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Abstract
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1 Introduction

Linear multiple regression is a classic method that is ubiquitous across numerous domains.
Its ability to accurately quantify a linear relationship between a response vector y € R and a
set of predictor variables X € R™*P, however, is diminished in the presence of outliers. The
LoE method (Hjort, 1994; Scott, 2001, 2009; Terrell, 1990) presents an approach to robust
linear regression that optimizes the well-known Ly criterion from nonparametric density
estimation in lieu of the maximum likelihood. Usage of the LoE method for structured
regression problems, however, has been limited by the lack of a simple computational
framework. We introduce a general computational framework for performing a wide variety
of robust structured regression methods with the Ly criterion. Our work offers the following

novel contributions.

1) Our framework extends the LoE method from Scott (2001, 2009) to a wide variety of
robust structured regression methods with the Lo criterion.

2) Our framework enables simultaneous estimation of the regression coefficients and
precision parameter (Section 3). We accomplish this via a block-coordinate descent
algorithm. Therefore, our simultaneous estimation simplifies the process of choosing
a parameter that tunes the robustness of the estimation procedure.

3) Our framework can “robustify” existing implementations of non-robust structured
regression methods in a “plug-and-play” manner (Sections 3.3 and 4).

4) Our framework comes with convergence guarantees for the iterate sequence

(Proposition 2).

Section 2 presents motivation for Ly robust linear regression. Section 3 introduces

our computational framework with convergence guarantees. Section 4 demonstrates the



simplicity and flexibility of our framework with robust implementations of several MLE-

based methods via existing structured regression solvers. Section 5 provides a discussion.

1.1 Related Work

The L, minimization criterion has been employed in histogram bandwidth selection
and kernel density estimators (Scott, 1992). Applying this well-known criterion from
nonparametric density estimation to parametric estimation for regression problems enables
a trade-off between efficiency and robustness. In fact, Basu et al. (1998) introduced a
family of divergences that includes the LoE as a special case and the MLE as a limiting
case. The members of this family of divergences are indexed by a parameter that explicitly
trades off efficiency for robustness. The MLE is the most efficient but also the least
robust. Meanwhile, the LyE offers a reasonable trade-off between efficiency and robustness
(Warwick and Jones, 2005). The robustness of the LoE can also be anticipated since it is
a minimum distance estimator, which is known for robustness (Donoho et al., 1988).

Minimization of the Ly criterion has been employed in developing robust statistical
models including quantile regression (Lane, 2012), mixture models (Lee, 2010),
classification (Chi and Scott, 2014), forecast aggregation (Ramos, 2014), and survival
analysis (Yang and Scott, 2013). It also has uses in engineering applications including
signal processing tasks such as wavelet-based image denoising (Scott, 2006) and image
registration (Ma et al., 2015, 2013; Yang et al., 2017).

Some of the example methods we use to demonstrate our framework in Section 4
have robust implementations. These include robust multiple linear regression (Andrews,
1974; Audibert et al., 2011; Davies, 1993; Holland and Welsch, 1977; Meng and Mahoney,

2013), robust convex regression (Blanchet et al., 2019), robust isotonic regression (Alvarez



and Yohai, 2012; Lim, 2018), and robust sparse regression (Alfons et al., 2013; Chang
et al., 2018; Ma et al., 2015; Nguyen and Tran, 2013; She and Owen, 2011; Yang et al.,
2018). The purpose of our experiments is not to compare the LoE to each of these
robust methods. Rather, it is to demonstrate the flexibility and wide applicability of
this computational framework and to show how it can obtain robust versions of existing
non-robust implementations in lieu of case-by-case development of robust implementations.

Our framework’s ability to simultaneously optimize over both the precision parameter
and regression coefficients is a unique contribution to the literature. To highlight this, we

briefly discuss two lines of prior work that are closely related to our proposed framework.

1.1.1 Minimum distance estimators for sparse regression and image

registration

In the context of sparse regression, Wang et al. (2013) and Lozano et al. (2016) propose
minimum distance estimators that coincide with our formulation when utilizing an ¢;-norm
sparsity promoting regularizer. Lozano et al. (2016) employ a modification that applies a log
transform on the empirical minimum distance criterion. The key difference between these
prior approaches and our framework lies in obtaining the precision parameter. Wang et al.
(2013) propose a hybrid block alternating scheme that estimates the regression coefficients
by minimizing the Lo E criterion with the precision parameter fixed, and then the precision
parameter is chosen to maximize efficiency subject to satisfying an asymptotic breakdown
point of % Their procedure alternates between these two steps and we refer to this approach
as “hybrid” since the algorithm iterates are not minimizing a single objective function.
Based on their simulation experiments, they conclude that their algorithm appears to

converge within 1 to 3 steps but they lack a convergence proof. Lozano et al. (2016) treat



the precision parameter as a hyper-parameter that can be selected via cross-validation. For
a fixed precision parameter, the Lozano et al. (2016) algorithm has algorithmic guarantees.

