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Abstract— This paper considers a self-triggered MPC con-
troller design strategy for tracking piecewise constant reference
signals. The proposed triggering scheme is based on the relaxed
dynamic programming inequality and the idea of reference
governor; such a scheme computes both the updated control
action and the next triggering time. The resulting self-triggered
tracking MPC control law preserves stability and constraint sat-
isfaction and also satisfies certain a priori chosen performance
requirements without the need to impose stabilizing terminal
conditions. An illustrative example shows the effectiveness of
this self-triggered tracking MPC implementation.

I. INTRODUCTION

In conventional Model Predictive Control (MPC) [18],
[19] an open-loop optimal control problem is solved at each
sampling time resulting in a sequence of control inputs of
which only the first one is implemented. This leads to an
algorithmically defined feedback control law.

The classical MPC can be viewed as “time-driven” be-
cause the control input profile is updated repeatedly after
each fixed time interval. Specifically, at each sampling time
a sequence of control values is computed, but only the
first element is applied to the system while the rest is
discarded. One may ask whether we can continue using the
sequence we have computed for as long as possible while
still guaranteeing stability and required performance. The
answer leads to the so-called “event-driven” MPC in which
the control computations only happen when some prescribed
“event” occurs. This reduces the frequency of MPC updates
and average computing power required. For instance, in
[2], [3], the MPC computation is activated by comparing
the measured state and its past prediction. However, this
requires continuously taking measurements and monitoring
the system.

In self-triggered MPC, the necessary measurement and
computation only take place at a triggered time at which
both the updated MPC control actions and the next triggering
time are determined. In particular, in [7] a self-triggered
linear quadratic control (LQR) strategy is developed for
linear systems without constraints. The paper [11] considers
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a self-triggered receding horizon controller for multiple-
loop unconstrained linear time-invariant (LTI) systems and
proposes a co-design of control and sensor sampling strategy.
For self-triggered MPC of constrained systems, in [8], [12],
[16], [23], the control law and triggering conditions are
co-designed to satisfy a specified closed loop performance
requirement. In particular, in [8], a self-triggered scheme is
derived to get “group sparse” control signals by holding the
control value at the triggering time to be constant for as long
as possible. A similar idea is also pursued in [12], where
control signals are kept the same between the triggering time
instants. However, keeping the control signal constant may
cause the control and state mismatch as the state is evolving
with time. Thus, consecutive updates may result which is
undesirable. This kind of consecutive triggerings also happen
when uncertainty is present [23] and it is necessary to
guarantee a specified performance.

In order to guarantee recursive feasibility in MPC setting
most of the existing results including [2], [3], [8], [12], [23]
exploit terminal cost and terminal set constraints. However,
making the MPC controller satisfy terminal constraints can
degrade performance, and even cause infeasibility in engi-
neering practice.

In comparison, the recent paper by Lu and Maciejowski
[16] provides an alternative approach for self-triggered MPC,
which makes full use of non-constant control sequences MPC
computes at triggering times and can maintain stability and
satisfy certain performance requirements without terminal
constraints and penalties. Unlike [2], [3], [8], [12], [23],
where terminal cost and terminal constraints are used, the
asymptotic stability is ensured in [16] by exploiting the
relaxed dynamic programming (RDP) inequality without ter-
minal constraints [9], [10], [15]. Furthermore, the occurrence
of consecutive updates is significantly reduced by introducing
an extra slack variable in the RDP condition.

While all the exisiting self-triggered MPC schemes have
been extensively studied in the regulation case, i.e. when the
goal is to control the state of the system to the origin (a fixed
setpoint), a control law and triggering condition co-design for
reference tracking has not been addressed when setpoint is
changing with time, e.g., is a piecewise constant function in
time. The synthesis approach of stabilizing MPC may not
be viable at the new setpoint and the constraints could be
violated [4], [13], [14]. For these reasons, under piecewise
constant reference signals, a regulation self-triggered MPC,
even with the extra slack variable technique introduced [16],
may exhibit consecutive updates (cf. Fig. 3), which should be
avoided to guarantee certain inter-event time that is required



by wireless networked control systems (WNCS) [17], [21].
Otherwise, if consecutive updates exist, the MPC updates
must be computed intensively during some periods. The
merits of event-driven MPC are lost.

In this paper, a reference governor [5], [6] is integrated
into a self-triggering MPC scheme to govern the tail of
shifted MPC sequences and guarantee constraint satisfaction,
stability at the equilibrium and performance in a reference
command tracking setting.

