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Abstract
We consider a multiphysics model for the flow of Newtonian fluid coupled with Biot consolidation equations through an

nterface, and incorporating total pressure as an unknown in the poroelastic region. A new mixed-primal finite element scheme is
roposed solving for the pairs fluid velocity–pressure and displacement–total poroelastic pressure using Stokes-stable elements,
nd where the formulation does not require Lagrange multipliers to set up the usual transmission conditions on the interface.
he stability and well-posedness of the continuous and semi-discrete problems are analysed in detail. Our numerical study is

ramed in the context of applicative problems pertaining to heterogeneous geophysical flows and to eye poromechanics. For
he latter, we investigate different interfacial flow regimes in Cartesian and axisymmetric coordinates that could eventually help
escribe early morphologic changes associated with glaucoma development in canine species.
2021 Elsevier B.V. All rights reserved.

SC: 65M60; 65M12; 76S05; 74F10; 92C35

eywords: Porous media flow; Biot consolidation; Total pressure; Transmission problem; Mixed finite element methods; Eye fluid poromechanics

1. Introduction

Poroelastic structures are found in many applications of industrial and scientific relevance. Examples include the
nteraction between soft permeable tissue and blood flow, or the study of the spatial growth of biofilm in fluids.

hen the interaction with a free fluid is considered, the mechanics of the fluid and poroelastic domains are coupled
hrough balance of forces and continuity conditions that adopt diverse forms depending on the expected behaviour in
he specific application (see, e.g., [1–4] and the references therein). The particular problem we consider in this paper
s motivation for the design of the finite element formulation is the interfacial flow of aqueous humour between the
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Fig. 1.1. Histology sketches of regions of interest (left, centre), and ultrasound image taken from data (right).

anterior chamber and the trabecular meshwork (which is a deformable porous structure) in the eye, and how such
phenomenon relates to early stages of glaucoma.

Glaucoma encompasses a group of mechanisms that lead to decreased retinal function, impaired visual fields
and blindness. The main risk factor for glaucoma in canines is an abnormal increase in the intra-ocular pressure
(which under physiologically normal conditions is balanced between aqueous humour production and outflow to
the venous drainage system [5]). We are interested in modelling the flow behaviour of aqueous humour within the
anterior chamber and its interaction with the poroelastic properties of particular compartments in the drainage outlet
located between the base of the iris and the limbus, which, in the dog eye and most other non-primate species
consists of an array of thin tissue columns (pectinate ligaments) [6] which mark the boundary of the trabecular
meshwork with the anterior chamber. Sketches of the regions of interest are depicted in Fig. 1.1. Our focus is on
how the physical changes associated with pectinate ligament dysplasia, a change seen in all dogs with primary
angle closure glaucoma, affect aqueous humour flow through this boundary. We stress that the ciliary cleft anatomy
of all carnivorous mammals is fairly similar to that of the dog. In fact, this anatomy is preserved across much of
herbivorous mammals as well (see, e.g., [7]). Therefore, even though the dog is probably the most studied due to
its status as a companion animal, this work likely applies to most carnivorous and herbivorous mammals.

The flow within the anterior chamber will be modelled by Navier–Stokes and Stokes’ law for Newtonian fluids,
whereas the filtration of aqueous humour through the deformable trabecular meshwork and towards the angular
aqueous plexus will be described by Darcy’s law. Pressure differences are generated by production (from the ciliary
muscle) and drainage (to angular aqueous plexus and then linked to the veins at the surface of the sclera through
collecting channels) of aqueous humour.

Other effects that could contribute to modification of the flow patterns and that we do not consider here, are
thermal properties (buoyancy mechanisms due to temperature gradients from inner to outer cornea) [8], cross-link
interaction between fibrils in the cornea [9], pressure changes due to phacodonesis (vibration of the lens while the
head or eye itself moves) and Rapid Eye Movement during sleep [10], and nonlinear flow conditions in the filtration
region (incorporated in [11] through Darcy–Forchheimer models).

In contrast with [12–15], here we consider that the coalescing of the pectinate ligaments results in marked changes
in porosity properties of the anterior chamber — trabecular meshwork interface, which could eventually lead to
progressive collapse of the ciliary cleft. We further postulate that these modifications of the tissue’s microstructure
could be induced by forces exerted by the flow that concentrate at the interface between the dysplastic pectinate
ligament and the anterior chamber, and which occur over a timescale much larger than that of the ocular pulsating
flow. In fact, evidence of the compliance of the trabecular meshwork can be found in, e.g., [16]. One of the earliest
modelling works including a coupling between aqueous humour in the anterior chamber with complying structures
is presented in [17], where mechanical properties of the bovine iris were employed to set an elastic interface to
represent blinking. Other fluid–structure interaction models have been recently developed in [18], suggesting that
flow conditions in the trabecular meshwork and the outlets could be largely affected by the changes of permeability
in microstructure, and [19], where poroelastic properties of the choroid and viscoelastic response of the vitreous
body are used to set up a more complete 3D model of larger scale that discards a dedicated physiological description
of the trabecular meshwork and considers instead a windkessel model.

In the general context of single phase fluid / poromechanical coupling, there are already a variety of finite element
formulations starting from the work [20], which focuses on the effects of secondary consolidation. More recently,

partitioned finite element formulations using domain decomposition and or Nitsche’s approach for single and double
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poroelastic layers in contact with a single phase fluid can be found in [21–24]. Monolithic couplings have been
analysed in [25] for a mixed Darcy formulation using a Lagrange multiplier to impose flux continuity (see also [26]
for the extension to the case of non-Newtonian fluids), as well in [27,28] for a primal Darcy formulation. Ghost
penalty methods have been employed for cut FEM methods valid in the regime of large deformations in [29].

Here, and drawing inspiration from the formulation in [25,30–32], we rewrite the poroelasticity equations
sing three fields (displacement, fluid pressure and total pressure). Compared to previous works [21–28], which
mploy the classical displacement formulation, an advantage of the present approach, inherited from [32], is that
he formulation is free of poroelastic locking, meaning that it is robust with respect to the Lamé parameters

of the poroelastic structure. This is of particular importance when we test variations of the flow response to
changes in the material properties of the skeleton and when the solid approaches the incompressibility limit. The
present work also stands as an extension of the formulation recently employed in [3] (where only the case of
intrinsic incompressible constituent in the poroelastic region were considered) to obtain approximate solutions for
heterogeneous poroelasticity coupled with Stokes flow in channels (and using also heterogeneous elastic moduli);
while the PDE analysis, numerical aspects, and applicability of the formalism to more realistic scenarios have not yet
been addressed. In this work, under adequate assumptions, the analysis of the weak formulation is carried out, using
a (time continuous) semi-discrete Galerkin approximation and a weak compactness argument. The well-posedness
of the semi-discrete formulation is established using the theory of differential algebraic equations (see, e.g., [33])
and using similar results to those obtained in [25,34]. A conforming mixed finite element scheme of general order
is used. Furthermore, a fully discrete scheme based on backward Euler’s time discretisation is considered, and the
unique solvability and convergence for the fully discrete scheme are established.

We have organised the contents of this paper in the following manner. Section 2 outlines the model problem,
motivating each term in the balance equations and stating the interfacial and boundary conditions. Section 3 states the
weak form of the governing equations in Cartesian and axisymmetric coordinates. Then, in Section 4, we address the
construction of the finite element scheme, the well-posedness of the continuous and discrete problems, the stability
of the fully discrete system in matrix form. Section 5 states the fully-discrete scheme and presents the error estimates.
In Section 6 we collect computational results consisting in verification of spatio-temporal convergence and analysis
of different cases on simplified and more physiologically accurate geometries, including also a typical application in
reservoir modelling. One of the examples involves large displacements near the interface, in which case a harmonic
extension operator is used to deform the fluid domain. We close with a summary, some remarks and a discussion
on model generalisations in Section 7.

2. Governing equations

Let us consider a spatial domain Ω ⊂ Rd , d = 2, 3 disjointly split into ΩF and ΩP representing, respectively,
the regions where a chamber filled with incompressible fluid and the deformable porous structure are located. We
will denote by n the unit normal vector on the boundary ∂Ω , and by Σ = ΩF ∩ ΩP the interface between the two
subdomains. We also define the boundaries ΓF = ∂ΩF \ Σ and ΓP = ∂ΩP \ Σ , and adopt the convention that on
Σ the normal vector points from ΩF to ΩP . See a rough sketch in Fig. 2.1, that represents the geometry of the
anterior segment in the eye distinguishing between the anterior chamber ΩF and the trabecular meshwork ΩP . The
domain is sketched as an axisymmetric region, for which more specific properties will be listed later on.

In presenting the set of governing equations for the coupled fluid–poroelastic system we first focus on the fluid
domain, then on the poroelastic domain and, finally, on the initial, boundary and interfacial conditions.

2.1. Fluid domain

In the fluid domain ΩF , the problem is governed by the momentum and mass conservation equations. Defining
the fluid velocity u and the fluid pressure pF , the resulting system is written as

ρ f (∂t u + u · ∇u) − div[2µ f ϵ(u) − pF I] = ρ f g in ΩF × (0, T ], (2.1a)

divu = 0 in ΩF × (0, T ], (2.1b)

where ρ f , µ f are the density and dynamic viscosity of the fluid (e.g. the aqueous humour if we think to the

application for the filtration in the eye and thus ΩF is the anterior chamber), g is the gravity acceleration, 43
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Fig. 2.1. Schematic diagram of multidomain configuration on a segmented and meshed geometry, including the location of boundaries and
interface. The inlet region Γ in and the symmetry axis Γ axisymm are part of the boundary Γ u

F , whereas the outlet region Γ out is part of the
oundary Γ d

P .

(u) =
1
2 (∇u + ∇ut) is the strain rate tensor and ∂t indicates derivatives with respect to time. Note that, in typical

flow conditions of the eye anterior chamber, the Reynolds number is low (approximately 1.25, while the reduced
Reynolds number is between 0.06–0.08. See, e.g., [10,14,16,35]). Therefore, for the stability analysis and for some
of the numerical tests later on, we will restrict the fluid model to Stokes’ equations.

2.2. Poroelastic domain

The poroelastic domain ΩP is a biphasic material constituted by a linear elastic solid phase (potentially
intrinsically compressible) and an intrinsically incompressible fluid phase. In the context of the eye poromechanics,
the trabecular meshwork region occupying ΩP is constituted by three distinctive tissues, the uveal meshwork, the
juxtacanalicular meshwork, and the corneoscleral network; they have different micromechanical properties that, from
our modelling perspective, can be regarded as a single poroelastic domain with heterogeneous porosity distribution
that, in turn, means possible heterogeneity in the material properties. In addition, we anticipate that, although the
fluid viscosity is relevant at the scale of the pore, we assume that the fluid can be treated as inviscid at the macroscale.
Calling pP the fluid pressure and d the solid displacement, here we introduce the formulation that assumes pressure
and displacement as primary variables as presented, for example, in [36]

∂t (C0 pP + αdivd)− div
(
κ

µ f
(∇ pP − ρ f g)

)
= 0 in ΩP × (0, T ], (2.2a)

− div[2µsϵ(d) + λ (divd) I − αpP I] = ρm f in ΩP × (0, T ]. (2.2b)

The first equation can be derived from the conservation of mass for the fluid phase once employing the Darcy’s law
and the relation between fluid content–pressure–hydrostatic deformation of the solid phase. The storage capacity

0 is related to the intrinsic compressibility of the solid phase, while κ is the permeability (assumed isotropic but
heterogeneous). The second equation is the conservation of the momentum for the mixture, where f is a (possibly
fluid pressure-dependent) body load, ϵ(d) =

1
2 (∇d + ∇dt) is the infinitesimal strain tensor, ρs is the density of the

orous matrix and ρm is the average density of the poroelastic body, λ,µs are the Lamé constants of the solid; the
erm in the divergence on the left-hand side of (2.2b) is known as the effective stress or Terzaghi stress and the
arameter α, also known as Biot–Willis poroelastic coefficient, depends on the intrinsic compressibility of the solid
hase (α = 1 when the solid phase is intrinsically incompressible). We refer an interested reader to [36] or [37] for
urther details.

For sake of robustness of the formulation with respect to λ, we introduce the total pressure ϕ := αpP − λdivd,
s an additional unknown in the system (following [31,32]), and rewrite the pressure–displacement formulation in
2.2) in terms of the solid displacement d, the fluid pressure pP , and the total pressure ϕ, as

− div[2µ ϵ(d) − ϕI] = ρ f in Ω × (0, T ], (2.3a)
s m P

4
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ϕ − αpP + λdivd = 0 in ΩP × (0, T ], (2.3b)(
C0 +

α2

λ

)
∂t pP −

α

λ
∂tϕ − div

(
κ

µ f
(∇ pP − ρ f g)

)
= 0 in ΩP × (0, T ]. (2.3c)

In contrast with the formulations in [22,25], here we do not employ the fluid velocity in the porous domain as a
separate unknown. Consistently with [38], in the framework of linear poroelasticity, the permeability depends on
the pressure and the displacement fields only at higher orders; however, it can be heterogeneous, with a spatial
distribution dependent, for example, on an initial porosity distribution. We thus simply write

κ = κ(x). (2.4)

Likewise, it is also possible to assume heterogeneity of the Lamé constants, as in [3]. In such a case, we need
to assume that there exist constants λmin and λmax such that 0 < λmin ≤ λ ≤ λmax. In the analysis we show that
he estimates are independent of λmax, i.e., the results are uniform in the almost incompressible limit, even for the
eterogeneous case. Heterogeneous permeability and/or heterogeneous Lamé parameters will be used in some of
he numerical examples of Section 6.