Both Wang et al. (2013) and Lozano et al. (2016) require pre-specifying a grid of values
for the precision parameter. A fine grid enables finding a better precision parameter at the
cost of more computational effort. In our work, we estimate the regression coefficients and
precision parameter by solving an optimization problem. Like Wang et al. (2013), we also
employ a block alternating algorithm but unlike their approach, our approach is not hybrid
and is kept completely within an optimization framework, enabling algorithmic convergence
guarantees (Proposition 2). Our strategy can also lead to better statistical performance in
our simulation studies (Section 4). We anticipate this since our strategy enables exploring
the joint space of regression coefficients and precision parameter more comprehensively. Our
improved empirical performance comes without huge additional computational cost since
the precision update involves solving a univariate optimization problem. This is a modest
computational trade-off compared with searching over a grid of precision parameters.

In the context of image registration, Ma et al. (2015, 2013) and Yang et al. (2017)
employ minimum distance estimation to robustly fit a linear model. The primary difference
between their work and ours also lies in obtaining the precision parameter. They employ
a deterministic annealing approach for choosing the precision parameter. Their algorithm
solves an optimization problem to minimize the Ly E criterion with respect to the regression
coefficients for a fixed precision parameter, and then decreases the precision parameter by
a user-defined amount. Finally, they re-estimate the regression coefficients and alternate
between updating the regression coefficient estimates and the precision parameter. Once

again, a key question is whether the algorithm iterate sequence is guaranteed to converge.



1.1.2 Trimmed estimators for high dimensional regression

An alternative approach to obtaining robustness is to maximize a trimmed likelihood.
Alfons et al. (2013) employ this for sparse robust multiple linear regression and estimate a
sparse regression coefficient vector 3 by solving

1 h

min §Zr[i}(ﬁ)2 + A8, (1)

P i=1

where r(8) =y — X3 is a vector of residuals and 7 (3) is the ith order statistic of r(3).
The nonnegative parameter A trades off model fit with sparsity in 3. The trimming hyper-
parameter h imparts robustness to the standard residual sum of squares term by “trimming
away” observations with large residuals. Yang et al. (2018) extend Alfons et al. (2013) to
a general framework for robust penalized estimation similar to ours in the sense that they
introduce a single framework for computing structured robust regression problems. The
robustness of the estimator hinges on an appropriate h. Alfons et al. (2013) recommend
employing prior knowledge to set h while Yang et al. (2018) utilize cross-validation.

The hyper-parameter h plays the same role as the precision parameter in the LoE
formulation. A first key difference between the approach in Yang et al. (2018) and ours
is that we jointly estimate both the structured model and amount of trimming. This
has three benefits. First, we reduce the potential for cross-validation to regularization
parameters associated with the structure-incentivizing penalties, e.g. A in (1). Second,
our framework enables a continuous (and therefore, larger) search space for choosing the
precision parameter, as opposed to pre-specifying a finite but potentially very large grid
of trimming parameters for many observations. Third, our framework estimates both
the regression coefficients and the precision parameter within an optimization framework,

enabling convergence guarantees over the iterates.
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A second key difference between the approach in Yang et al. (2018) and ours is that
the precision parameter in our framework performs a “soft-trimming” action by adaptively
choosing new down-weights for observations that are less consistent with the proposed
model in each iteration. Rather than a single trim applied to all the observations,
this enables additional flexibility for automatically varying the contribution of individual

observations to the model fit. Section 4.4 demonstrates these advantages.

2 Robust regression with the L, criterion

Let f be the true but unknown density generating the observed data v,...,y, € R, and

let fg be a probability density function indexed by a parameter 8 € © C R? approximating

f. We assume throughout that all vectors are column vectors. If we were to estimate f

using the fg that is closest to it, we could minimize the Ly distance between f and fg in
lieu of the negative log-likelihood with

. 2

win [ [fats) = 1) dy. @)

In practice, however, identifying 0 in this way is impossible since f remains unknown.

While we typically cannot minimize the Ly distance between f and its estimate fg directly,

we can minimize an unbiased estimate of this distance. To do this, we first expand (2) as

[ dowras=2 [ fotw) sy + [ 507 dy

Notice that the second integral is the expectation Ey[fg(Y)], where Y is a random variable
drawn from f. Therefore, the sample mean provides an unbiased estimate of this quantity.