The organization of the paper is as follows. In Section
II, we give definitions and preliminary results that will be
used in the rest of the paper to formulate the self-triggered
tracking MPC problem. In Section III, the relaxed dynamic
programming approach is proposed with an integration of
reference governor design which for piecewise constant in
time reference commands is able to reduce the number con-
secutive triggering times. An illustrative example is presented
in Section IV, and we conclude the paper in Section V.

Notation: Let R, R;, Z and Z,; denote the set of real
numbers, non-negative real numbers, integers, and non-
negative integers, respectively, and let Z, ;) denote the set
{¢p € Z | a < ¢ < b}. Throughout this paper, ¢ denotes
sampling time, and k denotes the count of time-steps within
the prediction horizon. Given two sets 2, # C R", the
Minkowski set addition is defined by 2 @ % := {x+y|z €
Z',y € #}. The Pontryagin set difference is defined by
ZXe® = {zz®% C Z} The ball of radius € is
denoted by #(e) = {x € R™ : ||z|| < €}. For a given set &
containing the origin, we let int.(”) denote the e-interior
of 2, ie., int.(P) £ P S %B(e). Finally ||:v||g2 . %mTQm

II. PROBLEM SETUP

Consider a linear system,

x(t+1) = Ax(t) + Bu(t), =(0) =z, (1)
y(t) = Ca(t) + Du(t) - g(t), 2

where z(t) € R", u(t) € R™ , y(t) € RP and g(t) € R?
are the state, input, (generalized) output and external signal
at time instant ¢, respectively. The convex sets X C R”
and U € R™ are closed sets which represent state and
input constraints and contain the origin in their interiors. We
assume that:

(i) (A, B) is stabilizable.

(ii) Matrix D is of full column rank.

For the tracking problem, we can view g(t) as an artificial
setpoint, gsp, OT an artificial reference function, for instance,
gsp = Czg + Dug where (x5, us) is a steady state and input
pair which guarantees the artificial setpoint g, is equal (or
closest) to the desired setpoint rp.

For unconstrained systems, gs, would essentially coincide
with and be set to the desired reference setpoint ry,. Then,
from (1)-(2), the steady state satisfies

][] e

The matrix in the left-hand side of equation (3) is an
(n+p) X (n+m) matrix. From linear algebra, for the linear
equation (3) to have a solution for all g, it is sufficient
that the rows of the matrix on the left-hand side are linearly
independent, which requires p < m. However, normally we
have more (generalized) outputs than manipulated references.
So we choose a matrix H and set g. = Hg to select
particular linear combinations of the generalized outputs. The
variable g. € R" is referred to as the controlled variable.
In particular, if the columns of the matrix on the left-hand
side are linearly independent, the linear equation (3) has a
unique solution. If the solution is non-unique, the steady state
pair (xs,us) can be determined by solving an optimization
problem

min  (ug

Bl - usp>TRs(us - usp) + QS(Hgsp - rsp)v (4)

I-A -B Zs 0
ol wn ][] ]
xs € int (X)),
ug € int(U),

where the first term penalizes the control effort w.r.t the
desired steady input usp and ¢(Hgsp—rsp) = || Hgsp—"splloo
penalizes the deviation between the desired setpoint ry, and
the artificial setpoint gsp.

The set of admissible setpoints such that the constraints
are not active is defined as follows:

%o = 10 = Cw, + Dug 1 my € ik (X)), uy € int (U)}.

A. Finite-horizon Tracking MPC

The objective of the reference tracking problem is to steer
the output y(¢) to zero, while keeping Hgsp as close as
possible to 7s,. Here gsp can be computed based on (4).

In tracking MPC, we take a finite horizon N € Z, and
solve the following optimization problem at each sampling
time, ¢:

N-1
A TminT !]i(N)(i‘7§au) = Hkaga &)
uZful,-ul —0
st speX, k=1,...,N,
w €U, k=0,1,...,N -1,
Xo = i’,
gt :gv

#gys = Azg + Bop, k=0,1,...,N-1,
yr = Cxp + Dup, — gy, k=0,1,...,N —1.
Solving the above optimization problem at each sampling

time for a particular Z and g leads to a unique sequence of
optimal control laws from time ¢ to time ¢ + N — 1, given

by uw*(&, g) = [ui"(@, 5w " (Z, §), - ., 05 (& G}
The (finite-horizon) value function is defined as
VW (a(t), g(t)) £ T (@(1), g(t), u*). (6)

The tracking MPC control law is given by applying the
first control move of the open-loop optimal control sequence



u*(x(t),g(t)) to the system, i.e.

u(t) = p(2(t), 9(t)) = ug(2(t), g(t)). )

Then the closed-loop system is given by
a(t +1) = Az(t) + Bu((t), 9(t)), (®)
yu(t) = Ca(t) + Dp(a(t), 9(t)) — g(t)- ©)

B. Recursive Feasibility

In this subsection we review the background definitions
and results from [16] needed for the subsequent develop-
ments.

