
978-1-6654-0652-9/22/$31.00 ©2022 IEEE 

Biosensors Based Controller for Small Unmanned 
Aerial Vehicle Navigation 

 

Mylena McCoggle 
Dep. of Mechanical Engineering 

University of Michigan 
Dearborn, MI, USA 

mccoggle@umich.edu  

 
 
 

Shyra Wilson 
Dep. of Electrical  Engineering 

Technology,  Kennesaw State 
University 

Kennesaw, GA, USA 
swils233@student.kennesaw.edu 

 
 

 Andrea Rivera 
Dep. of Mechanical Engineering 

Interamerican University  
Bayamon, Puerto Rico 

arivera7813@interbayamon.edu 
 

RocioAlba-Flores 
Dep. of Electical Engineering 

Georgia Southern Univeisity 
Statesboro, GA, USA 

ralba@georgiasouthern.edu 

Valentin Soloiu 
Dep. of Mechanical Engineering 

Georgia Southern Univeisity 

Statesboro, GA, USA 

vsoloiu@georgiasouthern.edu 

 

 

Abstract— This work describes a system that uses 

electromyography (EMG) signals obtained from muscle sensors 

and an Artificial Neural Network (ANN) for signal classification 

and pattern recognition that is used to control a small unmanned 

aerial vehicle using specific arm movements. The main objective 

of this endeavor is the development an intelligent interface that 

allows the user to control the flight of a drone beyond direct 

manual control. The biosensors used in this work were the 

MyoWare Muscle sensors which contain two EMG electrodes and 

were used to collect signals from the posterior (extensor) and 

anterior (flexor) forearm, and the bicep. The collection of the raw 

signals from each sensor were performed using an Arduino Uno. 

Data processing algorithms were developed with the purpose of 

classifying the signals generated by the arm’s muscles when 

performing specific movements, namely: flexing, resting, arm-up, 

and arm motion from right to left. With these arm motions, roll 

control of the drone was achieved. MATLAB software was utilized 

to condition the signals and prepare them for the classification 

stage. To generate the input vector for the ANN and perform the 

classification, the root mean squared, and the standard deviation 

were processed for the signals from each electrode. The 

neuromuscular information was trained using an ANN with a 

single 10 neurons hidden layer to categorize the four targets. The 

result of the classification shows that an accuracy of 97.5% was 

obtained for a single user. Afterwards, classification results were 

used to generate the appropriate control signals from the 

computer to the drone through a Wi-Fi network connection. These 

procedures were successfully tested, where the drone responded 

successfully in real time to the commanded inputs.  

Keywords— Biosensors, Electromyography, Artificial Neural 

Network, Arduino,  drone flight control, Machine Learning. 

 

 

I. INTRODUCTION  

Intelligent control of vehicles (drones, cars, robots, etc.) is 
required for many applications. In particular, the use of 
electromyography (EMG) devices used to collect 
neuromuscular-activated signals from human subjects and their 
use to generate commands to control different types of vehicles, 
ground and aerial, is becoming an emerging filed. Moreover, 
with the exponentially growing number of internet-connected 
devices, the need to develop a more natural human-machine 
interface arises. This paper discusses the development of an 
arm-movement based control system as a means of controlling 
a small-unmanned aircraft system (sUAS). Reconnaissance 
unmanned aerial vehicles were first deployed on a large scale 
during the Vietnam War for military purposes because they did 
not expose the life of pilots in combat zones [1]. Nowadays, 
drones have become very common in civilian and commercial 
applications and anyone can have access to drones and use them 
for multiple purposes in different fields such as surveillance and 
security, package transportation, and photography.  

Drones are usually controlled using a joystick,  smartphones 
or a tablet. However, using any of these devices has the problem 
that the hands are used to hold the controller and this can be 
problematic for some users, especially for people with 
disabilities, which many times cannot have total control of their 
hands and arm movements. 

The main goal of this project was to present an alternative to 
drone control using surface electromyography (sEMG) signals 
which could help anyone, even people who are disabled, to take 
advantages of utilizing drones for multiple purposes. 
Electromyography (EMG) is the study of muscle electrical 
signals. It has been 30 years since surface Electromyographic 
(sEMG) signals have been proposed to detect the hand motion 
of human subjects with applications to the control of prosthetic 
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hands [2]. Classification methods to discriminate among 
different arm and finger movements have been proposed by 
many researchers [3][4][5]. 

For EMG signals there are two ways to collect the data: 
invasive electrodes and non-invasive electrodes. The signal that 
is detected by the electrodes is a composite of the muscle action 
potentials directly under the skin. In order to obtain a response 
from one muscle specifically, an invasive electrode must be 
inserted under the skin into the muscle. The non-invasive 
electrode or better known as surface EMG is a collection of 
muscle action potentials for a single motor unit action potential 
(MUAP). A simple equation for muscle action potential 
detection is shown in eq. 1. 

