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Abstract— This paper introduces the Feasibility Governor
(FG): an add-on unit that enlarges the region of attraction
of Model Predictive Control by manipulating the reference to
ensure that the underlying optimal control problem remains
feasible. The FG is developed for linear systems subject to
polyhedral state and input constraints. Offline computations
using polyhedral projection algorithms are used to construct the
feasibility set. Online implementation relies on the solution of a
convex quadratic program that guarantees recursive feasibility.
The closed-loop system is shown to satisfy constraints, achieve
asymptotic stability, and exhibit zero-offset tracking.

I. INTRODUCTION

Model Predictive Control [1]–[3] (MPC) is a feedback
policy that computes the solution of a receding horizon
Optimal Control Problem (OCP) at every sampling instant. A
common approach for guaranteeing the stability of MPC is to
impose suitable conditions on the final step of the OCP [4],
[5]. The Region of Attraction (ROA) of the resulting closed-
loop system is then given by all the states that can reach the
terminal constraint set within the prediction horizon.

Since the terminal set is centered on the desired reference,
sudden reference changes can cause the OCP to become
infeasible if the system is unable to reach the new terminal
set within the prediction horizon. Although this issue could
be avoided by increasing the prediction horizon, doing so
can significantly increase the computational complexity of
the controller.

A different option for increasing the ROA is to treat
aspects of the terminal set as optimization variables and use
the additional degrees of freedom to enlarge the feasible
set. This approach has been applied to regulation [6], and
reference tracking [7], [8] of linear systems, and also eco-
nomic operation of nonlinear systems [9]. Alternatively, [10]
enlarges the ROA by computing a contractive sequence of
terminal sets offline and incorporating them into the OCP.
The drawback of all these methods is that they rely on a
non-standard OCP, making them difficult to combine with
other MPC schemes.

In this paper, we introduce the Feasibility Governor (FG),
an add-on unit that filters the reference signal to ensure
that the terminal set remains reachable within the prediction
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Fig. 1. A block diagram of the control architecture. Given a reference
r, the Feasibility Governor manipulates the auxiliary reference v to ensure
that the primary MPC controller is able to produce a valid control input u.

horizon. The FG takes advantage of offline polyhedral set
manipulation tools [11], [12] to reduce online complexity
while minimizing conservatism. Doing so enables the FG to
expand the ROA to the set of initial conditions that can reach
the terminal set of any steady state admissible reference,
as opposed to just the target reference. This is achieved
without any modifications to the existing MPC controller.
Moreover, we prove that the FG ensures the constraints
are never violated, and exhibits finite time convergence to
the desired reference. The proposed control architecture is
illustrated in Figure 1.

The idea of manipulating the reference to avoid infeasi-
bility in MPC can be found in prior literature. The recovery
mode featured in [13] simultaneously computes a modified
reference and control input to enforce feasibility at the
expense of performance. An FG-like algorithm that combines
a governor and explicit MPC controller into a single unit is
proposed in [14], but suffers from the complexity limitations
of explicit MPC [15]. A suboptimal continuous-time analog
of the FG is proposed in [16]. Finally, a spatial governor
specifically designed for precision machining applications is
proposed in [17]. This paper provides both a detailed look
into the theoretical properties of the proposed FG, and a
method for computing the feasible sets.

Notation: For vectors a and b, (a, b) = [aT bT ]T .
The identity matrix is IN ∈ RN×N . Given M ∈ Rm×n,
Ker M = {x | Mx = 0}. Given x ∈ Rn and a positive
definite matrix P ∈ Rn×n, the weighted norm is ‖x‖P =√
xTPx. Given x ∈ Rn, y ∈ Rm and a set Γ ⊆ Rn+m,

the projection of Γ onto the domain of x is ΠxΓ, where
Πx = [In 0n×m], and the slice (or cross-section) operation
is Sy(Γ, x) = {y | (x, y) ∈ Γ}.