Definition 1: A control sequence u = {u(0),u(1),...,
uw(N — 1)} is said to be admissible for x(0) € X, if
(z(t),u(t)) € X x U for all ¢ € {0,1,..., N — 1}. The set
of all admissible control sequences of length IV is denoted
by %™ (x(0)).

The N step feasible region is defined as

Iy :={xcX: %N (x) #0}.

The region I, is called viability kernel [1], which charac-
terizes the set of the infinite horizon feasible initial conditions
of system (1) subject to input and state constraints.

Remark 1: Any admissible equilibrium point « is in the
viability kernel. If the initial state is in an equilibrium point,
then the proposed tracking MPC will be feasible.

The sequence of feasible sets Iy’s becomes stationary,
if there exists No € Z, such that Iy = I, holds for all
N > No.

Definition 2: A set &2 C R”™ is called a (controlled)
positively invariant (PI) set or a viable set for the closed-
loop system (1), if & C X and for all x € &2, there is a
u € U, such that Ax + Bu € £.

I is also called the maximal positively invariant (MPI) set,
which includes all the possible PI set &, i.e. & C .

Definition 3: A set & is called RH N-invariant or recur-
sively feasible with respect to a horizon N € Z if 22 Cly
is a PI set for the closed-loop system (8) under the MPC
controller (7) with a receding horizon (RH) NV, i.e.

z(0) e Z=a(t)e &, VieZ,.

The following proposition shows that for a sufficiently
large horizon N, MPC controller will generate recursive
feasibility on the whole feasibility kernel I. This property
is inferred from stationarity of the feasible sets In’s [1].

Proposition 1: Suppose that gy, € %, in (5). If
V() (2(t),gsp) < c holds for some ¢ € R, and all
z(t) € I and for all g5, € %, the feasible sets In’s
become stationary for some Ny € Z, i.e., In, = In,+1 =
Loz = o e = I

Assumption 1: In this paper it is assumed that

sup V) (2, g)=c< oo,

. 7€l g€%p .. .
For a given horizon N and a positive scalar v, in order

to determine a RH N-invariant set, we define the sub-level
SY C R™ x R" of finite horizon value function V¥ (, g)

SN = {(z,g) € Iy xR : VN (a, g) < v}

C. Relaxed Dynamic Programming

We use the relaxed dynamic programming result in [15]
to develop a triggering condition for self-triggered MPC.

The next proposition is a variant of the main proposition
stated in [10], [15] for approximating the Bellman’s equation
based on the finite-horizon value function V) (z(t), g(t))
defined in Section II-A and its corresponding optimal control
policy u(x(t), g(t)).

Proposition 2: Consider the system (1)-(2) with the feed-
back control law u(z,g), and suppose that the following
inequality is satisfied:

VI (a(t),g(1) = VIV (a(t + 1), gt +1)) + allyu. (03,
(10)
for a given scalar « € (0, 1] and all (z(t), g(t)) € S. Then,

o>l (OI < V) @ (0)), i

t=0
where «(t + 1) and y,(t) are obtained by apply-
ing u(x(t),g(t)) to the closed-loop system, i.e., z(t +
1) = Axz(t) + Bp(z(t),g(t)) and y,.(t) = Cz(t) +
Dp(a(t), g(t)) — g(2).

Throughout this paper, we make the following assumption.

Assumption 2: The control horizon N > N* is known
for which the RDP inequality (10) is satisfied for a specified
a € (0,1] and all (z(t),g(t)) € SV.

While under reasonable assumptions on the system (1),
we can ensure [N* exists, it may be difficult to compute it a
priori. Our triggering mechanism will detect if N was chosen
too small, such that it can be adapted [16].

D. Reference Governor

Consider a control law for tracking a constant reference
r(t) = rep, of the form,

u(t) = Ko +1I'r, (12)

where K is a feedback gain matrix such that A + BK is
Schur and T is a feedforward gain.

