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Abstract: Anthropogenic heat (AH) emission from buildings is a key contributor to the urban heat
island (UHI) effect. Although an improved understanding of spatiotemporal patterns of building
AH is highly needed for mitigating UHI effect, such information is still limited in high
spatiotemporal resolution at the city level. In this study, a bottom-up city building heat emission
model (CityBHEM) was developed to investigate temporal variations of building AH from three
components (i.e., envelope convection, zone infiltration and exfiltration, and HVAC system) for
all buildings in Boston, United States. First, buildings in Boston were grouped into eleven
commercial and five residential building prototypes based on building type, construction year, and
foundation type. Second, an end-use-based calibration was developed to calibrate CityBHEM
using U.S. Energy Information Administration’s survey data. Finally, AH from all buildings in the
city under actual weather conditions was calculated using the calibrated CityBHEM model
together with building types and sizes. Results indicate that total building AH density of Back Bay
neighborhood reaches the maximum value of 526 kWh/m? in summer (56% of HVAC system and
44% of envelope convection) and the minimum value of 369 kWh/m? in winter (54% of HVAC
system, 24% of envelope convection and 22% of zone infiltration and exfiltration). In contrast,
total building AH density of suburban neighborhoods is lower than 30 kWh/m? in summer and 20
kWh/m? in winter. Given that key inputs are publicly available, CityBHEM is transferable to other

U.S. cities, enabling us to explore practical building energy-saving strategies for mitigating AH.

Keywords: Anthropogenic heat; Building heat emissions; Building energy model; Spatiotemporal
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1. Introduction

Anthropogenic heat (AH) plays an important role in urban surface energy balance and urban
climate (Nie et al., 2014; Zhou et al., 2012). AH originates primarily from energy consumption of
buildings (e.g., heating, ventilation, and air-conditioning (HVAC) system), industrial activities,
fuel combustion of vehicular traffic, and human activities (Sailor, 2011). In particular, AH from
building sector accounts for 50% to 65% of the total AH, depending on seasons (Luo et al., 2020).
Sailor and Lu investigated spatiotemporal patterns of AH from three sectors in 12 large US cities,
and the results showed that AH from building sector accounted for 60% of the total AH during
winter months and 50% of the total AH in summer. Given the importance of AH from building
sector, improving building energy use efficiency would be a potential way to significantly reduce
AH (DOE, 2015), serving as a breakthrough point where government agencies and researchers can
implement intervention practices towards total AH reduction in urban environments (Chrysoulakis
and Grimmond, 2016). With the knowledge of building AH patterns at the city level, researchers
can quantify its contribution to urban heat island (UHI) (Li et al., 2017), and estimate its impact
on thermal comfort (Chrysoulakis and Grimmond, 2016) and air quality (Xie et al., 2016; Yu et
al., 2014). Therefore, it facilitates smart city planning by developing diverse and customized
strategies to mitigate UHI effect. Moreover, ongoing population growth and economic
development lead to unprecedented urbanization (Zhou et al., 2018, 2014), which significant
increases urban building AH. However, it is challenging to estimate building AH due to its high

dependence on weather conditions and occupant behaviors (Luo et al., 2020).

A variety of methods have been proposed to estimate building AH at various scales. These
methods can be categorized into the top-down inventory-based and bottom-up physically-based

(Sailor, 2011). The top-down inventory-based approaches have been widely used from regional
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(Lu et al., 2016) to global scales (Dong et al., 2017). Based on the assumption that heat discharges
from buildings highly correlate with energy consumption, monthly to annual government-reported
energy consumption data were used to estimate building AH in top-down methods (Liu et al.,
2021). However, such methods rely on the availability of energy consumption-related variables,
e.g., cooling and heating degree days (Sailor et al., 2015), population density (Lindberg et al.,
2013), local climate zones [10], and nighttime night radiance (Chen et al., 2019). As a result, the
estimated building AH using top-down methods typically has coarse spatial resolution and limited
temporal frequencies, which limits our understanding of spatiotemporal patterns of building AH
at the city level. In addition, significantly differences between building AH and energy
consumption has been found (Dhakal et al., 2004, 2003; Hong et al., 2019). To better capture
building AH at finer spatial and temp scales, the bottom-up physically-based approach has been
developed (Sailor, 2011) to calculate building AH and energy consumption separately, such as
urban canopy meteorological models (e.g., the Building Effect Parameterization coupled with
Building Energy Model (BEP + BEM) in Weather Research Forecasting (WRF) (Chow et al., 2014)
and the town energy budget model (Masson, 2000)) and building energy models (e.g., EnergyPlus,

eQuest, and DOE-2).

