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Abstract— Time-distributed optimization is a suboptimal im-
plementation strategy for reducing the computational effort
required to implement Model Predictive Control (MPC). Time-
distributed MPC (TDMPC) methods maintain a running es-
timate of the solution to an Optimal Control Problem and
improve this estimate using a limited number of optimizer
iterations during each sampling period. This paper studies
closed-loop stability properties of a constrained linear system
controlled using TDMPC. A sufficient bound on the number of
iterations per sampling period required to enforce asymptotic
stability is derived in closed-form with a computable region
of attraction estimate in the plant-optimizer space. Conditions
under which a user-provided optimizer initialization yields
asymptotically stable trajectories are also established. The
results of numerical experiments are reported to illustrate
theoretical concepts and demonstrate the computation of the
plant-optimizer region of attraction estimate.

I. INTRODUCTION

Model Predictive Control (MPC) is a feedback strategy
that computes control inputs by solving an Optimal Control
Problem (OCP) over a receding horizon [1]. Implementation
of MPC requires the OCP to be solved faster than the
sampling period of the controller. However, this may not
be possible in applications with limited computing power
and/or fast sampling rates. To resolve these issues, a common
approach is to approximate the OCP solution by performing
a limited number of optimizer iterations, leading to a subop-
timal MPC law.

Time-distributed Optimization (TDO) is an approach to
suboptimal MPC that maintains a running estimate of the
OCP solution and improves this estimate by performing a
limited number of optimizer iterations per sampling period.
The closed-loop dynamics of a system controlled by Time-
distributed MPC (TDMPC) can be described as the intercon-
nection of two dynamical systems representing the plant and
optimizer (Figure 1).

Careful consideration must be given to stability when
suboptimal MPC is used, since typical guarantees available
for optimal MPC control laws do not hold. For example,
studies have established conditions under which suboptimal
MPC is stabilizing when applied to unconstrained discrete-
time [2] and input constrained continuous-time [3] nonlinear
systems. The popular Real-Time Iteration (RTI) scheme is
studied in [4], which demonstrates that a single Sequential
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Fig. 1. Optimal MPC can be represented by a static feedback law κ(x),
while Time-distributed MPC is a dynamic feedback law with an internal
state defined by an OCP solution estimate z and dynamics defined by `
iterations of an optimization algorithm T `.

Quadratic Programming (SQP) iteration can be used to drive
an unconstrained discrete-time nonlinear system to the origin
if the sampling period is sufficiently small. Asymptotic
stability of this method is established in [5]. The stability
of a generalized TDMPC strategy applied to a discrete-
time nonlinear system with state and control constraints is
analyzed in [6], which shows that the stability, robustness,
and constraint satisfaction properties of the optimal MPC
controller can be obtained using a finite number of optimizer
iterations. A Lyapunov function for the combined system-
optimizer dynamics in a nonlinear model predictive control
problem is derived in [7]. For a detailed discussion and
comparison of various suboptimal MPC approaches, see [6].

Other studies have aimed to provide computable guar-
antees and complexity certifications for specific TDMPC
methods. A bound on the number of optimizer iterations
needed to enforce a specified level of suboptimality for input
constrained linear MPC is derived in [8]. Similarly, a bound
on the number of optimizer iterations needed to stabilize
state and input constrained linear MPC controllers is derived
in [9]. An invariant set where convergence to the origin
is achieved using a single Alternating Direction Method of
Multipliers (ADMM) iteration is characterized in [10] for a
state and input constrained linear MPC problem. Methods
have also been established to compute the exact worst-case
bound for the number of active set method [11] and block
principal pivoting method [12] iterations needed to solve
quadratic programs that arise in linear MPC.

Our recent work [13] analyzed the stability of input con-
strained linear TDMPC and derived a closed-form expression
for the number of iterations needed to satisfy a sufficient con-
dition for asymptotic stability. However, only the existence
of a plant-optimizer region of attraction (ROA) is proven in
[13] as the analysis relies on input-to-state stability results.



A framework to determine a plant-optimizer ROA estimate
and a Lyapunov function for RTI-type schemes has recently
been developed in [7]. However, no methods of explicitly
computing the plant-optimizer ROA estimate are provided
in [7], since this study addresses a general nonlinear setting.

In this paper, we extend upon the work of [7] and [13]
by analyzing the stability of a state and input constrained
linear system controlled using TDMPC based on a projected
gradient optimization method (PGM). By considering this
specific case, a sufficient bound on the number of iterations
per sampling period required to enforce asymptotic stability
is derived in closed-form with a computable plant-optimizer
ROA estimate. These results extend the work in [13], which
analyzes the stability of a similar TDMPC approach but
does not provide a ROA estimate; and the work in [7],
which derives a plant-optimizer ROA estimate but does not
explore methods to compute it. Additionally, [7] enforces
stability through a maximum sampling period rather than a
minimum number of iterations. Practical methods of inner
approximating the derived ROA estimate are also discussed.
Additionally, conditions under which a user-provided opti-
mizer initialization will yield asymptotically stable trajecto-
ries are provided. The results of numerical experiments are
reported to illustrate theoretical concepts and demonstrate
the computation of the plant-optimizer ROA estimate.

