercial-reference-buildings 

N/A 

Residential building prototypes https://www.energycodes.gov/development/re

sidential/iecc_models 

N/A 

Building footprints https://data.boston.gov/ 2017 

Assessor’s parcels https://data.boston.gov/ 2017 

Commercial building energy 

consumption survey 

https://www.eia.gov/consumption/commercial 2012 

Residential building energy 

consumption survey 

https://www.eia.gov/consumption/residential 2009 

 142 

3. Methodology 143 

In this study, a CityBHEM framework was built to estimate building AH and its three 144 

components (Figure 2). First, building prototypes were proposed to represent residential and 145 

commercial buildings in the study area. Second, an end-use-based calibration method of building 146 

energy consumptions was developed for all building prototypes. Finally, hourly building AH and 147 
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its three components for all buildings in the study area were calculated using AH intensities from 148 

the calibrated prototypes together with footprint areas and number of floors. More details about 149 

each step are presented in the following sections. 150 

 151 

Figure 2. The proposed CityBHEM. E represents electricity and G represents natural gas. 152 

3.1 Selection of building prototypes 153 

Building prototypes were determined based on realistic building characteristics in Boston 154 

including building types, construction years, and foundation types. After assessing total floor area 155 

of each construction year category and each commercial building type, the “pre-1980” of DOE 156 

building prototypes and the 2006 IECC version of PNNL building prototypes were used (Figure 157 

3A). Building types (i.e., primary school, outpatient health care, small hotel, and quick-service 158 

restaurant) that account for a small proportion of total floor area were grouped into their similar 159 

building types (i.e., secondary school, hospital, large hotel, and full-service restaurant) (Figure 3B). 160 

After assessing the total floor area of each residential foundation type in RECS Massachusetts 161 

census region (Figure 3C), PNNL residential building prototypes with an unheated basement were 162 
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used. In summary, 11 commercial building prototypes, including full-service restaurant 163 

(Restaurant), hospital, large hotel (Hotel), large office, medium office, small office, secondary 164 

school (School), stand-alone retail (Retail), strip mall, supermarket, and warehouse, and 5 165 

residential building prototypes including midrise apartment (Midrise MF), single-family electricity 166 

resistance unheated basement (SF-electricity), single-family gas furnace unheated basement (SF-167 

gas), multi-family electricity resistance unheated basement (MF-electricity), and multi-family gas 168 

furnace unheated basement (MF-gas) were used in this study.   169 

 170 

Figure 3. Building floor area in Boston by construction year (A) and commercial types (B), and 171 

buildings in RECS Massachusetts census region by foundation types (C). 172 

3.2 End-use-based calibration 173 

An end-use-based calibration method was developed to minimize the difference (%) 174 

between energy use intensities (EUIs) from building prototypes and building energy consumption 175 

surveys (hereinafter referred to as “modeled-survey EUIs”). This method utilized an automatic 176 

optimization algorithm, Non-dominated Sorting Genetic Algorithm (NSGA-II) (Li et al., 2018), to 177 

minimize modeled-survey EUIs iteratively for each end-use (i.e., HVAC system, water heating, 178 
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lighting, and equipment) by adjusting each related parameter within lower and upper bounds. First, 179 

survey EUIs were calculated for electric and natural gas consumption by end-uses as reference 180 

values of calibration. Second, to-be-tuned parameters in building prototypes were selected and 181 

then categorized by their impact on end-uses. Third, the automatic calibration process was 182 

conducted for each end-use to achieve an optimal value for each parameter. Finally, these optimal 183 

values of parameters were used to update building prototypes. 184 

3.2.1 Reference data 185 

Survey EUIs from energy consumption surveys in the census regions where Boston locates 186 

were used as reference data to calibrate building prototypes. Regional mean EUIs of electric and 187 

natural gas consumption by end-uses from the northeast census region in CBECS and the 188 

Massachusetts census region in RECS for each type of building were calculated, respectively. 189 

