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An Analysis of Closed-Loop Stability for Linear Model
Predictive Control Based on Time-Distributed Optimization

Dominic Liao-McPherson, Terrence Skibik, Jordan Leung, Ilya Kolmanovsky, Marco M. Nicotra

Abstract—Time-distributed Optimization (TDO) is an approach for
reducing the computational burden of Model Predictive Control (MPC)
and a generalization of the Real-Time Iteration (RTI) scheme. When using
TDO, optimization iterations are distributed over time by maintaining a
running solution estimate and updating it at each sampling instant. In
this paper, TDO applied to input-constrained linear-quadratic MPC is
studied in detail, and an analytic bound for the number of optimization
iterations per sampling instant required to guarantee closed-loop stability
is derived. Further, it is shown that the closed-loop stability of TDO-
based MPC can be guaranteed using multiple mechanisms including
increasing the number of solver iterations, preconditioning the optimal
control problem, adjusting the MPC cost matrices, and reducing the
length of the receding horizon. These results in a linear system setting also
provide insights and guidelines that could be more broadly applicable,
for example to nonlinear MPC.

I. INTRODUCTION

Model Predictive Control (MPC) is a feedback strategy that gen-
erates inputs by solving an Optimal Control Problem (OCP) over a
finite receding horizon [1]. To implement MPC, the solution of the
OCP must be computed within the sampling period of the controller;
this may not always be feasible for systems with limited computing
power, fast sampling rates, and/or highly nonlinear dynamics.

One approach to reducing the computational footprint of MPC is to
maintain a running solution estimate and improve it, typically using
one or more iterations of an iterative optimization method, instead
of accurately solving the OCP at each sampling instant. This leads
to a feedback loop between the plant and the optimization algorithm
as illustrated in Figure 1. In the context of MPC, this family of
approaches is often called real-time methods [2] or time-distributed
optimization (TDO) [3]. We adopt the latter term in this paper.
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Fig. 1. Optimal MPC is a static feedback law K. Suboptimal MPC is a
feedback interconnection between the plant and an optimization algorithm
with a solution estimate z as its internal state, dynamics defined by ` iterations
of the algorithm, denoted by T `, and a output selection matrix Ξ.

Running methods have been extensively studied in the context of
time-varying convex optimization [4] when the problem data evolves
exogenously in time. In MPC, the parameter evolution creates a
feedback loop between the plant and optimization algorithm.
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The effect of suboptimality on the closed-loop properties of MPC
is well studied, see e.g., [5]–[10]. However, relatively few works
explicitly study the case where the dynamics of the optimization
algorithm are evolving in parallel with the system. The attractivity
of the closed-loop equilibria under the real-time iteration (RTI)
scheme [11], a real-time method wherein a single unconstrained
Newton step is performed per sampling instant, is established in
[12], given a sufficiently short sampling period. This result was
recently extended to establish stability of an inequality constrained
version of the RTI scheme using Lyapunov arguments [2], [13]. In
[3], the authors establish robust stability of TDO-MPC using the
Input-to-State Stability (ISS) framework under the assumption that
enough iterations are performed per sampling instant. All of these
works address nonlinear MPC but rely on quantities that are typically
not readily computable. Finally, in [14], an MPC formulation for
linear systems using relaxed logarithmic barrier functions is proposed.
The OCP is constructed so as to guarantee closed-loop stability of
the coupled plant-optimizer system, as well as bounded constraint
violation, using a combination of shifting and one or more iterations
of an optimization algorithm.

Control schemes which use continuous-time gradient flows are
investigated in [15], [16] and [17]. The stability of suboptimal
sampled-data nonlinear MPC subject to input constraints is studied
in [18] and [19] under the assumption of a linearly convergent
optimization algorithm. A method for suboptimal linear-quadratic
MPC (LQMPC) with state and control constraints using a dual
accelerated gradient projection is proposed in [10] which tightens
constraints based on a pre-specified degree of suboptimality to ensure
stability. Input constrained LQMPC, implemented using a primal
accelerated gradient method, is considered in [20] and bounds on
the number of iterations needed to achieve a pre-specified level of
suboptimality are derived.

In this paper, we apply the framework of [3] to the specific
case of discrete-time input constrained LQMPC implemented using
primal gradient-based methods. Our contributions are threefold: (i)
we derive explicit expressions for the ISS gains of the plant and
optimizer and use them to provide numerically verifiable bounds on
the number of iterations required for stability; (ii) we investigate sev-
eral mechanisms, namely, increasing the number of solver iterations,
preconditioning the OCP, tuning the cost function, and reducing the
prediction horizon, for ensuring stability of the closed-loop system;
(iii) using two numerical examples, we show that the iteration bound
for asymptotic stability is comparable to the iteration bound for
suboptimality computed in [20] for a stable system, and exhibits
the same trends as the number of iterations needed to stabilize an
unstable system in simulation.