Urban canopy meteorological models are simplified building energy models (Takane et al.,
2017). Buildings in urban canopy meteorological models are treated as simplified envelope
structures containing physical attributes related to air conditioning system, thermal properties, and
internal loads (e.g., occupants, lights, and appliances). Heat emissions from air conditioning
consumption are estimated by solving an energy conservation equation (Chow et al., 2014).
However, different occupant behaviors, thermal properties, and HVAC equipment types and

efficiencies for different building types are not considered in these models even though they have



78

79

80

81

82

83

84

85

86

87

88

&9

90

91

92

93

94

95

96

97

98

99

100

significant impact on spatiotemporal patterns of building AH (Hong et al., 2020). Compared to
simplified envelope structures in urban canopy meteorological models, building energy models
simulate AH more realistically with more detailed descriptions about construction materials,
thermal zones, HVAC systems, occupancy characteristics, and operation schedules for different
commercial and residential building prototypes (Crawley et al., 2001). Integrating these building
energy models with GIS databases containing building types and sizes allows us to investigate
spatiotemporal patterns of building AH at the city level with consideration of building types. For
example, Hisieh et al. (Hsieh et al., 2007) used EnergyPlus and a total of 10 building prototypes
(4 residential and 6 commercial) to interpret spatiotemporal patterns of AH discharged from
HVAC system on a summer day in Taipei, Taiwan. Sailor et al. (Sailor et al., 2007) conducted a
similar study in Houston, USA using eQuest and a total of 13 building prototypes (2 residential

and 11 commercial).

However, existing city-wide building AH estimation and analyses mainly focus on total
building AH (Dhakal et al., 2004, 2003; Luo et al., 2020) or AH from HVAC system (Hsieh et al.,
2007; Sailor et al., 2007). Except for HVAC system, AH also occurs as convective heat due to
temperature difference between exterior surface of buildings and outdoor air as well as heat
released from infiltration (e.g., exhaust fans in kitchens, bathrooms, and laundry rooms) and
exfiltration (e.g., opening windows and doors and unintended airflow through cracks)
(Chrysoulakis and Grimmond, 2016; Hong et al., 2020). Hong ef al. (Hong et al., 2020) estimated
building AH from these three components, i.e., envelope convection, zone infiltration and
exfiltration, and HVAC system, in four weather conditions for 16 buildings prototypes (15
commercial and one residential). Ferrando ef al. (Ferrando et al., 2021) evaluated the impact of

energy-saving strategies on these three AH components in three weather conditions for 2
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residential building prototypes to improve the understanding of the relationship between heat
emission and the corresponding strategies. Compared to the total AH, an improved understanding
of its components is of great help for policymakers in developing strategies tailored to a specific

city or region.

While previous studies showed promising results on estimating building AH, an improved
understanding of building AH from various components resolved at high spatial and temporal
resoultions at the city level is still highly needed. In this study, we aimed to address this challenge
by developing a bottom-up city building heat emission model (CityBHEM) to investigate
spatiotemporal patterns of building AH from all components in Boston, U.S. The model was built
upon the first and popular building energy model EnergyPlus version 9.4, where we capitalized on
its ability to directly integrating the calculation of energy consumption with the quantification of
AH. The remainder of this paper describes the study area and data (Section 2), the selection of
building prototypes (Section 3.1) the end-use-based calibration (Section 3.2), the building AH
estimation (Section 3.3), results (Section 4), discussion (Section 5), and concluding remarks

(Section 6).

2. Study area and data

The study area is Boston, the largest city in Massachusetts, located in American Society of
Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) Climate Zone 5A with warm,
humid summers and cold, stormy winters (Melaas et al., 2016). As one of the most populous
metropolitans in the U.S., Boston has about 4.5 million inhabitants in 2018 (Chang et al., 2021).
In terms of urban morphology, there are skyscrapers in downtown Boston and low-lying residential
areas in suburbs (Figure 1). Due to its dense population and complex urban morphology,

observational studies indicated strong UHI effects in Boston (Wang et al., 2017).
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Figure 1. Study area of Boston, U.S. with 3D building information.