Because of the inconsistency of end-use categories in EnergyPlus and survey data, a lookup table 190 

of end-use categories between these two data (Table 2) was built. 191 

Table 2. Lookup table of end-use categories between EnergyPlus and survey data. 192 

Categories in 

this study  

HVAC system Lighting Equipment Water heating 

Categories in 

CBECS  

Heating use, Cooling 

use, Ventilation use 

Lighting use Refrigeration use, Cooking 

use, Office equipment use, 

Computing use, 

Miscellaneous use 

Water heating 

Categories in 

RECS 

Space Heating, Air-

conditioning 

Other purposes (appliances, electronics, lighting, 

and miscellaneous uses), Refrigeration 

Water heating 
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Categories in 

EnergyPlus 

Heating use, Cooling 

use, Fan, Pump, Heat 

rejection, Heat recovery 

Interior lighting, 

Exterior lighting 

Interior equipment, Exterior 

equipment 

Water heating 

3.2.2 To-be-tuned parameters 193 

To-be-tuned parameters, which have important impacts on the calibration process, were 194 

determined through an input-output sensitivity analysis using EnergyPlus for each end-use 195 

(O’Neill et al., 2011). By changing values of different input parameters related to an end-use at an 196 

interval of 0.1, parameters with the largest output changes in the corresponding end-use were 197 

selected as to-be-tuned parameters for this end-use category (Table 3). The upper and lower bounds 198 

of to-be-tuned parameters were determined based on ASHRAE Standards and other versions of 199 

building prototypes. Power density of lighting and equipment as well as occupancy density were 200 

tuned using an upper and lower bound of ±50% from original values (Chen et al., 2020; Qiu et al., 201 

2018). Their diurnal schedules, varying between 0 (fully off) and 1 (fully on), were scaled up or 202 

down ±30% of all schedule values so that the original diurnal pattern was retained (Sun et al., 203 

2016). Cooling and heating setpoints of HVAC system were allowed to be tuned using an upper 204 

and lower bound calculated by Eq. (1) and Eq. (2) in ANSI/ASHRAE Standard 55 (ASHRAE 205 

Standards 55, 2017). Their diurnal schedules were adjusted by increasing or decreasing all setpoint 206 

values by a delta temperature (its range is listed in Table 3) (Sun et al., 2016). In particular, for 207 

residential building prototypes, effective leakage area was selected as an additional parameter to 208 

further minimize modeled-survey EUIs for HVAC use (Figure 4C).  209 

Upper boundℎ𝑒𝑎𝑡𝑖𝑛𝑔/𝑐𝑜𝑜𝑙𝑖𝑛𝑔 𝑠𝑒𝑡 𝑝𝑜𝑖𝑛𝑡 = 0.31 ×  𝑡𝑚𝑎(𝑜𝑢𝑡)𝑤𝑖𝑛𝑡𝑒𝑟/𝑠𝑢𝑚𝑚𝑒𝑟̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ + 21.3        (1) 210 

Lower boundℎ𝑒𝑎𝑡𝑖𝑛𝑔/𝑐𝑜𝑜𝑙𝑖𝑛𝑔 𝑠𝑒𝑡 𝑝𝑜𝑖𝑛𝑡 = 0.31 ×  𝑡𝑚𝑎(𝑜𝑢𝑡)𝑤𝑖𝑛𝑡𝑒𝑟/𝑠𝑢𝑚𝑚𝑒𝑟̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ + 14.3        (2) 211 
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where 𝑡𝑚𝑎(𝑜𝑢𝑡)𝑤𝑖𝑛𝑡𝑒𝑟/𝑠𝑢𝑚𝑚𝑒𝑟̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ represents mean outdoor air temperature in wintertime (December, 212 

January, and February) and summertime (June, July, and August) of 2012. Air temperature data is 213 

from meteorological station observations at Boston Logan International Airport. 214 

Table 3. List of to-be-tuned parameters in the calibration process. 215 

End-use category Parameter Upper and lower bound 

Lighting, equipment, 

and water heating 

Power density  [-50%, +50%]  