Notation: Let Sn++ and (respectively Sn+) denote the set of
symmetric n×n positive definite (respectively semidefinite)
matrices. Let Rn×m>0 , Rn>0, and R>0 denote the set of real
n × m matrices, n × 1 vectors, and scalars with strictly
positive elements (define Rn×m≥0 , Rn≥0, and R≥0 in the
corresponding manner). Given x ∈ Rn and y ∈ Rm, then
(x, y) = [xT yT ]T . Given x ∈ Rn and W ∈ Sn+, the W -
norm of x is ‖x‖W =

√
xTWx. Given M ∈ Sn++ and W ∈

Sn++, then λ−W (M) and λ+W (M) denote the minimum and
maximum eigenvalues of

√
W
−1
M
√
W
−1

, which satisfy
λ−W (M)‖x‖2W ≤ ‖x‖2M ≤ λ+W (M)‖x‖2W . If a subscript is
omitted in any of these cases, then the corresponding matrix
is understood to be the identity matrix of appropriate size.
Given α : Rn → R≥0, then a sublevel set of α of radius
r > 0 is represented by Bα(r) = {x ∈ Rn | α(x) ≤ r}.
Using a slight overloading of notation, if P ∈ Sn++ then we
use BP (r) = {x ∈ Rn | ‖x‖P ≤ r} to represent a P -norm
ball of radius r > 0.

II. PROBLEM SETTING

Consider the Linear Time Invariant (LTI) system,

xk+1 = f(xk, uk) = Axk +Buk, (1)

where x ∈ Rn is the state, u ∈ Rm is the control input,
A ∈ Rn×n, and B ∈ Rn×m. The control objective is to
stabilize (1) at the origin subject to constraints

xk ∈ X , uk ∈ U , ∀k > 0, (2)

where X ⊆ Rn, U ⊆ Rm are constraint sets.

We approach this problem using MPC. Consider the
following Parametric Optimal Control Problem (POCP)

min
ξ,z

‖ξN‖2P +

N−1∑
i=0

‖ξi‖2Q + ‖µi‖2R (3a)

s.t. ξi+1 = Aξi +Bµi, i = 0, . . . , N−1, (3b)
ξ0 = x, (3c)
µi ∈ U , i = 0, . . . , N−1. (3d)

where Q ∈ Rn×n, R ∈ Rm×m, and P ∈ Rn×n are weight-
ing matrices, N ∈ N is the horizon length, x ∈ Rn is the
measurement (and the parameter), and ξ = (ξ0, . . . , ξN−1),
z = (µ0, . . . , µN−1) are the predicted state and control
sequences1.

Remark 1: The OCP in (3) does not directly enforce the
state constraint ξk ∈ X . However, in Section III-C it is
shown that the state constraint can be implicitly satisfied by
deriving an invariant set under the input constrained MPC
law generated by (3).

The following assumptions ensure that (3) is well posed
and produces a stabilizing MPC feedback law.

Assumption 1: The pair (A,B) is stabilizable, Q ∈ Sn++,
R ∈ Sm++, and P ∈ Sn++ satisfies the discrete algebraic
Riccati equation (DARE)

P = Q+ATPA− (ATPB)K,

where K = (R+BTPB)−1(BTPA) is the linear quadratic
regulator (LQR) gain.

Assumption 2: The input constraint set U is closed, con-
vex, and contains the origin in its interior. The state constraint
set X contains the origin in its interior.

The OCP can be rewritten by algebraically eliminating the
state sequence to obtain the condensed form

min
z∈Z

J(x, z) = ‖(x, z)‖2M , (4)

where Z = UN ⊆ Rnz and

M =

[
W GT

G H

]
. (5)

Expressions for the matrices H ∈ Snz
++, W ∈ Sn++, and

G ∈ Rnz×n in terms of the data of (3) can be found in [13].
Moreover, note that W � P � 0 [13, Lemma 1] and M � 0.

Since H � 0, the variational inequality

Hz +Gx+NZ(z) 3 0, (6)

is necessary and sufficient for optimality of (4), where

NZ(z) =

{
{y | yT (w − z) ≤ 0,∀w ∈ Z}, if z ∈ Z,
∅ else.

is the normal cone mapping of Z . The solution mapping is

S(x) = (H +NZ)−1(−Gx), (7)

1We define nz = Nm such that z ∈ Rnz .



where S is a function due to the strong convexity of (4). The
optimal MPC feedback policy is then

u = κ(x) = ΞS(x), (8)

where Ξ = [Im×m 0 . . . 0] ∈ Rm×nz selects the first control
input from S(x).

Due to computational limitations, it is often not possible
to evaluate κ(x) at each sampling instant. Thus, we consider
a suboptimal approximation of the optimal control policy,
where we introduce a running solution estimate2 zk and
improve it at each sampling instant using a fixed number
of iterations of an optimization algorithm.