II. PROBLEM SETTING

Consider the linear time invariant (LTI) system

xk+1 = Axk +Buk (1a)
yk = Cxk +Duk (1b)
zk = Exk + Fuk, (1c)



where k ∈ N is the discrete-time index and xk ∈ Rnx ,
uk ∈ Rnu , yk ∈ Rny , and zk ∈ Rnz are the states, control in-
puts, constrained outputs, and tracking outputs, respectively.
System (1) is subject to pointwise-in-time constraints

yk ∈ Y, ∀k ∈ N, (2)

where Y ⊆ Rny is the constraint set.

Assumption 1. The pair (A,B) is stabilizable.

As detailed in [7], Assumption 1 implies that

Z =

[
A− Inx B 0

E F −Inz

]
(3)

satisfies Ker(Z) 6= {0} and, as a result, system (1) admits
a family of equilibrium points satisfying Zζ = 0 with
ζ = (x, u, z) 6= 0. Moreover, it is possible to introduce
an auxiliary reference vector v ∈ Rnv to parameterize the
equilibrium manifold as ζ̄v = (x̄v, ūv, z̄v) = Gv where

GT :=
[
GTx GTu GTz

]
(4)

is a basis for Ker(Z). The following assumption ensures that
there is a one-to-one correspondence between the reference
v and the tracking output z.

Assumption 2. The matrix Gz is invertible.

Under Assumption 2, it is possible to impose Gz = Inz
using the change of basis G← GG−1

z .

Assumption 3. The set Y is a compact polyhedron with
representation Y = {y | Y y ≤ h} and satisfies 0 ∈ Int Y .

Given the design parameter ε ∈ (0, 1) and the correspond-
ing set of strictly steady-state admissible references

Rε = {v | (CGx +DGu)v ∈ (1− ε)Y}, (5)

we now state the control problem addressed by this paper.

Control Objectives: Given the LTI system (1) subject to
constraints (2), let r ∈ Rnz be a target reference. The goal of
this paper is to design a full state feedback law that achieves
• Safety: yk ∈ Y, ∀k ≥ 0;
• Convergence: limk→∞ zk = r?, where

r? = arg min
v∈Rε

‖v − r‖.

Remark 1. When the tracking problem is well posed, i.e.,
r ∈ Rε, we recover limk→∞ zk = r.

III. CONTROL STRATEGY

Due the constraints, we approach the control objectives
using a typical MPC formulation where the feedback policy
is defined using the solution to the following OCP

min
µ
||ξN − x̄v||2P +

N−1∑
i=0

||ξi − x̄v||2Q + ||µi − ūv||2R (6a)

s.t. ξ0 = x, (6b)
ξi+1 = Aξi +Bµi, i ∈ N[0,N−1], (6c)
Cξi +Dµi ∈ Y, i ∈ N[0,N−1], (6d)

(ξN , v) ∈ T , (6e)

where N ∈ N>0 is the prediction horizon, µ =
(µ0, . . . µN−1), P , Q, and R are weighting matrices, and
T ⊆ Rnx ×Rnv is the terminal set, which is assumed to be
polyhedral, i.e.,

T = {(x, v) | Txx+ Tvv ≤ c}. (7)

The following assumptions ensure that (6) is well-posed and
can be used to construct a stabilizing feedback law.

Assumption 4. The stage cost matrices satisfy Q � 0, with
(A,Q) detectable, and R � 0.