The key data used in this study include building prototypes, building footprints, assessor’s
parcels, and building energy consumption survey data (Table 1). Building footprints and assessor’s
parcels in circa 2017 were obtained from Boston government online data portal. While the
footprint data shows building location and shape, the assessor’s parcel data provides detailed
information on building types, construction year, and the number of floors. Sixteen building
prototypes (fifteen commercial and one residential) with three construction year categories
[existing buildings constructed before 1980 (“pre-1980”), existing buildings constructed in or after
1980 (“post-1980”), and new construction (“new-2004"")] were developed by the U.S. Department
of Energy (DOE). Four residential building prototypes with four foundation types (i.e., slab,
crawlspace, heated basement, and unheated basement) and five versions (i.e., 2006, 2009, 2012,
2015, 2018) of the International Energy Conservation Code (IECC) were developed by the Pacific
Northwest National Laboratory (PNNL). Building energy consumption surveys were obtained

from U.S. Energy Information Administration (EIA), including the Residential Energy
7
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Consumption Survey (RECS) dataset from 2009 and the Commercial Building Energy

Consumption Survey (CBECS) from 2012.

Table 1. Summary of data sources in this study.

Data Source Year

Commercial building prototypes https://www.energy.gov/eere/buildings/comm | N/A

ercial-reference-buildings

Residential building prototypes https://www.energycodes.gov/development/re | N/A

sidential/iecc_models

Building footprints https://data.boston.gov/ 2017
Assessor’s parcels https://data.boston.gov/ 2017
Commercial building energy https://www.eia.gov/consumption/commercial | 2012

consumption survey

Residential building energy https://www.eia.gov/consumption/residential | 2009

consumption survey

3. Methodology

In this study, a CityBHEM framework was built to estimate building AH and its three
components (Figure 2). First, building prototypes were proposed to represent residential and
commercial buildings in the study area. Second, an end-use-based calibration method of building

energy consumptions was developed for all building prototypes. Finally, hourly building AH and

8
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its three components for all buildings in the study area were calculated using AH intensities from
the calibrated prototypes together with footprint areas and number of floors. More details about

each step are presented in the following sections.

Building Type Construction Year Foundation Type
Building Prototypes Annual Energy Consumption Survey ‘ Building EnergyPlus Weather
Prototypes Files
EnergyPlus = Modeled Energy Use Intensity Survey Energy Use Intensity
! WRF
Lighting Use E E
i o Anthropogenic Heat Intensity
) ) E Single-objective E
Electric Equipment Use Optimization
Building Type
Difference
Natural Gas Equipment Use G YES G
<10%? : Footprint Area
Natural Gas Water Heating Use | | G . G
& Difference Number of Floors
D (A Multi-objective
HVAC System Use | E G Optimization @ @ City-scale Anthropogenic Heat Emissions

Figure 2. The proposed CityBHEM. E represents electricity and G represents natural gas.
3.1 Selection of building prototypes

Building prototypes were determined based on realistic building characteristics in Boston
including building types, construction years, and foundation types. After assessing total floor area
of each construction year category and each commercial building type, the “pre-1980” of DOE
building prototypes and the 2006 IECC version of PNNL building prototypes were used (Figure
3A). Building types (i.e., primary school, outpatient health care, small hotel, and quick-service
restaurant) that account for a small proportion of total floor area were grouped into their similar
building types (i.e., secondary school, hospital, large hotel, and full-service restaurant) (Figure 3B).
After assessing the total floor area of each residential foundation type in RECS Massachusetts

census region (Figure 3C), PNNL residential building prototypes with an unheated basement were

9
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used. In summary, 11 commercial building prototypes, including full-service restaurant
(Restaurant), hospital, large hotel (Hotel), large office, medium office, small office, secondary
school (School), stand-alone retail (Retail), strip mall, supermarket, and warehouse, and 5
residential building prototypes including midrise apartment (Midrise MF), single-family electricity
resistance unheated basement (SF-electricity), single-family gas furnace unheated basement (SF-
gas), multi-family electricity resistance unheated basement (MF-electricity), and multi-family gas

furnace unheated basement (MF-gas) were used in this study.