Meanwhile, the third integral does not depend on 6. Therefore, we arrive at the the



following fully data-based loss function h(@) that provides an unbiased estimate for (2) up

to an irrelevant additive constant

wO) = [ folwdy =2 folu), )

~

assuming f is square integrable over an appropriate region. Minimizing over this fully
observed loss function presents us with our estimator é, also called an LoE (Scott, 2001).

Section 3.2 provides intuition for how the LoE imparts robustness in our framework.

2.1 Regression model formulation

Let y € R denote a vector of n observed responses and let X &€ R™7? denote the
corresponding observed design matrix of p-dimensional covariates. The standard linear

model assumes the response and covariates are related via the model
y = XBy+7e,

where 3, € R? is an unobserved vector of regression coefficients, 7 € R is an unobserved
precision parameter, and the unobserved noise ¢; € R for 1 < i < n are independently and
identically distributed (iid) standard Gaussian random variables. We phrase the regression
model in terms of the precision rather than the variance to obtain a more straightforward
optimization problem later.

Let 8 = (ﬂT, 7)T denote the vector of unknown parameters. Additionally, let r denote
the residual vector obtained from the current prediction estimate for 3 so that its *"
component is 7; = y; — x; 3, where x; € RP contains the i’* row of X. Given any suitable
pair of B and 7, the conditional density of y; for 1 <i < n is

' 2
foz)(yi) = . exp (—%Tz2>
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Following Scott (2001), we utilize the LyE loss function for linear regression by averaging

the Lo distance over the observed data and minimize

he) =TT 00) = 5= - g@ pr (—5) , (1)

where

O o 2
h(i)(e) = /_ [féz)(yi)]Qdyz‘—Qféz)(yi) = 2\7/%—7 %GXP (—%Tf)

S AT
The solution 8 = (3 ,7)T of (4) contains the LyE regression estimates.

3 Computational framework

We pose our estimation and model fitting task as a nonsmooth optimization problem.
For references on optimization techniques employed in this paper, please refer to Lange
(2010, 2013); Lange et al. (2014); Polson et al. (2015). Our computational framework
for performing robust structured regression via the Lo criterion is a general algorithm
that combines the LoE method (Scott, 2001, 2009) with a structural constraint or penalty
term ¢(3). As an example, suppose we wish to enforce a nonnegativity constraint on the
regression coefficients 3. Then we can take ¢(3) = 1c(8), the indicator function of the
nonnegative orthant C' = {8 € R?: §; > 0,1 < j < p}. Recall that the indicator function
of a set C, denoted tc(3), is a function that takes values on the extended reals and is zero
when 3 € C and is co otherwise. As another example, ¢(3) may be an indicator function
requiring that the elements of 3 satisfy a monotonicity constraint. Other examples include
taking ¢(3) to be sparsity inducing penalities like the ¢;-norm (Tibshirani, 1996) or elastic

net (Zou and Hastie, 2005). Section 4 contains several examples of potential constraint



terms ¢(3). Concretely, we seek a minimizer of the objective function

tB,7) = h(B,7)+¢B) ()

subject to B € R? and T € [Tin, Tmax), Where T € R and 7. € R are minimum and
maximum values for 7, respectively.

There are two computational challenges in minimizing (5). The first is that ¢ is non-
convex in 6 since h(0) is non-convex. The second is that commonly-used constraint terms
¢(B) are often non-smooth or non-differentiable. We focus on the case where the ¢ are
nonnegative, continuous, and convex functions. Continuity and convexity ensure that the
proximal mappings of ¢ always exist and are unique. In minimizing (5), we utilize the key
property that the block derivatives of h with respect to B and 7, that is Vgh(3,7) and

%h(ﬁ, T), respectively, are Lipschitz differentiable.

Proposition 1. The LyE loss function h(B3, ) is block Lipschitz differentiable with respect
to B and T so that

IVsh(B,7) = Vah(B,7)ll. < Ls(r)llB— Bl
for all B and ,B, and

0 0

for all 7 and 7. The Lipschitz constant Lg(T) is Lg(T) = 7;1—3\/20(X)2, where o(X) is the
largest singular value of X. The Lipschitz constant L.(B) is L.( \/;HrHQ exp

where p = min |r;].