.3. Initial, boundary and transmission conditions

To close the system composed by (2.1a), (2.1b), (2.2b), (2.2a), we need to provide suitable initial data, boundary
onditions, and adequate transmission assumptions. Without losing generality, we suppose that

u(0) = u0, pP (0) = pP,0 in Ω × {0}, (2.5)

while for the rest of the variables we will construct compatible initial data. In particular, and for sake of the energy
estimates to be addressed in Section 4.2, we will require initial displacement and an initial total pressure (which in
turn is computed from the initial displacement and the initial fluid pressure).

On the boundary ΓF of the fluid domain we can apply conditions on either the velocity, or the stress tensor; we
thus decomposed it between Γ u

F and Γ σ
F , with |Γ u

F | > 0, where we impose, respectively, no slip velocities and zero
normal total stresses as

u = 0 on Γ u
F × (0, T ], (2.6a)

[2µ f ϵ(u) − pF I]n = 0 on Γ σ
F × (0, T ]. (2.6b)

imilarly, on the boundary ΓP of the poroelastic domain we can prescribe conditions on either the displacement or
he traction and either the pressure or the fluid flux q = −

κ
µ f

(∇ pP − ρ f g). We thus divide the boundary into Γ
pP
P

nd Γ d
P , with |Γ

pP
P | > 0 and |Γ d

P | > 0, where we apply, respectively,

d = 0 and
κ

µ f
(∇ pP − ρ f g) · n = 0 on Γ d

P × (0, T ], (2.7a)

[2µsϵ(d) − ϕI]n = 0 and pP = 0 on Γ
pP
P × (0, T ]. (2.7b)

ext, and following [2,20–22], we consider transmission conditions on Σ accounting for the continuity of normal
uxes, momentum conservation, balance of fluid normal stresses, and the so-called Beavers–Joseph–Saffman (BJS)
ondition for tangential fluid forces

u · n =

(
∂t d −

κ

µ f
(∇ pP − ρ f g)

)
· n on Σ × (0, T ], (2.8a)

(2µ f ϵ(u) − pF I)n = (2µsϵ(d) − ϕI)n on Σ × (0, T ], (2.8b)

− n · (2µ f ϵ(u) − pF I)n = pP on Σ × (0, T ], (2.8c)

− t j
· (2µ f ϵ(u) − pF I)n =

γµ f
√
κ

(u − ∂t d) · t j , 1 ≤ j ≤ d − 1 on Σ × (0, T ], (2.8d)

here γ > 0 is the slip rate coefficient (or tangential resistance parameter), and we recall that the normal n on
he interface is understood as pointing from the fluid domain ΩF towards the porous structure ΩP , while t1 stands
or the tangent vector on Σ (for the case of d = 2, while for 3D t1, t2 represent the two tangent vectors on the
nterface, normal to n).
 21
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3. Weak formulation

Apart from the nomenclature introduced at the beginning of the section, conventional notation will be adopted
hroughout the paper. For Lipschitz domains Ξ in Rd , and for s ∈ N, k ∈ N ∪ ∞ we denote by W k,s(Ξ ) the space

of all Ls(Ξ ) integrable functions with weak derivatives up to order s being also Ls(Ξ ) integrable. As usual, for
the special case of s = 2 we write H s(Ξ ) := W k,2(Ξ ) and use boldfaces to refer to vector-valued functions and
unction spaces, e.g., Hs(Ξ ) := [H s(Ξ )]d . We will further utilise the Bochner space–time norms, for a separable

Banach space V and f : (0, T ) → V, ∥ f ∥
2
L2(0,T ;V)

:=
∫ T

0 ∥ f (t)∥2
V dt and ∥ f ∥L∞(0,T ;V) := esssupt∈(0,T ) ∥ f (t)∥V. By

we will denote generic constants that are independent of the mesh size.

.1. Cartesian case

The initial step in deriving the finite element scheme consists in stating a weak form for (2.1a)–(2.3c). We proceed
o test these equations against suitable smooth functions and to integrate over the corresponding subdomain. After
pplying integration by parts wherever adequate, we formally end up with the following remainder on the interface

IΣ = −⟨(2µ f ϵ(u) − pF I)n, v⟩Σ + ⟨(2µsϵ(d) − ϕI)n,w⟩Σ + ⟨
κ

µ f
∇ pP · n, qP⟩Σ ,

here ⟨·, ·⟩Σ denotes the duality pairing between the trace functional space H 1/2(Σ ) and its dual H−1/2(Σ ). Then,
s in, e.g., [39], we proceed to use each of the transmission conditions (2.8a)–(2.8d), yielding the expression

IΣ = ⟨pP , (v − w) · n⟩Σ +

d−1∑
j=1

⟨
γµ f
√
κ

(u − ∂t d) · t j , (v − w) · t j
⟩Σ − ⟨(u − ∂t d) · n, qP⟩Σ .

his interfacial term is well-defined because of the regularity of the entities involved, and this implies that we do not
equire additional Lagrange multipliers to realise the coupling conditions. Also, in view of the boundary conditions
e define the Hilbert spaces

H1
⋆(ΩF ) = {v ∈ H1(ΩF ) : v|Γ u

F
= 0}, H1

⋆(ΩP ) = {w ∈ H1(ΩP ) : w|Γ d
P

= 0},

H 1
⋆ (ΩP ) = {qP ∈ H 1(ΩP ) : qP |Γ

pP
P

= 0},

ssociated with the classical norms in H1(ΩF ),H1(ΩP ), and H 1(ΩP ), respectively. Consequently we have the
ollowing mixed weak form: For t ∈ [0, T ], find u ∈ H1

⋆(ΩF ), pF ∈ L2(ΩF ), d ∈ H1
⋆(ΩP ), pP ∈ H 1

⋆ (ΩP ),
∈ L2(ΩP ), such that

aF
1 (∂t u, v) + aF

2 (u, v) + cF (u, u; v) + bF
1 (v, pF )

+ bΣ
2 (v, pP ) + bΣ

3 (v, ∂t d) = F F (v) ∀v ∈ H1
⋆(ΩF ), (3.1a)

− bF
1 (u, qF ) = 0 ∀qF ∈ L2(ΩF ), (3.1b)

bΣ
3 (u,w) + bΣ

4 (w, pP ) + a P
1 (d,w)

+ aΣ
2 (∂t d,w) + bP

1 (w, ϕ) = F P (w) ∀w ∈ H1
⋆(ΩP ), (3.1c)

− bΣ
2 (u, qP ) − bΣ

4 (∂t d, qP ) + a P
3 (∂t pP , qP )

+ a P
4 (pP , qP ) − bP

2 (∂tϕ, qP ) = G(qP ) ∀qP ∈ H 1
⋆ (ΩP ), (3.1d)

− bP
1 (d, ψ) − bP

2 (ψ, pP ) + a P
5 (ϕ,ψ) = 0 ∀ψ ∈ L2(ΩP ), (3.1e)

here the bilinear and trilinear forms and linear functionals are defined as

aF
1 (u, v) = ρ f

∫
ΩF

u · v, aF
2 (u, v) = 2µ f

∫
ΩF

ϵ(u) : ϵ(v) +

d−1∑
j=1

⟨
γµ f
√
κ

u · t j , v · t j
⟩Σ ,

cF(u,w; v) = ρ f

∫
ΩF

(u · ∇w) · v, bF
1 (v, qF ) = −

∫
ΩF

qF divv, bP
1 (w, ψ) = −

∫
ΩP

ψdivw,

bΣ
2 (v, qP ) = ⟨qP , v · n⟩Σ , bΣ

3 (v,w) = −

d−1∑
⟨
γµ f
√
κ

v · t j ,w · t j
⟩Σ , bΣ

4 (w, qP ) = −⟨qP ,w · n⟩Σ ,
j=1

6
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1 (d,w) = 2µs

∫
ΩP

ϵ(d) : ϵ(w), aΣ
2 (d,w) =

d−1∑
j=1

⟨
γµ f
√
κ

d · t j ,w · t j
⟩Σ , (3.2)

a P
3 (pP , qP ) =

(
C0 +

α2

λ

) ∫
ΩP

pPqP , a P
4 (pP , qP ) =

∫
ΩP

κ

µ f
∇ pP · ∇qP ,

bP
2 (ψ, qP ) =

α

λ

∫
ΩP

ψqP , a P
5 (ϕ,ψ) =

1
λ

∫
ΩP

ϕψ, F F (v) = ρ f

∫
ΩF

g · v,

F P (w) = ρs

∫
ΩP

f · w, G(qP ) =

∫
ΩP

ρ f
κ

µ f
g · ∇qP − ⟨ρ f

κ

µ f
g · n, qP⟩Σ .

.2. Axisymmetric case

For the specific application of interfacial flow in the eye, the radial symmetry of the domain and of the flow
onditions could be better represented using axisymmetric formulations as in [12,14,40]. Then, the domain as well
s the expected flow properties are all symmetric with respect to the axis of symmetry Γ axisymm. The model equations

can be written in the meridional domain Ω (making abuse of notation, and referring to Fig. 2.1). In such a setting the
fluid velocity and solid displacement only possess radial and vertical components and we recall that the divergence
operator of the generic vector field v in axisymmetric coordinates (in radial and height variables r, z) is

divav := ∂zvz +
1
r
∂r (rvr ),

while the notation of the gradient coincides with that in Cartesian coordinates. The weak formulation (3.1) adopts
the following modifications (again making abuse of notation, the unknowns are denoted the same as in the Cartesian
case): Find u ∈ V̂, pF ∈ Q̂F , d ∈ Ŵ, pP ∈ Q̂P , ϕ ∈ Ẑ, such that

ρ f

∫
ΩF

∂t u · v r dr dz + 2µ f

∫
ΩF

ϵ(u) : ϵ(v)r dr dz + 2µ f

∫
ΩF

1
r

urvr dr dz −

∫
ΩF

pF divav r dr dz

+

∫
Σ

γµ f
√
κ

(u − ∂t d)· tv · tr dr dz +

∫
Σ

pFv · nr dr dz = ρ f

∫
ΩF

g · vr dr dz ∀v ∈ V̂, (3.3a)

−

∫
ΩF

qF divau r dr dz = 0 ∀qF ∈ Q̂F , (3.3b)

2µs

∫
ΩP

ϵ(d) : ϵ(w) r dr dz + 2µs

∫
ΩP

1
r

drwr dr dz −

∫
Σ

γµ f
√
κ

(u − ∂t d) · tw · tr dr dz

−

∫
ΩP

ϕdivaw r dr dz −

∫
Σ

pPw · n dr dz = ρs

∫
ΩP

f · w r dr dz ∀w ∈ Ŵ, (3.3c)

(
C0 +

α2

λ

) ∫
ΩP

∂t pPqP r dr dz +

∫
ΩP

κ

µ f
∇ pP · ∇qP r dr dz −

α

λ

∫
ΩP

∂tϕqP r dr dz

+

∫
Σ

qP (u − ∂t d) · nr dr dz =

∫
ΩP

ρ f g · ∇qPr dr dz −

∫
Σ

ρ f g · nqPr dr dz ∀qP ∈ Q̂P , (3.3d)

−

∫
ΩF

ψdivav r dr dz +
α

λ

∫
ΩP

pPψ r dr dz −
1
λ

∫
ΩP

ϕψ r dr dz = 0 ∀ψ ∈ Ẑ. (3.3e)

Here the functional spaces are now defined as

V̂ := {v ∈ V 1
1 (ΩF ) × H1

1(ΩF ) : v|Γ u
F

= 0 and v · n|Γ axisymm = 0}, Q̂F
:= L2

1(ΩF ),

Ŵ := {w ∈ V 1
1 (ΩP ) × H1

1(ΩP ) : w|Γ d
F

= 0}, Q̂P
:= {qP ∈ H1

1(ΩP ) : qP |Γ
pP
P

= 0}, Ẑ := L2
1(ΩP ),

where, for m ∈ R, 1 ≤ p < ∞ the weighted functional spaces adopt the specification

L p
m(Ωi ) = {v : ∥v∥

p
m,p,Ωi

:=

∫
Ωi

|v|prm dr dz < ∞},

and

H1(Ω ) := {v ∈ L2(Ω ) : ∇v ∈ L2(Ω )}, V 1(Ω ) := H1(Ω ) ∩ L2 (Ω ).
1 i 1 i 1 i 1 i 1 i −1 i

7
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4. Well-posedness of the weak formulation

The following analysis is confined to the Cartesian case. Furthermore, we focus on the quasi-static Biot–Stokes
odel, i.e., we neglect the terms aF

1 and cF in (3.1a), as this is the typical flow regime for the application of interest.
e also restrict our attention to the case α̃ = 1. The solvability analysis is based on a Galerkin argument, where

ne considers the semi-discrete continuous in time formulation with a discretisation parameter h. We establish that
t has a unique solution and derive stability bounds. Then, owing to a weak compactness argument, we pass to the
imit h → 0 and obtain existence and uniqueness of a weak solution.