Schedule [-30%, +30%] 

HVAC system 

Occupancy density [-50%, +50%] for commercial  

Window U-factor 

[0.5, 1.987] for residential (ASHRAE 

Standards 90.2, 2007),[0.1, 3.24] for 

commercial (ASHRAE Standards 90.1, 

1999) 

Window Solar heat gain coefficient 

[0.1, 0.4] (ASHRAE Standards 90.1, 1999; 

ASHRAE Standards 90.2, 2007) 

Cooling/heating setpoint and its schedule 

[Lower bound𝑐𝑜𝑜𝑙𝑖𝑛𝑔/ℎ𝑒𝑎𝑡𝑖𝑛𝑔 𝑠𝑒𝑡 𝑝𝑜𝑖𝑛𝑡 −

𝑀𝑎𝑥𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 𝑣𝑎𝑙𝑢𝑒𝑠 , 

Upper bound𝑐𝑜𝑜𝑙𝑖𝑛𝑔/ℎ𝑒𝑎𝑡𝑖𝑛𝑔 𝑠𝑒𝑡 𝑝𝑜𝑖𝑛𝑡 −

𝑀𝑖𝑛𝑠𝑐ℎ𝑑𝑢𝑙𝑒 𝑣𝑎𝑙𝑢𝑒𝑠 ] 

Effective leakage area [-62.5%, +166%] for residential  

3.2.3 Automatic calibration  216 

Optimal values of to-be-tuned parameters were automatically determined using the NSGA-217 

II algorithm with objective functions. This algorithm can modify values of to-be-tuned parameters 218 
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within their corresponding upper and lower bounds (list in Table 3) iteratively to achieve the 219 

smallest modeled-survey EUIs by minimizing objective functions. Two objective functions were 220 

designed for electricity (Eq. (3)) and natural gas (Eq. (4)), respectively. During the calibration 221 

process of each building prototype, the NSGA-II algorithm with a single-objective function was 222 

separately applied in the calibration of lighting (Eq. (3)), electric equipment (Eq. (3)), natural gas 223 

equipment (Eq. (4)), and natural gas water heating uses (Eq. (4)). HVAC electric and natural gas 224 

uses were simultaneously calibrated using the NSGA-II algorithm with multi-objective functions 225 

(Eq. (3) and Eq. (4)).  226 

Difference (%)𝐸 = 100 ×
𝑀𝐸𝑖−𝑆𝐸𝑖

𝑆𝐸𝑖
                                            (3) 227 

Difference (%)𝐺 = 100 ×
𝑀𝐺𝑖−𝑆𝐺𝑖

𝑆𝐺𝑖
                                            (4) 228 

where  𝑆𝐸𝑖  and 𝑆𝐺𝑖 represent survey EUI for electricity and natural gas of end-use i. 𝑀𝐸𝑖  and 229 

𝑀𝐺𝑖  refer to modeled EUI for electricity and natural gas of end-use i. 230 

3.3 Building AH calculation  231 

Building AH and its three components were calculated using building prototype’s AH 232 

intensities, footprint areas, and number of floors (Eq. (5)). First, WRF with a single-layer urban 233 

canopy model (WRF-UCM) was used to derive gridded weather conditions with high 234 

spatiotemporal resolutions for calculating AH intensities. Hourly air temperature at 2m running at 235 

1 km spatial resolution from WRF-UCM was validated using meteorological station observations 236 

with the absolute mean bias of 1.57 ℃ and the index of agreement of 0.98. Then, the hourly air 237 

temperature at 2m data from WRF-UCM was used to update EnergyPlus weather files. Second, 238 

AH intensities in three components for each building prototype located in each WRF-UCM grid 239 

were calculated using EnergyPlus with calibrated building prototypes and updated weather files. 240 
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Specifically, building AH from envelope convection was calculated by adding up “Zone, Average, 241 

Surface Outside Face Heat Emission to Air Rate [W]” of all zones in a building prototype. Building 242 

AH from zone infiltration and exfiltration was calculated as “HVAC, Sum, Site Total Zone 243 