 

 =   ℎ −  + 



    − − − 1 

 

In eq. 1 the output x(n) is the modeled EMG signal, e(n) is 
the point processed, h(r) is the MUAP, w(n) is the zero mean 
additive white Gaussian noise and N is the number of motor 
units firing [2]. Once the signal is acquired it must be amplified, 
noise must be removed, and unwanted motion signals must be 
eliminated. In order to obtain cleaner signals, additional 
hardware and computing units are used to implement signal 
processing techniques. Most applications are concerned only 
with the amplitude of the signal. The x(n) signal can be rectified 
and averaged to achieve this. 

EMG signals can be measured using surface EMG probes 
which measure the muscle action potentials. This data can then 
be used to detect movement, fatigue, and muscle dystrophy [2]. 
EMG signals are widely used today for human computer 
interaction and Evolvable Hardware chips improvement. In 
order to be used for computer interfacing, the signals must be 
measured, denoised, amplified, and then classified. It is 
important to filter the EMG signals in order to improve the 
signal to noise ratio (SNR) along with other factors to obtain 
reliable clean signals. After filtering and amplification, a 
feature extraction stage must be implemented. Then, signal 
processing algorithms are used to classify and identify the type 
of muscle motion that was performed. Machine learning is often 
used in order to best classify the EMG signals [3][4]. 

  

II. METHODS 

A. EMG sensors 

In this work, MyoWare Muscle Sensors [6] were used in 
order to collect raw sEMG signal from human subjects. The 
MyoWare sensors have an input impedance of 110 GΩ, and are 
powered by two standard CR2032 coin cell batteries connected 
in parallel for extended capacity at a nominal 3.0V. Connecting 
the MyoWare Muscle Sensor to battery power allows for a 
cleaner signal while eliminating the possibility of creating a 
dangerous current path to the power grid. Each MyoWare sensor 
has two muscle electrodes that are placed in the middle of the 

muscle body and should be aligned with the orientation of the 
muscle fibers. It has one reference electrode that is placed on a 
bony or nonadjacent muscular part near the targeted muscle. The 
MyoWare muscle sensors were placed to collect data from the 
posterior (extensor) and anterior (flexor) forearm, as well as data 
from the bicep. (fig. 1). 

 

Fig. 1 MyoWare Muscle Sensors placed on forearm and bicep. 
 

 

The collected data (raw voltages) from each electrode were 
processed by an Arduino microcontroller and signal processing 
algorithms were developed with the purpose of interpreting the 
voltage signals obtained when performing the arm movements: 
flexing the arm and squeezing the hand at the same time 
(flexing-squeezing), relaxing the arm, moving up the arm, and 
in the up position move the arm laterally from right to left. Each 
electrode collected data at a sample rate of 1kHz over a 2-second 
period for the duration of one minute, per assessment.  During 
each 2-second interval the movements were alternating between 
a relaxing reference class, and an active motion class flexing-
squeezing. These movements of the arm were used to control the 
motion of the drone. The flexing-squeezing gesture was used to 
move the drone laterally to the left, and the relaxing gesture was 
used to move the drone laterally to the right. Moving the arm up, 
commanded the drone to take-off and hover at 1 m level from 
the floor. Moving the arm laterally right-to-left commanded the 
drone to land. 

 

B. Signal Processing and Feature Extraction 

The raw EMG signals were sent to the Arduino where the 
signals were captured and rectified. Then the processed signals 
were sent to a laptop computer to be filtered to reduce noise (fig. 
2). This stage was performed using Matlab using a bandpass 
filter with a lower cutoff frequency of  10Hz, and an upper cutoff 
frequency of 500 Hz. Low frequency noise (between 1-10 Hz) 
is mainly due to motion artifacts, such as the interfacing of the 
electrodes with the skin and the electrode cables; high-frequency 
components are removed to avoid signal aliasing [7,8]. After the 
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signal processing stage, features were extracted from the EMG 
signals. For the feature extraction stage, the signals from each 
electrode were trimmed to a length of one second, then the root 
mean square (RMS), and the average value rectifier (AVR) were 
computed. A database with four different arm movements 
(flexing-squeezing, relaxing, arm up, and arm laterally move 
from right-to-left) was created.  Once the feature extraction was 
completed, the data were used to train an Artificial Neural 
Network (ANN) that classified the arm movement. 