.1. Semi-discrete mixed finite element formulation

In addition to the assumptions stated before on the domain geometry, to avoid additional technicalities, we operate
nder the condition that Ω is a polytope. We denote by {Th}h>0 a shape-regular family of finite element partitions

of Ω̄ , conformed by tetrahedra (or triangles in 2D) K of diameter hK , with mesh size h := max{hK : K ∈ Th}.
he finite-dimensional subspaces for fluid velocity, fluid pressure, porous displacement, porous fluid pressure, and

otal pressure are denoted Vh,QF
h ,Wh,QP

h ,Zh , respectively. It is sufficient for the following analysis that the
airs (Vh,QF

h ) and (Wh,Zh) are Stokes inf–sup stable, in the sense that there exist positive constants βF and
βP independent of h such that

∀ qF,h ∈ QF
h , sup

0̸=vh∈Vh

bF
1 (vh, qF,h)
∥vh∥H1(ΩF )

≥ βF∥qF,h∥L2(ΩF ), (4.1a)

∀ψh ∈ Zh, sup
0̸=wh∈Wh

bP
1 (wh, ψh)

∥wh∥H1(ΩP )
≥ βP∥ψh∥L2(ΩP ). (4.1b)

Feasible choices are Taylor–Hood, the MINI element, Crouzeix–Raviart, Scott–Vogelius, Guzmán–Neilan, Bernardi–
augel, equal-order stabilised methods (including total pressure projection stabilisation), divergence-conforming

tabilised methods, and many others. If taking, for example, generalised Taylor–Hood elements of degree (k, k − 1)
or Vh × QF

h and Wh × Zh , alongside a piecewise continuous and polynomial space of degree k for QP
h , then their

nterpolation properties will yield a method of overall order k in space when the displacement and velocity errors
re measured in the H1-norm, the total pressure and Stokes fluid pressure in the L2-norm, and the Biot fluid pressure
n the H 1-norm. A more general case, with different polynomial degrees for the different finite element spaces, is
ddressed in Section 5.1.

We look for (uh, pF,h, dh, pP,h, ϕh) : [0, T ] → Vh × QF
h × Wh × QP

h × Zh =: Hh such that for a.e. t ∈ (0, T ],

aF
2 (uh, vh) + bF

1 (vh, pF,h) + bΣ
2 (vh, pP,h) + bΣ

3 (vh, ∂t dh) = F F (vh) ∀vh ∈ Vh, (4.2a)

− bF
1 (uh, qF,h) = 0 ∀qF,h ∈ QF

h , (4.2b)

bΣ
3 (uh,wh) + bΣ

4 (wh, pP,h) + a P
1 (dh,wh)

+aΣ
2 (∂t dh,wh) + bP

1 (wh, ϕh) = F P (wh) ∀wh ∈ Wh, (4.2c)

− bΣ
2 (uh, qP,h) − bΣ

4 (∂t dh, qP,h) + a P
3 (∂t pP,h, qP,h)

+a P
4 (pP,h, qP,h) − bP

2 (∂tϕh, qP,h) = G(qP,h) ∀qP,h ∈ QP
h , (4.2d)

− bP
1 (dh, ψh) − bP

2 (ψh, pP,h) + a P
5 (ϕh, ψh) = 0 ∀ψh ∈ Zh . (4.2e)

his is a system of differential–algebraic equations (DAE) that can be written in an operator form as

∂tN uh(t) + Muh(t) = F(t), (4.3)

ith uh := [uh pF,h dh pP,h ϕh]t,

N =

⎡⎢⎢⎢⎢⎢⎣
0 0 (BΣ

3 )′ 0 0
0 0 0 0 0

0 0 AΣ
2 0 0

0 0 −BΣ
4 AP

3 −(BP
2 )′

0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎦, M =

⎡⎢⎢⎢⎢⎢⎣
AF

2 (BF
1 )′ 0 (BΣ

2 )′ 0
−BF

1 0 0 0 0

BΣ
3 0 AP

1 (BΣ
4 )′ (BP

1 )′

−BΣ
2 0 0 AP

4 0
0 0 −BP

1 −BP
2 AP

5

⎤⎥⎥⎥⎥⎥⎦, F =

⎡⎢⎢⎢⎢⎣
F F

0
F P

G
0

⎤⎥⎥⎥⎥⎦ ,

where the operators in calligraphic letters are induced by the forms in (3.2). The symbol (·)′ denotes the dual
perator resulting in the transpose block matrix of a given elementary block.
8
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We next discuss the initial condition for (4.3). Recall from (2.5) that we are given initial data pP,0 and note
that we do not use the initial data u0, since we are considering the quasi-static Stokes model. We assume that
pP,0 ∈ H 1

⋆ (Ωp) and take pP,h(0) = pP,h,0, where pP,h,0 ∈ QP
h is the L2-projection of pP,0. In addition, we need

initial data dh,0 ∈ Wh and ϕh,0 ∈ Zh such that dh(0) = dh,0 and ϕh(0) = ϕh,0. The construction of such data will
be discussed in Theorem 4.1.

4.2. Well-posedness of the semi-discrete problem

The well-posedness of the semi-discrete formulation could be analysed by recasting the system as a general
parabolic operator with degenerate time derivative, as recently proposed in [26] for the interaction of non-Newtonian
fluids and poroelastic media. This would require, however, to include the solid velocity as a new unknown. Instead,
we study it using the theory of DAE, following the approach from [25].

In the forthcoming analysis we will appeal to the Poincaré inequality

∥∇qP∥L2(ΩP ) ≥ cP∥qP∥H1(ΩP ), ∀ qP ∈ H 1
⋆ (ΩP ), (4.4)

Korn’s inequality

∥ϵ(v)∥L2(ΩF ) ≥ cF
K ∥v∥H1(ΩF ), ∥ϵ(w)∥L2(ΩP ) ≥ cP

K ∥w∥H1(ΩP ), (4.5)

for all v ∈ H1
⋆(ΩF ), w ∈ H1

⋆(ΩP ), and the trace inequality

∥v∥L2(Σ ) ≤ C F
Σ∥v∥H1(ΩF ), ∥qP∥L2(Σ ) ≤ C P

Σ∥qP∥H1(ΩP ), (4.6)

for all v ∈ H1(ΩF ), qP ∈ H 1(ΩP ). We also assume that there exist constants 0 < κ1 < κ2 < ∞ such that

κ1 ≤ κ(x) ≤ κ2 for a.e. x ∈ ΩP . (4.7)

emma 4.1. The bilinear forms that appear in (4.2) are continuous in the spaces V, QF , W, QP , and Z. If
f : [0, T ] → L2(ΩP ), then the linear functionals on the right-hand sides are also continuous.

roof. The statement of the lemma follows from the use of the Cauchy–Schwarz inequality and the trace inequality
4.6). □

heorem 4.1. For each f ∈ H 1(0, T ; L2(ΩP )) and pP,0 ∈ H 1
⋆ (Ωp), there exist initial data uh,0 ∈ Vh , pF,h,0 ∈ QF

h ,
dh,0 ∈ Wh , and ϕh,0 ∈ Zh such that the semi-discrete problem (4.3) with initial conditions pP,h(0) = pP,h,0,
dh(0) = dh,0, and ϕh(0) = ϕh,0 has a unique solution satisfying

∥uh∥L2(0,T ;H1(ΩF )) + ∥pF,h∥L2(0,T ;L2(ΩF )) + ∥dh∥L∞(0,T ;H1(ΩP ))

+

d−1∑
j=1

∥(uh − ∂t dh) · t j
∥L2(0,T ;L2(Σ )) + ∥pP,h∥L∞(0,T ;L2(ΩP )) + ∥pP,h∥L2(0,T ;H1(ΩP ))

+ ∥ϕh∥L2(0,T ;L2(ΩP )) +
1

√
λ

∥α pP,h − ϕh∥L∞(0,T ;L2(ΩP ))

≤ C
(
∥g∥L2(0,T ;L2(Ω)) + ∥g · n∥L2(0,T ;L2(Σ )) + ∥ f ∥H1(0,T ;L2(ΩP )) + ∥pP,0∥H1(ΩP )

)
, (4.8a)

nd

∥uh∥L∞(0,T ;H1(ΩF )) + ∥pF,h∥L∞(0,T ;L2(ΩF )) + ∥∂t dh∥L2(0,T ;H1(ΩP ))

+

d−1∑
j=1

∥(uh − ∂t dh) · t j
∥L∞(0,T ;L2(Σ )) + ∥∂t pP,h∥L2(0,T ;L2(ΩP )) + ∥pP,h∥L∞(0,T ;H1(ΩP ))

+ ∥ϕh∥L∞(0,T ;L2(ΩP )) +
1

√
λ

∥α ∂t pP,h − ∂tϕh∥L2(0,T ;L2(ΩP ))

≤ C
(
∥g∥L2(0,T ;L2(Ω)) + ∥g · n∥L2(0,T ;L2(Σ )) + ∥ f ∥H1(0,T ;L2(ΩP )) + ∥pP,0∥H1(ΩP )

)
, (4.8b)

ith a constant C independent of λ and h.
max

9
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Proof. To establish existence, we employ [33, Th. 2.3.1], which asserts that (4.3) has a solution if the matrix pencil
sN +M is nonsingular for some s ̸= 0. The solvability of the associated initial value problem requires initial data
that is consistent with the DAE system. To deal with this issue, we first consider a related DAE system by including
new variables θ j

h ∈ Wh · t j , j = 1, . . . , d − 1 and equations

⟨θ
j

h ,wh · t j
⟩Σ = ⟨∂t dh · t j ,wh · t j

⟩Σ ∀wh ∈ Wh, j = 1, . . . , d − 1, (4.9)

nd replacing ∂t dh · t j with θ j
h in (4.2a) and (4.2c). Let ũh := [uh pF,h dh pP,h ϕh θ

1
h · · · θd−1

h ]t and denote the
xtended DAE system by

∂tÑ ũh(t) + M̃ũh(t) = F̃(t). (4.10)

Clearly any solution of (4.10) also solves (4.3). We will apply [33, Th. 2.3.1] to (4.10). We will show that the matrix
Ñ + M̃ is nonsingular by proving that the system (Ñ + M̃)ũh = 0 has only the zero solution. By eliminating θ j

h ,
his system results in (N + M)uh = 0. Using that

N + M =

⎡⎢⎢⎢⎢⎣
AF

2 (BF
1 )′ (BΣ

3 )′ (BΣ
2 )′ 0

−BF
1 0 0 0 0

BΣ
3 0 AP

1 + AΣ
2 (BΣ

4 )′ (BP
1 )′

−BΣ
2 0 −BΣ

4 AP
3 + AP

4 −(BP
2 )′

0 0 −BP
1 −BP

2 AP
5

⎤⎥⎥⎥⎥⎦ ,

he equation ut
h(N + M)uh = 0 gives

2µ f

∫
ΩF

ϵ(uh) : ϵ(uh) +

d−1∑
j=1

⟨
γµ f
√
κ

(uh − dh) · t j , (uh − dh) · t j
⟩Σ + 2µs

∫
ΩP

ϵ(dh) : ϵ(dh)

+ C0

∫
ΩP

p2
P,h +

∫
ΩP

κ

µ f
∇ pP,h · ∇ pP,h +

1
λ

∫
ΩP

(α pP,h − ϕh)2
= 0,

hich implies that uh = 0, dh = 0, pP,h = 0, and ϕh = 0. Eqs. (4.9) imply that θ j
h = 0. The inf–sup condition

4.1a) with qF,h = pF,h and (4.2a) give pF,h = 0. Therefore (4.10) has a solution.
We proceed with the construction of the initial data. We first note that there exists a solution to (4.10) satisfying

pP,h(0) = pP,h,0, since this initial condition is associated with the differential equation (4.2d). We need to find
nitial values for the rest of the variables that are consistent with the DAE system. Let us set θ j

h (0) = θ
j

h,0 = 0 and
onsider the Stokes problem (4.2a)–(4.2b) for uh,0 and pF,h,0 with data pP,h,0 and θ j

h,0, which is now decoupled and
ell-posed from the Stokes finite element theory. Finally, let dh,0 and ϕh,0 solve the problem coupling (4.2c) and

4.2e) with data pP,h,0, θ j
h,0, and uh,0. The well-posedness of this problem follows from the theory of saddle-point

roblems [41], due to the inf–sup condition (4.1b), see also [32]. We further note that taking t → 0 in (4.9)
mplies that ∂t dh(0) · t j

|Σ = θ
j

h,0 = 0. Now, taking t → 0 in (4.2a)–(4.2b), (4.2c), and (4.2e) and using the above
onstruction of the initial data, we conclude that uh(0) = uh,0, pF,h(0) = pF,h,0, dh(0) = dh,0, and ϕh(0) = ϕh,0.