Exfiltration Heat Loss [J]” by adding “HVAC, Sum, Site Total Zone Exhaust Air Heat Loss [J]”. 244 

Building AH from HVAC system was calculated as “HVAC, Sum, HVAC System Total Heat 245 

Rejection Energy [J]” adding “HVAC, Sum, Air System Relief Air Total Heat Loss Energy [J]”. 246 

Finally, hourly total AH and its three components for each building were calculated. 247 

𝐴𝐻𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔 (𝑖) = 𝐴𝐻𝐼𝑡,𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔 (𝑖)
𝑊𝑅𝐹−𝑈𝐶𝑀 𝑔𝑟𝑖𝑑 (𝑗)

× 𝐴𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔 (𝑖) × 𝑁𝐹𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔 (𝑖)                    (5) 248 

where  𝐴𝐻𝐼𝑡,𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔 (𝑖)
𝑊𝑅𝐹−𝑈𝐶𝑀 𝑔𝑟𝑖𝑑 (𝑗)

 is the hourly building AH intensity of building prototype type t for 249 

building i located in WRF-UCM grid j, 𝐴𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔 (𝑖)  is the footprint area of building i, and 250 

𝑁𝐹𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔 (𝑖) is the number of floors for building i. 251 

4. Result 252 

4.1 Building energy use calibration  253 

After the end-use-based calibration, modeled EUIs of all building prototype agreed well with 254 

survey EUIs. Modeled-survey EUIs for all building prototypes ranged from -8.2 to 9.8% for 255 

electricity and -10.0 to 7.7% for natural gas (Figure 4A and B), which were up to 110% and 135% 256 

without calibration, respectively. In general, the performance of calibration for residential building 257 

prototypes was the best, and their modeled-survey EUIs for both electricity and natural gas after 258 

calibration were between -0.6% and 3%. Among commercial building prototypes, the performance 259 

of calibration for retail, restaurant, and large office building prototypes was the best, and their 260 

modeled-survey EUIs for both electricity and natural gas after calibration were between -5% and 261 

5%. In terms of modeled-survey EUIs by end-uses, before calibration, EUIs of equipment and 262 
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water heating were more consistent with survey data than those of lighting and HVAC system 263 

(Figure 4C). After calibration, modeled-survey EUIs of lighting for commercial prototypes were 264 

between 35% to -1.28%, which reached 500% without calibration. For hotel, restaurant, and retail 265 

building prototypes, modeled-survey EUI of natural gas HVAC was larger than 200% before 266 

calibration and decreased to -15% to 80% after calibration. 267 

 268 

 269 

Figure 4. Comparison of calibrated and survey annual electric (A) and natural gas use (B) 270 

intensities and the performance of calibration by end-uses (C). 271 
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4.2 Annual AH intensity by building types 272 

Commercial buildings showed larger intensity (kWh/m2) of annual total AH and larger 273 

proportion of AH from HVAC system compared to residential buildings (Figure 5). Two highest 274 

annual total AH intensities were restaurant (1393 kWh/m2) and strip mall (1331 kWh/m2). They 275 

were about six times large as that of residential buildings of MF-electricity (217 kWh/m2). On 276 

average, AH from HVAC system accounted for about 40% of total AH intensity for commercial 277 

buildings, while for residential buildings, it only accounted for about 10%. In particular, in 278 

buildings with large conditioned areas such as large office and hospital, this component accounted 279 

for almost 80% of total AH intensities. However, reversed situation was observed for the other 280 

two components. AH from envelope convection and zone infiltration and exfiltration accounted 281 

for about 70% and 20% of total AH intensities in residential buildings, respectively, while for 282 

commercial buildings except for restaurant, they only accounted for an average of 50% and 10%, 283 

respectively. Particularly, large variability of AH intensities from envelope convection was found 284 

for commercial buildings, ranging from 15% for large office to 84% for warehouse. In addition, 285 

due to air exhausted through fans in kitchens, the highest proportion (40%) and magnitude (561 286 

kWh/m2) of AH intensity from zone infiltration and exfiltration were found for restaurants.  287 
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 288 