Given Assumption 4, let P be the solution to the discrete
algebraic Riccati equation

P = Q+ATPA− (ATPB)(R+BTPB)−1(BTPA), (8)

let K be the associated LQR gain

K = (R+BTPB)−1(BTPA), (9)

and let T = Õε∞ be the terminal set, with Õε∞ defined in
[18]. By construction, the terminal set T is invariant and
constraint admissible, i.e., (x, v) ∈ T implies

(A−BK)x+B (ūv +Kx̄v) ∈ X (v), (10a)
(C −DK)x+D (ūv +Kx̄v) ∈ Y, (10b)

where X (v) = Sx(T , v). We now have all the elements typ-
ically used to define an asymptotically stable MPC feedback
policy [4]. However, the control action can be computed only
if (6) admits a solution. The set of all parameters for which
the OCP admits a solution, i.e., the feasible set, is

ΓN = {(x, v) | ∃ µ : (6b)− (6e)} ⊆ Rnx × Rnv , (11)

which is the N -step backwards reachable set of T . Since T is
polyhedral, then ΓN is also polyhedral and can be computed
offline, as detailed in Section IV-C. Assuming (x, v) ∈ ΓN ,
it is possible to compute the MPC feedback policy

κ(x, v) = µ?0(x, v) (12)

where µ?(x, v) = [µ?T0 , µ?T1 , . . . , µ?TN−1]T is the minimizer
of (6). The following theorem summarizes the properties of
the closed-loop system for a constant auxiliary reference.

Theorem 1. Let Assumptions 1–4 hold and let φ(`, x, v)
denote the solution of the closed-loop dynamics

xk+1 = f(xk, v) := Axk +Bκ(xk, v). (13)

starting from the initial condition x0 = x at timestep ` ≥ 0.
Then for all (x, v) ∈ ΓN .
• (φ(`, x, v), v) ∈ ΓN , ∀` ≥ 0;
• y` ∈ Y, ∀` ≥ 0;
• lim`→∞ φ(`, x, v) = x̄v .

If, in addition, v ∈ Rε then x̄v is asymptotically stable.

Proof. Since the auxiliary reference v is constant for ` ≥ 0,
the statement follows from [2, Theorem 4.4.2].

Theorem 1 achieves the control objectives given v = r
and x0 satisfying (x0, r) ∈ ΓN with an ROA of Sx(ΓN , r).



Fig. 2. Illustration of the sets used in the paper for the discrete-time
integrator xk+1 = xk + uk subject to |xk| ≤ 1 and |uk| ≤ 0.25, given
ε = 0.2, T = Õ0.05

∞ and N = 2.

Its main limitation, however, lies in the fact that the OCP (6)
is infeasible if x0 cannot be steered to X (r) within N steps.
Although increasing the prediction horizon may seem like a
suitable workaround, this solution may be inapplicable under
real-time restrictions since the computational time required
to solve (6) scales unfavorably with N . In view of extending
the ROA, we define the set of strictly steady-state admissible
equilibria

Σ = {(x, v) | x = Gxv, v ∈ Rε}, (14)

and note the following.

Lemma 1. Σ ⊂ Int ΓN .

Proof. Since (x̄v, v) ∈ Int Õε∞ [18, Theorem 2.1], the result
follows from Σ ⊂ Int T ⊆ Int ΓN

Figure 2 depicts all the sets defined in this section. In
the next section, we describe an add-on unit that expands
the closed-loop domain of attraction without extending the
prediction horizon or modifying the MPC formulation.

IV. THE FEASIBILITY GOVERNOR

The MPC feedback policy (12) is stabilizing only if the
terminal set associated with the target equilibrium is N -step
reachable from the current state. Intuitively, this limitation
can be overcome by selecting a sequence of intermediate
targets that are pair-wise reachable. This paper formalizes
this idea by redefining the auxiliary reference v as a time-
varying system vk to ensure (xk, vk) ∈ ΓN , ∀k ∈ N, and
vk = r for sufficiently large k ∈ N. The resulting control
architecture is displayed in Figure 1.

A. Governor Design

The idea behind the FG is straightfoward: modify the
target reference as little as needed to ensure that the OCP
remains feasible. Drawing inspiration from the Command

Fig. 3. For the double integrator example in Section VI, the region of
attraction of the combined MPC + FG feedback law (green + yellow) is
significantly larger than that of the MPC controller alone (yellow), given
a prediction horizon of N = 10. The red trajectory is from the double
integrator example in Section VI.