2r; #0
The supplement contains the proof. The block Lipschitz differentiability of h(3,7) and

the regularity conditions on ¢ lead us to employ block coordinate descent to minimize (5).
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At a high level, we alternate between minimizing with respect to 3 holding 7 fixed, and
minimizing with respect to 7 holding 3 fixed. We solve two subproblems at the £ update:

Subproblem 1: Update 3
BY = argmin h(8,7"Y) + ¢(B), and (6)

BeRP

Subproblem 2: Update 7

™ = argmin h(B8®, 7). (7)
Te[Tminmiax]

In practice, we do not exactly solve either subproblem and instead take a few proximal
gradient descent steps to partially minimize or inexactly solve (6) and (7). Note that each
update is guaranteed to monotonically decrease the loss function ¢(€). This is a feature
that all block coordinate descent algorithms possess as a special case of majorization-
minimization algorithms (Lange, 2016).

Recall that proximal gradient descent is a first order iterative method for solving

optimization problems of the form
miniemize h(0) + ¢(8), (8)

where h is a Lipschitz differentiable function and ¢ is a convex and lower semicontinuous
function (Combettes and Wajs, 2005; Parikh and Boyd, 2014). Further recall that the

proximal map of ¢
. 1 -~ 2 7
prox,(0) = arg min 5“0 — 0|5+ ¢(0)
]

exists and is unique whenever ¢(8) is convex and lower semicontinuous. Many regularizers

¢(B) that are useful for recovering models with structure satisfy these conditions and
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also admit proximal maps that can be evaluated via explicit formulation or an efficient
algorithm. For example, the proximal map of the scaled ¢;-norm Al|-||; is the element-wise

soft-thresholding operator, namely
[prox/\”.Hl(H)L = sign(#;) max(|6;] — A, 0). 9)

Notice that the proximal map can be viewed as the generalization of the Euclidean
projection, which we refer to as the projection. Specifically, the projection of a point
0 onto a set C is the point Po(0) € C that is closest in Euclidean distance to 6, namely
Pc(0) = argmin [|6 — 6],.
bcC
Similarly, the proximal map of the indicator function ¢ of a set C' is the projection onto
the set C'. This projection exists and is unique when C'is a closed convex set. For example,

when C' = [Tiin, Tmax|, PrOX, (T) = Plrpin,mma] (T)- As its name suggests, the proximal

[Tmin:Tmax]

gradient descent method for solving problems of the form in (8) combines a gradient descent

step with a proximal step. Given an iterate 8, the update 87 is
6" = prox, |0 —tVh(0)], (10)

where t is a positive step-size parameter and t¢ is the function ¢ scaled by ¢.

We emphasize that our framework does not require exactly computing the global
minimizers in (6) and (7) at each iteration. Nonetheless, we will see that the algorithm
still comes with some convergence guarantees.

Remark. We make the modestly stronger assumption that ¢ is continuous to establish
convergence guarantees. Assuming continuity is not restrictive as commonly employed,
convex nonsmooth ¢ includes norms, compositions of norms with linear mappings, and

indicator functions of closed convex sets.

12



3.1 A general algorithm for LyE robust structured regression

Algorithm 1 presents pseudocode for minimizing (5) via inexact block coordinate descent.

For the update step on 7, the operator P ] denotes the projection onto [Timin, Tmax)-

Tmin,Tmax

When updating 8 in (6) and 7 in (7), we take a fixed number of proximal gradient steps,
Ng and N, respectively, in (10). The gradients for updating 8 and 7 are

Vsh(B,7) T \/§XTW (11)
T) = ——4/— r
pENE nVm '
where W € R™" is a diagonal matrix that depends on 3 with i diagonal entry
-2
Wy = exp [—?7‘@2] , and (12)

0 R S B P D VA
Eh( ,T) = NG 7r[ZZ:;IL)”(l T’I"Z-)].

Algorithm 1 has the following convergence guarantee. Recall that a point @ = (87, 7)T
is a first order stationary point of a function f(8) if for all directions v, the directional

derivative f'(0;v) of f is nonnegative.

Proposition 2. For any choice of N and N, under modest reqularity conditions on (5)

and step-sizes tg = Lg(7)™' and t, = L

T

where Lg(7) and L.(B) are in Proposition 1,
the sequence (,B(k), %)) generated by Algorithm 1 has at least one limit point and all limit
points are first order stationary points of (5). If there are finitely many first order stationary

points of (5), then the sequence (,B(k),T(k)) will converge to one of them.

The supplement contains a proof. We briefly comment on the assumption about the

number of stationary points. It may seem strong to assume that the LyE objective ¢(3, 7) in
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(5) has finitely many first order stationary points but a closer inspection of h(3, 7) suggests

that this is reasonable. The supplement contains an exploration of this assumption.