The constraints (2(t),u(t)) € X x U can be expressed as
inequality constraints

Ex(t)+ Fu(t)<h, t>0 (13)

Applying the control law (12) and replacing the desired
reference 7(t) with v(¢) to the system (1), the closed loop
system has the form,

z(t+1) = Pa(t) + Go(t),

where ® = A 4 BK is Schur and G = BI'. The inequality
constraints (13) can be restated as

200 =2z, (14

[ v @]{”“)}gm >0 (15)

x(t)
where © = F 4+ FK and ¥ = FT.
The reference governor [5] behaves as a pre-filter which,
based on the current state x(t) and the desired reference
r(t), generates a modified reference v(t) which fulfills the



constraints (z(t),u(t)) € X x U. The updates for v(¢) take
the form

v(t) = v(t = 1) + w(t)(r(t) —v(t = 1)),

where the scalar x(¢) € [0,1] is chosen by solving the
optimization problem,

(16)

a7

A
w0

st. v=ov(t—1)+r(rt) — vt - 1)),
(v,2(t)) € i

where O, is a finitely determined approximation to maxi-
mum output admissible set [6] for system (14)-(15).

III. RDP-BASED APPROACH FOR TRACKING

In this section, we will adapt the relaxed dynamic pro-
gramming inequality in Proposition 2 to the self-triggered
tracking MPC setting.

Define the triggering times {¢; | | € Z,}, which satisfy
tip1 >t foralll € Z, and ¢;+1 —¢; < N. Within the time
interval [t;, ¢;41), We set

u(t) = fi(t, z(t), 9(t)) := u?tﬁtl)(m(tl)vg(tl))vt € Z[tl7tl+1)'

(18)

When MPC update (5) is triggered at time ¢;, we have to
decide on both the control and the next triggering time ¢;41
which should be as large as possible while reference tracking
is achieved and a certain required performance is guaranteed.
The computation of ¢;,; will be based on checking of the
RDP inequality and for the setpoint changes.

In the self-triggered tracking MPC setting, multiple open-
loop control moves of MPC sequence at time t¢; may be
applied before the next MPC update at time ¢, is executed.
We keep g(t;) constant in-between the triggering times ¢; and
ti+1, and we amend the RDP condition as follows:

VO (@(tr), 9(t1) 2V (@(ti1), 9(t11))

tr41—1

+a Y llwa@)3,

t=tj

19)

where Zi’;l;l llya(t)||3 denotes the sum of the running
costs at the triggering times t;,¢; + 1,...,¢41 — 1 with
the control policy w(¢) defined as in (18). As the optimal
value V) (2(t;41),g(t14+1)) at the next triggering time is
not available at ¢;, we will construct an upper bound for it.
Besides, we will also exploit an extra slack variable which
reflects the decay of the Lyapunov function V() (z(t), g(t))
at the previous triggering times. The main theorem of this
paper is presented below. It demonstrates that after all of
the above mentioned modifications to the RDP inequality, a
certain bound on performance and reference tracking are still
guaranteed.

Theorem 1: Suppose (z(0),g(0)) € S~ and an upper
bound VN (z(t), g(t)) can be found for t € {t; | I € Z}
such that

VN ((t), g(t)) > V) (x(t), (1)) (20)

Suppose, furthermore, the inequality

VN (x(t), 9(t)) — VI (2(tip1), 9(t1)) >

tr4a—1

e(t) +a Y llya®l3,

t=t;

21

is enforced for a given scalar o € (0, 1), where the sequence
{e(t;)} is defined in (22) for all [ > 2 and if g(¢;) # g(t;_1)
or t = t1, we set VN (2(t;), g(ti_1)) = VIV (z(t;), g(tsr)).
Then:

a Yy} < sup VO (a(to), 9) = c,

(23)
t=to 9€%p
and
tllglo ya(t) = 0. (24)

Proof. The proof is an extension of Theorem 1 in [16] for
tracking piecewise constant signals and is omitted due to lack

of space. ]

At an MPC update time ¢, € Zy with | € Zg,
we compute the MPC control update according
to (5. In order to implement our RDP-based

triggering scheme, after obtaining u*(x(t;),9(t;)) =

[UST(x(tl)vg(tl))7uTT(a"(tl)?g(tl))v = i vu}‘\[*;(w(tl)vg(tl))r

at time ¢;, the first step is to find the last component u}‘\—,_l

in u* sequence such that x(t; + N) € Proj,(P), where

N € Zji n—1) and P is a closed set satisfying
Pea,, (25)

which can be expressed as set of linear inequalities of the
form

P ={(v,2) : Myx + M,v < b}. (26)