(A) | pre-1980 post-1980 |
' ' ‘ ' New-2004

i\
i ; ‘ ‘ ' . \
) [ , ‘ i I |

~ Basement 1 érawlspa& Slab

Unheated b

i Heated basement

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

= LargeOffice MediumOffice SmallOffice SecondarySchool
PrimarySchool Hospital ® Qutpatient health care w LargeHotel
SmallHotel Full Service Restaurant  ® Quick Service Restaurant © Warehouse
Stand-aloneRetail m StripMall SuperMarket Unknown

Figure 3. Building floor area in Boston by construction year (A) and commercial types (B), and

buildings in RECS Massachusetts census region by foundation types (C).
3.2 End-use-based calibration

An end-use-based calibration method was developed to minimize the difference (%)
between energy use intensities (EUIs) from building prototypes and building energy consumption
surveys (hereinafter referred to as “modeled-survey EUIs”). This method utilized an automatic
optimization algorithm, Non-dominated Sorting Genetic Algorithm (NSGA-II) (Li et al., 2018), to

minimize modeled-survey EUIs iteratively for each end-use (i.e., HVAC system, water heating,

10
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lighting, and equipment) by adjusting each related parameter within lower and upper bounds. First,
survey EUIs were calculated for electric and natural gas consumption by end-uses as reference
values of calibration. Second, to-be-tuned parameters in building prototypes were selected and
then categorized by their impact on end-uses. Third, the automatic calibration process was
conducted for each end-use to achieve an optimal value for each parameter. Finally, these optimal

values of parameters were used to update building prototypes.
3.2.1 Reference data

Survey EUIs from energy consumption surveys in the census regions where Boston locates
were used as reference data to calibrate building prototypes. Regional mean EUIs of electric and
natural gas consumption by end-uses from the northeast census region in CBECS and the
Massachusetts census region in RECS for each type of building were calculated, respectively.
Because of the inconsistency of end-use categories in EnergyPlus and survey data, a lookup table

of end-use categories between these two data (Table 2) was built.

Table 2. Lookup table of end-use categories between EnergyPlus and survey data.

Categories in | HVAC system Lighting Equipment Water heating
this study

Categories in | Heating use, Cooling Lighting use Refrigeration use, Cooking Water heating
CBECS use, Ventilation use use, Office equipment use,

Computing use,

Miscellaneous use

Categories in | Space Heating, Air- Other purposes (appliances, electronics, lighting, | Water heating

RECS conditioning and miscellaneous uses), Refrigeration

11
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Categories in | Heating use, Cooling Interior lighting, | Interior equipment, Exterior | Water heating
EnergyPlus use, Fan, Pump, Heat Exterior lighting | equipment

rejection, Heat recovery

3.2.2 To-be-tuned parameters

To-be-tuned parameters, which have important impacts on the calibration process, were
determined through an input-output sensitivity analysis using EnergyPlus for each end-use
(O’Neill et al., 2011). By changing values of different input parameters related to an end-use at an
interval of 0.1, parameters with the largest output changes in the corresponding end-use were
selected as to-be-tuned parameters for this end-use category (Table 3). The upper and lower bounds
of to-be-tuned parameters were determined based on ASHRAE Standards and other versions of
building prototypes. Power density of lighting and equipment as well as occupancy density were
tuned using an upper and lower bound of £50% from original values (Chen et al., 2020; Qiu et al.,
2018). Their diurnal schedules, varying between 0 (fully off) and 1 (fully on), were scaled up or
down £30% of all schedule values so that the original diurnal pattern was retained (Sun et al.,
2016). Cooling and heating setpoints of HVAC system were allowed to be tuned using an upper
and lower bound calculated by Eq. (1) and Eq. (2) in ANSI/ASHRAE Standard 55 (ASHRAE
Standards 55, 2017). Their diurnal schedules were adjusted by increasing or decreasing all setpoint
values by a delta temperature (its range is listed in Table 3) (Sun et al., 2016). In particular, for
residential building prototypes, effective leakage area was selected as an additional parameter to

further minimize modeled-survey EUls for HVAC use (Figure 4C).

Upper boundheating/cooling set point — 0.31 x tma(out)wmter/summer +21.3 (1)

Lower boundheating/cooling set point — 0.31 % tma(out)wmter/summer + 14.3 (2)

12
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where tmaout)winter/summer r€presents mean outdoor air temperature in wintertime (December,
January, and February) and summertime (June, July, and August) of 2012. Air temperature data is

from meteorological station observations at Boston Logan International Airport.

Table 3. List of to-be-tuned parameters in the calibration process.