Governor (CG) literature [19], [20], the FG policy can be
computed via by solving

g(x, r) = arg min
v∈Rε

{
‖v − r‖22 | (x, v) ∈ ΓN

}
. (15)

Given a measurement xk, the FG computes a virtual refer-
ence vk = g(xk, r) that is passed to the MPC controller to
obtain a control action uk = κ(xk, vk).

B. Properties

Given system (1) and the feedback policy (12), the FG is
recursively feasible (see Theorem 2), guarantees constraint
satisfaction (see Theorem 2), renders the point x∗r = Gxv

∗
r

asymptotically stable (see Theorem 3), and exhibits finite
time convergence of vk → v∗r (see Theorem 4).

Moreover, the FG expands the ROA of the closed-loop
system from DMPC = Sx(ΓN , r

?), i.e., the set of states
from which it is possible to reach X (r?) in N -steps, to

DFG =
⋃
v∈Rε

Sx(ΓN , v), (16)

i.e., the set of states from which it is possible to reach
X (v) for any v ∈ Rε. In particular, the addition of the
FG guarantees safe transitions between any r1, r2 ∈ Rε.
The differences between DMPC and DFG are illustrated in
Figure 3 for the double integrator example in Section VI.

C. Implementation

Since ΓN and Rε are polyhedral, (15) is a strongly convex
quadratic program (QP), and can therefore be solved in real-
time. Moreover, since the FG problem typically has a small
number of variables and many constraints, dual active-set
methods [21] are particularly well suited for solving (15)
efficiently and reliably due to the limited number of active
constraints at any given time.

Implementation of the FG also requires a half-space
representation of the feasible set ΓN . To compute such a



representation, note that the OCP (6) is a QP and can be
written in the condensed form [22]

min.
µ

1

2
µTHµ+ µTWθ (17a)

s.t. Mµ+ Lθ ≤ b, (17b)

with parameter θ = (x, v). The feasible set (11) can therefore
be expressed as

ΓN = Πθ{(µ, θ) | Mµ+ Lθ ≤ b}. (18)

Several toolboxes are available for performing polyhedral
calculus (e.g., projections, images, inverse images etc.). In
this paper, we compute ΓN using the bensolve tools
[23] package. Unfortunately, the complexity of computing
ΓN is dominated by the projection operation. The projection
is performed offline but can quickly become intractable even
for moderately sized systems as all known projection algo-
rithms suffer from the curse of dimensionality [24]. Thus, the
offline computation of ΓN can quickly become intractable
as the size of the state vector, input vector, reference, or
prediction horizon grows.

V. THEORETICAL ANALYSIS

This section analyzes the properties of the closed-loop
system under the combined FG and MPC policy. We begin
with some definitions. The feasible set of the FG is

Λ = ΓN ∩ (Rnx ×Rε). (19)

The closed-loop dynamics of (1) under the combined FG and
MPC feedback law are

xk+1 = f(xk, g(xk, r)), (20)

and the constrained output is

yk = Cxk +Dκ(xk, vk). (21)

A. Safety and Recursive Feasibility

The following theorem provides sufficient conditions un-
der which the Feasibility Governor (FG) is recursively fea-
sible and achieves the Safety objective.

Theorem 2 (Safety & Recursive Feasibility). Given Assump-
tions 1–4, consider the closed-loop dynamics (20). Given
x0 ∈ ΠxΛ, then (xk, vk) ∈ Λ and yk ∈ Y , ∀k ∈ N.