 

C. ArtificialNeural Networks (ANN) Arquitecture 

 
Artificial Neural Networks (ANN) are inspired by the human 

brain, mimicking the way that biological neurons signal to one 
another [9][10]. The ANN was used to detect patterns in our data 
and differentiate the arm motions from each other.  An input 
matrix containing the processed data was entered to the network 
and it returned an output matrix that indicated which arm 
movement was being performed by the human subject.  The 
dataset in this work consisted of 80 hand motions from one 
human subject. There were 4 classes selected:  Class 1- Relax 
position for roll control (move right); Class 2 – Flexing-
squeezing arm motion for roll control (move left); Class 3 – 
Arm-up movement (take-off); and Class 4 – Lateral-arm 
movement (landing). 

 

 

Fig. 2 The MyoWare muscle sensors interfacing with the Arduino 

Uno and then communicating with a laptop computer to perform the 

signal processing and feature extraction. 
 

The ANN consisted of 8 input nodes, corresponding to 4 
electrodes (two sensors), and each electrode provided data in the 
form of RMS and AVG values. The output matrix (target 
classes) consisted of a column array 4x80. The ANN 
architecture used in this project was a feed-forward back-
propagation network with multi-layer perceptron, developed 
using the scaled conjugate gradient training function with 8 
neurons in the input layer, 4 neurons in the output layer, and one 
hidden layer. The hidden and output layer used tan-sigmoid 
activation functions.  The number of hidden neurons were 
initially set between the number of input and output neurons and 
then adjusted for accuracy based on training results [3]. It was 
found that the network performed best with 10 neurons in the 
hidden layer. From the signals in the database, 70% were used 
for training, 15% for validation, and 15% for testing.  

Currently in our project we have trained the ANN to classify 
four arm movements:  flexing-squeezing, the relax position, 
arm-up, and lateral-arm motion. The flexing and relax 
movements performed the roll control in the drone, this is, it 
moved the drone horizontally to the left or to the right. Each time 
a command was performed the drone moved horizontally in 
intervals of 0.2 meters. The arm-up motion was used for take 
off, and an arm lateral movement was used to command the 
drone to land. 

 

D. The DJI Ryze Tello Drone 

 
The sUAS received control commands via Wi-Fi. These 

commands were generated from the output of the ANN 
classification system. The sUAS used in this project was a DJI 
Ryze Tello Drone Model TLW004 (fig. 3). Its dimensions are 
9.6 x 9.1 x 4.1 cm, it weighs  81.6 gr which makes it easy to 
control and is very suitable to be tested indoors, its battery 
provides 13 min of flight time. 

The output of the ANN classifier was used to control the 
drone in real time. The two EMG sensors were placed on the 
human subject’s arm (fig. 1) and the subject first performed the 
take-off motion, followed by a series of flexing and relaxing arm 
motions. The output of the ANN classifier was sent via Wi-Fi to 
the drone to control its roll, allowing it to move horizontally 
(right and left). Results demonstrated that the drone was able to 
be controlled with high accuracy in real time.  Fig. 4 shows the 
flowchart of the drone commands. 

 

 

Fig. 3 The DJI Ryze Tello Drone 
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Fig. 4 Flowchart of the drone commands 

 

III. RESULTS 

The main objective of this project was to create a type of 
wearable control module that can be used for directly command 
a small unmanned aerial system. EMG sensors were selected to 
collect data from a human subject performing arm motions. In 
this project we were able to successfully control in real time the 
DJI Ryze Tello drone using arm motions. Two simple arm 
motions, flexing and relaxing, controlled the roll in the drone 
moving the drone horizontally to the right and to the left, in 
intervals of 0.2 meters. An arm-up movement was used to 
command take off, and a lateral-arm motion was used to 
command the drone to land. 

The performance of the ANN is shown in the confusion 
matrix in fig. 5. This matrix shows the results of testing 80 
independent hand motion signals taken from one of the 
volunteers. This matrix shows that the arm movements used for 
the commands take off and land were very distinctive providing 
a 100% accuracy. Meanwhile, the arm movements used to 
control the roll of the drone yielded a 90% accuracy. The overall 
accuracy of the control system was 97.5%. 

Results of this type of systems may have uses in commercial, 
military, and recreational applications.  EMG control is not 
limited to drones, as it was performed in this project, EMG 
control can be employed in broad variety of electronic devices. 

Figure 5. Results of training the ANN 

 

IV. CONCLUSIONS 

 
The implemented system performed well in real time with 

an overall accuracy of 97.5% for only one user.  However, for 
this system to have more practical applications, more control 
motions need to be added, and EMG signals from more than one 
volunteer need to be added. Besides the roll control, the current 
system is being expanded to include yaw, pitch, and throttle 
control.  

Currently, this work uses Matlab software for the training 
and implementation of the ANN classifier, however, to make 
this type of systems more efficient and have faster response, 
other programming languages such as Phyton should be used. 
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