End-use category Parameter Upper and lower bound

i _50° 0
Lighting, equipment, Power density [-50%, +50%]

and water heating Schedule [-30%, +30%]

Occupancy density [-50%, +50%] for commercial

[0.5, 1.987] for residential (ASHRAE
Standards 90.2, 2007),[0.1, 3.24] for

Window U-factor
commercial (ASHRAE Standards 90.1,

1999)

[0.1, 0.4] (ASHRAE Standards 90.1, 1999;
HVAC system Window Solar heat gain coefficient
ASHRAE Standards 90.2, 2007)

[Lower boundcooling/heating set point —
Maxschedule values »
Cooling/heating setpoint and its schedule

Upper boundcooling/heating set point —

Mlnschdule values ]

Effective leakage area [-62.5%, +166%)] for residential

3.2.3 Automatic calibration

Optimal values of to-be-tuned parameters were automatically determined using the NSGA-

IT algorithm with objective functions. This algorithm can modify values of to-be-tuned parameters

13
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within their corresponding upper and lower bounds (list in Table 3) iteratively to achieve the
smallest modeled-survey EUIs by minimizing objective functions. Two objective functions were
designed for electricity (Eq. (3)) and natural gas (Eq. (4)), respectively. During the calibration
process of each building prototype, the NSGA-II algorithm with a single-objective function was
separately applied in the calibration of lighting (Eq. (3)), electric equipment (Eq. (3)), natural gas
equipment (Eq. (4)), and natural gas water heating uses (Eq. (4)). HVAC electric and natural gas
uses were simultaneously calibrated using the NSGA-II algorithm with multi-objective functions
(Eq. (3) and Eq. (4)).

ME;—SE;

Difference (%); = 100 X 3)

i

MG;—SG;

Difference (%), = 100 x (4)

where SE; and SG; represent survey EUI for electricity and natural gas of end-use i. ME; and

MG; refer to modeled EUI for electricity and natural gas of end-use i.
3.3 Building AH calculation

Building AH and its three components were calculated using building prototype’s AH
intensities, footprint areas, and number of floors (Eq. (5)). First, WRF with a single-layer urban
canopy model (WRF-UCM) was used to derive gridded weather conditions with high
spatiotemporal resolutions for calculating AH intensities. Hourly air temperature at 2m running at
1 km spatial resolution from WRF-UCM was validated using meteorological station observations
with the absolute mean bias of 1.57 °C and the index of agreement of 0.98. Then, the hourly air
temperature at 2m data from WRF-UCM was used to update EnergyPlus weather files. Second,
AH intensities in three components for each building prototype located in each WRF-UCM grid

were calculated using EnergyPlus with calibrated building prototypes and updated weather files.
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Specifically, building AH from envelope convection was calculated by adding up “Zone, Average,
Surface Outside Face Heat Emission to Air Rate [W]” of all zones in a building prototype. Building
AH from zone infiltration and exfiltration was calculated as “HVAC, Sum, Site Total Zone
Exfiltration Heat Loss [J]” by adding “HVAC, Sum, Site Total Zone Exhaust Air Heat Loss [J]”.
Building AH from HVAC system was calculated as “HVAC, Sum, HVAC System Total Heat
Rejection Energy [J]” adding “HVAC, Sum, Air System Relief Air Total Heat Loss Energy [J]”.

Finally, hourly total AH and its three components for each building were calculated.

WRF—-UCM id (j
AHpyiiging (i) = AHI pyi1aing (f’)” @ x Apuitaing ) X NFpuitaing (i) )

WRF-UCM grid (j) -

where AHI } 1ain 9@ is the hourly building AH intensity of building prototype type ¢ for

building i located in WRF-UCM grid j, Apyitaing (i) 18 the footprint area of building i, and

NFyyitding (i) 18 the number of floors for building i.

4. Result
4.1 Building energy use calibration

After the end-use-based calibration, modeled EUIs of all building prototype agreed well with
survey EUIs. Modeled-survey EUIs for all building prototypes ranged from -8.2 to 9.8% for
electricity and -10.0 to 7.7% for natural gas (Figure 4A and B), which were up to 110% and 135%
without calibration, respectively. In general, the performance of calibration for residential building
prototypes was the best, and their modeled-survey EUIs for both electricity and natural gas after
calibration were between -0.6% and 3%. Among commercial building prototypes, the performance
of calibration for retail, restaurant, and large office building prototypes was the best, and their
modeled-survey EUIs for both electricity and natural gas after calibration were between -5% and
5%. In terms of modeled-survey EUIs by end-uses, before calibration, EUIs of equipment and

15
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water heating were more consistent with survey data than those of lighting and HVAC system
(Figure 4C). After calibration, modeled-survey EUIs of lighting for commercial prototypes were
between 35% to -1.28%, which reached 500% without calibration. For hotel, restaurant, and retail
building prototypes, modeled-survey EUI of natural gas HVAC was larger than 200% before

calibration and decreased to -15% to 80% after calibration.