If the output of ` ∈ N iterations of an optimization
algorithm is denoted by the function T ` : Rn×Rnz → Rnz ,
then the closed-loop dynamics under this suboptimal MPC
policy can be expressed as

zk = T `(xk, zk−1), (9a)
xk+1 = Axk + B̄zk, (9b)

where B̄ = BΞ. In this paper, we define T ` using the
projected gradient method, i.e.,

T (x, z) = ΠZ [z − α∇zJ(x, z)] , (10a)

T `(x, z) = T (x, T `−1(x, z)), (10b)

where T 0(x, z) = z, and α = 2/(λ+(H) + λ−(H)) is the
optimal step length. Note that the projection operator ΠZ
can be defined in closed-form if U is a box.

The objective of this paper is to derive numerically verifi-
able conditions on ` under which (9) is asymptotically stable
with a computable ROA estimate in (x, z)-space that satisfies
the constraints (2).

III. PROPERTIES OF THE INDIVIDUAL
SUBSYSTEMS

The first step in studying (9) is to study the properties
of (9a) and (9b) separately. We begin by detailing some
properties of the solution mapping and value function.

A. Properties of the Solution Mapping

The solution mapping can be rewritten as

S(x) = A−1(−Gx), A = H +NZ , (11)

where the operator A : Rnz ⇒ Rnz has the following
properties.

Proposition 1: ([13, Proposition 1]) Given Assumptions
1-2, A has the following properties:

1) Strong monotonicity:
〈u− v, y − z〉 ≥ ‖y − z‖2H , u ∈ A(y), v ∈ A(z);

2) Co-coercivity of A−1:〈
A−1u−A−1v, u− v

〉
≥ ||A−1u−A−1v||2H ;

3) Lipschitz continuity of A−1:
‖A−1u−A−1v‖H ≤ ||u− v||H−1 .

2See [14] for a survey on running methods for time-varying convex
optimization with exogenous parameter updates.

Corollary 1: ([13, Corollary 2]) Let Assumptions 1-2
hold, then ∀x, y ∈ Rn, the solution mapping satisfies

〈S(x)− S(y), G(x− y)〉 ≤ −‖S(x)− S(y)‖2H , (12)

and ‖S(x)− S(y)‖H ≤ ‖G(x− y)‖H−1 .

B. Properties of the Value Function

The value function

V (x) = min
z∈Z

J(x, z) = ‖(x, S(x))‖2M , (13)

serves as a Lyapunov function for the closed-loop system
under the optimal MPC feedback policy [15], [16].

Lemma 1: ([13, Lemma 2]) Let Assumptions 1-2 hold,
then ∀x ∈ Rn the value function satisfies

‖x‖2P ≤ V (x) ≤ ‖x‖2W , (14)

hi and V (x) ≤ ‖x‖2W − ‖S(x)‖2H .
We can also combine the upper and lower bounds on V to

bound the solution mapping in terms of the value function.

‖S(x)‖2H ≤ (λ+P (W )− 1)V (x). (15)

Note that W � P =⇒ λ+P (W ) ≥ 1.
The square root of the value function

ψ(x) =
√
V (x), (16)

is also vital for the analysis of the plant system since it is
Lipschitz continuous.

Lemma 2: ([13, Lemma 3]) Let Assumptions 1-2 hold
then

|ψ(x)− ψ(y)| ≤ ‖x− y‖W , ∀x, y ∈ Rn. (17)

C. Plant Subsystem

Given the properties of S, V , and ψ, it is possible to upper
bound the evolution of ψ(x) under TDMPC. For any x ∈ Rn
consider the following ideal and disturbed one step updates,

x∗+ = Ax+ B̄S(x), (18)
x+ = Ax+ B̄z = Ax+ B̄S(x) + B̄e. (19)

where the disturbance term e = z − S(x) represents subop-
timality due to incomplete optimization.

To begin, we derive a forward invariant ROA estimate
ΓN ⊂ X for the optimal closed-loop system (18). To do
so, we first derive a ROA estimate Γ′N ⊂ Rn of (18) that
is not necessarily contained in X . Then, we define ΓN as a
forward invariant set contained in Γ′N ∩ X .

Consider the set

Ω =
{
x ∈ Rn | ‖x‖2P ≤ c

}
(20)

where c > 0 is chosen to satisfy Ω ⊂ {x | −Kx ∈ U}. Note
that if a terminal constraint of ξN ∈ Ω was added to the OCP
(3), then the N -step backwards reachable set to Ω would be a
ROA estimate of (18) [1], [15]. However, the addition of state
constraints into the OCP would necessitate the use of a more
sophisticated optimization strategy, thereby complicating the
analysis of the optimizer subsystem. Thus, we instead use the



results of [16] to determine a ROA estimate for (18) under
the terminal constraint free MPC law generated by (3).