Proof. The proof is by induction. Given x0 ∈ ΠxΛ, the
FG optimization problem is feasible at time k = 0 and
(x0, v0) ∈ Λ. Next, given (xk, vk) ∈ Λ, Theorem 1
implies (f(xk, vk), vk) = (xk+1, vk) ∈ Λ. Moreover, since
(xk+1, vk) ∈ Λ it follows that (15) is feasible at timestep
k + 1 and thus (xk+1, vk+1) = (xk+1, g(xk+1, r)) ∈ Λ.
Therefore, by induction, (xk, vk) ∈ Λ ⊂ ΓN , ∀k ∈ N.
Finally, yk ∈ Y, ∀k ∈ N follows from (xk, vk) ∈ ΓN and
Theorem 1.

B. Convergence and Stability

Having established recursive feasibility, we now consider
convergence and stability, starting with asymptotic stability.
Throughout the section the reference is constant so we
suppress all dependencies on r to simplify the notation.

The proof is via the invariance principle [25, Theorem 2],
so we begin by introducing the Lyapunov function candidate

V (v) = ‖v − r‖22, (22)

and the increment function

∆V (x, v) = V (g(f(x, v)))− V (v). (23)

The first step is to characterize the set

Ω = {(x, v) ∈ Λ | ∆V (x, v) = 0}. (24)

Lemma 2. Under Assumptions 1–4, there exists m > 0 such
that

∆V (x, v) ≤ −m‖g(f(x, v))− v‖2 ≤ 0, (25)

for all (x, v) ∈ Λ and thus

Ω = {(x, v) ∈ Λ | g(f(x, v)) = v}.

Proof. The function V is strongly convex and continuously
differentiable. Thus, there exists m > 0 such that

V (v) ≥ V (v′) +∇V (v′)T (v − v′) +m‖v − v′‖22
for all v′, v ∈ Rnv . Letting x+ = f(x, v) and v′ = g(x+) ∈
Sv(Λ, x

+), we have that

∇V (v′)T (v − v′) ≥ 0, ∀v ∈ Sv(Λ, x+). (26)

By using v′ = g(f(x, v)), and recalling that (x, v) ∈ Λ
implies (x+, v) ∈ Λ we obtain

V (g(f(x, v)))− V (v) ≤ −m‖g(f(x, v))− v‖2 ≤ 0,

for all (x, v) ∈ Λ. Thus ∆V (x, v) ≤ 0 for all (x, v) ∈ Λ
and Ω = {(x, v) ∈ Λ | g(f(x, v)) = v}.

The next Lemma shows that, if x is close enough to x̄v ,
then the FG is able to make progress towards r?.

Lemma 3. Given Assumptions 1–4, define

Bδ(Σ) = {(x, v) | v ∈ Rε, ‖x−Gxv‖ ≤ δ}, (27)

where Σ = {(x, v) | x = Gxv, v ∈ Rε} is the equilibrium
manifold. Then, there exists δ? > 0 such that g(x) 6= v for
all (x, v) ∈ Bδ(Σ), v 6= r? and δ ∈ [0, δ?].

Proof. Lemma 1 implies that B0(Σ) = Σ ⊂ Int ΓN hence
there exists δ? > 0 such that Bδ(Σ) ⊂ Int ΓN for all δ ∈
[0, δ?]. Since Bδ(Σ) ⊂ Int ΓN , for any (x, v) ∈ Bδ(Σ)
there exists α = α(δ) > 0 such that (x, v′) ∈ ΓN for all
v′ ∈ Bα(v), or, equivalently, Bα(v) ⊆ Sv(ΓN , x).

The goal is to show that there exists v′ ∈ Sv(Λ, x) such
that V (v′) < V (v) whenever v 6= r?. First, fix any δ ∈ [0, δ?]
and α = α(δ), define the set Cα = Rε ∩ Bα(v) and the ray
v′(t) = v + t(r? − v) with t ≥ 0, and assume v 6= r?.
It is evident that v′(t) ∈ Cα for t ∈ [0,min (1, β)], with
β = α

‖v−r?‖ , because v and r? are in the convex set Rε



and ‖v′(t) − v‖ ≤ α for all t ≤ β. Further, V is strongly
convex and mins∈Rε V (s) = V (r?) ≤ V (v) for all v ∈ Rε,
implying that

V (v′(β)) = V ((1− β)v + βr?)