Our analysis has some advantages compared to existing literature.
We investigate a broader range of mechanisms for ensuring closed-
loop stability; existing works only consider increasing the number
of iterations in discrete time [3], decreasing the sampling period in
sample-data settings [2], increasing the flow speed in continuous-time
[16] or propose various mechanisms for guaranteeing satisfaction
of a terminal constraint [5], [9], [10], [21]. To the best of our
knowledge, the effect of adjusting the horizon length and tuning the
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cost function on the stability of TDO has not been explicitly studied
in the literature. We also derive explicit expressions for the number
of iterations required for stability in terms of the problem data; the
more general analyses [2], [3], prove existence of such a bound but
do not include a recipe to compute it. We also include hard input
constraints, the approach in [14] does not guarantee input constraint
satisfaction and is thus not necessarily stabilizing in the presence
of saturation. Moreover, our goal is to analyze several common
MPC formulation/optimization algorithm combinations rather than
proposing a new suboptimality resistant formulation as in [14].
Finally, the iteration bound in this paper is independent of any
(arbitrary) pre-specified degree of suboptimality, unlike in [20] and
[10].

Although we establish these results in a particular setting, they
provide insight and guidelines on how stability can be ensured more
generally. For instance, we expect that the trends in the iteration
bound we observe as the input penalty weight and horizon length
change will carry over to nonlinear settings.

The paper is organized as follows: We introduce the problem
setting in Section II and the optimization algorithms in Section III
before proceeding to a stability proof in Section IV and numerical
results/discussions in Section V.

Notation: The normal cone mapping of a closed, convex set C is
defined as follows:

NC(v) =

{
{y | yT (w − v) ≤ 0, ∀w ∈ C}, if v ∈ C,
∅ else.

If A ∈ Rm×n, B ∈ Rp×q then A ⊗ B ∈ Rpm×qn denotes
the Kronecker product. If x ∈ Rn, y ∈ Rm then (x, y) =
[xT yT ]T ∈ Rn+m. Let (Sn++, Sn+) denote the set of symmetric
n × n positive (definite, semidefinite) matrices. Given x ∈ Rn
and W ∈ Sn++, the W -norm of x is ‖x‖W =

√
xTWx. Given

M ∈ Sn+ we use λ−W (M) and λ+
W (M) respectively to denote

the minimum and maximum eigenvalues of
√
W
−1
M
√
W
−1

; these
satisfy λ−W (M)‖x‖2W ≤ ‖x‖2M ≤ λ+

W (M)‖x‖2W . The condition
number of M ∈ Sn+ is κ(M) = λ+(M)/λ−(M). If the subscript
is omitted then it is understood that W = I . Our use of comparison
functions, e.g., class K, KL, or L functions, follows [22]. We also
make extensive use of Input-to-State Stability (ISS) analysis tools
such as asymptotic gains, see [23], [24] for more details, and use
lim as shorthand for lim sup.

II. PROBLEM SETTING

Consider a Linear Time Invariant (LTI) system

xk+1 = Axk +Buk, (1)

where A ∈ Rn×n, B ∈ Rn×m, x ∈ Rn is the state, and u ∈ Rm
is the control input. The control objective is to stabilize the origin
of (1) while enforcing the input constraint uk ∈ U , ∀k ≥ 0 where
U ⊆ Rm is a specified set encoding constraints.

We will approach the problem using MPC. To do so, consider the
following Parameterized Optimal Control Problem (POCP)

min
ξ,ν

‖ξN‖2P +

N−1∑
i=0

‖ξi‖2Q + ‖µi‖2R (2a)

s.t. ξi+1 = Aξi +Bµi, i = 0, . . . , N−1, (2b)

ξ0 = x, µi ∈ U , i = 0, . . . , N−1. (2c)

where N > 0 is the horizon length, Q ∈ Rn×n, R ∈ Rm×m and P ∈
Rn×n are weighting matrices, x ∈ Rn is the parameter/measured
state, ν = (µ0, . . . , µN−1), and ξ = (ξ0, . . . , ξN ). We make the

following assumptions to ensure that (2) can be used to construct a
stabilizing feedback law for (1).

Assumption 1. The pair (A,B) is stabilizable, R ∈ Sm++, Q ∈
Sn++ and P ∈ Sn++ satisfies P = Q + ATPA − (ATPB)(R +
BTPB)−1(BTPA).

Assumption 2. The set U ⊆ Rm is closed, convex, and contains the
origin in its interior.

The MPC feedback law (see, e.g., [25]) for (1) is

u = K(x) = ΞS(x), (3)

where Ξ = [1 0 . . . 0]T⊗ Im selects µ0 from ν and S(x) denotes
the global solution of (2) for the parameter value x.

Remark 1. The assumption Q ∈ Sn++ can be replaced with the
weaker condition Q ∈ Sn+ and (A,Q) observable. However, the
stronger condition lends itself to a tighter ISS gain.

Oftentimes, insufficient computational resources are available to
solve (2) at each iteration. Instead, we perform a finite number
` ∈ N(0,∞) of iterations at each sampling instant and warmstart the
optimization algorithm using the estimate from the previous sampling
instant. This leads to a coupled plant-optimizer system

zk = T `(zk−1, xk), (4a)

xk+1 = Axk +BΞzk, (4b)

where zk is a running estimate of S(xk) and T ` represents the
operator associated with ` iterations of an optimization algorithm.
In this paper, T ` will represent both accelerated and non-accelerated
projected gradient methods.

In a recent paper [3], we analyzed a generalized version of (4) using
Input-to-State Stability (ISS) and small-gain tools. However, since the
setting was fairly general, the paper [3] was limited to existence type
proofs. In this paper, we consider an analytically tractable special
case and derive computable expressions for the iteration bounds. Our
goal is to analyze these expressions to better understand what factors
influence the properties of (4).

Remark 1. The technical novelty of our analysis lies in the use
of computable expressions throughout and careful use of weighted
norms to reduce the conservatism of the final iterations bounds.