Theorem 1: ([16, Theorem 1]) Let Assumptions 1-2 hold.
Then, ∀N ∈ N the optimal closed-loop system (18) is
asymptotically stable with a forward invariant region of
attraction estimate

Γ′N = {x ∈ Rn | V (x) ≤ Nd+ c} , (21)

where N is the horizon length, d = c · λ−(Q)/λ+(P ), and
c is defined in (20).

Proof: The proof follows by showing that Ω and d
satisfy [16, Assumption 1-2] and thus [16, Theorem 1] holds.
To follow the notation of [16], denote the terminal and
stage costs as F (x) = ‖x‖2P and l(x, u) = ‖x‖2Q + ‖u‖2R
respectively.

First, we show that Ω satisfies [16, Assumption 1], that is

min
u∈U

[F (Ax+Bu)− F (x) + l(x, u)] ≤ 0, ∀x ∈ Ω. (22)

Standard stability analysis procedures (see [1], [15]) can be
used to show that (22) holds since −Kx ∈ U for x ∈ Ω.

Next, we show that d satisfies [16, Assumption 2], that is

`(x, u) > d, ∀x /∈ Ω, ∀u ∈ U . (23)

Note that l(x, u) ≥ ‖x‖2Q ≥ d
c‖x‖

2
P , ∀x ∈ Rn, u ∈ Rm and

that x /∈ Ω ⇐⇒ ‖x‖2P > c. So, we have that `(x, u) >
d,∀x /∈ Ω,∀u ∈ Rm.

Therefore [16, Assumptions 1-2] are satisfied, so Γ′N is a
ROA estimate for (18) by [16, Theorem 1].

Remark 2: The ROA estimate in Theorem 1 can be ex-
panded by weighting the terminal cost [16]. However, we do
not explore this strategy in this paper.

Corollary 2: For any x ∈ Γ′N ,

V (x∗+) ≤ β2V (x) (24)

where x∗+ is defined in (18) and β2 = (1−λ−W (Q)) ∈ (0, 1).
Proof: As stated in [16, Theorem 1], the standard value

function decrease condition

V (x∗+)− V (x) ≤ −‖x‖2Q, (25)

holds ∀x ∈ Γ′N . Rearranging this expression and combining
it with Lemma 1 gives

V (x∗+)− V (x) ≤ −λ−W (Q)‖x‖2W ≤ −λ−W (Q)V (x) (26)

and thus V (x∗+) ≤ (1 − λ−W (Q))V (x) = β2V (x). Noting
that W � P � Q � 0 =⇒ λ−W (Q) ∈ (0, 1) completes the
proof.

As a consequence of Corollary 2, any sublevel set of V
contained in Γ′N is forward invariant. Thus, an invariant ROA
ΓN ⊂ X can be defined by selecting the largest sublevel set
of V that is contained in Γ′N ∩ X .

Theorem 2: Let Assumptions 1-2 hold. Then, ∀N ∈ N
the closed-loop optimal MPC system (18) is asymptotically
stable with a forward invariant region of attraction estimate

ΓN = {x ∈ Rn | ψ(x) ≤ rψ} ⊂ ΓN ∩ X , (27)

where rψ = min(
√
Nd+ c, cX ), c, d are defined in Theo-

rem 1, and cX > 0 satisfies Bψ(cX ) ∈ X .
Proof: The result follows from Theorem 1 and Corol-

lary 2.
Next, we consider how the growth of ψ(x) is bounded

under the arbitrarily suboptimal update in (19).
Lemma 3: Given Assumptions 1-2, ∀x ∈ ΓN , z ∈ Z ,

ψ(x+) ≤ βψ(x) + µ‖e‖, (28)

where x+ is defined in (19), e = z−S(x), and µ = ‖W 1
2 B̄‖.

Proof: By Lipschitz continuity of ψ (Lemma 2)

|ψ(x∗+)− ψ(x+)| ≤ ‖x∗+ − x+‖W = ‖B̄e‖W , (29)

and thus using (24)

ψ(x+) ≤ ψ(x∗+) + |ψ(x∗+)− ψ(x+)|
≤ βψ(x) + ‖B̄e‖W
≤ βψ(x) + ‖W 1

2 B̄‖‖e‖

as claimed.

D. Optimizer Subsystem

The analysis of the optimizer subsystem (9a) is based on
the merit function

φ(x, z) = ‖z − S(x)‖. (30)

The following Lemma summarizes the convergence prop-
erties of the projected gradient method (PGM).

Lemma 4: ([17, Theorem 3.1]) Let T `(x, z) represent `
iterations of PGM and suppose Assumptions 1-2 hold. Then,
for all x ∈ Rn and z ∈ Rnz

φ(x, T `(x, z)) ≤ η`φ(x, z), (31)

where η = λ+(H)−λ−(H)
λ+(H)+λ−(H) ∈ (0, 1).

Similar to the previous section, we now consider how the
evolution of φ(x, z) is influenced by perturbations in x.