< V (v) + β[V (r?)− V (v)]

< V (v)

for all v ∈ Rε \ r?. Since v′(β) ∈ Cα we have

min
s∈Cα

V (s) ≤ V (v′(β)) < V (v), (28)

and, since Cα ⊆ Sv(Λ, x) = Rε ∩ Sv(ΓN , x),

V (g(x)) = min
s∈Sv(Λ,x)

V (s) ≤ min
s∈Cα

V (s). (29)

Combining (28) and (29) we conclude

V (g(x)) < V (v) ∀(x, v) ∈ Bα(Σ), v 6= r? (30)

and thus, because V is strongly convex, g(x) 6= v for all
(x, v) ∈ Bδ(Σ), v 6= r?, and δ ∈ [0, δ∗].

Lemma 4 characterizes the largest invariant set in Ω, an
essential step in the application of the invariance principle.

Lemma 4. Let Assumptions 1–4 hold. Then the point

I0 = {(x̄?r , r?)} , x̄?r = Gxr
? (31)

is the largest invariant set in Ω ⊂ Λ.

Proof. Let I ⊂ Ω be the largest invariant set in Ω. Our
approach is to erode I in several steps.

First, define the function φ : N≥0 × ΓN → Rnx such that
φ(`, x, v) denotes the solution of xk+1 = f(xk, v) starting
from x0 = x at timestep ` ≥ 0. Let

Ω̃ = {(x, v) ∈ Λ | g(φ(`, x, v)) = v, ∀` ≥ 0} ⊆ Ω,

be the set of all initial conditions for which v remains
constant for all time. Since the set

Ω \ Ω̃ = {(x, v) ∈ Λ | ∃` > 0, g(φ(`, x, v)) 6= v},

cannot be invariant, I ⊆ Ω̃. To see that Ω\ Ω̃ isn’t invariant,
consider any initial condition (x0, v−1) ∈ Ω\Ω̃ and consider
the point (x`−1, v`−1) on the resulting trajectory. By the
definition of Ω \ Ω̃, g(x`, v`−1) = g(f(x`−1, v`−1), v`−1) 6=
v`−1, which implies (x`−1, v`−1) /∈ Ω. Thus, for any
(x0, v−1) ∈ Ω \ Ω̃, the resulting trajectory exits Ω \ Ω̃.

The inclusion I ⊆ Ω̃ implies that the auxiliary reference
must remain constant in I, so we focus on the evolution of
x given a constant v. Recall the set Bδ(Σ) defined in (27).
Due to Theorem 1, for any (x, v) ∈ Λ and δ > 0, there
exists a finite t = t(δ) ≥ 0 such that (φ(t, x, v), v) ∈ Bδ(Σ).
Further, by Lemma 3, there also exists δ? > 0 such that
(φ(t, x, v), v) ∈ Bδ(Σ) implies g(φ(t, x, v)) 6= v for any
δ ∈ [0, δ?] and v 6= r?. Thus, Ω̃ \ Bδ(Σ) is not invariant and
I ⊆ (Ω̃ ∩ Bδ(Σ)) for arbitrarily small δ > 0.

The inclusion I ⊆ (Ω̃∩Bδ(Σ)) for arbitrarily small δ > 0
implies I ⊆ B0(Σ) = Σ. Thanks to Lemma 1, Σ ⊂ Int ΓN ,
which implies

g(Gxr
?) = arg min

s∈Rε
V (s) = r?. (32)

Thus, v = r? =⇒ g(Gxv) = v. Next, applying Lemma 3
with δ = 0, we have that v 6= r? =⇒ g(Gxv) 6= v which
is equivalent to g(Gxv) = v =⇒ v = r?. As a result,
g(Gxv) = v ⇔ v = r? and, therefore,

I = {(x, v) | x = Gxv, v = r?} = (x̄?r , r
?), (33)

completing the proof.