600
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v:% 200
=
Swol@ S F = Beforecalibration
2 i 1 ‘ : ‘ : | ‘ 1 1 1 | W After callbratlon
600 = | i
] e
el 4 |
© | A Before cahbratlon
400t ‘ ? : ‘ 1
- i ‘k After callbratlon
= i i
Fl man
5200- i s 5 T v
= 0 I R 4 !xt ‘ E AR f tti
b 1 1 i
S H 5 - - H — - - | — g = - = — : — — ] —
tt&‘ag““z*‘E““““
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5 £ E & = 2 & £ 7 ¥
.f] s w = = = =
= “ «n =
Lighting = Electric equipment = Natural gas equipment
=== Electric HAVC system =—— Natural gas HAVC system Water heating

Figure 4. Comparison of calibrated and survey annual electric (A) and natural gas use (B)

intensities and the performance of calibration by end-uses (C).
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4.2 Annual AH intensity by building types

Commercial buildings showed larger intensity (kWh/m?) of annual total AH and larger
proportion of AH from HVAC system compared to residential buildings (Figure 5). Two highest
annual total AH intensities were restaurant (1393 kWh/m?) and strip mall (1331 kWh/m?). They
were about six times large as that of residential buildings of MF-electricity (217 kWh/m?). On
average, AH from HVAC system accounted for about 40% of total AH intensity for commercial
buildings, while for residential buildings, it only accounted for about 10%. In particular, in
buildings with large conditioned areas such as large office and hospital, this component accounted
for almost 80% of total AH intensities. However, reversed situation was observed for the other
two components. AH from envelope convection and zone infiltration and exfiltration accounted
for about 70% and 20% of total AH intensities in residential buildings, respectively, while for
commercial buildings except for restaurant, they only accounted for an average of 50% and 10%,
respectively. Particularly, large variability of AH intensities from envelope convection was found
for commercial buildings, ranging from 15% for large office to 84% for warehouse. In addition,
due to air exhausted through fans in kitchens, the highest proportion (40%) and magnitude (561

kWh/m?) of AH intensity from zone infiltration and exfiltration were found for restaurants.
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Figure 5. Annual total AH intensity (kWh/m?) and its three components by building types in 2012

in Boston.
4.3 Temporal patterns of building AH

Monthly variations of building AH appeared high in summer and low in winter for total AH

and its envelope and HVAC components, while for zone component, the monthly pattern was

reversed (Figure 6). The highest total building AH of commercial (1.36 x10° kWh) and residential

(1.02 x10° kWh) buildings occurred in July. The lowest total AH occurred in December (0.65 %

10° kWh) for commercial buildings and in October (0.6 x10° kWh) for residential buildings.

Monthly pattern of building AH from envelope convection was consistent with the seasonal change

of solar radiation, reaching the highest value (1.58 x10° kWh) in July and lowest value (0.32 x10°

kWh) in December. Building AH from zone infiltration and exfiltration reached the highest value
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(0.56 x10° kWh) in January and lowest value (0.05 x10° kWh) in August due to small difference

in enthalpies between exhaust and outdoor air in summer (Hong et al., 2020). Unlike the other two

components, building AH from HVAC system showed two peaks around July and January. The

first peak (0.8 x10° kWh) appeared in summer because of its high heat emissions from relief air

for cooling use, whereas the winter maximum (0.65 x10° kWh) was due to its high reject heat

emissions from combustion exhaust for heating use.
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Figure 6. Monthly total building AH and its three components of commercial and residential

buildings in Boston in 2012.