III. OPTIMIZATION STRATEGY

The OCP (2) can be written in a condensed form as

min
z∈Z

f(z, x) (5)

where Z = U × U × · · · × U and

f(z, x) = ‖(z, x)‖M , M =

[
H G
GT W

]
. (6)

Expressions for the matrices H ∈ SNm++ , W ∈ Sn++, and G ∈
RNm×n are given in the appendix. The following lemma, whose
proof can also be found in the appendix, characterizes W .

Lemma 1. The matrix W in (5) satisfies W � P � 0 if: i) Q ∈ Sn+,
ii) (A,Q) are observable, iii) R ∈ Sm++, and iv) P satisfies the
matrix equation in Assumption 1.

Since (5) is strongly convex, satisfaction of the following Varia-
tional Inequality (VI) is necessary and sufficient for optimality of any
z ∈ RNm with respect to (5) [26],

Hz +Gx+NZ(z) 3 0, (7)
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and the solution mapping

S(x) = A−1(−Gx), A = H +NZ , (8)

is a function. A common approach for solving (7) is with an iterative
optimization algorithm. A single iteration of a typical optimization
algorithm can be represented by zj+1 = T (zj , x), where T : RNm×
Rn → RNm is the algorithm mapping, zj ∈ RNm is the solution
estimate and j is the iteration index. Performing multiple iterations
leads to the following recursive definition for the `-step optimization
operator T ` : RNm × Rn → RNm,

T `(z, x) = T (T `−1(z, x), x), (9)

where z ∈ RNm is the initial guess, x is the parameter, and
T 0(z, x) := z. In the following subsections, we present two possible
choices for (9).

A. Projected Gradient Method

One method for solving (5) is the projected gradient method (PGM)

zj+1 = ΠZ [zj − α∇zf(zj , x)], (10)

where α = 1/(λ+(H) + λ−(H)) and ΠV denotes Euclidean
projection onto Z . This choice of α maximizes the convergence rate
of the algorithm [27] which is characterized in Theorem 1.

Theorem 1. ( [27, Theorem 3.1]) Let T ` represent the PGM (10),
pick any x ∈ Rn and suppose Assumptions 1 and 2 hold. Then, for
any z ∈ RNm, ‖T `(z, x) − S(x)‖ ≤ η`‖z − S(x)‖ where η =
(κ(H)− 1)/(κ(H) + 1) and κ(H) = λ+(H)/λ−(H).

B. Accelerated Projected Gradient Method

Another option for defining T ` is the accelerated projected gradient
method (APGM) [28]. The method is summarized in Algorithm 1 and
Theorem 2 summarizes the convergence properties of the APGM for
strongly convex problems.

Algorithm 1 Accelerated Projected Gradient Method
Input: z ∈ Z , x, ` > 0
Output: z`

1: m = 2λ−(H), L = 2λ+(H), κ = L/m
2: θ0 = 1, θ−1 = 0, v0 = z0 = z
3: for k = 0, ... , `− 1 do
4: yk = zk + θkγk

γk+mθk
(vk − zk), γk = θ2k−1L

5: zk+1 = ΠZ [yk − L−1∇zf(yk, x)]
6: vk+1 = zk + θ−1

k (zk+1 − zk)

7: θk+1 = ζk
2

(√
1 + (4θ2k/ζ

2
k)− 1

)
, ζk = θ2k − κ−1

8: end for

Theorem 2. Given Assumptions 1–2, let T ` represent Algorithm 1
and pick any x ∈ Rn. Then for any z ∈ Z , ||T `(z, x)− S(x)||H ≤

ηa(`)||z − S(x)||H , where ηa(`) =
√
κ(H)

(
1− (κ(H))−

1
2

) `−1
2 .

Proof. Define η̄2(`) =
(

1− (κ(H))−
1
2

)`−1

, the APGM satisfies,

f(T `(z, x), x)− f(S(x), x) ≤ λ+(H)η̄(`)2‖z − S(x)‖2, (11)

see e.g., [29], [30]. Since S(x) minimizes (5), which is a strongly
convex function in z for any x, we have that

f(z′, x) ≥ f(S(x), x) + ||z′ − S(x)||2H ∀z′ ∈ Z. (12)

Combining (11), (12) and λ−(H)‖z′ − S(x)‖2 ≤ ‖z′ − S(x)‖2H
yields

||T `(z, x)− S(x)||2H ≤ κ(H)η̄(`)2||z − S(x)||2H . (13)

Taking the square root of both sides completes the proof.

Corollary 1. The function ηa defined in Theorem 2, satisfies ηa(`) <
1 for all

` > ¯̀= 1− log (κ(H))

log(1− 1/
√
κ(H))

.

Remark 2. The PGM and APGM both converge q-linearly but
their convergence rates η and ηa have different dependencies on the
condition number. The convergence rate of the PGM scales like 1/κ
while that of the APGM scales like 1/

√
κ. Thus, we expect the APGM

to be faster for ill-conditioned problems. However, in the PGM the
error ‖zk−S(x)‖ decreases monotonically for any ` > 0, while the
same is true for the APGM only if ` > ¯̀.

IV. STABILITY ANALYSIS OF THE COUPLED SYSTEM

In this section, we analyze (4) using the ISS framework. Our goal is
to derive numerically verifiable conditions under which the real-time
implementation of MPC leads to an asymptotically stable closed-loop
system. Throughout this section we will use the error signal

ek = zk − S(xk) (14)

to quantify the degree of suboptimality of the solution estimate.