Having assembled all the components, we can now invoke
the invariance principle to show asymptotic stability and
finite-time convergence.

Theorem 3 (Asymptotic Stability). Let Assumptions 1–4
hold. Then, (x̄?r , r

?) is an asymptotically stable equilibrium
point of the closed-loop system (20), with domain of attrac-
tion D = ΠxΛ× Rnv .

Proof. Consider the candidate Lyapunov function V : Rε →
R defined in (22) and note that V is continuous, bounded
below, and, V (vk+1) ≤ V (vk) for all (xk, vk) ∈ Λ by
Lemma 2. Moreover, x0 ∈ ΠxΛ =⇒ (xk, vk) ∈ Λ
for all k ≥ 0 (Theorem 2), thus (20) is Lyapunov stable.
Further, invoking Lemma 4, the largest invariant subset of
Ω = {(x, v) | ∆V (x, v) = 0} is (x̄?r , r

?). Therefore, by the
invariance principle [25, Theorem 2], (xk, vk)→ (x̄?r , r

?) as
k →∞ for all x0 ∈ ΠxΛ.

Theorem 4 (Finite-time Convergence). Let Assumptions 1–4
hold and consider the closed-loop system (20). Then, ∀x0 ∈
ΠxΛ, there exists t ≥ 0 such that vk = r?, ∀k ≥ t.

Proof. Due to Lemma 1, (x̄?r , r
?) ∈ Σ ⊂ Int ΓN . Thus,

x̄?r ∈ Int Sx(ΓN , r
?). In addition, the definition of Λ = ΓN∩

(Rnx × Rε) implies Sx(Λ, v) = Sx(ΓN , v) for all v ∈ Rε
and therefore x̄?r ∈ Int Sx(Λ, r?). Since x̄?r ∈ Int Sx(Λ, r?)
and xk → x̄?r as k → ∞ (Theorem 3) there exists a finite
t ≥ 0 such that xt ∈ Sx(Λ, r?). By strong convexity of V ,
it follows from (15) that g(x) = r? for all x ∈ Sx(Λ, r?),
which implies vk = r? for all k ≥ t.

VI. NUMERICAL EXAMPLES

We consider a double integrator example, which allows us
to represent the geometries of the various sets. The system
matrices are

A =

[
1 0.1
0 1

]
, B =

[
0

0.1

]
, C =

1 0
0 1
0 0

 , D =

0
0
1

 ,
E =

[
1 0

]
, and F = 0, and the sampling time is ts = 0.1.

The default constraint set is

Y1 = [−1, 1]× [−0.25, 0.25]× [−0.25, 0.25],

and the MPC parameters are Q = I , R = 1, and N = 10
unless otherwise specified. The reference r = 0.75 and initial
condition x0 = [−1, 0]T are chosen such that r ∈ R0.01 and
x0 /∈ Sx(Γ10, r). For all the following figures, the terminal
set T = Õ0.01

∞ is computed using the procedure in [18].
Figure 4 illustrates the sets T and Γ10. The terminal set T

is entirely contained in the feasible set, and in both cases v is



implicitly bounded by the constraints on x1. The trajectory of
the double integrator is displayed in Figure 5 and illustrates
how the MPC + FG navigates Γ10. By the time vk = r, the
current state xk of the system has entered DMPC (yellow).
From here, the FG holds the auxiliary reference constant and
the MPC controller ensures that xk → x̄r as k →∞.

Fig. 4. Terminal set T (blue) encased in feasible set Γ10 (teal) for the
double integrator with constraints Y1.

Fig. 5. A closed-loop trajectory of the double integrator over the slices
Sx(Γ10, v) for different values of v with constraints Y1. Circle markers
show when the trajectory enters each slice and the star is the point (x∗r , v

∗
r ).