We proceed with the stability bound (4.8a). Differentiating (4.2e) in time and taking (vh, qF,h,

h, qP,h, ψh) = (uh, pF,h, ∂t dh, pP,h, ϕh) in (4.2) gives

2µ f

∫
ΩF

ϵ(uh) : ϵ(uh) +

d−1∑
j=1

⟨
γµ f
√
κ

(uh − ∂t dh) · t j , (uh − ∂t dh) · t j
⟩Σ +

1
2
∂

∂t
2µs

∫
ΩP

ϵ(dh) : ϵ(dh)

+
1
2
∂

∂t
C0

∫
ΩP

p2
P,h +

∫
ΩP

κ

µ f
∇ pP,h · ∇ pP,h +

1
2
∂

∂t
1
λ

∫
ΩP

(α pP,h − ϕh)2

= ρ f

∫
ΩF

g · uh + ρs

∫
ΩP

f · ∂t dh + ρ f

∫
ΩP

κ

µ f
g · ∇ pP,h − ρ f ⟨

κ

µ f
g · n, pP,h⟩Σ . (4.11)
10
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Integrating from 0 to t ∈ (0, T ], we obtain

2µ f

∫ t

0
∥ϵ(uh)∥2

L2(ΩF ) +

d−1∑
j=1

γµ f

∫ t

0
∥κ−1/4(uh − ∂t dh) · t j

∥
2
L2(Σ ) + µs∥ϵ(dh)(t)∥2

L2(ΩP )

+
C0

2
∥pP,h(t)∥2

L2(ΩP ) +
1
µ f

∫ t

0
∥κ1/2

∇ pP,h∥
2
L2(ΩP ) +

1
2λ

∥(α pP,h − ϕh)(t)∥2
L2(ΩP )

= µs∥ϵ(dh)(0)∥2
L2(ΩP ) +

C0

2
∥pP,h(0)∥2

L2(ΩP ) +
1

2λ
∥(α pP,h − ϕh)(0)∥2

L2(ΩP )

+ ρ f

∫ t

0

∫
ΩF

g · uh − ρs

∫ t

0

∫
ΩP

∂t f · dh + ρs

∫
ΩP

f (t) · dh(t) − ρs

∫
ΩP

f (0) · dh(0)

+ ρ f

∫ t

0

∫
ΩP

κ

µ f
g · ∇ pP,h − ρ f

∫ t

0
⟨
κ

µ f
g · n, pP,h⟩Σ , (4.12)

where we have integrated by parts in time the second term on the right-hand side in (4.11). Then, on the left-hand
side we use Korn’s inequality (4.5), the Poincaré inequality (4.4), and the permeability bound (4.7), whereas on the
right-hand side we use the Cauchy–Schwarz inequality, the trace inequality (4.6), and Young’s inequality, obtaining

2µ f (cF
K )2

∫ t

0
∥uh∥

2
H1(ΩF ) +

d−1∑
j=1

γµ f
√
κ2

∫ t

0
∥(uh − ∂t dh) · t j

∥
2
L2(Σ ) + µs(cP

K )2
∥dh(t)∥2

H1(ΩP )

+
C0

2
∥pP,h(t)∥2

L2(ΩP ) +
κ1c2

P

µ f

∫ t

0
∥pP,h∥

2
H1(ΩP ) +

1
2λ

∥(α pP,h − ϕh)(t)∥2
L2(ΩP )

≤ µs∥ϵ(dh)(0)∥2
L2(ΩP ) +

C0

2
∥pP,h(0)∥2

L2(ΩP ) +
1

2λ
∥(α pP,h − ϕh)(0)∥2

L2(ΩP )

+
ϵ

2

(
ρ f

∫ t

0
∥uh∥

2
L2(ΩF ) + ρs∥dh(t)∥2

L2(ΩP ) +
ρ f κ2

µ f
((C P

Σ )2
+ 1)

∫ t

0
∥pP,h∥

2
H1(ΩP )

)
+

1
2ϵ

(
ρ f

∫ t

0
∥g∥

2
L2(ΩF ) + ρs∥ f (t)∥2

L2(ΩP ) +
ρ f κ2

µ f

∫ t

0
(∥g∥

2
L2(ΩP ) + ∥g · n∥

2
L2(Σ ))

)
+
ρs

2

∫ t

0
∥dh∥

2
L2(ΩP ) +

ρs

2

∫ t

0
∥∂t f ∥

2
L2(ΩP ) +

ρs

2
∥dh(0)∥2

L2(ΩP ) +
ρs

2
∥ f (0)∥2

L2(ΩP ). (4.13)

Taking ϵ sufficiently small and employing Gronwall’s inequality for the term
ρs

2

∫ t

0
∥dh∥

2
L2(ΩP ), we obtain

∫ t

0
∥uh∥

2
H1(ΩF ) +

d−1∑
j=1

∫ t

0
∥(uh − ∂t dh) · t j

∥
2
L2(Σ ) + ∥dh(t)∥2

H1(ΩP )

+ ∥pP,h(t)∥2
L2(ΩP ) +

∫ t

0
∥pP,h∥

2
H1(ΩP ) +

1
λ

∥(α pP,h − ϕh)(t)∥2
L2(ΩP ) (4.14)

≤ C
(∫ t

0
(∥g∥

2
L2(Ω) + ∥g · n∥

2
L2(Σ )) + ∥ f (t)∥2

L2(ΩP )

+ ∥ f (0)∥2
L2(ΩP ) +

∫ t

0
∥∂t f ∥

2
L2(ΩP ) + ∥pP,0∥

2
H1(ΩP )

)
,

with a constant C independent of λmax. In the above inequality we have bounded the initial data terms by
∥pP,0∥

2
H1(ΩP )

. This bound follows from the classical stability bound for the Stokes problem (4.2a)–(4.2b), which
allows to obtain ∥uh,0∥H1(ΩF ) ≤ C∥pP,h,0∥H1(ΩP ); a stability bound for the saddle-point problem (4.2c), (4.2e) to

btain

∥dh,0∥H1(ΩP ) + ∥ϕh,0∥L2(Ωp) ≤ C(∥uh,0∥H1(ΩF ) + ∥pP,h,0∥H1(ΩP )),

(cf. [32]), and the H 1-stability of the L2-projection ∥p ∥ ≤ C∥p ∥ (see, e.g., [42]).
P,h,0 H1(ΩP ) P,0 H1(ΩP )

11
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Next we proceed with bounding pF,h and ϕh . The inf–sup condition (4.1a) together with (4.2a) gives

βF∥pF,h∥L2(ΩF ) ≤ sup
0̸=vh∈VΣ

h

bF
1 (vh, pF,h)
∥vh∥H1(ΩF )

= sup
0̸=vh∈Vh

−aF
2 (uh, vh) − bΣ

2 (vh, pP,h) − bΣ
3 (vh, ∂t dh) + F F (vh)

∥vh∥H1(ΩF )

≤ 2µ f ∥uh∥H1(ΩF ) +

d−1∑
j=1

γµ f C F
Σ

√
κ1

∥(uh − ∂t dh) · t j
∥L2(Σ )

+ C F
ΣC P

Σ∥pP,h∥H1(ΩP )+ ρ f ∥g∥L2(ΩF ),

implying∫ t

0
∥pF,h∥

2
L2(ΩF ) ≤ C

∫ t

0

(
∥uh∥

2
H1(ΩF ) +

d−1∑
j=1

∥(uh − ∂t dh) · t j
∥

2
L2(Σ ) + ∥pP,h∥

2
H1(ΩP ) + ∥g∥

2
L2(ΩF )

)
. (4.15)

inally, using the inf-sup condition (4.1b) and (4.2c), we obtain

βP∥ϕh∥L2(ΩP ) ≤ sup
0̸=wh∈Wh

bP
1 (wh, ϕh)

∥wh∥H1(ΩP )

= sup
0̸=wh∈Wh

−bΣ
3 (uh,wh) − bΣ

4 (wh, pP,h) − a P
1 (dh,wh) − aΣ

2 (∂t dh,wh) + F P (wh)
∥wh∥H1(ΩP )

≤ (C P
Σ )2

∥pP,h∥H1(ΩP ) +

d−1∑
j=1

γµ f C P
Σ

√
κ1

∥(uh − ∂t dh) · t j
∥L2(Σ )

+ 2µs∥dh∥H1(ΩP ) + ρs∥ f ∥L2(ΩP ),

ielding∫ t

0
∥ϕh∥

2
L2(ΩP ) ≤ C

∫ t

0

(
∥pP,h∥

2
H1(ΩP ) +

d−1∑
j=1

∥(uh − ∂t dh) · t j
∥

2
L2(Σ ) + ∥dh∥

2
H1(ΩP ) + ∥ f ∥

2
L2(ΩP )

)
. (4.16)

ombining (4.14)–(4.16) and using Gronwall’s inequality for the third term on the right-hand side in (4.16), we
btain (4.8a).

The above argument implies that the solution of (4.3) under the initial conditions pP,h(0) = pP,h,0, dh(0) = dh,0,
nd ϕh(0) = ϕh,0 is unique. In particular, taking pP,h,0 = 0, dh,0 = 0, ϕh,0 = 0, g = 0, and f = 0, (4.13) implies
hat (4.14) holds with right-hand side zero. Together with (4.15) and (4.16), this gives that all components of the
olution are zero, therefore the solution is unique.

We next prove the higher regularity stability bound (4.8b). To that end, we differentiate in time (4.2a), (4.2c),
nd (4.2e) and take (vh, qF,h,wh, qP,h, ψh) = (uh, ∂t pF,h, ∂t dh, ∂t pP,h, ∂tϕh) in (4.2), obtaining

1
2
∂

∂t
2µ f

∫
ΩF

ϵ(uh) : ϵ(uh) +

d−1∑
j=1

1
2
∂

∂t
⟨
γµ f
√
κ

(uh − ∂t dh)· t j , (uh − ∂t dh)· t j
⟩Σ

+ 2µs

∫
ΩP

ϵ(∂t dh) : ϵ(∂t dh) + C0

∫
ΩP

(∂t pP,h)2
+

1
2
∂

∂t

∫
ΩP

κ

µ f
∇ pP,h · ∇ pP,h

+
1
λ

∫
ΩP

(α ∂t pP,h − ∂tϕh)2
= ρs

∫
ΩP

∂t f · ∂t dh + ρ f

∫
ΩP

κ

µ f
g · ∂t∇ pP,h − ρ f ⟨

κ

µ f
g · n, ∂t pP,h⟩Σ ,

(4.17)
12
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where we have used that ∂t g = 0. Integration from 0 to t ∈ (0, T ] gives

µ f ∥ϵ(uh)(t)∥2
L2(ΩF ) +

d−1∑
j=1

1
2
γµ f ∥κ

−1/4(uh − ∂t dh) · t j (t)∥2
L2(Σ ) + µs

∫ t

0
∥ϵ(∂t dh)∥2

L2(ΩP )

+ C0

∫ t

0
∥∂t pP,h(t)∥2

L2(ΩP ) +
1

2µ f
∥κ1/2

∇ pP,h(t)∥2
L2(ΩP ) +

1
λ

∫ t

0
∥α ∂t pP,h − ∂tϕh∥

2
L2(ΩP )

= µ f ∥ϵ(uh)(0)∥2
L2(ΩF ) +

d−1∑
j=1

1
2
γµ f ∥κ

−1/4(uh − ∂t dh) · t j (0)∥2
L2(Σ ) +

1
2µ f

∥κ1/2
∇ pP,h(0)∥2

L2(ΩP )

+ ρs

∫ t

0

∫
ΩP

∂t f · ∂t dh + ρ f

∫
ΩP

κ

µ f
g · (∇ pP,h(t) − ∇ pP,h(0)) − ρ f ⟨

κ

µ f
g · n, pP,h(t) − pP,h(0)⟩Σ ,

where we have integrated by parts the last two terms in (4.17) and used that ∂t g = 0. Next, on the left-hand side we
se Korn’s inequality (4.5), the Poincaré inequality (4.4), and the permeability bound (4.7), while on the right-hand
ide we invoke Cauchy–Schwarz inequality, the trace inequality (4.6), and Young’s inequality, yielding

µ f (cF
K )2

∥uh(t)∥2
H1(ΩF ) +

d−1∑
j=1

1
2
γµ f
√
κ2

∥(uh − ∂t dh) · t j (t)∥2
L2(Σ ) + µs(cP

K )2
∫ t

0
∥∂t dh∥

2
H1(ΩP )

+ C0

∫ t

0
∥∂t pP,h(t)∥2

L2(ΩP ) +
κ1c2

P

2µ f
∥pP,h(t)∥2

H1(ΩP ) +
1
λ

∫ t

0
∥α ∂t pP,h − ∂tϕh∥

2
L2(ΩP )

≤ µ f ∥ϵ(uh)(0)∥2
L2(ΩF ) +

d−1∑
j=1

1
2
γµ f
√
κ1

∥(uh − ∂t dh) · t j (0)∥2
L2(Σ ) +

κ2

2µ f
∥∇ pP,h(0)∥2

L2(ΩP )

+
ϵ

2

(
ρs

∫ t

0
∥∂t dh∥

2
L2(ΩP ) +

ρ f κ2

µ f
((C P

Σ )2
+ 1)(∥pP,h(0)∥2

H1(ΩP ) + ∥pP,h(t)∥2
H1(ΩP ))

)
+

1
2ϵ

(
ρs

∫ t

0
∥∂t f ∥

2
L2(ΩP ) +

ρ f κ2

µ f
(∥g∥

2
L2(ΩP ) + ∥g · n∥

2
L2(Σ ))

)
.