A. Properties of the Solution Mapping

We begin with an analysis of the OCP solution mapping. Both the
optimization algorithms and optimal MPC feedback policy depend
strongly on its properties.

Proposition 1. Let Assumptions 1-2 hold and A be defined by
(8), then: (i) A is strongly monotone, i.e. 〈u − v, y − z〉 ≥ ‖y −
z‖2H ,∀u ∈ A(y), v ∈ A(z); (ii) A−1 is a co-coercive function, i.e.〈
A−1u−A−1v, u− v

〉
≥ ||A−1u − A−1v||2H ; and (iii) A−1 is

Lipschitz continuous, i.e. ‖A−1u−A−1v‖H ≤ ||u− v||H−1 .

Proof. (i) Since A−H = NZ , then by monotonicity of NZ [26]

〈u−Hy − v +Hz, y − z〉 ≥ 0,

=⇒ 〈u− v, y − z〉 ≥ 〈H(y − z), y − z〉 = ‖y − z‖2H ,

for all y, z ∈ Z and u ∈ A(y), v ∈ A(z).
(ii) Follows directly from (i) [31, Example 22.6].
(iii) Rearranging (ii) yields

||A−1u−A−1v||2H ≤ 〈A−1u−A−1v, u− v〉

≤
〈
H

1
2 (A−1u−A−1v), H−

1
2 (u− v)

〉
≤ ||A−1u−A−1v||H ||u− v||H−1 ,

where the last line follows from the Cauchy-Schwartz inequality.
Dividing through by ||A−1u−A−1v||H completes the proof.

Corollary 2. Let Assumptions 1-2 hold, then for all x, y ∈ Rn, the
solution mapping satisfies

〈S(x)− S(y), G(x− y)〉 ≤ −‖S(x)− S(y)‖2H , (15)

and ‖S(x)− S(y)‖H ≤ ‖G(x− y)‖H−1 , i.e., it is Lipschitz.



4

B. Properties of the Value Function

Define the value function of (5) as

V (x) = min
z∈Z

f(z, x) = ‖(S(x), x)‖2M . (16)

The square-root of the value function

ψ(x) =
√
V (x) = ‖(S(x), x)‖M , (17)

will be shown to be an ISS-Lyapunov function for the optimal MPC
law. The functions V and ψ have the following properties.

Lemma 2. Let Assumptions 1-2 hold, then for all x ∈ Rn the value
function satisfies

‖x‖2P ≤ V (x) ≤ ‖x‖2W − ‖S(x)‖2H ≤ ‖x‖2W . (18)

Proof. First, we derive the upper bound as

V (x) = ‖(S(x), x)‖2M = ‖x‖2W + 2〈S(x), Gx〉+ ‖S(x)‖2H
≤ ‖x‖2W − ‖S(x)‖2H ≤ ‖x‖2W

where the last line follows from (15) with y = 0. The lower bound
follows from the fact that ‖x‖2P is the cost-to-go of the infinite
horizon linear quadratic regulator under Assumption 1.

Lemma 3. Let Assumptions 1-2 hold, then

|ψ(x)− ψ(y)| ≤ ‖x− y‖W ∀x, y ∈ Rn. (19)

Proof. From the definition of ψ(x) = ‖(S(x), x)‖M :

|ψ(x)− ψ(y)|2 = |‖(S(x), x)‖M − ‖(S(y), y)‖M |2 (20)

≤ ‖(S(x)− S(y), x− y)‖2M , (21)

where the second line follows from the reverse triangle inequality.
Then, by the definition of M in (6), it follows that

‖(S(x)− S(y), x− y)‖2M = ‖x− y‖2W+

2 〈S(x)− S(y), G(x− y)〉+ ‖S(x)− S(y)‖2H . (22)

Combining this with (15) and substituting it into (21) yields

|ψ(x)− ψ(y)|2 ≤ ‖x− y‖2W − ‖S(x)− S(y)‖2H ≤ ‖x− y‖2W ,

as claimed.

C. ISS of Optimal MPC with Respect to Suboptimality Disturbances

Having detailed the properties of the solution mapping and value
function, it is now possible to derive an asymptotic gain for the ideal
closed-loop system given a bounded disturbance. For any xk ∈ Rn,
consider the following ideal (denoted with a “∗”) and disturbed one
step updates

x∗k+1 = Axk + B̄S(xk), (23)

xk+1 = Axk + B̄(S(xk) + ek). (24)

where B̄ = BΞ and ek, defined in (14), is an additive disturbance
that represents suboptimality due to incomplete optimization.

First, we establish that ψ is a Lyapunov function for the ideal
closed-loop system (23). Define

ΓN = {x ∈ Rn | − K̄ξ∗N (x) ∈ U}, (25)

where ξ∗N (x) is the final element of the optimal predicted state
sequence of (2) given the parameter x and K̄ = (R +
BTPB)−1(BTPA) is the linear quadratic regulator gain.

Lemma 4 establishes linear convergence of ψ(xk) in ΓN under
the optimal MPC policy.

Lemma 4. Let Assumptions 1-2 hold and pick any xk ∈ ΓN , then

ψ(x∗k+1) ≤ βψ(xk) (26)

where x∗k+1 is as defined in (23) and β2 = 1− λ−W (Q) ∈ (0, 1).