Lemma 5: Suppose Assumptions 1-2 hold. Then, for all
x, x′ ∈ Rn, z ∈ Z and z′ = T `(x′, z),

φ(x′, z′) ≤ η`φ(x, z) + η`b‖G(x′ − x)‖H−1 (32)

where b = ‖H− 1
2 ‖.

Proof: By virtue of Lemma 4, we obtain

φ(x′, z′) ≤ η`φ(x′, z)

= η`‖z − S(x′) + S(x)− S(x)‖
≤ η`φ(x, z) + η`‖H− 1

2 (S(x′)− S(x))‖H
≤ η`φ(x, z) + η`‖H− 1

2 ‖‖G(x′ − x)‖H−1

where the last line is by Corollary 1.
Next we specialize this result based on the plant dynamics.

Lemma 6: Given Assumptions 1-2 consider any x ∈ Rn,
z ∈ Z , and let x+ = Ax+ B̄z and z+ = T `(x+, z). Then

φ(x+, z+) ≤ η`ωφ(x, z) + η`ρψ(x), (33)



where ω = 1 + ‖H− 1
2 ‖‖H− 1

2GB̄‖, and

ρ = ‖H− 1
2 ‖‖H− 1

2G(A− I)P−
1
2 ‖

+ ‖H− 1
2 ‖
√
λ+H(GB̄)(λ+P (W )− 1).

Proof: Specializing Lemma 5 to the case where x′ =
x+, and z′ = z+ we obtain

φ(x+, z+) ≤ η`φ(x, z) + η`b‖G(x+ − x)‖H−1 .

The goal is to obtain a bound in terms of ψ(x) and φ(x, z).
Note that x+ − x = (A− I)x+ B̄S(x) + B̄e and thus

‖G(x+ − x)‖H−1 ≤ ‖G(A− I)x‖H−1

+ ‖GB̄S(x)‖H−1 + ‖GB̄e‖H−1 . (34)

Proceeding term by term, the first term can be bounded as

‖G(A− I)x‖H−1 = ‖H− 1
2G(A− I)P−

1
2P

1
2x‖

≤ ‖H− 1
2G(A− I)P−

1
2 ‖‖xk‖P

≤ ‖H− 1
2G(A− I)P−

1
2 ‖ψ(x)

The second terms can be bounded as

‖GB̄S(x)‖H−1 = ‖H− 1
2GB̄S(x)‖

≤
√
λ+H(GB̄) ‖S(x)‖H

≤
√
λ+H(GB̄)(λ+P (W )− 1) ψ(xk)

where the last step uses (15). Finally,

‖GB̄e‖H−1 = ‖H− 1
2GB̄e‖

≤ ‖H− 1
2GB̄‖φ(xk, zk).

Combining and simplifying, we obtain that

φ(x+, z+) ≤ η`ωφ(x, z) + η`ρψ(x)

where ω and ρ are as defined.

IV. STABILITY OF THE SYSTEM-OPTIMIZER
DYNAMICS

In the previous section, we established bounds on the
change in ψ(x) and φ(x, z) subject to arbitrary perturbations
in z and x respectively. We now combine these results to
analyze the dynamics in (9).

Lemma 7: Consider the closed-loop system in (9) and let
Assumptions 1-2 hold. Then, for all xk ∈ ΓN and zk ∈ Z ,

ψ(xk+1) ≤ βψ(xk) + µφ(xk, zk) (35a)

φ(xk+1, zk+1) ≤ η`ρψ(xk) + η`ωφ(xk, zk) (35b)

Proof: The result follows from Lemmas 3 and 6.

Note that (xk+1, zk+1) must remain in ΓN × Z to guar-
antee that Lemma 7 holds at the following time step. Thus,
the following Lemma derives an invariant subset of ΓN ×Z .

Lemma 8: Given Assumptions 1-2, if the number of iter-
ations performed satisfies ` > `∗, where

`∗ =
log(1− β)− log(µρ+ ω(1− β))

log(η)
,

then the set

Σ = {(x, z) ∈ ΓN ×Z | ψ(x) ≤ rψ, φ(x, z) ≤ rφ}, (36)

is forward invariant under the closed-loop dynamics (9),
where rψ is defined in Theorem 2 and rφ = (1− β)rψ/µ.

Proof: Consider any (xk, zk) ∈ Σ. First, we show that
ψ(xk+1) ≤ rψ by using Lemma 7 to write

ψ(xk+1) ≤ βψ(xk) + µφ(xk, zk)

≤ βrψ + µrφ

≤ rψ

where the last inequality follows from the definition of rφ.
Next, we use Lemma 7 to write

φ(xk+1, zk+1) ≤ η`ρψ(xk) + η`ωφ(xk, zk)

≤ η`
(
ρrψ +

ω(1− β)rψ
µ

)
≤ rφ

where the last inequality follows from the restriction ` > `∗.
So we have that ψ(xk+1) ≤ rψ and φ(xk+1, zk+1) ≤ rφ,
thus (xk+1, zk+1) ∈ Σ.