In addition, bounding the initial data terms as in (4.14) and taking ϵ sufficiently small, we can assert that

∥uh(t)∥2
H1(ΩF ) +

d−1∑
j=1

∥(uh − ∂t dh) · t j (t)∥2
L2(Σ ) +

∫ t

0
∥∂t dh∥

2
H1(ΩP )

+

∫ t

0
∥∂t pP,h(t)∥2

L2(ΩP ) + ∥pP,h(t)∥2
H1(ΩP ) +

1
λ

∫ t

0
∥α ∂t pP,h − ∂tϕh∥

2
L2(ΩP )

≤ C
(∫ t

0
∥∂t f ∥

2
L2(ΩP ) + ∥g∥

2
L2(ΩP ) + ∥g · n∥

2
L2(Σ ) + ∥pP,0∥

2
H1(ΩP )

)
, (4.18)

ith a constant C independent of λmax. Next, using the inf-sup conditions (4.1a) and (4.1b), and proceeding similarly
o the derivations of (4.15) and (4.16), we obtain

∥pF,h(t)∥2
L2(ΩF ) ≤ C

(
∥uh(t)∥2

H1(ΩF ) +

d−1∑
j=1

∥(uh −∂t dh) · t j (t)∥2
L2(Σ ) + ∥pP,h(t)∥2

H1(ΩP ) + ∥g∥
2
L2(ΩF )

)
,

nd

∥ϕh(t)∥2
L2(ΩP ) ≤C

(
∥pP,h(t)∥2

H1(ΩP ) +

d−1∑
j=1

∥(uh − ∂t dh) · t j (t)∥2
L2(Σ )+∥dh(t)∥2

H1(ΩP ) + ∥ f (t)∥2
L2(ΩP )

)
. (4.19)

inally, combining (4.18)–(4.19) and employing (4.8a) for the control of ∥dh(t)∥H1(ΩP ), we obtain the second bound
4.8b). □

emark 4.1. We emphasise that, even though initial data was constructed for all variables, the initial value problem
or (4.3) involves initial conditions only for p , d , and ϕ .
P,h h h 9

13
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4.3. Existence, uniqueness, and stability of the weak solution

Theorem 4.2. For each f ∈ H 1(0, T ; L2(ΩP )) and pP,0 ∈ H 1
⋆ (Ωp), there exist initial data u0 ∈ H1

⋆(ΩF ),
pF,0 ∈ L2(ΩF ), d0 ∈ H1

⋆(ΩP ), and ϕ0 ∈ L2(ΩP ) such that the weak formulation (3.1) with aF
1 = 0, cF

= 0, and
˜ = 1, complemented with the initial conditions pP (0) = pP,0, d(0) = d0, and ϕ(0) = ϕ0, has a unique solution
atisfying

∥u∥L2(0,T ;H1(ΩF )) + ∥pF∥L2(0,T ;L2(ΩF )) + ∥d∥L∞(0,T ;H1(ΩP ))

+

d−1∑
j=1

∥(u − ∂t d) · t j
∥L2(0,T ;L2(Σ )) + ∥pP∥L∞(0,T ;L2(ΩP )) + ∥pP∥L2(0,T ;H1(ΩP ))

+ ∥ϕ∥L2(0,T ;L2(ΩP )) +
1

√
λ

∥α pP − ϕ∥L∞(0,T ;L2(ΩP ))

≤ C
(
∥g∥L2(0,T ;L2(Ω)) + ∥g · n∥L2(0,T ;L2(Σ )) + ∥ f ∥H1(0,T ;L2(ΩP )) + ∥pP,0∥H1(ΩP )

)
, (4.20a)

and

∥u∥L∞(0,T ;H1(ΩF )) + ∥pF∥L∞(0,T ;L2(ΩF )) + ∥∂t d∥L2(0,T ;H1(ΩP ))

+

d−1∑
j=1

∥(u − ∂t d) · t j
∥L∞(0,T ;L2(Σ )) + ∥∂t pP∥L2(0,T ;L2(ΩP )) + ∥pP∥L∞(0,T ;H1(ΩP ))

+ ∥ϕ∥L∞(0,T ;L2(ΩP )) +
1

√
λ

∥α ∂t pP − ∂tϕ∥L2(0,T ;L2(ΩP ))

≤ C
(
∥g∥L2(0,T ;L2(Ω)) + ∥g · n∥L2(0,T ;L2(Σ )) + ∥ f ∥H1(0,T ;L2(ΩP )) + ∥pP,0∥H1(ΩP )

)
, (4.20b)

ith a constant C independent of λmax.

roof. From Theorem 4.1, there exists an infinite sequence {(uh, pF,h, dh, pP,h, ϕh)}h>0 satisfying (4.3) for each h
uch that {uh}h>0 is bounded in L2(0, T ; H1(ΩF )), {pF,h}h>0 is bounded in L2(0, T ; L2(ΩF )), {dh}h>0 is bounded
n H 1(0, T ; H1(ΩP )), the sequence {pP,h}h>0 is bounded in H 1(0, T ; L2(ΩP )), as well as in L2(0, T ; H 1(ΩP )),
nd the sequence {ϕh}h>0 is bounded in H 1(0, T ; L2(ΩP )). Therefore there exist weakly convergent subsequences,
enoted in the same way, such that

uh ⇀ u in L2(0, T ; H1(ΩF )), pF,h ⇀ pF in L2(0, T ; L2(ΩF )),

dh ⇀ d in H 1(0, T ; H1(ΩP )),

pP,h ⇀ pP in H 1(0, T ; L2(ΩP )) ∩ L2(0, T ; H 1(ΩP )), ϕh ⇀ ϕ in H 1(0, T ; L2(ΩP )).

ext, we fix a set of test functions (vh, qF,h,wh, qP,h, ψh) ∈ C0(0, T ; Vh ×QF
h ×Wh ×QP

h ×Zh) in (4.2), integrate it
n time from 0 to T , and take h → 0. Since all bilinear forms and linear functionals are continuous, cf. Lemma 4.1,
e conclude that (u, pF , d, pP , ϕ) satisfy the time-integrated version of (3.1) with this choice of test functions.
inally, since the space C0(0, T ; Vh × QF

h × Wh × QP
h × Zh) is dense in L2(0, T ; H1

⋆(ΩF ) × L2(ΩF ) × H1
⋆(ΩP ) ×

H 1
⋆ (ΩP ) × L2(ΩP )), we conclude that (3.1) holds for a.e. t ∈ (0, T ).
It remains to handle the initial conditions. First, taking h → 0 in pP,h(0) = pP,h,0 gives pP (0) = pP,0. We

urther note that the control of the terms ∥(uh −∂t dh) · t j
∥L∞(0,T ;L2(Σ )) and ∥uh∥L∞(0,T ;H1(ΩF )) in (4.8b) implies that

or all t ∈ [0, T ], ∂t dh(t) · t j ⇀ ∂t d(t) · t j in L2(Σ ). Taking t = 0 and h → 0 in (4.9) and using that ∂t dh(0) · t j
= 0

n Σ , we conclude that ∂t d(0) · t j
= 0 on Σ . Next, the stability of the Stokes and elasticity problems for the initial

ata in the proof of Theorem 4.1 implies that there exist weakly convergent subsequences such that

uh,0 ⇀ u0 in H1(ΩF ), pF,h,0 ⇀ pF,0 in L2(ΩF ), dh,0 ⇀ d0 in H1(ΩP ), ϕh,0 ⇀ ϕ0 in L2(ΩP ).

hen, taking t → 0 in (3.1a)–(3.1b), (3.1c), and (3.1e) and using that the initial data satisfies the same equations,
e conclude that u(0) = u0, pF (0) = pF,0, d(0) = d0, and ϕ(0) = ϕ0.
Finally, the uniqueness of the solution under the initial conditions pP (0) = pP,0, d(0) = d0, ϕ(0) = ϕ0, and the

tability bounds (4.20a) and (4.20b), follow in the same way as in the proof of Theorem 4.1. □
14
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5. Fully discrete scheme

We apply a time discretisation to (4.2) using backward Euler’s method with fixed time step ∆t = T/N . Let
tn = n∆t , n = 0, . . . , N , be the discrete times. Starting from the discrete initial data constructed in the proof of
Theorem 4.1, at each time iteration n = 1, . . . , N we look for (un

h, pn
F,h, dn

h, pn
P,h, ϕ

n
h ) ∈ Vh ×QF

h ×Wh ×QP
h ×Zh =:

h such that

aF
2 (un

h, vh) + bF
1 (vh, pn

F,h) + bΣ
2 (vh, pn

P,h) + bΣ
3 (vh, ∂

n
t dh) = F F,n(vh) ∀vh ∈ Vh, (5.1a)

−bF
1 (un

h, qF,h) = 0 ∀qF,h ∈ QF
h , (5.1b)

bΣ
3 (un

h,wh) + bΣ
4 (wh, pn

P,h) + a P
1 (dn

h,wh)

+aΣ
2 (∂n

t dh,wh) + bP
1 (wh, ϕ

n
h ) = F P (wh) ∀wh ∈ Wh, (5.1c)

− bΣ
2 (un

h, qP,h) − bΣ
4 (∂n

t dh, qP,h) + a P
3 (∂n

t pP,h, qP,h)

+a P
4 (pn

P,h, qP,h) − bP
2 (∂n

t ϕh, qP,h) = Gn(qP,h) ∀qP,h ∈ QP
h , (5.1d)

− bP
1 (dn

h, ψh) − bP
2 (ψh, pn

P,h) + a P
5 (ϕn

h , ψh) = 0 ∀ψh ∈ Zh, (5.1e)

here, for a generic scalar or vector field f , we set f n
:= f (tn) and ∂n

t f :=
1
∆t ( f n

− f n−1). For convenience we
lso define the global discrete time derivative ∂̃t f such that (∂̃t f )n

:= ∂n
t f for n = 1, . . . , N . The method requires

olving at each time step the algebraic system⎡⎢⎢⎢⎢⎣
AF

2 (BF
1 )′ 1

∆t (BΣ
3 )′ (BΣ

2 )′ 0
−BF

1 0 0 0 0
BΣ

3 0 AP
1 +

1
∆t A

Σ
2 (BΣ

4 )′ (BP
1 )′

−BΣ
2 0 −

1
∆t B

Σ
4

1
∆t A

P
3 + AP

4 −
1
∆t (BP

2 )′

0 0 −BP
1 −BP

2 AP
5

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

un
h

pn
F,h

dn
h

pn
P,h
ϕn

h

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
F̃ F,n

0
F̃ P,n

G̃n

0

⎤⎥⎥⎥⎥⎦ , (5.2)

here the tilde-notation on the right-hand side vectors indicate that they also receive contributions from the backward
uler time-discretisation.

Theorem 5.1. The fully discrete method (5.2) has a unique solution.

Proof. Consider the matrix obtained from the matrix in (5.2) by scaling the third and fifth rows by 1
∆t . It has the

same structure as the matrix N + M that appears in the proof of Theorem 4.1, which is shown to be nonsingular.
Therefore the scaled matrix is nonsingular, and so is the matrix in (5.2). □

5.1. Error estimates for the fully discrete scheme

We proceed with the error analysis for the fully discrete scheme. We will make use of the discrete space–time
norms for f : tn → V, n = 1, . . . , N ,

∥ f ∥
2
l2(0,T ;V) :=

N∑
n=1

∆t∥ f n
∥

2
V, ∥ f ∥l∞(0,T ;V) := max

n=1,...,N
∥ f n

∥V,

In addition, we consider finite-dimensional subspaces of continuous and piecewise polynomials of generic degrees

kv, kw, kqP ≥ 1, kqF , kz ≥ 0, for the spaces Vh,Wh,QP
h ,QF

h ,Zh, (5.3)

respectively.
Let I V

: H1
⋆(ΩF ) → Vh , I W

: H1
⋆(ΩP ) → Wh , and I QP

: H 1
⋆ (ΩP ) → QP

h be the Scott–Zhang interpolants [43].
n addition, let I QF

: L2(ΩF ) → QF
h and I Z

: L2(ΩP ) → Zh be the L2-orthogonal projections. These operators,
longside the polynomial degrees (5.3) have the approximation properties (see, e.g., [43,44])

∥v − I Vv∥Hs (ΩF ) ≤ Chrv−s
∥v∥Hrv (ΩF ), 1 ≤ rv ≤ kv + 1, 0 ≤ s ≤ 1, (5.4a)

∥q − I QF
q ∥ ≤ ChrqF ∥q ∥ rq , 0 ≤ r ≤ k + 1, (5.4b)
F F L2(ΩP ) F H F (ΩF ) qF qF

15
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∥w − I Ww∥Hs (ΩP ) ≤ Chrw−s
∥w∥Hrw (ΩP ), 1 ≤ rw ≤ kw + 1, 0 ≤ s ≤ 1, (5.4c)

∥qP − I QP
qP∥H s (ΩP ) ≤ ChrqP −s

∥qP∥HrqP (ΩP ), 1 ≤ rqP ≤ kqP + 1, 0 ≤ s ≤ 1, (5.4d)

∥ψ − I Zψ∥L2(ΩP ) ≤ Chrz ∥ψ∥Hrz (ΩP ), 0 ≤ rz ≤ kz + 1. (5.4e)

heorem 5.2. Assume that the weak solution of (3.1) is sufficiently smooth. Then, for the fully discrete solution
5.1), there exists a constant C independent of λmax, h, and ∆t , such that

∥u − uh∥l2(0,T ;H1(ΩF )) + ∥pF − pF,h∥l2(0,T ;L2(ΩF )) + ∥d − dh∥l∞(0,T ;H1(ΩP ))

+

d−1∑
j=1

∥(u − ∂̃t dh) · t j
∥l2(0,T ;L2(Σ )) + ∥pP − pP,h∥l∞(0,T ;L2(ΩP )) + ∥pP − pP,h∥l2(0,T ;H1(ΩP ))

+ ∥ϕ − ϕh∥l2(0,T ;L2(ΩP )) +
1

√
λ

∥(α pP − ϕ) − (α pP,h − ϕh)∥l∞(0,T ;L2(ΩP ))

≤ C
(

hrv∥u∥H1(0,T ;Hrv+1(ΩF )) + hrqF ∥pF∥H1(0,T ;HrqF (ΩF )) + hrw∥d∥W 2,∞(0,T ;Hrw+1(ΩP ))

+ hrqP ∥pP∥H1(0,T ;HrqP +1(ΩP )) + hrz ∥ϕ∥H1(0,T ;Hrz (ΩP ))