Proof. For any xk ∈ ΓN ,

V (x∗k+1)− V (xk) ≤ −‖xk‖2Q, (27)

see e.g., [25]. Rearranging (27) and using Lemma 2 yields

V (x∗k+1)− V (xk) ≤ −λ−W (Q)‖xk‖2W ≤ −λ−W (Q)V (xk) (28)

and thus V (x∗k+1) ≤ (1 − λ−W (Q))V (xk). From Lemma 1, W �
P � Q � 0 and hence λ−W (Q) ∈ (0, 1) which completes the proof.

With these results in place, we can prove Theorem 3.

Theorem 3. Let Assumptions 1-2 hold, and define the set

Ω = {x ∈ Rn | ψ(x) ≤ rψ} , (29)

where rψ > 0 is the largest constant such that Ω ⊆ ΓN . Then the
system (24) is ISS in the sense that for any initial condition x0 ∈ Ω
and input sequence {ek} ⊆ E its solution satisfies

‖xk‖P ≤ βk‖x0‖W + γ1 sup
k≥0
‖B̄ek‖W (30)

where γ1 = (1− β)−1, E = {e | γ1‖B̄e‖W ≤ rψ}, β is defined in
Lemma 4 and rψ is defined in (29).

Proof. We first show that Ω is forward invariant. Combining
Lemma 3, (23), and (24)

|ψ(x∗k+1)− ψ(xk+1)| ≤ ‖x∗k+1 − xk+1‖W = ‖B̄ek‖W . (31)

Then, assuming xk ∈ Ω and using Lemma 4,

ψ(xk+1) ≤ ψ(x∗k+1) + |ψ(xk+1)− ψ(x∗k+1)|,
≤ βψ(xk) + ‖B̄ek‖W . (32)

Given (32), then the restriction ek ∈ E and xk ∈ Ω imply that
ψ(xk+1) ≤ rψ . Hence xk+1 ∈ Ω and Ω is forward invariant. Then,
following [23, Example 3.4], (32) implies that

ψ(xk) ≤ βkψ(x0) +
k∑
j=0

βk−j‖B̄ej‖W , (33)

and using the properties of geometric series, we obtain

ψ(xk) ≤ βkψ(x0) +
1

1− β sup
k≥0
‖B̄ek‖W . (34)

Using Lemma 2 to replace ψ in (34) completes the proof.

D. ISS Gain of the PGM methods

Having shown that the system in (1) in closed-loop with the optimal
MPC feedback law is ISS with respect to additive suboptimality
disturbances, we now investigate the properties of (4a).

Theorem 4. Consider the optimizer dynamics (4a) when T ` repre-
sents the PGM. Under Assumptions 1 and 2, the error signal ek in
(14), is ISS with respect to ∆xk = xk+1 − xk, i.e.,

‖ek‖ ≤ ηk`‖e0‖+ γ2(`) sup
k≥0
‖G∆xk‖H−1 (35)

where γ2(`) = bη`/(1 − η`), b = ‖H−
1
2 ‖, and η is defined in

Theorem 1. Moreover, lim
k→∞

‖ek‖ ≤ γ2(`) lim
k→∞

‖G∆xk‖H−1 .
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Proof. First, we consider how the error is influenced by perturbations
in x. By Theorem 1, we have that

‖T `(zk, xk+1)− S(xk+1)‖ ≤ η`‖zk − S(xk+1)‖ (36a)

= η`‖zk − S(xk+1) + S(xk)− S(xk)‖ (36b)

≤ η`‖zk − S(xk)‖+ η`‖H−
1
2 (S(xk+1)− S(xk))‖H (36c)

≤ η`‖zk − S(xk)‖+ η`b‖G(xk+1 − xk)‖H−1 (36d)

where (36d) follows from Corollary 2, b = ‖H−
1
2 ‖, and η < 1 is

the convergence rate from Theorem 1. Thus, we have that

‖ek+1‖ ≤ η`‖ek‖+ η`b‖G∆xk‖H−1 . (37)

Since η < 1, the claim follows from [23, Example 3.4] and [23,
Lemma 3.8].

E. ISS gain of the APGM method

Next, we investigate the ISS properties of (9) with T ` representing
the APGM dynamics defined in Algorithm 1.

Theorem 5. Consider the optimizer dynamics (4a) when T ` repre-
sents Algorithm 1. Under Assumptions 1–2 and provided that ` > ¯̀,
where ¯̀ is defined in Corollary 1, the error signal ek in (14) is ISS
with respect to the state update ∆xk, i.e.,

‖ek‖H ≤ ηka(`)‖e0‖H + γa2 (`) sup
k≥0
‖G∆xk‖H−1 (38)

where γa2 (`) = ηa(`)/(1 − ηa(`)), and ηa ∈ L is defined in
Theorem 2. Moreover, lim

k→∞
‖ek‖H ≤ γa2 (`) lim

k→∞
‖G∆xk‖H−1 .

Proof. The proof is similar to that of Theorem 4. Applying Corol-
lary 2 and Lemma 2, and following the same steps as in (36) using
the H-norm in place of the 2-norm, yields

‖ek+1‖H ≤ ηa(`)‖ek‖H + ηa(`)||G∆xk||H−1 . (39)

By virtue of Corollary 1, we have ηa(`) < 1 for all ` > ¯̀. The claim
then follows from [23, Example 3.4] and [23, Lemma 3.8].