Algorithm 1 Block coordinate descent for minimizing (5)

Initialize 8%, 7() and fix N3, N,

L k+0

2: repeat

3 tg 4+ Lg(®)~! // Update Lg(7™®) via Proposition 1
1 B+ pW // Update 3 (6)

5:

6:

7

8:

9:

10:

11:

12:

13:

14:

15:

fori=1,...,Nsdo
,6 < pI"OXtM} |:,6 — tﬁvL;h(,@, T(k))

end for

Y B

ty « L(B*F)1 // Update L.(8%*Y) via Proposition 1
77 // Update 7 (7)

fori=1,..., N, do

T 4 Plroinsrimas] [7’ — tTa%h(ﬁ(kH)., T)i|
end for
T+

k<—k+1

16: until convergence

3.2 Algorithmic intuition

We present a simple scenario illustrating intuition for Algorithm 1. This scenario applies

to isotonic and convex regression, which we discuss in Section 4. Let the design matrix X

be the n x n identity matrix I, and let the structural constraint ¢(83) be the indicator

function of a closed and convex set C. Then ¢(3) = 1c(B) is zero if B € C, and is oo
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otherwise. This results in simplifications to (6) and the update rule for 8 becomes
BJr = Pc (Z)a

where Pc (z) is the Euclidean projection of z = Wy + (I — W)3 onto C, and W is a
diagonal matrix with diagonal elements as defined in (12).

We observe how the LoE imparts robustness through the action of W. Consider z € R"
as a vector of pseudo-observations, where each element z; is a convex combination of y;
and the current prediction ;. If the current residual r; is large compared to the current
precision 7, w; is small and the corresponding pseudo-observation z; resembles the current
predicted value ;. Meanwhile, if the current residual r; is small compared to the current
precision 7, the corresponding pseudo-observation resembles the observed response y;.

Therefore, the pseudo-observations impart the following algorithmic intuition. Given an
estimate [‘3 of the regression coefficients, the algorithm performs constrained least squares
regression using a pseudo-response z, whose entries are a convex combination of the entries
of the observed response y and the prediction B Observations with large current residuals
relative to the current precision are essentially replaced by their predicted value.

In this way, the algorithm can fit a fraction of the observations very well while also
accounting for outlying observations by replacing them with pseudo-response values more
consistent with a model that fits the data. Notice that the algorithm is oblivious to whether
large residuals arse from outliers in the response or in the predictor variables. Consequently,

it can handle outliers arising from either source or both.
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3.3 Robustifying existing non-robust implementations

We now discuss how one can employ this framework to automatically “robustify” existing

non-robust structured regression implementations solving problems of the form

1
min 5 ly - X8l + ¢(8)

Concretely, we can utilize existing non-robust solvers to perform line 6 in Algorithm 1.

Recall that line 6 performs the 3 update with

B = Pc(z) or BT = proxtﬁd)(z)

depending on whether ¢ is a projection operator or a more general proximal mapping. In
both cases, we perform this step by calling the existing non-robust solver and inputing z
in place of the original response y. Our computation for z depends on whether X is the
identity. If X is the identity, as in isotonic and convex regression, then z in Algorithm 1 line
6 simplifies to z = Wy + (I — W)8 with W as described in (12). Therefore, Algorithm
1 line 6 inputs z = Wy + (I — W) in place of y into the existing non-robust solver.

If X is not the identity, as in Lasso regression, then z in Algorithm 1 line 6 is the more
complex z = B — t3Vgh(B, 1) with Vgh(8,7) as described in (11). Recall that the 8

update involves a penalized least squares problem with identity design I (Section 3.2)
+ o e e 1 2012 =
BT = prox,.(z) = mmgmze §Hz — 1835 + tzo(B).

Therefore, Algorithm 1 line 6 inputs z = B —t3Vgh(3,7) in place of y and I in place of

X into the existing non-robust solver.
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3.4 Practical considerations

We discuss guidance on setting the hyperparameters in Algorithm 1. The constraint
set [Tmin, Tmax] On 7 was introduced to establish the existence of a limit point for the
algorithm iterate sequence. In practice, the constraints do not appear to strongly influence
performance. Nonetheless, it is possible to run into a numerical issue if 7., is set to zero.
Specifically, it is possible that the gradient step in the 7-update outputs a negative value,
which would then be projected to 0. This results in Lg(7) set to zero, which leads to
an undefined step-size t3. To guard against this, we recommend setting 7,in as follows.
A conservative estimate of the standard deviation follows from assuming no association

between the response and covariates and all the variation in the response y is due to noise,

namely 6 = \/ —= 3" (i — y)?. Therefore, take 7, = 6. For the upper bound, taking
Tmax t0 be infinity does not appear to create any issues in practice.