+ ∆t
(
∥d∥H3(0,T ;L2(Σ )) + ∥pP∥H2(0,T ;L2(ΩP )) + ∥ϕ∥H2(0,T ;L2(ΩP ))

))
, (5.5)

ith 1 ≤ rv ≤ kv , 0 ≤ rqF ≤ kqF + 1, 1 ≤ rw ≤ kw, 1 ≤ rqP ≤ kqP , and 0 ≤ rz ≤ kz + 1.

roof. We decompose the numerical errors into approximation and discretisation components:

u − uh = (u − I Vu) + (I Vu − uh) =: eu,I + eu,h,

pF − pF,h = (pF − I QF
pF ) + (I QF

pF − pF,h) =: epF ,I + epF ,h,

d − dh = (d − I Wd) + (I Wd − dh) =: ed,I + ed,h,

pP − pP,h = (pP − I QP
pP ) + (I QP

pP − pP,h) =: epP ,I + epP ,h,

ϕ − ϕh = (ϕ − I Zϕ) + (I Zϕ − ϕh) =: eϕ,I + eϕ,h .

enote the time discretisation errors as rn
φ := φ(tn) − ∂n

t φ, for φ ∈ {d, pP , ϕ}. Subtracting (5.1) from (3.1), we
btain the error system

aF
2 (en

u,h, vh) + bF
1 (vh, en

pF ,h) + bΣ
2 (vh, en

pP ,h) + bΣ
3 (vh, ∂

n
t ed,h)

= −aF
2 (en

u,I , vh) − bF
1 (vh, en

pF ,I ) − bΣ
2 (vh, en

pP ,I ) − bΣ
3 (vh, ∂

n
t ed,I ) − bΣ

3 (vh, rn
d ), (5.6a)

− bF
1 (en

u,h, qF,h) = bF
1 (en

u,I , qF,h), (5.6b)

bΣ
3 (en

u,h,wh) + bΣ
4 (wh, en

pP ,h) + a P
1 (en

d,h,wh) + aΣ
2 (∂n

t ed,h,wh) + bP
1 (wh, en

ϕ,h) = −bΣ
3 (en

u,I ,wh)

− bΣ
4 (wh, en

pP ,I ) − a P
1 (en

d,I ,wh) − aΣ
2 (∂n

t ed,I ,wh) − bP
1 (wh, en

ϕ,I ) − aΣ
2 (rn

d ,wh), (5.6c)

− bΣ
2 (en

u,h, qP,h) − bΣ
4 (∂n

t ed,h, qP,h) + a P
3 (∂n

t epP ,h, qP,h) + a P
4 (en

pP ,h, qP,h) − bP
2 (∂n

t eϕ,h, qP,h)

= bΣ
2 (en

u,I , qP,h) + bΣ
4 (∂n

t ed,I , qP,h) − a P
3 (∂n

t epP ,I , qP,h) − a P
4 (en

pP ,I , qP,h)

+ bP
2 (∂n

t eϕ,I , qP,h) − a P
3 (rn

pP
, qP,h) − bP

2 (rn
ϕ , qP,h), (5.6d)

− bP
1 (∂n

t ed,h, ψh) − bP
2 (ψh, ∂

n
t epP ,h) + a P

5 (∂n
t eϕ,h, ψh) = bP

1 (∂n
t ed,I , ψh) + bP

2 (ψh, ∂
n
t epP ,I ). (5.6e)

q. (5.6e) has been obtained by taking the divided difference of the error equation at tn and tn−1 for n = 1, . . . , N ,
sing that it is satisfied by the initial data. We also used the orthogonality property of I Z to conclude that
P (∂ne , ψ ) = 0. Now, taking (v , q ,w , q , ψ ) = (en , en , ∂ne , en , en ) in (5.6), summing the
5 t ϕ,I h h F,h h P,h h u,h pF ,h t d,h pP ,h ϕ,h
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equations, and using the identity

(∂n
t φ)φn

=
1
2
∂n

t (φ2) +
1
2
∆t(∂n

t φ)2,

results in

2µ f

∫
ΩF

ϵ(en
u,h) : ϵ(en

u,h) +

d−1∑
j=1

⟨
γµ f
√
κ

(en
u,h − ∂n

t ed,h) · t j , (en
u,h − ∂n

t ed,h) · t j
⟩Σ

+
1
2
∂n

t 2µs

∫
ΩP

ϵ(ed,h) : ϵ(ed,h) +
1
2
∆t 2µs

∫
ΩP

∂n
t ϵ(ed,h) : ∂n

t ϵ(ed,h)

+
1
2
∂n

t C0

∫
ΩP

(epP ,h)2
+

1
2
∆tC0

∫
ΩP

(∂n
t epP ,h)2

+

∫
ΩP

κ

µ f
∇en

pP ,h · ∇en
pP ,h

+
1
2
∂n

t
1
λ

∫
ΩP

(α epP ,h − eϕ,h)2
+

1
2
∆t

1
λ

∫
ΩP

(
∂n

t (α epP ,h − eϕ,h)
)2

= Ln,

(5.7)

here Ln is the collection of terms that appear on the right-hand sides in (5.6). Using the continuity of the bilinear
orms (cf. Lemma 4.1) in combination with Young’s inequality, we have

Ln
≤ ϵ

(
∥en

u,h∥
2
H1(ΩF ) + ∥en

pF ,h∥
2
L2(ΩF ) + ∥en

pP ,h∥
2
H1(ΩP ) + ∥en

ϕ,h∥
2
L2(ΩP )

)
+ Cϵ

(
∥en

u,I ∥
2
H1(ΩF ) + ∥en

pF ,I ∥
2
L2(ΩF )

+ ∥en
pP ,I ∥

2
H1(ΩP )

+ ∥∂n
t ed,I ∥

2
H1(ΩP ) + ∥∂n

t epP ,I ∥
2
H1(ΩP )

+ ∥∂n
t eϕ,I ∥2

L2(ΩP ) + ∥rn
d ∥

2
L2(Σ ) + ∥rn

pP
∥

2
L2(ΩP ) + ∥rn

ϕ∥
2
L2(ΩP )

)
+ H(∂n

t ed,h),

(5.8)

where H(∂n
t ed,h) is the collection of terms on the right-hand side of (5.6c) with wh = ∂n

t ed,h . Multiplying (5.7) by
∆t , summing for n from 1 to k ∈ {1, . . . , N }, and using (5.8), we obtain

∆t
k∑

n=1

(
∥en

u,h∥
2
H1(ΩF ) +

d−1∑
j=1

∥(en
u,h − ∂n

t ed,h) · t j
∥

2
L2(Σ ) + ∥en

pP ,h∥
2
H1(ΩP )

)
+ ∥ek

d,h∥
2
H1(ΩP ) + ∥ek

pP ,h∥
2
L2(ΩP ) +

1
λ

∥αek
pP ,h − ek

ϕ,h∥
2
L2(ΩP )

≤ C∆t
k∑

n=1

(
ϵ
(
∥en

u,h∥
2
H1(ΩF ) + ∥en

pF ,h∥
2
L2(ΩF ) + ∥en

pP ,h∥
2
H1(ΩP ) + ∥en

ϕ,h∥
2
L2(ΩP )

)
+ Cϵ

(
∥en

u,I ∥
2
H1(ΩF ) + ∥en

pF ,I ∥
2
L2(ΩF ) + ∥en

pP ,I ∥
2
H1(ΩP ) + ∥∂n

t ed,I ∥
2
H1(ΩP ) + ∥∂n

t epP ,I ∥
2
H1(ΩP )

+ ∥∂n
t eϕ,I ∥2

L2(ΩP ) + ∥rn
d ∥

2
L2(Σ ) + ∥rn

pP
∥

2
L2(ΩP ) + ∥rn

ϕ∥
2
L2(ΩP )

)
+ H(∂n

t ed,h)
)

+ C
(
∥e0

d,h∥
2
H1(ΩP ) + ∥e0

pP ,h∥
2
L2(ΩP ) +

1
λ

∥αe0
pP ,h − e0

ϕ,h∥
2
L2(ΩP )

)
, (5.9)

here we also used Korn’s inequality (4.5), the Poincaré inequality (4.4), and the permeability bound (4.7). Next,
or each term in H(∂n

t ed,h) we use summation by parts:

∆t
k∑

n=1

φn∂n
t ed,h = φkek

d,h − φ1e0
d,h − ∆t

k∑
n=2

∂n
t φ en−1

d,h ,

where φ stands for any of the functions that appear in H(∂n
t ed,h). Then, for the first term in H(∂n

t ed,h) we write,
sing Young’s inequality,

∆t
k∑

n=1

bΣ
3 (en

u,I , ∂
n
t ed,h) = bΣ

3 (ek
u,I , ek

d,h) − bΣ
3 (e1

u,I , e0
d,h) − ∆t

k∑
n=2

bΣ
3 (∂n

t eu,I , en−1
d,h )

≤ ϵ∥ek
d,h∥

2
H1(ΩP ) + Cϵ∥ek

u,I ∥
2
H1(ΩF ) + C

(
∥e0

d,h∥
2
H1(ΩP ) + ∥e1

u,I ∥
2
H1(ΩF )

)
+ C∆t

k∑(
∥en−1

d,h ∥
2
H1(ΩP ) + ∥∂n

t eu,I ∥
2
H1(ΩF )

)
.

(5.10)
n=2
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Now, combining (5.9)–(5.10), and using for the rest of the terms in H(∂n
t ed,h) bounds that are similar to (5.10), we

rrive at

∆t
k∑

n=1

(
∥en

u,h∥
2
H1(ΩF ) +

d−1∑
j=1

∥(en
u,h − ∂n

t ed,h) · t j
∥

2
L2(Σ ) + ∥en

pP ,h∥
2
H1(ΩP )

)

+ ∥ek
d,h∥

2
H1(ΩP ) + ∥ek

pP ,h∥
2
L2(ΩP ) +

1
λ

∥αek
pP ,h − ek

ϕ,h∥
2
L2(ΩP )

≤ C∆t
k∑

n=1

(
ϵ
(
∥en

u,h∥
2
H1(ΩF ) + ∥en

pF ,h∥
2
L2(ΩF ) + ∥en

pP ,h∥
2
H1(ΩP ) + ∥en

ϕ,h∥
2
L2(ΩP )

)
+ ∥en

u,I ∥
2
H1(ΩF ) + ∥en

pF ,I ∥
2
L2(ΩF ) + ∥en

pP ,I ∥
2
H1(ΩP ) + ∥rn

d ∥
2
L2(Σ ) + ∥rn

pP
∥

2
L2(ΩP ) + ∥rn

ϕ∥
2
L2(ΩP )

+ ∥∂n
t ed,I ∥

2
H1(ΩP ) + ∥∂n

t epP ,I ∥
2
H1(ΩP ) + ∥∂n

t eϕ,I ∥2
L2(ΩP ) + ∥∂n

t eu,I ∥
2
H1(ΩF )

)
+ C

(
∆t

k∑
n=2

(
∥en−1

d,h ∥
2
H1(ΩP ) + ∥∂n

t ∂
n
t ed,I ∥

2
H1(ΩP ) + ∥∂n

t rd∥
2
L2(Σ )

)
+ ∥e0

d,h∥
2
H1(ΩP ) + ∥e0

pP ,h∥
2
L2(ΩP ) +

1
λ

∥αe0
pP ,h − e0

ϕ,h∥
2
L2(ΩP ) + ∥∂k

t ed,I ∥
2
H1(ΩP ) + ∥∂1

t ed,I ∥
2
H1(ΩP )

+ ∥ek
u,I ∥

2
H1(ΩF ) + ∥ek

d,I ∥
2
H1(ΩP ) + ∥ek

pP ,I ∥
2
H1(ΩP ) + ∥ek

ϕ,I ∥
2
L2(ΩP ) + ∥r k

d∥
2
L2(Σ )

+ ∥e1
u,I ∥

2
H1(ΩF ) + ∥e1

d,I ∥
2
H1(ΩP ) + ∥e1

pP ,I ∥
2
H1(ΩP ) + ∥e1

ϕ,I ∥
2
L2(ΩP ) + ∥r1

d∥
2
L2(Σ )

)
. (5.11)

e continue with bounding ∥en
pF ,h

∥
2
L2(ΩF )

and ∥en
ϕ,h∥

2
L2(ΩP )

, which appear on the right-hand side above. The inf–sup
ondition (4.1a) and (5.6a) imply

∆t
k∑

n=1

∥en
pF ,h∥

2
L2(ΩF ) ≤ C∆t

k∑
n=1

(
∥en

u,h∥
2
H1(ΩF ) +

d−1∑
j=1

∥(en
u,h − ∂n

t ed,h) · t j
∥

2
L2(Σ ) + ∥en

pP ,h∥
2
H1(ΩP )

+ ∥en
u,I ∥

2
H1(ΩF ) + ∥en

pF ,I ∥
2
L2(ΩF ) + ∥en

pP ,I ∥
2
H1(ΩP ) + ∥∂n

t ed,I ∥
2
H1(ΩP ) + ∥rn

d ∥
2
L2(Σ )

)
.

n the other hand, the inf–sup condition (4.1b) and (5.6c) allow us to get

∆t
k∑

n=1

∥en
ϕ,h∥

2
L2(ΩP ) ≤ C∆t

k∑
n=1

(
∥en

pP ,h∥
2
H1(ΩP ) +

d−1∑
j=1

∥(en
u,h − ∂n

t ed,h) · t j
∥

2
L2(Σ ) + ∥en

d,h∥
2
H1(ΩP )

+ ∥en
u,I ∥

2
H1(ΩF ) + ∥en

pP ,I ∥
2
H1(ΩP ) + ∥en

d,I ∥
2
H1(ΩP ) + ∥∂n

t ed,I ∥
2
H1(ΩP ) + ∥en

ϕ,I ∥
2
L2(Σ ) + ∥rn

d ∥
2
L2(Σ )

)
.