F. Stability of the Interconnection

Having characterized the ISS properties of both MPC and the
optimizer, we now consider the interconnected system (4). The
following theorem identifies sufficient conditions under which (4)
is asymptotically stable when T ` is defined using PGM.

Theorem 6. Suppose Assumptions 1-2 hold and T ` is defined using
the PGM (10). Then, the closed-loop system (4) is asymptotically
stable if ζγ1γ2(`) < 1, where ζ = 2‖H−

1
2GP−

1
2 ‖‖W

1
2BΞ‖ and

γ1, γ2 are defined in Theorems 3 and 4.

Proof. To begin, note that

lim
k→∞

‖G∆xk‖H−1 = lim
k→∞

‖G(xk+1 − xk)‖H−1 ,

≤ lim
k→∞

‖Gxk+1‖H−1 + lim
k→∞

‖Gxk‖H−1

= 2 lim
k→∞

‖H−
1
2GP−

1
2P

1
2 xk‖

≤ 2‖H−
1
2GP−

1
2 ‖ lim
k→∞

‖xk‖P .

Using Theorem 3, lim
k→∞

‖x‖P ≤ γ1 lim
k→∞

‖B̄ek‖W and thus

lim
k→∞

‖G∆xk‖H−1 ≤ 2‖H−
1
2GP−

1
2 ‖γ1 lim

k→∞
‖B̄ek‖W (40)

provided x0 ∈ Ω and {ek} ⊆ E . Since the input disturbance is given
by ek = zk − S(xk) and using the bound

‖B̄ek‖W ≤ ‖W
1
2 B̄‖‖ek‖, (41)

we have that the MPC subsystem is not only ISS (as stated in
Theorem 3), but also satisfies

lim
k→∞

‖G∆xk‖H−1 ≤ ζγ1 lim
k→∞

‖ek‖. (42)

Moreover, by Theorem 4 the PGM subsystem in (4) satisfies

lim
k→∞

‖ek‖ ≤ γ2(`) lim
k→∞

‖G∆xk‖H−1 . (43)

Combining (42) and (43) we conclude that

lim
k→∞

‖ek‖ ≤ ζγ1γ2(`) lim
k→∞

‖ek‖, (44)

therefore, by the Small Gain Theorem [24, Theorem 1], the in-
terconnected system is asymptotically stable if ζγ1γ2(`) < 1 and
{ek} ⊆ E .

Corollary 3. Under Assumptions 1-2, the PGM based closed-loop
system is asymptotically stable if

` > `∗ = − log (ζγ1b+ 1)

log (η)
,

where η, γ1, b, and ζ are defined in Theorems 1, 3, 4, and 6.
Moreover, since η < 1 and the other constants are finite, `∗ ∈ (0,∞).

The following theorem mirrors Theorem 6 when T ` is defined
using the APGM instead of the PGM.

Theorem 7. Suppose Assumptions 1-2 hold. Then, if T ` represents
Algorithm 1, the corresponding closed-loop system (4) is asymptot-
ically stable if ζaγ1γa2 (`) < 1 and ` > ¯̀ where ¯̀ is defined in
Corollary 1, ζa = 2‖H−

1
2GP−

1
2 ‖|W

1
2 B̄H−

1
2 ‖, and γ1, γ

a
2 are

defined in Theorems 3 and 5.

Proof. The proof is nearly identical to that of Theorem 6. Simply
replace (41) with ‖B̄ek‖W ≤ ‖W

1
2 B̄H−

1
2 ‖‖ek‖H , (42) with

lim
k→∞

‖G∆xk‖H−1 ≤ ζaγ1 lim
k→∞

‖ek‖H (Theorem 3), and (43) with

lim
k→∞

‖ek‖H ≤ lim
k→∞

γa2 (`)‖G∆xk‖H−1 (Theorem 5). The resulting
small gain condition is

lim
k→∞

‖ek‖H ≤ ζaγ1γa2 (`) lim
k→∞

‖ek‖H , (45)

and the restrictions due to Theorems 3 and 5 are x0 ∈ Ω, {ek} ⊆ E
and ` > ¯̀. As before, the claims follow from [24, Theorem 1].

Corollary 4. Under Assumptions 1-2, the APGM based closed-loop
system is asymptotically stable if ` > max(`∗a, ¯̀) where

`∗a = 1−
2 log

(
κ(H)

1
2 (1 + ζaγ1)

)
log
(

1− κ(H)−
1
2

)
and κ(H), γ1, and ζa are defined in Theorems 1, 3, and 7.

V. DISCUSSION AND NUMERICAL EXAMPLES

Theorems 6 and 7 provide sufficient conditions for the stability of
TDO-MPC under fairly strict assumptions (LTI system, convex input
constraints, no state constraints, projected gradient-type solvers).
Although less general than existing literature, (e.g. [2], [3]), the
proposed setting provides new insight on possible mechanisms that
can be leveraged to ensure convergence. To guide the discussion, we
will consider two benchmark systems: one open-loop stable and one
open-loop unstable.

Jones System: For the purpose of direct comparison with existing
literature, we consider the stable system addressed in [20], i.e.

xk+1 =


0.7 −0.1 0 0
0.2 −0.5 0.1 0
0 0.1 0.1 0

0.5 0 0.5 0.5

xk +


0 0.1

0.1 1
0.1 0
0 0

uk, (46)
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Fig. 2. Gains for the PGM, APGM, and their preconditioned (P) variants.
The line ζγ1γ2 = 1 is the stability threshold. The inflection seen for APGM
at lower values is caused by ` approaching ¯̀ defined in Corollary 1.

subject to the initial conditions x0 = [10 −10 10 −10]T , input
constraints U = [−1, 1] × [−1, 1]. Unless otherwise specified, the
nominal values for the other parameters in the OCP (2) are N = 5,
R = I , Q = 10I , and ` = 10.