Since Σ ⊂ ΓN × Z is forward invariant, then (x0, z0) ∈
Σ implies that the constraints (2) and the inequalities (35)
and are satisfied ∀k ≥ 0. Following the methodology in [7],
asymptotic stability of (9) can then be ensured by enforcing
that the following auxiliary system is asymptotically stable,
where

νk+1 = βνk + µεk, (37a)

εk+1 = η`ρνk + η`ωεk. (37b)

Note that if νk = ψ(xk) and εk = φ(xk, zk) then ψ(xk+1) ≤
νk+1 and φ(xk+1, zk+1) ≤ εk+1. Moreover, the auxiliary
system can be expressed as a positive LTI system

wk+1 = Aawk, Aa =

[
β µ
η`ρ η`ω

]
, (38)

where wk = (νk, εk) ∈ R2
≥0 and Aa ∈ R2×2

>0 . The following
result pertains to the stability of positive LTI systems.

Theorem 3: ([7, Theorem 27], [18]), A positive discrete-
time LTI system

wk+1 = Awk, (39)

where A ∈ Rna×na

≥0 and w ∈ Rna

≥0 is asymptotically stable if
there exists a strictly positive vector ŵ ∈ Rna

>0 and a strictly
positive constant d̂ > 0 such that

max
i=1,...,na

[
(AT − I)ŵ

]
i
≤ −d̂. (40)

Moreover, if these conditions are satisfied then Vl(wk) =
ŵk

Twk is a Lyapunov function for (39) in Rna

≥0.
Thus, we adapt the proof in [7, Theorem 28] to prove that

the auxiliary dynamics (37) are asymptotically stable subject
to a minimum number of iterations.

Theorem 4: The auxiliary dynamics (37) are asymptot-
ically stable if ` > `∗. Moreover, Vl(w) = ŵTw is a



Lyapunov function for (37) in R2
≥0, where ŵ = (1, ζ) and

ζ > 0 satisfies

µ

1− η`ω
< ζ <

1− β
η`ρ

. (41)

Proof: To prove the auxiliary dynamics are asymptot-
ically stable, we want to show that ŵ = (1, ζ) satisfies the
conditions in Theorem 3 for the system in (37). For this to
be true, the following set of inequalities must hold

(β − 1) + ζη`ρ < 0, µ+ (η`ω − 1)ζ < 0, ζ > 0.

This set of inequalities is satisfied if (41) holds. To prove ζ
can be chosen to satisfy (41), note that that the left and right
sides of (41) are monotonically decreasing and increasing in
`, so we can find a bound on ` such that

µ

1− η`ω
<

1− β
η`ρ

.

Rearranging this inequality yields the same requirement
derived in Lemma 8 that is satisfied for ` > `∗. Additionally,
note that µ/(1− η`ω) > 0 if ` > `∗. Thus, ζ > 0 can
be chosen to satisfy (41) and Theorem 3 is satisfied for
ŵ = (1, ζ).

Having now established conditions for the stability of the
auxiliary system, we invoke [7, Theorem 29] to prove that
the associated closed-loop dynamics in (9) are asymptotically
stable with a known ROA estimate and Lyapunov function.

Theorem 5: Let Assumptions 1-2 hold and ` > `∗, then
the origin of the plant-optimizer system (9) is asymptotically
stable with a forward invariant region of attraction estimate
Σ. Moreover, the function

V(x, z) = ψ(x) + ζφ(x, z), (42)

is a Lyapunov function in Σ, where Σ is defined in (36) and
ζ > 0 is defined in Theorem 4.

Proof: The proof follows directly from [7, Theorem
29] and Theorem 4. Specifically, the proof of [7, Theo-
rem 29] can be used to show that ∃α1, α2 ∈ K∞3 such
that α1(‖(x, z)‖) ≤ V(x, z) ≤ α2(‖(x, z)‖), and that
∃α3 : R≥0 → R≥0 such that V(x+, z+) − V(x, z) ≤
−α3(‖(x, z)‖).

V. INNER APPROXIMATION OF THE REGION OF
ATTRACTION ESTIMATE

In the previous section it was shown that Σ is a ROA
estimate of (9) if ` > `∗. But in the context of TDMPC, one
cannot directly check if (x, z) ∈ Σ is satisfied since ψ(x)
and φ(x, z) cannot be computed in real-time. Thus, a set of
real-time verifiable sufficient conditions satisfying (x, z) ∈ Σ
must be established.

3The set of K∞ functions follows the standard definition in [19].

A. Inner approximation of ΓN

As detailed in Theorem 2, a constant cX > 0 satisfying
Bψ(cX ) ⊂ X must be computed to approximate ΓN . If X
is a polytope, then the procedure in [20, Proposition S1] can
be used to compute the largest r > 0 satisfying BP (r) ⊂ X .
Then, since Bψ(r) ⊂ BP (r) ∀r > 0, we have that cX = r
satisfies Bψ(cX ) ⊂ X .