The feasible sets form an increasing sequence of sets in
N , i.e., ΓN ⊆ ΓN+1 for all N ≥ 0. This is illustrated in
Figure 6 which uses a modified constraint set

Y2 = [−1, 1]× [−1, 1]× [−0.05, 0.05]

for clarity. The set ΓN appears to be approaching some
Γ∞ ⊇ ΓN , we hypothesize that this occurs whenever Y is
compact.

Figure 7 compares the MPC + FG feedback law with N =
10 to an un-goverened MPC controller with N = N∗ = 236

Fig. 6. Increasing the control horizon N expands the size of the feasible
set while the terminal set stays constant. Here T = Γ0 = Õ0.01

∞ with
constraints Y2
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Fig. 7. Closed-loop double integrator dynamics for various control laws
with constraints Y3. The FG out performs the CG, and although the MPC
has the best performance, its control horizon is too large for real-time
applications.

where

N∗ = N∗(x0, r, T ) = inf
i
{i | (x0, r) ∈ Γi} (34)

is the smallest horizon length such that the MPC policy
is feasible for the chosen x0. Both these control laws are
also compared to a CG applied to the LQR gain. All three
controllers use Q = 100I and R = 1. The constraint set

Y3 = [−20, 20]× [−1, 1]× [−0.25, 0.25]

is chosen to illustrate what happens when the initial condi-
tions x0 = [−17, 0]T , and reference r = 4 are chosen far
away from each other. As displayed in Figure 7, there is ≈
37% increase in rise time using the FG, but the worst case
computation time for the combined FG and MPC feedback
policy is over 5000 times faster than of the un-governed
MPC, as seen in Table I.



TABLE I
EXECUTION TIME DATA FOR THE DOUBLE INTEGRATOR EXAMPLE.

FG (N = 10) MPC (N = 10) MPC (N = 236) CG
TAVE [ms] 0.0126 0.0884 255 0.00833

TMAX [ms] 0.063 0.345 2170 0.0369

VII. CONCLUSIONS

This paper introduced the Feasibility Governor (FG), an
add-on unit that expands the region of attraction of linear
model predictive controllers by filtering the reference input
passed to the controller and is designed to interfere minimally
with the operation and construction of the nominal controller.
It was shown that the FG is safe, converges in finite time,
and extends the region of attraction of MPC controllers at a
fraction of the computation cost associated with increasing
the prediction horizon. Future work includes extending FG
theory to handle the case when Gz is not invertible and intro-
ducing an easier to compute approximation of the feasible set
ΓN to address the curse of dimensionality for larger systems.
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“Cascaded reference governor–mpc for motion control of two-stage
manufacturing machines,” IEEE Transactions on Control Systems
Technology, vol. 27, no. 5, pp. 2030–2044, 2018.

[18] E. G. Gilbert and K. T. Tan, “Linear systems with state and control
constraints: The theory and application of maximal output admissi-
ble sets,” IEEE Transactions on Automatic control, vol. 36, no. 9,
pp. 1008–1020, 1991.

[19] E. Garone, S. Di Cairano, and I. Kolmanovsky, “Reference and
command governors for systems with constraints: A survey on theory
and applications,” Automatica, vol. 75, pp. 306–328, 2017.

[20] A. Bemporad, A. Casavola, and E. Mosca, “Nonlinear control of
constrained linear systems via predictive reference management,”
IEEE transactions on Automatic Control, vol. 42, no. 3, pp. 340–349,
1997.

[21] D. Goldfarb and A. Idnani, “A numerically stable dual method for
solving strictly convex quadratic programs,” Mathematical program-
ming, vol. 27, no. 1, pp. 1–33, 1983.

[22] D. Liao-McPherson and I. Kolmanovsky, “The fbstab quadratic pro-
gramming method applied to model predictive control: An implicit
condensing approach,” in 2019 IEEE 58th Conference on Decision
and Control (CDC), pp. 3370–3376, 2019.
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