Inverted Pendulum: We use a linear model of an inverted
pendulum on a cart to investigate the closed-loop behavior of TDO-
MPC for an unstable system. The equations of motion are

4/3 ml2φ̈−mlÿ = mglφ (47a)

(M +m)ÿ −mlφ̈ = −bẏ + F, (47b)

where y is the position of the cart, φ is the angle of the pendulum,
g = 9.81 m/s2 is the gravitational constant, M = 1 kg is the mass
of the cart, and m = 0.1 kg, b = 0.1 Ns/m, and l = 1 m are the
mass, damping coefficient, and length of the pendulum, respectively.
The states and control inputs are

x = [y ẏ φ φ̇]T , u = F. (48)

The angle φ = 0 corresponds to the upright position and the linear
model is generated by linearization of (47) about the origin. Given
the initial state x0 = [2 0 0 0]T , the control objective is to drive
the system to the origin subject to uk ∈ U = [−1, 1]. The control
law is implemented using a sampling period of τ = 0.2 s and state
weighting matrix Q = I . Unless otherwise specified, the nominal
values for the horizon length, input weighting matrix, number of
PGM solver iterations, and number of APGM solver iterations are
N = 7, R = I , `PGM = 105, and `APGM = 8× 103.

The following subsections describe a four different mechanisms for
ensuring the closed-loop stability of TDO-MPC and the advantages
and disadvantages of each.

A. Increase solver iterations

As detailed in, e.g. [2], [3], the obvious way to obtained closed-
loop stability using TDO-MPC is to perform more optimization
iterations per unit time. Indeed, the ISS gain of PGM, derived in
Theorem 4, is γ2(`) = bη`/(1 − η`). Since η < 1, it follows that
γ2 → 0 monotonically as `→∞. Similarly, as proven in Theorem 5,
for ` > ¯̀, the asymptotic gain of APGM is such that γa2 (`) → 0
monotonically as ` → ∞. Figures 2 and 3 illustrate how increasing
` can help achieve stability.

The main limitation with this approach is that computation time
is proportional to the number of iterations. As such, ` is effectively
upper-bounded by the available computational resources.

B. Use preconditioning

Another option is to improve the condition number κ = κ(H)
to decrease the ISS gain of the optimization algorithm. Careful
inspection of the gains of the PGM and APGM, γ2(`) and γa2 (`)
which are established in Theorems 4 and 5, respectively, reveals
that γ2(`) ∝ η`/(1 − η`) with η ∝ (1 − κ−1) and γa2 (`) =

0 5 10 15 20 25 30
-5

0

5

0 5 10 15 20 25 30
-1

-0.5

0

0.5

1

0 5 10 15 20 25 30
-5

0

5

0 5 10 15 20 25 30
-1

-0.5

0

0.5

1

Fig. 3. Closed-loop system responses of the inverted pendulum for varying
amounts of optimizer iterations using preconditioned PGM and APGM
algorithms. As predicted by Theorems 6 and 7 and illustrated in Figure 2,
when the APGM is used the system is asymptotically stable after fewer
iterations due to a weaker dependence on κ(H).

ηa(`)/(1 − ηa(`)) with ηa(`) ∝ (1 −
√
κ−1)`. It follows that

γ2(`)→ 0 and γa2 (`)→ 0 monotonically as κ→ 1. Thus, the APGM
is more suited to ill-conditioned problems since its convergence
rate depends on the square-root of the condition number. Figure 2
illustrate how preconditioning affects stability.

For the OCP (5), an explicit preconditioning process can be
performed by defining the preconditioned OCP

min
z̃∈Z̃

z̃TDTHDz̃ + 2z̃TDTGx+ xTWx, (49)

with D ∈ SNm++ , Z̃ = D−1Z and z̃ = D−1z, such that
κ(DTHD) < κ(H). If D is diagonal, the projection onto the
transformed constraint set Z̃ remains simple. The optimal diagonal
preconditioner D can be computed by solving an offline convex
semidefinite programming problem, see [20, Section V-C]. Although
there is a limit to how much κ(H) can be reduced, there are no
drawbacks to diagonal preconditioning, and as such we will only
consider the preconditioned variants of each algorithm in the sequel.

When appropriate, pre-stabilization1 of (1) is another effective tool,
as is non-diagonal preconditioning. These methods lead to polyhedral
constraint sets that cannot be easily projected onto. As such the use
of dual methods, see e.g., [32], for TDO is a promising direction for
future work.