Once an estimate of rψ has been obtained, one can collect
a set sample points S = {xi | ψ(xi) ≤ rψ, i = 1, . . . , q}
using offline computations. Then, the convex hull HN =
Conv(S) satisfies HN ⊂ ΓN since ΓN is convex under
Assumption 2 [21, Lemma 5.6.2]. Furthermore, the inclusion
x ∈ HN can be easily verified online sinceHN is a polytope.
In cases where it may be difficult to compute such sample
points offline, one can instead use the sublevel set BW (rψ)
to approximate ΓN , since BW (r) ⊂ Bψ(r) ∀r > 0. However,
this is likely to be a conservative approximation.

B. Upper bound of φ(x, z)

An estimate of rφ can be computed using the formula in
Lemma 8 once an estimate of rψ is available. Then, one can
upper bound φ(x, z) by noting that

φ(x, z) ≤ (λ−(H))−
1
2 ‖z − S(x)‖H

≤ (λ−(H))−
1
2

√
J(x, z)− V (x)

≤ (λ−(H))−
1
2

√
J(x, z)− ‖x‖2P (43)

where the second line follows directly from the strong
monotonicity of J and optimality of S and the third line
follows from the lower bound of V . Then, it is sufficient to
check that the right-side of (43) is less than rφ in order to
verify that φ(x, z) ≤ rφ.

VI. REQUIREMENTS ON THE OPTIMIZER INITIALIZATION

As discussed, the restriction (x0, z0) ∈ Σ is sufficient
to guarantee asymptotic convergence. However, the initial
optimizer state z0 is in fact the output of the optimizer
given some user-provided optimizer initialization z̄, i.e. z0 =
T `(x0, z̄). Thus, in this section we develop guidelines for
how z̄ may be selected to ensure that (x0, z0) ∈ Σ.

The following proposition shows that if z̄ is chosen to be
the optimal solution at some point x̄ ∈ Rn, then there exist
a region around x̄ where z̄ = S(x̄) =⇒ (x0, z0) ∈ Σ.

Proposition 2: Let Assumptions 1-2 hold, x̄ ∈ Rn, z̄ =
S(x̄), and z0 = T `(x0, z̄). Then, (x0, z0) ∈ Σ for all x0 ∈
D`(x̄) ∩ ΓN , where

D`(x̄) = {x ∈ Rn | ‖G(x− x̄)‖H−1 ≤ rD(`)} , (44)

and rD(`) = λ−(H)
1
2 rφ/η

`.
Proof: Noting that z0 = T `(x0, S(x̄)), we use

Lemma 4 to write

φ(x0, z0) ≤ η`‖S(x̄)− S(x0)‖

≤ η`√
λ−(H)

‖G(x̄− x0)‖H−1 ≤ rφ



where the second inequality follows from Corollary 1. Thus,
the restriction x0 ∈ D`(x̄) implies that φ(x0, z0) and thus
(x0, z0) ∈ Σ.

Remark 3: By using Proposition 2, it is possible to pro-
vide conditions under which a valid optimizer initialization is
available for any x ∈ ΓN . For example, one could compute
several solution estimates z̄i = S(x̄i), i = 1, . . . , p, such
that ∪pi=1D

`(x̄i) ⊃ ΓN . Alternatively, one could perform a
sufficient number of iterations such that D`(x̄) ⊃ ΓN for a
particular x̄.

Remark 4: The set D`(0) is particularly useful since no
effort is needed to compute and store z̄ = S(0) = 0.

VII. NUMERICAL EXAMPLES

A linear model of an inverted pendulum is used for
illustration. The continuous-time model is given by

x =

[
θ

θ̇

]
, u = τ, Ac =

[
0 1
3g
2L 0

]
, Bc =

[
0
3

ML2

]
, (45)

where θ is the pendulum angle relative to the upright
position, τ is a controlled torque, L = 1 is the pendulum
length, m = 0.1 is the pendulum mass, and g = 9.81 is
the gravitational acceleration. Two cases with different con-
straints are considered. In case (a), only an input constraint
of U = [−1, 1] is enforced, whereas in case (b) both state
and control constraints of X = [−π/4, π/4]× [−2π, 2π] and
U = [−1, 1] are present. Unless otherwise stated, all results
and simulations use a sampling period of T = 0.1, a horizon
length of N = 3, weighting matrices Q = diag(1, 1) and
R = 1, a PGM iteration count of ` = 117, and an optimizer
initialization of z̄ = 0. Using this problem data, the iteration
bound for stability is `∗ = 116.2 < ` and the size parameters
of Σ for each case are: (a) rψ = 3.14 and rφ = 0.0012, and
(b) rψ = 2.73 and rφ = 0.0011.

As a comparative tool, we use ΥN to denote the N -step
backwards reachable set to the maximal output admissible
set O∞ of xk+1 = (A−BK)xk [22]. Thus, ΥN is a ROA
estimate of (1) under an MPC law generated by an OCP
similar to (3), but with the addition of a state constraint ξk ∈
X and a terminal constraint ξN ∈ O∞ [1], [15].