The next MPC update time ¢;41 can be calculated by
tiyr =t + A, (2(t)), 27
where the inter-triggering interval .4, (z(¢;)) is given by
At (2(t)) S max{Ny, € Zpy, -1} (28)
st (i) V¥ (a(tr), 9(t)) — VI (a(ty + Vo), 9(t1))

tl+Ntl—1
>et)+al > @3], @9
t=t,
(i) g(ti+ Ny,) = g(ta). (30)
In order to calculate the upper  bound

VN (x(t; + Ny),g(t;)) and the forward predicted
state F(t; + N + i) for i € Zpy N, at time t,
we construct an input sequence Un(z(t; + Ny)) =
[u}(thT(x(tl)vg(tl))v e 7u7V_1T(w(tl)’ g(tl))v aT(tl +
N),...,a"(t;+ Ny, + N - 1)]".

For a given x(t) € Proj,(P), we can determine v(t) to
guarantee (v(t),z(t)) € P C O, for instance, by solving
the following QP:

min (31)

in - (v(t) — g(t))"(v(t) — 9(2));
s.t. Myx(t) + Myv(t) < b.



07 if g(tl) 75 g(tl*1> or t = to,

) = { e(ti-) +a 305 a3 + VO (@), g(ti-1)) = VO (@(ti-1), g(ti-2)), otherwise.

(22)

To get a(ti+N+i—1), € Zyn,), we set vt +N)
from (31) and solve (17) for v(t; + N + i) for i € Z[l,Ntl]-
The sequence Z(¢; + N + i) can be obtained by forward
simulation.

Hence, the upper bound can be defined as

V(N)(tl+Nt17x<tl it Ntl)) é

TN () 4+ Ny, z(t; + Ny,), Un (2(t)).  (32)

IV. ILLUSTRATIVE EXAMPLE

We consider a helicopter flight envelope protection ex-
ample studied in [20], [22]. The linearized continuous-time
model for the helicopter dynamics is described by

& = Acx + Beu,

where five states and one input are:

o ~: forward speed;

e ¢: pitch rate;

o 0: pitch angle;

« a: pitch angle of the virtual rotor disc;
« c: angle of the rotor stabilizer bar;

o J5: swash plate angle;

and
—0.0505 0 —9.81 —9.81 0
—0.0561 0O 0 82.6 0
A, = 0 1 0 0 0
0 —1 0 —21.7391 14
0 =1 0 0 —0.342
0 v
0 q
B, = 0 , = 8 |, u=d;
—2.174 a
—0.7573 c

The discrete-time linear model of (1) is obtained assuming
a sampling frequency of 60Hz. As the problem is a tracking
problem, the output is chosen to be yr, = Cxp + Duk — gr++,
where

7.0711 0

0 0 3
0 03162 0 0 0 8
0 o 1 0 0

¢= 0 o o0 3123 o [|P7 8
0 0 0 0 03162 1
0 0 0 0 0

HO=|1 8 @ § &],20=0

The state and input constraints are enforced within the
ranges

-5 10
-5 5
3 |2as<| B | ,—5<6 <5
—4 1
-2 2

The control horizon is chosen as N = 40 and the per-
formance degradation parameter as « = 0.7. The simulation
results are presented in Figs. 1-2.

If we do not add the self-triggering mechanism to the MPC
algorithm, it takes 510 MPC updates. The results by the Lu
et al. [16] are shown in the first and third rows in Fig. 1,
which has 78 MPC updates. The response with the proposed
triggering scheme are shown in the second and fourth rows
in Fig. 1. In this case, MPC only needs 19 updates. Hence,
the proposed strategy can significantly reduce the number of
MPC update times while achieving reference tracking. The
triggering instants are recorded in Fig. 3.

V. CONCLUSIONS

This paper proposed a self-triggered tracking MPC co-
design procedure for constrained linear systems based on
the relaxed dynamic programming inequality and reference
governor scheme. The inter-triggering time is maximized by
governing the tails of shifted control sequences for con-
structing triggering conditions of tracking MPC such that the
overall closed-loop system can not only maintain asymptotic
stability, but also achieve a certain prescribed performance
level. The illustrative example showed that the number of
consecutive updates in the self-triggered tracking MPC is
significantly reduced compared to the existing self-triggered
MPC schemes for regulation problem. An extension of the
idea to robust case is being explored currently.
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