C. Tune the cost function

A third mechanism for stabilizing TDO-MPC is to adjust the
weighting matrices in the OCP (2). Indeed, for a fixed Q, the value
of R impacts γ1 and γ2 through several different mechanisms:

• Condition Number: Since H = H̄+(IN⊗R), where H̄ ∈ SNm+

is defined in the appendix and is independent of R, increasing
λ−(R) will reduce κ(H), in turn reducing γ2;

• Solution Map: As R penalizes the control effort, it affects the
solution mapping. Manipulating Corollary 2, we see that

‖S(x)− S(y)‖H ≤ ‖H−
1
2 ‖‖G(x− y)‖

≤ ‖(H̄ + IN ⊗R)−
1
2 ‖‖G(x− y)‖

and thus the Lipschitz constant of S decreases as λ−(R)
increases;

• Closed-loop Cost: As λ−(R) → ∞, the optimal cost of the
closed-loop system tends to the cost of the open-loop system
subject to u = 0. Thus, if A is Schur, the matrix W in (6),
which represents the cost of inaction, satisfies W � U , where

1Instability of A in (1) leads to ill-conditioning of H .
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Fig. 4. (Jones System) Since the system is stable, W , and thus γ1 is
insensitive to changes in R while γ2 is monotonically decreasing with R.
Thus, the closed-loop system can be stabilized by increasing the input penalty.
Note that PGM outperforms APGM since the Hessian is well conditioned.
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Fig. 5. (Inverted Pendulum) Since the system is unstable, γ1 grows unbounded
with R whereas γ2 is monotonically decreasing. Their product shows a point
of inflection after which increasing R is detrimental to the stability of the
system. Here, APGM performs significantly better than PGM since the system
is poorly conditioned.

U ∈ Sn++ satisfies the Lyapunov equation, U = Q + ATUA.
Otherwise, the closed-loop cost W grows unbounded.

These effects can be opposing, leading to interesting behaviour.
Figures 4 and 5 illustrate the effects of R on the benchmark systems.
It may not be desirable to select an arbitrarily large input penalty
because it typically leads to longer response times. As such, the
choice of R is subject to a trade-off between the stability and
performance of TDO-MPC.

D. Decrease the prediction horizon

The final option for stabilizing TDO-MPC is to decrease the
horizon length N . Equation (50) in the appendix shows that W can
be expressed as a sum of N positive semi-definite terms and thus
increases as N does. As W increases, β =

√
1− λ−W (Q) from

Lemma 4 approaches 1 and thus γ1 = 1/(1− β) grows. For stable
systems this growth is bounded since the terms involving Ak in (50)
go to 0, for unstable systems it continues unbounded. Moreover,
the condition number κ(H) grows with the problem size (see the
matrices in Appendix A) and thus reducing N reduces κ(H) which
in turn decreases γ2. Figures 6 and 7 illustrate how reducing N can
help stabilize TDO-MPC. The main drawback of this option is that
reducing N reduces the region of attraction of the closed-loop system.
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Fig. 6. (Jones System) The gains and iteration bound both increase with
N . As a result, the closed-loop system is easier to stabilize using shorter
prediction horizons. The PGM outperforms APGM since the problem is well
conditioned.
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Fig. 7. (Inverted Pendulum) Here we see that increasing the horizon length
increases the closed-loop gain to a point where closed-loop stability is no
longer guaranteed. Since the system is unstable, the APGM significantly
outperforms PGM as N and thus κ(H) grows.

E. Comparisons

For stable systems, the iteration bounds `∗ presented in Figure 6
falls between a range of 4 to 10 iterations for both the PGM and
APGM. This is consistent with the range reported in [20, Figure 2d].
Moreover, rather than guaranteeing an arbitrary suboptimality bound,
our analysis directly certifies closed-loop stability. The PGM gives
rise to better bounds in this case because the Jones system is relatively
well conditioned. Figure 8 shows that the overall trend obtained for
`∗ is consistent with simulation results. These values are somewhat
conservative when compared to the observed number of iterations
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Fig. 8. (Inverted Pendulum) The theoretical and observed number of iterations
required for stability have the same trends despite some conservatism in the
theoretical bound for PGM.
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required for stability. However, for the APGM the iteration bound is
around 3000-4000 for many values of R, this is a reasonable number
of iterations to perform when using a gradient based method. Further,
even when the results are too conservative for certification purposes,
our analysis provides useful guidelines for the design and tuning of
TDO-MPC.

VI. CONCLUSION

This paper analyzed the closed-loop properties of a class of
TDO-MPC controllers and provided detailed guidelines on how to
ensure asymptotic stability using a variety of mechanisms, namely:
increasing the number of solver iterations, using preconditioning
techniques, tuning the weighting matrices in the cost, and decreasing
the prediction horizon. Future work will focus on tightening the
bound for unstable systems, investigating the use of dual methods
in TDO, and proving that the proposed guidelines are applicable to
more general TDO-MPC settings.
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APPENDIX

A. CONDENSED POCP SYSTEM MATRICES

The matrices in (6) are H = H̄ + (IN ⊗ R), H̄ = B̂T ĤB̂,

G = B̂T ĤÂ, W = Q+ ÂT ĤÂ, Ĥ =

[
(IN ⊗Q) 0

0 P

]
,

B̂ =


0 0 0
B 0 0
...

. . .
...

AN−1B · · · B

 , and Â =


I
A
...
AN

 .
B. PROOF OF LEMMA 1

First, define

W1 =

N−1∑
k=0

(Ak)TQ(Ak), W2 = (AN )TP (AN ) (50)

so that W = W1 +W2. By Assumption 1,

ATPA = P −Q+ (ATPB)(R+BTPB)−1(BTPA). (51)

Using (51) to express (Ak)TP (Ak) and summing up from k = 1 to
N − 1 yields

W = P +

N∑
k=1

(Ak)TPB(R+BTPB)−1BTP (Ak). (52)

Since the assumptions of Lemma 1 imply P � 0 the result follows.