(5.12)

efore combining (5.11)–(5.12), we note that the terms involving ∂n
t on the right-hand sides require special

reatment. In particular, it holds for φ(t) that

(∂n
t φ)2

=
1

∆t2

(∫ tn

tn−1

∂tφ
)2

≤
1
∆t

∫ tn

tn−1

(∂tφ)2,

mplying, for φ : [0, T ] → V , where V is a Banach space with norm ∥ · ∥V , that

∆t
k∑

n=1

∥∂n
t φ∥

2
V ≤

∫ tk

0
∥∂tφ∥

2
V .
18
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We then have

∆t
k∑

n=1

(
∥∂n

t ed,I ∥
2
H1(ΩP ) + ∥∂n

t epP ,I ∥
2
H1(ΩP ) + ∥∂n

t eϕ,I ∥2
L2(ΩP ) + ∥∂n

t eu,I ∥
2
H1(ΩF )

)
≤ C

∫ tk

0

(
∥∂t ed,I ∥

2
H1(ΩP ) + ∥∂t epP ,I ∥

2
H1(ΩP ) + ∥∂t eϕ,I ∥2

L2(ΩP ) + ∥∂t eu,I ∥
2
H1(ΩF )

)
.

(5.13)

To bound the term ∥∂n
t ∂

n
t ed,I ∥

2
H1(ΩP )

in (5.11), for any φ(t) we have, using the integral mean value theorem and
the mean value theorem,

(∂n
t ∂

n
t φ)2

=
1

∆t4

(∫ tn

tn−1

∂tφ −

∫ tn−1

tn−2

∂tφ
)2

=
1

∆t2

(
∂tφ(ξ n) − ∂tφ(ξ n−1)

)2
= ∂t tφ(ξ ), ξ ∈ [tn−2, tn].

herefore it holds that

∆t
k∑

n=2

∥∂n
t ∂

n
t ed,I ∥

2
H1(ΩP ) ≤ C esssup

t∈(0,tk )
∥∂t t ed,I ∥

2
H1(ΩP ).

ext, we need to bound the time discretisation error. Taylor’s expansion gives

rn
φ =

1
∆t

∫ tn−1

tn
∂t tφ(t)(tn−1 − t) dt,

thus, for φ : [0, T ] → V ,

∥rn
φ∥V ≤ C∆t esssup

t∈(tn−1,tn )
∥∂t tφ∥V and ∆t

k∑
n=1

∥rn
φ∥

2
V ≤ C∆t2

∫ tk

0
∥∂t tφ∥

2
V .

imilarly,

∆t
k∑

n=1

∥∂n
t rφ∥2

V ≤ C∆t2
∫ tk

0
∥∂t t tφ∥

2
V .

Finally, we need a bound on the initial discretisation error. Recalling the construction of the discrete initial data in
the proof of Theorem 4.1 and the definition of the continuous initial data in the proof of Theorem 4.2, we note that
(u0

h, p0
F,h) is the Stokes elliptic projection of (u(0), pF,h(0)) based on (4.2a)–(4.2b) at t = 0 with ∂t dh = 0 and the

term bΣ
2 (pP,0 − pP,h,0, vh) on the right-hand side. In addition, (d0

h, ϕ
0
h) is the elliptic projection of (d(0), ϕ(0)) based

on the stable problem (4.2c)–(4.2e) at t = 0 with ∂t dh = 0 and the terms bΣ
3 (u(0)− u0

h,wh), bΣ
4 (wh, pP,0 − pP,h,0),

nd bP
2 (ψh, pP,0 − pP,h,0) on the right-hand side. Classical finite element analysis for these two problems implies

hat
∥e0

u,h∥H1(ΩF ) + ∥e0
pF ,h∥L2(ΩF ) + ∥e0

d,h∥H1(ΩP ) + ∥e0
pP ,h∥L2(ΩP ) + ∥e0

ϕ,h∥L2(ΩP )

≤ C
(
∥e0

u,I ∥H1(ΩF ) + ∥e0
pF ,I ∥L2(ΩF ) + ∥e0

d,I ∥H1(ΩP ) + ∥e0
pP ,I ∥L2(ΩP ) + ∥e0

ϕ,I ∥L2(ΩP )
)
.

(5.14)

he assertion of the theorem follows from combining (5.11)–(5.14), using the discrete Gronwall inequality [45,
emma 1.4.2] for the term ∆t

∑k
n=2 ∥en−1

d,h ∥
2
H1(ΩP )

, and applying the triangle inequality and the approximation
roperties (5.4a)–(5.4e). □

. Representative computational results

All routines have been implemented using the open source finite element library FEniCS [46], as well as the
pecialised module multiphenics [47] for handling subdomain- and boundary-restricted terms that we require to
mpose transmission conditions across interfaces. The solvers are monolithic and the solution of all linear systems
s performed with the distributed direct solver MUMPS. We present four examples: convergence tests (example
), channel flow behaviour (example 2), a simulation of subsurface flow with highly heterogeneous permeability
example 3), and the solution of an axisymmetric problem using parameters relevant to eye poromechanics (example
). For examples 1,2 and 4 we use Taylor–Hood elements for the pairs velocity–pressure and displacement–total
ressure, plus continuous and piecewise quadratic elements for Biot fluid pressure. For example 3, the inf–sup stable
 33
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Table 6.1
Example 1. Experimental errors associated with the spatial discretisation and convergence rates for the approximate solutions uh , pF,h , dh ,
pP,h , and ϕh using P2

2 − P1 − P2
2 − P2 − P1 elements and computed at the last time step.

DoF h eu rate epF rate ed rate epP rate eϕ rate

144 1.414 4.70604 – 0.82152 – 21.4632 – 2.80468 – 19.3402 –
456 0.7071 1.66701 1.497 0.29604 1.472 9.75813 1.137 0.84917 1.721 8.20939 1.236

1608 0.3536 0.40411 2.044 0.06081 2.260 2.78206 1.811 0.24942 1.769 1.21860 2.422
6024 0.1768 0.09746 2.051 0.01376 2.138 0.72730 1.936 0.06567 1.943 0.25337 2.240

23304 0.0884 0.02405 2.014 0.00328 2.052 0.18545 1.984 0.01661 1.985 0.05166 2.231
91656 0.0442 0.00597 2.005 0.00081 2.018 0.04683 1.991 0.00410 1.991 0.00472 2.098

363528 0.0221 0.00151 2.001 0.00022 2.008 0.01172 1.998 0.00100 1.995 0.00061 2.015

pair used is the MINI element, and the Biot fluid pressure is approximated with continuous and piecewise linear
elements.

6.1. Convergence tests against manufactured solutions

The accuracy of the spatio-temporal discretisation is verified using the following closed-form solutions defined
n the domains ΩF = (−1, 1) × (0, 2), ΩP = (−1, 1) × (−2, 0), separated by the interface Σ = (−1, 1) × {0}

u = sin(t)
(

− cos(πx) sin(πy)
sin(πx) cos(πy)

)
, pF = sin(t) cos(πx) cos(πy),

d = cos(t)curl(sin(πxy)), pP = cos(t) sin(πx) sin(πy), ϕ = αpP − λdivd.
(6.1)

We consider Γ p
P to be the bottom horizontal segment, Γ d

P to be the lower vertical walls, Γ u
F to be the top horizontal

egment, and Γ σ
F to be the upper vertical walls. the synthetic model parameters are taken as

λ = 1000, µs = 1, µ f = 0.1, α = γ = 1, c0 = 0.01, κ = 0.001, ρs = 1.2, ρ f = 1,

ll regarded adimensional and do not have physical relevance in this case, as we will be simply testing the
onvergence of the finite element approximations. The manufactured solutions (6.1) are used to prescribe initial
onditions, essential non-homogeneous velocity and displacement boundary conditions, as well as natural non-
omogeneous flux conditions for fluid pressure. These functions do not necessarily fulfil the interface conditions,
o additional terms are required giving modified relations on Σ :

u · n − (∂t d −
κ

µ f
∇ pP ) · n = m1

Σ ,ex, (2µ f ϵ(u) − pF I)n − (2µsϵ(d) − ϕI)n = m2
Σ ,ex,

n · (2µ f ϵ(u) − pF I)n + pP = m3
Σ ,ex, n · (2µ f ϵ(u) − pF I)t +

γµ f
√
κ

(u − ∂t d) · t = m4
Σ ,ex,

nd the additional scalar and vector terms mi
Σ ,ex (computed with the exact solutions (6.1)) entail the following

hanges in the linear functionals

F F (v) = ρ f

∫
ΩF

g · v + ⟨m3
Σ ,ex, v · n⟩Σ + ⟨m4

Σ ,ex, v · t⟩Σ ,

F P (w) = ρs

∫
ΩP

f · w +

∫
ΩP

m2
Σ ,ex · w + ⟨m3

Σ ,ex,w · n⟩Σ + ⟨m4
Σ ,ex,w · t⟩Σ ,

G(qP ) =

∫
ΩP

ρ f g · ∇qP − ⟨ρ f g · n, qP⟩Σ − ⟨m1
Σ ,ex, qP⟩Σ .

We generate successively refined simplicial grids and use a sufficiently small (non dimensional) time step
∆t = 0.01 and simulate a relatively short time horizon tfinal = 3∆t , to guarantee that the error produced by
the time discretisation does not dominate. Errors between the approximate and exact solutions are tabulated against
the number of degrees of freedom in Table 6.1. This error history confirms the optimal convergence of the finite
element scheme (in this case, second-order) for all variables in their respective norms, where a slightly better rate
20
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Table 6.2
Example 1. Experimental cumulative errors associated with the temporal discretisation and convergence rates for the approximate solutions
uh , pF,h , dh , pP,h , and ϕh using a backward Euler scheme.

∆t êu rate êpF rate êd rate êpP rate êϕ rate

0.5 10.549 – 2.5844 – 43.764 – 8.6738 – 38.734 –
0.25 5.1408 0.984 1.2710 1.163 21.840 1.211 4.3673 1.125 19.371 1.055

0.125 2.2689 1.205 0.6485 1.182 10.661 1.204 2.1690 1.032 9.6901 0.962
0.0625 1.1365 1.107 0.3216 1.095 5.4517 1.121 1.0795 1.025 4.8614 0.981

0.03125 0.6813 1.004 0.1615 1.071 2.7326 1.043 0.5527 0.987 2.4396 0.992

is seen for the total pressure. In the table caption, Pk denotes the space of piecewise polynomial functions being of
otal degree up to k.

For this example we have reincorporated the acceleration and the nonlinear convective term, and the Newton–
aphson algorithm takes, in average, three iterations to reach the prescribed tolerance of 10−8 on the residuals.

The convergence in time achieved by the backward Euler method is verified by partitioning the time interval
0, 1) into successively refined uniform discretisations and computing accumulated errors

ês =

( N∑
n=1

∆t∥s(tn+1) − sn+1
h ∥

2
⋆

)1/2

,

where ∥ · ∥⋆ denotes the appropriate space norm for the generic vector or scalar field s. For this test we use a fixed
mesh involving 10K DoFs. The results are shown in Table 6.2, confirming the optimal first-order convergence.

6.2. Channel filtration and stress build-up on interface deformation

Although the model stated in Section 2 holds in the limit of small strains, it is possible to have large
displacements, likely located near the interface (and without violating the model assumptions). In this scenario,
the discretisation might no longer be suitable. A simple remedy consists in smoothly moving the fluid domain and
the fluid mesh to avoid distortions generated near the interface. We use a standard harmonic extension (see e.g. [22])
that is solved at each time step, just after (5.2): Find d∗

h = dh + d̂h such that

− D∆d̂h = 0 in ΩF , d̂h = dh on Σ , and d̂h = 0 on ∂ΩF . (6.2)

And then we perform an L2
−projection of both dh and d̂h into Wh + Vh and add them to obtain the global

displacement d∗

h .
We illustrate the effect of using (6.2) by looking at the behaviour of normal filtration into a 2D deformable porous

medium. The same domains as in the accuracy tests are employed here (that is, the single phase fluid domain located
on top of the poroelastic domain), however the boundary treatment is as follows, assuming that the flow is driven
by pressure differences only. On the top segment we impose the fluid pressure pin

F = p0 sin2(π t) with p0 = 2, and
on the outlet (the bottom segment) the fluid pressure pout

P = 0. On the vertical walls of ΩF we set u = 0 while on
the vertical walls of ΩP we set the slip condition d · n = 0 (and the porous structure is free to deform on the outlet
boundary, i.e., zero traction imposed). The permeability is κ = 0.02 and the remaining parameters are

λ = 10, µs = 5, ρs = 1.1, ρ f = 1, α = 0.6, γ = 0.1, C0 = 0.01,

nd we assume that there are no body forces nor gravity acting on the system. In contrast with the convergence
ests, for this example we use piecewise linear and continuous finite elements for the approximation of pP .