Except for zone component, hourly total building AH and its envelope and HVAC
components exhibited significant variations with the highest AH in afternoon and the lowest AH
at midnight (Figure 7). Diurnal variations of AH from envelope convection followed diurnal

changes of solar radiation. In summer, AH from envelope convection increased dramatically

between 5 am to 8 pm and reached its peak (7.0 x10% kWh) at noon. In winter, it increased

dramatically between 7 am to 6 pm and reached its peak (5.7 x10% kWh) at 1 pm. The trend of
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building AH from HVAC system was strongly affected by operation schedules of occupants and

outdoor air temperature. When HVAC system was on between 6 am to 10 pm, the trend of AH

from HVAC system was related to outdoor air temperature in summer, reaching its peak (3.0 x10°

kWh) at 4 pm. The peak period in residential buildings (between 2 pm to 6 pm) occurred 1 hour

later than that in commercial buildings (between 1pm to 5 pm). However, diurnal variations of this

component in winter were not significant, especially in residential buildings. AH from zone

infiltration and exfiltration showed small fluctuation around 1.4 x10® kWh in winter and large

fluctuation in the daytime of summer with the lowest value (-0.6%10°kWh) at 2 pm.
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Figure 7. Hourly building AH and its three components of commercial and residential buildings

on the coldest day (January 15, marked with dash line) and hottest day (July 17, marked with solid

line) in 2012 in Boston.
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4.4 Spatial patterns of building AH
At the individual building level, the annual total building AH reached 9.7x10% kWh in

downtown, while it was down to 35 kWh in suburb (Figure 8A). Building AH from HVAC system

showed the largest downtown-suburban gradient (Figure 8D), falling from 8.1x10® kWh in

downtown to 4.7 kWh in suburb. Building AH from zone infiltration and exfiltration exhibited the

smallest downtown-suburban gradient (Figure 8C), dropping from 1.0 x10® kWh in downtown to

4.7 kWh in suburb. Buildings with annual total AH larger than 10.4 x10° kWh were mainly

distributed in downtown crowded with tall and commercial buildings (e.g., offices, hotels, and

hospitals). Buildings with annual total AH less than 1.0 x10° kWh were found in suburb covered

by single- and multi-family houses.
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Figure 8. Spatial patterns of the total annual building AH (A) and AH from envelope convection

(B), zone infiltration and exfiltration (C), and HVAC system (D) in Boston in 2012.

Densities (kWh/m?) of total building AH were highest in Back Bay neighborhood and lowest
in East Boston neighborhood (Figure 9). Density of building AH here was the ratio of the sum of
building AH in a neighborhood and the area of neighborhood. In summer, the density of total AH
of Back Bay neighborhood reached the maximum value of 526 kWh/m?, of which 56% was from
HVAC system and 44% was from envelope convection. In winter, total AH density of Back Bay

neighborhood reached the minimum value of 369 kWh/m?, of which 54% was from HVAC system,
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followed by envelope convection (24%) and zone infiltration and exfiltration (22%). Southern and
northern suburban neighborhoods (i.e., West Roxbury, Roslindale, Hyde Park, Mattapan, and East

Boston) showed a lower density of total AH than 30 kWh/m? in summer and 20 kWh/m? in winter.

For most of neighborhoods, seasonal variations of total building AH were not as dramatic as
its three components because of changes in the proportion of these three components among total
AH in different seasons. In spring, summer, and fall, except for urban core neighborhoods such as
Back Bay, West End, and Longwood, building AH from envelope convection was the most
dominant component with a proportion over 65%, determining spatial patterns of total building
AH in these three seasons. This component did not show significant difference between spring and
summer because of its monthly high AH in May, June, and July (end of spring and start of summer).
In winter, the proportion of three AH components among total AH was similar, jointly determining

spatial patterns of total AH.
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Figure 9. Densities (kWh/m?) of seasonal total building AH (A) and AH from envelope convection
(B), zone infiltration and exfiltration (C), and HVAC system (D) at the neighborhood level in

Boston in 2012.

5. Discussion

The magnitude of building AH and its component varied among building types due to a
variability of geometry structures, HVAC systems, and construction materials of buildings. For
instance, small office and warehouse prototypes are characterized by a small building area with a
relatively large surface-to-volume ratio (Hong et al., 2020), causing a large share of AH from
envelope component. Since central cooling systems with a chilled water plant are always needed

for large buildings to meet intensive cooling loads (Hong et al., 2020), large office and hospital
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buildings equipped with cooling towers demonstrated a large share of AH from HVAC component.
Thermal resistance of construction materials in residential buildings was lower than that in
commercial building prototypes, resulting in relatively larger share of AH from envelope

component.