A natural question is how to set N3 and N, in Algorithm 1. Choosing these values too
small or too large can lead to slow convergence. In our experience, setting Ng = N, =1
does not make sufficient progress in minimizing the objective functions in (6) and (7).
Meanwhile, setting Ng and N, to be a larger value such as 1,000 leads to diminishing
returns in minimizing the objective functions in (6) and (7). In our experiments, we set
N3 and N; to be 100 as it strikes a balance between these two extremes.

Finally, given the nonconvexity of the LoE objective function in (5), some thought to
initialization is required. We recommend the following simple “null model” initialization
strategy. When we have a non-identity design matrix X, similar to choosing 7, we
assume there is no association between the response and covariates. Therefore, we set the
initial regression coefficient vector B® = 0. When X is the identity, we set B = 71,

namely the vector of all ones 1 multiplied by the mean ¥ of the response y. In both cases,
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we set the initial precision to be 7(%) = MAD(y)™", the reciprocal of the median absolute
deviations of the response y. We employ this initialization strategy throughout Section 4.
The supplement contains a simulation study demonstrating that the output of Algorithm 1

appears stable to perturbations in this initialization heuristic.

4 Examples of LoE robust structured regression

We demonstrate our framework on a variety of robust structured regression methods.
Our examples illustrate how our framework can “robustify” existing structural regression
solvers. We refer to the estimates obtained from optimizing the maximum likelihood and
the Ly criterion as the MLE and LoE, respectively. Software for our framework is available

in the L2E package on the Comprehensive R Archive Network (CRAN).

4.1 LsoE robust multiple linear regression

We begin with multivariate LyE regression (Scott, 2001, 2009), where ¢(8) = 0. Let
X € R™? with rank(X) = p. The data come from an Italian bank (Riani et al., 2014) where
the response y € R is the annual investment earnings for n = 1,949 banking customers.
The design X contains measurements on p = 13 bank services.

Since ¢(3) = 0, prox, 49 18 simply the identity operation. Subproblem 1 for updating 3
in (6) reduces to iteratively performing: 1) Compute current residuals, 2) Update weights
wy; in (12), and 3) Update B with current residuals and gradient described in Section 3.1.

Figures la and 1b depict scatter plots of the fitted values against the residuals. A
good fit is evidenced by normally distributed noise in the residuals, or symmetric scatter of

points about the zero residual level (depicted by the orange dashed line). Figure la shows
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a discernible pattern in the MLE residuals with asymmetric scatter of points about the
zero residual level. This indicates that additional trends in the data not captured by the
Gaussian linear model remain in the residuals and are not captured by the MLE fit.

Meanwhile, Figure 1b shows that after excluding outlying points identified by automatic
tuning of 7 in our framework (depicted by the blue triangles), the residuals from the LoE
fit are normally distributed about zero. To identify outliers, we compute the LoE residuals
and select observations whose residuals exceed a factor of the precision parameter, e.g. 3
divided by 7. Thus, the LyE adequately captures the linear relationship between investment
earnings and bank services for the non-outlying customers. Notice that one can recursively
repeat LoE regression on outlying customers to identify an appropriate linear relationship
between investment earnings and bank services for customer subgroups.

This example also highlights how our framework enables joint estimation of the
regression coefficient vector B and the precision 7, enabling automatic identification
of outlying observations in the data. This is practically useful since the LoE can
simultaneously identify subpopulations within the data and appropriate fits for each of

those groups when applied recursively to the subgroups.

4.2 LoE robust isotonic regression

Our next example is LoE robust isotonic regression. Let an observed response y € R”"
consist of n samples drawn from a monotonic function f sampled at discrete time points

t; <ty <--- <t, with additive independent Gaussian noise. The i entry of y is

vi=f(t)+e for 1<i<n,
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(a) MLE fitted values vs. residuals. (b) LoE fitted values vs. residuals.

Figure 1: (a) Asymmetric spread of points about the zero residual line suggests additional variation in the
data not captured by the MLE linear fit. (b) Blue triangles denote outlying observations identified by the
Lo E. Non-outlying observations are well-fit by the Lo F linear fit, as seen in normal distribution of points
about the zero residual line.

where f is monotonic, ¢; KN (0, %), and 7 € R,. The goal of isotonic regression (Barlow
and Brunk, 1972; Brunk et al., 1972; Dykstra et al., 1982; Lee et al., 1981; Mair et al.,
2009) is to estimate f by solving

min - — Bt
ﬂ(tl)a---,,@(tn);[y B(ti)]

subject to  B(t1) < B(ta) < -+ < B(tn).