Figure 5. Annual total AH intensity (kWh/m2) and its three components by building types in 2012 289 

in Boston. 290 

4.3 Temporal patterns of building AH 291 

Monthly variations of building AH appeared high in summer and low in winter for total AH 292 

and its envelope and HVAC components, while for zone component, the monthly pattern was 293 

reversed (Figure 6). The highest total building AH of commercial (1.36 ×109 kWh) and residential 294 

(1.02 ×109 kWh) buildings occurred in July. The lowest total AH occurred in December (0.65 ×295 

109 kWh) for commercial buildings and in October (0.6 ×109 kWh) for residential buildings. 296 

Monthly pattern of building AH from envelope convection was consistent with the seasonal change 297 

of solar radiation, reaching the highest value (1.58 ×109 kWh) in July and lowest value (0.32 ×109 298 

kWh) in December. Building AH from zone infiltration and exfiltration reached the highest value 299 
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(0.56 ×109 kWh) in January and lowest value (0.05 ×109 kWh) in August due to small difference 300 

in enthalpies between exhaust and outdoor air in summer (Hong et al., 2020). Unlike the other two 301 

components, building AH from HVAC system showed two peaks around July and January. The 302 

first peak (0.8 ×109 kWh) appeared in summer because of its high heat emissions from relief air 303 

for cooling use, whereas the winter maximum (0.65 ×109 kWh) was due to its high reject heat 304 

emissions from combustion exhaust for heating use.  305 

 306 

Figure 6. Monthly total building AH and its three components of commercial and residential 307 

buildings in Boston in 2012. 308 

Except for zone component, hourly total building AH and its envelope and HVAC 309 

components exhibited significant variations with the highest AH in afternoon and the lowest AH 310 

at midnight (Figure 7). Diurnal variations of AH from envelope convection followed diurnal 311 

changes of solar radiation. In summer, AH from envelope convection increased dramatically 312 

between 5 am to 8 pm and reached its peak (7.0 ×106 kWh) at noon. In winter, it increased 313 

dramatically between 7 am to 6 pm and reached its peak (5.7 ×106 kWh) at 1 pm. The trend of 314 
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building AH from HVAC system was strongly affected by operation schedules of occupants and 315 

outdoor air temperature. When HVAC system was on between 6 am to 10 pm, the trend of AH 316 

from HVAC system was related to outdoor air temperature in summer, reaching its peak (3.0 ×106 317 

kWh) at 4 pm. The peak period in residential buildings (between 2 pm to 6 pm) occurred 1 hour 318 

later than that in commercial buildings (between 1pm to 5 pm). However, diurnal variations of this 319 

component in winter were not significant, especially in residential buildings. AH from zone 320 

infiltration and exfiltration showed small fluctuation around 1.4 ×106 kWh in winter and large 321 

fluctuation in the daytime of summer with the lowest value (-0.6×106 kWh) at 2 pm.  322 

 323 

Figure 7. Hourly building AH and its three components of commercial and residential buildings 324 

on the coldest day (January 15, marked with dash line) and hottest day (July 17, marked with solid 325 

line) in 2012 in Boston. 326 
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4.4 Spatial patterns of building AH 327 

At the individual building level, the annual total building AH reached 9.7×108 kWh in 328 

downtown, while it was down to 35 kWh in suburb (Figure 8A). Building AH from HVAC system 329 

showed the largest downtown-suburban gradient (Figure 8D), falling from 8.1×108 kWh in 330 

downtown to 4.7 kWh in suburb. Building AH from zone infiltration and exfiltration exhibited the 331 

smallest downtown-suburban gradient (Figure 8C), dropping from 1.0 ×108 kWh in downtown to 332 

4.7 kWh in suburb. Buildings with annual total AH larger than 10.4 ×105 kWh were mainly 333 

distributed in downtown crowded with tall and commercial buildings (e.g., offices, hotels, and 334 

hospitals). Buildings with annual total AH less than 1.0 ×105 kWh were found in suburb covered 335 

by single- and multi-family houses.  336 
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 337 