The knowledge about spatiotemporal patterns of building AH from this study has a potential
to assist policymakers in developing building energy-saving strategies tailored to a specific city or
region, which in turn facilitates smart city planning and sustainable urban development. For
example, West Roxbury, Hyde Park, Roslindale, and East Boston neighborhoods show the largest
share (up to 65%) of heat emissions from envelope conduction, informing local governments to
prioritize reducing building AH from envelope conduction in northern and southern suburban areas.
Additional high-resistivity insulation layer on the exterior surfaces of buildings can be considered
to limit conductive heat flow (Ferrando et al., 2021). Longwood, Back Bay and West End
neighborhoods show the largest share (up to 55%) of heat emissions from the HVAC system.
Actions related to the efficiency improvement of HVAC system can be prioritized to reduce total

AH in these neighborhoods.

The dataset of hourly building AH at individual building level can be aggregated into very
high spatial resolution, for numerical weather prediction models (e.g., Weather Research and
Forecasting (WRF) Model) to quantify the magnitude of its contribution to UHI and explore the
effects of different urban heat mitigation strategies. Driven by building AH data, numerical
weather prediction models can better represent the spatial heterogeneity of building AH, and
therefore help to investigate how building AH can influence urban thermal environment at high
spatial resolution. Moreover, driven by building AH data under different scenarios of building

efficiency improvement, numerical weather prediction models can be used to explore the role of
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building AH in mitigating UHI effect, providing scientific basis for developing urban heat

mitigation and adaption measures in Boston.

Our calibration method of the city-scale building energy use modeling can provide a feasible
solution to accurately calibrate building energy consumption in other areas by capitalizing on an
advantage of nationwide coverage of two datasets, i.e., building energy surveys and building
prototypes. CBECS and RECS are the largest building energy surveys to date conducted by the
EIA(Deng et al., 2018), reporting over 12,000 residential and 6,700 commercial buildings’ annual
energy consumption in the U.S., disaggregating by energy sources and end-uses. PNNL and DOE
developed building prototypes across 16 locations representing all U.S. climate zones. However,
the proposed method is restrained to using survey data with end-use information. It is challenging
to conduct monthly calibration using the proposed method because monthly metered utility data
are usually not specified for end-use categories. When utility meter data become widely available,

monthly or hourly calibration can be developed to improve building energy use and AH modeling.

This study opened future research avenues. For example, large scale building type (e.g.,
office, restaurant, hospital, school, retail, hotel, and residence) mapping methods are highly needed
to support building AH estimation, especially in areas with limited data availability. Together with
the support of existing large scale building footprint (“Microsoft US Building Footprints,” 2018)
and height (Li et al., 2020) datasets, the city-scale building AH models can be used to investigate
historical and future urban building AH under different climate and policy scenarios, offering

supports for government policy making and city sustainable development planning.

6. Conclusions

In this study, a framework named CityBHEM was developed to estimate building AH and

its three components at single building level and hourly scale and implemented this framework in
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the study area of Boston. First, sixteen building prototypes were selected based on building type,
construction year, and foundation type in Boston. Second, an end-use-based calibration of building
energy use for each prototype was developed to ensure the performance of EnergyPlus calculation.
Finally, hourly building AH and its three components for each building in Boston were estimated

using AH intensities from calibrated prototypes together with building types and sizes.

Our results from the CityBHEM revealed spatiotemporal patterns of building AH and its
three components in Boston. Spatially, the annual total building AH reached 9.7x10® kWh in
downtown, while it was only 35 kWh in suburb. AH from HVAC system is a main contributor of
large downtown-suburban gradient, followed by envelope convection and zone infiltration and
exfiltration. Temporally, AH from envelope convection and HVAC system in July were
significantly higher than those in January, with a diurnal peak at noon and 4pm, respectively. AH
from zone infiltration and exfiltration in January was significantly higher than that in July, with

small diurnal fluctuations.

The proposed CityBHEM by integrating publicly available datasets and physical modeling
is transferable to other U.S. cities, offering great support for UHI studies and city sustainable
development planning. The resulting datasets can serve as a reliable input for numerical weather
predication models in UHI studies to improve the understanding of feedbacks between urban
systems and the atmosphere. The improved understanding of building AH from various
components is of great help for policymakers in developing building energy-saving strategies
tailored to a specific region within cities. To improve monthly or hourly patterns of building energy
use and AH modeling performance, metered utility data will be of help for developing monthly or

hourly calibration method in future studies. Another possible future research avenue is the
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437  development of large scale building type mapping methods to support building AH estimation with

438  high spatiotemporal details in areas with limited data availability.
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