Figure 2 shows a comparison of ΓN , the inner approxima-
tions of ΓN (see Section V-A), and ΥN for both cases4. In
case (a), ΓN reduces to the ROA estimate Γ′N in Theorem 1
since no state constraints are present, whereas in case (b), ΓN
is the largest sublevel set of ψ contained in X as discussed in
Theorem 2. The ROA estimate in (b) could be expanded by
altering the OCP in a manner that shapes the sublevel sets of
ψ to be similar to X . In particular, it is likely that adding the
state constraint ξk ∈ X to the OCP would expand this ROA
estimate. However, enforcing state constraints in the OCP
would complicate the analysis of the optimizer subsystem as
discussed in Section III-C.

Figure 3 shows that D`(0) ⊃ ΓN in both cases, therefore
initializing TDMPC with z̄ = 0 will yield asymptotically

4ΓN was plotted using Matlab’s contour function since it cannot be
computed explicitly. The convex hull approximation was computed by
generating a 20× 20 uniform grid of sample points around ΓN .

(a) Input Constrained Case (b) State & Input Constrained Case

Fig. 2. A comparison of ΥN , ΓN , the convex hull approximation HN ,
and the sublevel set approximation BW (rψ). The ROA estimate ΓN is
smaller than ΥN due to the lack of terminal constraint in the OCP. The
convex hull approximation of ΓN is quite good (since it can be refined
to an arbitrary accuracy), while the sublevel set approximation BW (rψ) is
quite conservative.

(a) Input Constrained Case (b) State & Input Constrained Case

Fig. 3. In both cases, initializing TDMPC with z̄ = 0 will yield
asymptotically convergent trajectories for any x0 ∈ ΓN since D`(0) ⊃ ΓN
(Proposition 2).

convergent trajectories for any x0 ∈ ΓN by Proposition 2.
While this is a convenient result, it is likely a consequence
of conservatism in the bound ` > `∗ enlarging D`(0). If
instead D`(0) ∩ ΓN was non-trivial, then z̄ = 0 would only
be guaranteed to be a valid optimizer initialization in this
intersection.

Figure 4 demonstrates that asymptotically convergent
plant-optimizer trajectories are obtained using TDMPC for
several x0 ∈ ΓN . Note that for each trajectory, xk ∈ ΓN and
φ(xk, zk) ≤ rφ ∀k ≥ 0 as a consequence of the invariance
of Σ (Lemma 8). However, the solution error is generally
much less than the required bound of φ(x, z) ≤ rφ =
0.0012. This suggests that the iteration bound `∗ is somewhat
conservative.

The simulations in Figure 5 show that the system is
asymptotically stable for any ` ≥ 6, further indicating that
the estimated bound of `∗ = 116.2 is conservative. Addition-
ally, for all ` ≥ 6 the simulated ROA remains (seemingly)
constant and resembles the terminal constrained MPC ROA
estimate ΥN , indicating that the terminal constraint free
MPC ROA estimate in Theorem 1 is conservative. However,
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(b) φ(x, z) Trajectories

Fig. 4. (Input constrained case) Simulations of the closed-loop TDMPC
system demonstrate that ΓN is forward invariant, the solution error φ(x, z)
never exceeds rφ = 0.0012, and the plant-optimizer trajectories are
asymptotically convergent.

(a) ` = 117 (b) ` = 6 (Top), ` = 5 (Bottom)

Fig. 5. (Input constrained case) A comparison of ΓN and ΥN to TDMPC
simulation data using 5, 6, and 117 iterations per sampling period (green
“O”s and red “X”s represent initial conditions resulting in convergent
and non-convergent simulated trajectories respectively). For ` ≥ 6, the
simulations indicate that the origin is asymptotically stable with a ROA
resembling ΥN . However, for ` < 6 the origin is rendered unstable.

when ` < 6 the origin is rendered unstable. While it is
expected that the system can be destabilized if too few
iterations are performed, it is particularly interesting that
using ` = 6 iterations yields a (seemingly) optimal ROA,
while ` = 5 yields an unstable equilibrium. However, this
observation is consistent with Theorem 5 in the sense that
∃`∗ ∈ [5, 6) such that if ` > `∗, then a ROA exists for the
simulated closed-loop system.

VIII. CONCLUSIONS

This paper investigated the closed-loop properties of a
state and input constrained linear system controlled us-
ing Time-distributed Model Predictive Control. A sufficient
bound on the number of iterations per sampling period re-
quired to enforce asymptotic stability was derived in closed-
form with a computable region of attraction estimate in
the plant-optimizer space. Methods of approximating the
region of attraction estimate and initializing the optimization
procedure were also discussed. Future work will investigate
using a weighted terminal cost to expand the region of at-
traction estimate [16], and implementation strategies capable
of enforcing state constraints in the optimal control problem.
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