Figure 8. Spatial patterns of the total annual building AH (A) and AH from envelope convection 338 

(B), zone infiltration and exfiltration (C), and HVAC system (D) in Boston in 2012. 339 

Densities (kWh/m2) of total building AH were highest in Back Bay neighborhood and lowest 340 

in East Boston neighborhood (Figure 9). Density of building AH here was the ratio of the sum of 341 

building AH in a neighborhood and the area of neighborhood. In summer, the density of total AH 342 

of Back Bay neighborhood reached the maximum value of 526 kWh/m2, of which 56% was from 343 

HVAC system and 44% was from envelope convection. In winter, total AH density of Back Bay 344 

neighborhood reached the minimum value of 369 kWh/m2, of which 54% was from HVAC system, 345 
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followed by envelope convection (24%) and zone infiltration and exfiltration (22%). Southern and 346 

northern suburban neighborhoods (i.e., West Roxbury, Roslindale, Hyde Park, Mattapan, and East 347 

Boston) showed a lower density of total AH than 30 kWh/m2 in summer and 20 kWh/m2 in winter.  348 

For most of neighborhoods, seasonal variations of total building AH were not as dramatic as 349 

its three components because of changes in the proportion of these three components among total 350 

AH in different seasons. In spring, summer, and fall, except for urban core neighborhoods such as 351 

Back Bay, West End, and Longwood, building AH from envelope convection was the most 352 

dominant component with a proportion over 65%, determining spatial patterns of total building 353 

AH in these three seasons. This component did not show significant difference between spring and 354 

summer because of its monthly high AH in May, June, and July (end of spring and start of summer). 355 

In winter, the proportion of three AH components among total AH was similar, jointly determining 356 

spatial patterns of total AH. 357 
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 358 

Figure 9. Densities (kWh/m2) of seasonal total building AH (A) and AH from envelope convection 359 

(B), zone infiltration and exfiltration (C), and HVAC system (D) at the neighborhood level in 360 

Boston in 2012. 361 

5. Discussion 362 

The magnitude of building AH and its component varied among building types due to a 363 

variability of geometry structures, HVAC systems, and construction materials of buildings. For 364 

instance, small office and warehouse prototypes are characterized by a small building area with a 365 

relatively large surface-to-volume ratio (Hong et al., 2020), causing a large share of AH from 366 

envelope component. Since central cooling systems with a chilled water plant are always needed 367 

for large buildings to meet intensive cooling loads (Hong et al., 2020), large office and hospital 368 
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buildings equipped with cooling towers demonstrated a large share of AH from HVAC component. 369 

Thermal resistance of construction materials in residential buildings was lower than that in 370 

commercial building prototypes, resulting in relatively larger share of AH from envelope 371 

component. 372 

The knowledge about spatiotemporal patterns of building AH from this study has a potential 373 

to assist policymakers in developing building energy-saving strategies tailored to a specific city or 374 

region, which in turn facilitates smart city planning and sustainable urban development. For 375 

example, West Roxbury, Hyde Park, Roslindale, and East Boston neighborhoods show the largest 376 

share (up to 65%) of heat emissions from envelope conduction, informing local governments to 377 

prioritize reducing building AH from envelope conduction in northern and southern suburban areas. 378 

Additional high-resistivity insulation layer on the exterior surfaces of buildings can be considered 379 

to limit conductive heat flow (Ferrando et al., 2021). Longwood, Back Bay and West End 380 

neighborhoods show the largest share (up to 55%) of heat emissions from the HVAC system. 381 

Actions related to the efficiency improvement of HVAC system can be prioritized to reduce total 382 

AH in these neighborhoods. 383 

The dataset of hourly building AH at individual building level can be aggregated into very 384 

high spatial resolution, for numerical weather prediction models (e.g., Weather Research and 385 