The numerical results are presented in Fig. 6.1. The effect of the interface can be clearly seen in the top left panel
here recirculation vortices replace the parabolic profile at the inlet; also, in the poroelastic domain, we see that,

lose to the interface, the solid displacement and the fluid pressure are heterogeneous in the horizontal direction,
efore recovering the expected constant value (constant in the horizontal direction) expected in the far field. We
lso plot the evolution of the mesh deformation near the interface. From Fig. 6.2 one can see that for large enough
nterfacial displacements, the elements close to it exhibit a large distortion.
 34
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Fig. 6.1. Example 2. Infiltration into a deformable porous medium. Velocity in the fluid domain, fluid pressure, extended displacement of
fluid and solid domains, solid displacement, fluid pressure in the poroelastic domain, and total pressure. All snapshots are taken at time
t = 2, and the black outer line indicates the location of the undeformed domain.

6.3. Simulation of subsurface fracture flow

Next we include a test case that illustrates the applicability of the formulation in hydraulic fracturing. The
roblem setup follows [48, Section 5.2.2] (except that we do not model tracer transport), considering a rectangular
omain Ω = (0, 3.048) [m] × (0, 6.096) [m] including a relatively large fracture regarded as a macro void, or open
hannel ΩF filled with an incompressible fluid (see Fig. 6.3, left), and the Biot domain is ΩP = Ω \ ΩF . The
eterogeneous (but isotropic in the xy-plane) permeability κ(x) is the non-smooth pattern taken from the Cartesian
PE10 benchmark data/model 2 (see, e.g., [49,50]), which we rescale as in [25] and project onto a piecewise constant
eld defined on an unstructured triangular mesh for the poroelastic geometry. There are 85 distinct layers within two
22
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Fig. 6.2. Example 2. Zoom of the meshes on the interface at times t = 0, t = 1 and t = 2. Effect of using or not the harmonic extension
to move the fluid domain (bottom and top, respectively).

Fig. 6.3. Example 3. Schematic representation of sub-domains, location of the free-porous interface, and configuration of sub-boundaries
(left panel); and material properties (porosity φ(x), permeability κ(x), and Young modulus E(x)) from layer 80 of the SPE10 benchmark

ataset for reservoir simulations, herein projected onto a coarse mesh for the poroelastic sub-domain.

eneral categories. We choose layer 80 from the dataset, which corresponds to the Upper Ness region exhibiting a
uvial fan pattern (flux channels of higher permeability and porosity). The Lamé parameters (in [KPa]) are highly
eterogeneous and determined from the Poisson ratio ν = 0.2 and the Young modulus E(x) = 107(1 − 2φ(x))2.1,

where φ(x) is the porosity field also taken from layer 80 of the benchmark dataset (see Fig. 6.3, right). It is plotted
in logarithmic scale and the contrast is of about 108. No gravity and no external loads are considered, and the
emaining parameters are α = γ = 1, c0 = 6.89 · 10−2 [KPa−1], µ f = 10−6 [KPa · s].

Similarly as in [25], we set the flow initially at rest d(0) = 0 and the initial Biot pressures are pP (0) = ϕ(0) =

000 [KPa] (since α = 1). On the inlet boundary Γ F
in (the vertical segment on the Stokes boundary) we impose

he inflow velocity u = (10, 0)t [m/s], on the bottom, right and top sub-boundaries Γ P
1 of the Biot domain we

rescribe sliding conditions d · n = 0 [m] together with a compatible normal-tangential stress condition and a
xed Biot pressure pP = 1000 [KPa], and on the right sub-boundaries Γ P

2 of the Biot domain we set stress-free
23
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Fig. 6.4. Example 3. Snapshots of the approximate solutions (Biot fluid pressure, post-processed Biot fluid velocity and line integral
convolution, Biot displacement magnitude and displacement arrows on the deformed domain, Stokes fluid pressure, and Stokes velocity
magnitude with line integral convolution) for fluid injection into a fracture porous medium using the SPE10-based benchmark test. Results
were obtained after t = 10 [hours].

conditions. The time discretisation uses the fixed time step ∆t = 60 [s] and we run the simulation of injection
over a period of T = 10 [hours]. The unstructured triangular mesh has 1629 elements for the Stokes sub-mesh
and 18897 elements for the Biot domain. For this test we have used the MINI element, consisting of continuous
and piecewise linear elements with bubble enrichment for velocity and displacement, and continuous and piecewise
linear elements for all remaining fields. The injected fluid imposes an increase of pressure on the interface and from
there the expected channel-like progressive filtration from the Stokes to the Biot domain is clearly observed in the
Biot pressure plot in the left panel of Fig. 6.4, showing higher fluxes near the tip of the fracture. The remaining
panels show, at the final time, snapshots of Stokes velocity, Biot displacement, and post-processed Biot filtration
velocity. The deformation of the poroelastic structure closer to the fracture is relatively small, which is why we do
not consider in this test the harmonic extension of the fluid domain addressed in the previous example.

6.4. Application to interfacial flow in the eye

To finalise this section we include a problem pertaining to the application of the interaction between aqueous
humour in the anterior chamber and the trabecular meshwork. Therein, one of the main driving questions is whether
one can observe deformation of the porous skeleton (and in particular of the interface) that could drive a rise in
intra-ocular pressure. For this test we use the axisymmetric formulation (3.3), we include the convective term in
(2.1a) and we discard gravity. A large amount of data is available to specialise the geometry and the mechanical
24
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properties (both fluidic and elastic) of the eye to different animal species [10,14,16,35]. In our case (and consistent
with a uniform temperature of 37◦ and a characteristic length of 6.8 · 10−3 [m]) we impose

ρ f = 998.7 [Kg m−3], µ f = 7.5 · 10−4 [Pa s], p0 = 0 [Pa], E = 2700 [Pa], ν = 0.47,

λ = 14388 [Pa], µs = 918.36 [Pa], α = 1, ρs = 1102 [Kg m−3], C0 = 0, γ = 0.1.

As discussed in [12], an increase in the Beavers–Joseph–Saffmann friction parameter γ leads to higher pressure
ifferences between the trabecular meshwork and the anterior chamber. Note that even if the choice of α = 1,
0 = 0 indicates that both constituents (fluid and solid) are assumed intrinsically incompressible, a Poisson ratio

maller than 0.5 implies compressibility of the poroelastic medium (due to the possible rearrangement of the porosity
eld, i.e., the fluid escaping the medium).

With reference to Fig. 2.1, the length of the interface Σ between the trabecular meshwork and the anterior
hamber is 5.7 · 10−4 [m], and the length of the separation between the trabecular meshwork and angular aqueous
lexus (Γ out) is 3.4 · 10−4 [m]. A parabolic profile for inlet velocity with a pulsating magnitude uin = 4.89 ·

0−7 sin2(π t) [m·s−1] (that has approximately the same frequency as the heartbeat) is imposed on Γ in (the magnitude
s obtained from the ratio Cµsκ

Lµ f
with C = 0.2 integrated through the thickness and the condition is imposed through

a Nitsche approach with penalty parameter equal to 1 since the relevant sub-boundary is not aligned with the axes),
no-slip conditions are prescribed essentially on the walls, and a slip condition is considered for the fluid velocity
on the symmetry axis (also imposed essentially). On the outlet Γ out we impose zero fluid pressure pP = p0. We
simulate the interfacial flow until t = 5 [s] and use a time step of ∆t = 0.1 [s]. In this case, Taylor–Hood elements
are used for the pairs [velocity, fluid pressure] and [displacement, total pressure], alongside continuous and piecewise
quadratic elements for Biot fluid pressure. Fig. 6.5 depicts the numerical solutions at two time instants, showing the
distribution on the meridional axisymmetric domain of displacement, pressures and velocity (including the Darcy
velocity in the trabecular meshwork) and illustrating the modification of flow patterns throughout the last cycle of
the computation, and using (for this first run of simulations), a constant permeability κ0 = 5.0 ·10−12 [m2]. For sake
of visualisation, we have also plotted the fluid pressure on both sub-domains rotationally extruded to a cut of the
3D domain.

In addition, we compare the behaviour produced by three heterogeneous permeability profiles (2.4). The first
case has a gradient going from κmax

1 = 2.88 ·10−11 [m2] on the interface, linearly down to κmin
= 10−14 [m2] on the

outlet. A second synthetic permeability profile will decrease from the value κmax
2 = 6.55 ·10−11 [m2] on the interface

own to κmin on the outlet. These two profiles are generated by solving a Laplace problem with mixed boundary
onditions, setting κmax

i and κmin essentially, and no-flux naturally on the remainder of ΓP . A third permeability
istribution is generated by placing random points in ΩP having permeability κmin, and κmax

4 = 2.28 · 10−11 [m2]
lsewhere (see the second row of Fig. 6.6). The maximum values κmax

i were tuned so that the average permeability
¯i =

1
|ΩP |

∫
ΩP
κi (r, z)dr dz is equal to 2.0 · 10−11 in all cases.

The effect of spatial variations in permeability is evaluated by imposing an inlet velocity profile (that is,
quivalently, controlling the flow) with uin · n = −0.1t [m · s−1] while prescribing zero fluid Biot pressure on Γ out.
rom the third row of Fig. 6.6 we see that the pressure difference (intra-ocular fluid pressure minus the pressure
t the angular aqueous plexus) remains roughly the same in all the cases consistently with the fact that κ̄ is kept
onstant. Nonetheless we see that different permeability profiles give rise to slightly different spatial distributions
or velocity, for the Biot fluid pressure, and for the strain (post-processed from the Biot displacement and from
he harmonic extension Stokes displacement). Compared with the constant permeability case, that is the underlying
eld in the third permeability profile (right column), where the pressure decays linearly toward the outlet, in the
ecreasing permeability case (left column), the pressure gradient looks larger close to the inlet while the strain are,
n general everywhere, lower; for the increasing permeability case (centre column) the pressure gradient is larger at
he inlet and the strain are, in general everywhere, larger. Taking into consideration that here we investigate a much
omplex geometry, these speculations are consistent with the description provided in [3] and obtained in the limit
f a slender geometry. The description provided here allows to speculate that a rearrangement of the microstructure
ould not drive a macroscopic change in the mechanics of the system within a short time horizon, since the flow
nd the pressure drop remains of the same order of magnitude; however, higher pressure and strain gradients could
e the cause of a local remodelling of the pectinate ligaments in genetically susceptible subjects that, in a relatively
 45
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Fig. 6.5. Example 4. Axisymmetric interfacial flow in the eye for a linearly varying permeability profile. Velocity magnitude and streamlines
(top), fluid pressure (second row), displacement magnitude (third row), porous total pressure, and fluid pressures on both domains extruded
to the 3D case (bottom centre and bottom right). All solutions are shown at times t = 4.2 [s] (left) and t = 5 [s] (right column).
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t

Fig. 6.6. Example 4. Axisymmetric interfacial flow in the eye. Top: Coarse unstructured mesh indicating the axis of symmetry. Second row:
hree permeability distributions (in [m2]) projected on piecewise constants over ΩP . Linearly decreasing (left), linearly increasing (centre),

and with randomly distributed spots of smaller permeability (right). In all cases the average permeability is κ̄ = 2.0 ·10−11. Third-fifth rows:
comparisons of resulting profiles (velocity vectors, fluid pressure, and post-processed strain) at t = 6 [s].
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long term and in the nonlinear regime, could lead to further increases in pressure and strain gradients that could
ultimately lead to collapse of the ciliary cleft.

7. Concluding remarks

We have introduced a new formulation for the coupling of Biot’s poroelasticity system using total pressure and
ree flow described by the Stokes and Navier–Stokes equations, and which does not require Lagrange multipliers to
et up the interface conditions between the two subdomains. The well-posedness of the continuous problem has been
roved, we have provided a rigorous stability analysis. A mixed finite element method is defined for the proposed
ormulation together with a corresponding reduction to the axisymmetric case and the proposed schemes are robust
ith respect to the first Lamé parameter. We have conducted the numerical validation of spatio-temporal accuracy

and have also performed some tests of applicative relevance, studying the behaviour of poromechanical filtration in
subsurface hydraulic fracture with challenging heterogeneous material parameters, and simulating interfacial flow
through the trabecular meshwork of the eye.

Different formulations we will study next include conservative discretisations on both poroelasticity and free
ow [51–53]. We are currently working towards the design of monolithic block preconditioners being robust
ith respect to all material parameters, and whose construction hinges on adequate weighted Sobolev spaces

nd fractional interfacial norms. On the other hand, a crucial model extension corresponds to the regime of
arge deformations and the incorporation of remodelling mechanisms that would better explain the progressive
onsolidation of the interface and the shrinkage of the trabecular meshwork and associated ciliary cleft collapse seen
n canines with glaucoma (using formalisms sharing similarities with the study of lamina cribrosa thickening [54]).
here, it is also necessary to consider nonlinear variations on permeability depending on porosity, which in turn
ndergoes changes due to microstructural rearrangement [38].

eclaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could
ave appeared to influence the work reported in this paper.

cknowledgements

This work has been partially supported by the Monash Mathematics Research Fund S05802-3951284; by the
inistry of Science and Higher Education of the Russian Federation within the framework of state support for

he creation and development of World-Class Research Centers “Digital biodesign and personalised healthcare” No.
75-15-2020-926; by Gruppo Nazionale di Fisica Matematica (GNFM) of the Istituto Nazionale di Alta Matematica
INdAM); by a grant from the American College of Veterinary Ophthalmologists Vision for Animals Foundation
AFGL2017; and by NSF grant DMS 1818775. In addition, the authors gratefully acknowledge the many fruitful
iscussions with Wietse Boon, Elfriede Friedmann, Miroslav Kuchta, Kent-André Mardal, and Sarah L. Waters,
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