We construct a piece-wise constant estimate for f using the elements of the estimator

R R X X T
B=(Bt) Blt) - Blta) -
For the corresponding LoE problem, the design X = I, and ¢(8) = tm(B) is the

indicator function over the set of vectors M satisfying element-wise monotonicity so that
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f1 < B < --- < B, for B € R™. Subproblem 1 for updating 3 in (6) reduces to iteratively
performing: 1) Compute current residuals, 2) Update weights w;; in (12), and 3) Update
B with current residuals and gradient described in Section 3.1 and project onto the set M.
The gpava function for implementing the generalized pool-adjacent-violators algorithm
(generalized PAVA) in the isotone package (Mair et al., 2009) for R performs this last
step. Therefore, we utilize it in Algorithm 1 line 6.

We illustrate with a univariate cubic function. Figure 2a shows how the MLE and LoE
produce similar estimates in the absence of outliers. The true underlying cubit fit f is in
black. The gray points depict observations generated from f with additive Gaussian noise.
The dashed orange line depicts the MLE from generalized PAVA while the solid blue line
depicts the LoE . Meanwhile, Figure 2b shows how the MLE is skewed towards the outliers
while the LoE estimate remains less sensitive to them.

Figure 3 depicts results of Monte Carlo simulations comparing the MLE and the
LsE while varying the number of outliers. We simulate three datasets with n = 1,000
observations of a cubic function with additive Gaussian noise and 50, 100, and 200 outliers,
respectively. We introduce outliers by selecting points from approximately the 25 quartile
along the x-axis and assigning them a value equal to slightly less than the maximal
polynomial value and additive standard Gaussian noise. This corresponds to simulating
samples from a bimodal distribution to create high leverage points in the covariate space.
We employ the gpava function in the isotone package (Mair et al., 2009) for R to obtain
the MLE. We obtain 100 replicates for each scenario on a 3.00 GHz Intel Core i7 computer
with 32 GB of RAM and present boxplots of the mean squared error (MSE) and time in
seconds. We obtain the MSE between the model y and the computed solution.
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Figure 2: The black, orange, and blue lines depict the true, MLE, and Ly E fits for isotonic regression,
respectively. The MLE and Lo E produce similar results in the absence of outliers. The MLE is skewed

towards the outliers while the Ly E provides a more robust estimate.
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Figure 3: Monte Carlo experiments for isotonic regression with n = 1,000 observations drawn from a
univariate cubic function with additive Gaussian noise. Boxplots depict the (a) mean squared error (MSE)
and (b) time in seconds required for 50,100, and 299 outliers over 100 replicates for the MLE (orange)
and Lo E (blue). The Lo E requires more time since its solution requires multiple computations of the MLE.

Ezxperiments highlight the trade-off between MSE and time between the MLE and Lo E solutions.



The MLE produces increasingly larger MSE as the number of outliers increases.
Meanwhile, the LoE produces a smaller increase in MSE for the same number of outliers
but requires more computation time since the LoE employs multiple computations of the
MLE procedure. Thus, the LoE can produce an isotonic regression fit that is much less

sensitive to outliers than the MLE.

4.3 LsE robust convex regression

Our next example is LoE robust convex regression. For illustration, we consider the
univariate case (Ghosal and Sen, 2017; Wang and Ghosh, 2012). However, our framework
applies to multivariate convex regression (Aybat and Wang, 2016; Bertsimas and Mundru,
2021; Birke and Dette, 2007; Chen and Mazumder, 2021; Guntuboyina and Sen, 2015;
Hannah and Dunson, 2013; Lim and Glynn, 2012; Lin et al., 2020; Mazumder et al., 2019;
Meyer, 2003; Seijo and Sen, 2011) in a similar manner. Let an observed response y € R”
consist of n samples drawn from a convex function f sampled at discrete time points

t, <ty < --- <t, with additive independent Gaussian noise. The i* entry of y is

yi=f(t) +¢ for 1<i<n,

iid

for convex f, ¢, ~ N(0,1), and 7 € R,. Shape-restricted convex regression estimates f via

T

min Z[yl - B(t))?

B(t1), ., B(tn)

i=1
tiv1 — ti — i :
subject to  B(t;) < —F L Bt ) + ——L B(t;y) for 2<i<n-—1.
tiy1 —ti1 tiy1 —ti1
T
Let 8 = ( B(ty) Blty) --- /B(tn)) . We recast this constraint in terms of a scaled second-

order differencing matrix D € R™ " with DB > 0 so that all the elements of D3 are
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non-negative. We construct a piece-wise constant estimate for f utilizing the elements of
B= (bt bl - Bt

For the corresponding LoE problem, the design X = I, and ¢(8) = t¢(3) is the indicator
function over the set of vectors in C = {8 : D3 > 0}. Subproblem 1 for updating 3 in
(6) reduces to iteratively performing: 1) Compute current residuals, 2) Update weights
wy; in (12), and 3) Update B with current residuals and gradient described in Section 3.1
and project onto the convex cone C. The conreg function in the cobs package (Ng and
Maechler, 2007) for R performs this last step so we can employ it in Algorithm 1 line 6.