Forecasting (WRF) Model) to quantify the magnitude of its contribution to UHI and explore the 386 

effects of different urban heat mitigation strategies. Driven by building AH data, numerical 387 

weather prediction models can better represent the spatial heterogeneity of building AH, and 388 

therefore help to investigate how building AH can influence urban thermal environment at high 389 

spatial resolution. Moreover, driven by building AH data under different scenarios of building 390 

efficiency improvement, numerical weather prediction models can be used to explore the role of 391 
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building AH in mitigating UHI effect, providing scientific basis for developing urban heat 392 

mitigation and adaption measures in Boston.  393 

Our calibration method of the city-scale building energy use modeling can provide a feasible 394 

solution to accurately calibrate building energy consumption in other areas by capitalizing on an 395 

advantage of nationwide coverage of two datasets, i.e., building energy surveys and building 396 

prototypes. CBECS and RECS are the largest building energy surveys to date conducted by the 397 

EIA(Deng et al., 2018), reporting over 12,000 residential and 6,700 commercial buildings’ annual 398 

energy consumption in the U.S., disaggregating by energy sources and end-uses. PNNL and DOE 399 

developed building prototypes across 16 locations representing all U.S. climate zones. However, 400 

the proposed method is restrained to using survey data with end-use information. It is challenging 401 

to conduct monthly calibration using the proposed method because monthly metered utility data 402 

are usually not specified for end-use categories. When utility meter data become widely available, 403 

monthly or hourly calibration can be developed to improve building energy use and AH modeling. 404 

This study opened future research avenues. For example, large scale building type (e.g., 405 

office, restaurant, hospital, school, retail, hotel, and residence) mapping methods are highly needed 406 

to support building AH estimation, especially in areas with limited data availability. Together with 407 

the support of existing large scale building footprint (“Microsoft US Building Footprints,” 2018) 408 

and height (Li et al., 2020) datasets, the city-scale building AH models can be used to investigate 409 

historical and future urban building AH under different climate and policy scenarios, offering 410 

supports for government policy making and city sustainable development planning.  411 

6. Conclusions 412 

In this study, a framework named CityBHEM was developed to estimate building AH and 413 

its three components at single building level and hourly scale and implemented this framework in 414 
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the study area of Boston. First, sixteen building prototypes were selected based on building type, 415 

construction year, and foundation type in Boston. Second, an end-use-based calibration of building 416 

energy use for each prototype was developed to ensure the performance of EnergyPlus calculation. 417 

Finally, hourly building AH and its three components for each building in Boston were estimated 418 

using AH intensities from calibrated prototypes together with building types and sizes.  419 

Our results from the CityBHEM revealed spatiotemporal patterns of building AH and its 420 

three components in Boston. Spatially, the annual total building AH reached 9.7×108 kWh in 421 

downtown, while it was only 35 kWh in suburb. AH from HVAC system is a main contributor of 422 

large downtown-suburban gradient, followed by envelope convection and zone infiltration and 423 

exfiltration. Temporally, AH from envelope convection and HVAC system in July were 424 

significantly higher than those in January, with a diurnal peak at noon and 4pm, respectively. AH 425 

from zone infiltration and exfiltration in January was significantly higher than that in July, with 426 

small diurnal fluctuations. 427 

The proposed CityBHEM by integrating publicly available datasets and physical modeling 428 

is transferable to other U.S. cities, offering great support for UHI studies and city sustainable 429 

development planning. The resulting datasets can serve as a reliable input for numerical weather 430 

predication models in UHI studies to improve the understanding of feedbacks between urban 431 

systems and the atmosphere. The improved understanding of building AH from various 432 

components is of great help for policymakers in developing building energy-saving strategies 433 

tailored to a specific region within cities. To improve monthly or hourly patterns of building energy 434 

use and AH modeling performance, metered utility data will be of help for developing monthly or 435 

hourly calibration method in future studies. Another possible future research avenue is the 436 
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development of large scale building type mapping methods to support building AH estimation with 437 

high spatiotemporal details in areas with limited data availability. 438 

  439 
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