Figure 4a shows how the MLE and L,E produce similar fits in the absence of outliers.
The true underlying convex fit f is in black and gray points depict observations generated
from f with additive Gaussian noise. The dashed orange line depicts the MLE obtained
from the cobs package in R while the solid blue line depicts the LoE . Meanwhile, Figure 4b
shows how the MLE is substantially skewed towards the outliers while the LyE is less
distorted. This example highlights how the LsE is less sensitive to outliers than the MLE.

Figure 5 depicts results of Monte Carlo simulations comparing the MLE and LsE on
shape-restricted convex regression while varying the number of outliers. We simulate
three datasets with n = 1,000 observations using a fourth-order polynomial with additive
Gaussian noise and 50, 100, and 200 outliers, respectively. We introduce outliers by selecting
points from approximately the 25" quartile along the x-axis and assigning them a value
that is equal to a little less than the maximal polynomial value and additive standard
Gaussian noise. This corresponds to simulating samples from a bimodal distribution to
create high leverage points in the covariate space. We employ the conreg function in the
cobs package for R (Ng and Maechler, 2007) to obtain the MLE. We obtain 100 replicates
on a 3.00 GHz Intel Core i7 computer with 32 GB of RAM.
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Figure 4: Black, orange, and blue lines depict the true, MLE, and Ly E fits for convex regression. The

MLE and Ly E produce similar results in the absence of outliers while the Lo E is much less sensitive to

outliers.

Figure 5a highlights how the MLE produces increasingly larger MSE values as the
number of outliers increases. Meanwhile, the LoE MSE is much less sensitive to outliers.
This example again underscores how our framework can perform a robust version of a

structured regression problem utilizing a readily available non-robust implementation.

4.4 LoE robust /; penalized regression

Our last example is LoE ¢; penalized regression. We utilize the Lasso (Tibshirani, 1996)
1 9
min 2lly — XA+ Al

as our reference. For the corresponding LoE problem, let X € R™*? with rank(X) = p and

let ¢(B) = A||B3]|1. Subproblem 1 for updating B in (6) reduces to iteratively performing:
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Figure 5: Monte Carlo experiments for convex regression with n = 1,000 observations drawn from a
conver function with additive Gaussian noise. Boxplots of the (a) mean squared error (MSE) and (b) time
in seconds required for 50,100, and 200 outliers over 100 replicates compare the MLE (orange) and the Ly E
(blue). The Lo E requires more time as its solution employs multiple computations of the MLE. Experiments

highlight the trade-off between MSE and time between the MLE and Lo E solutions.
1) Compute current residuals, 2) Update weights w;; in (12), and 3) Update 3 with current
residuals and gradient in Section 3.1 and apply the soft-thresholding operator in (9).

We illustrate with real data on prostate cancer patients from Stamey et al. (1989). The
response y € R™ is the percent of Gleason score (measure of a prostate-specific antigen) for
n = 97 patients receiving a radical prostatectomy. The design X contains measurements
on p = 8 clinical variables. To introduce outliers in the covariates, we identify the top five
percent of observations in X with highest leverage and scale these points by 3.3.

Figure 7 in the supplement depicts solution paths for Lasso, LoE ¢; penalized regression,
sparse least trimmed squares (Sparse LTS) (Alfons et al., 2013; Yang et al., 2018), and
exponential squared loss Lasso (ESL Lasso) (Wang et al., 2013) as a function of the
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shrinkage factor s = LBNIL e get BO as the 3 estimate obtained at A = 0 for each

1Bollx
method and employ a A sequence with a log linear scale of 15 values between 10~° and a
conservative data-dependent estimate of A at which B(\) = 0.

Since all methods employ the ¢; penalty, the latter three can be viewed as alternative
approaches to robust Lasso. Therefore, the Lasso solution paths, which quantify the relative
contributions of the covariates to the regression model, without outliers (top-left panel)
serve as a control. Ideally, a robust implementation preserves these relative contributions
in the presence of outliers. Qualitatively, the LyE solution paths most closely resemble
the Lasso solution paths and suffer the least distortion in the presence of outliers. By
comparison, Sparse LTS and ESL Lasso qualitatively appear very different from Lasso,
even without outliers. We employ the default trimming percentage (retains 75 percent of
the data) for Sparse LTS so it should be robust to the five percent of outliers.

Section 5.1 of the supplement contains more quantitative experiments with these four
methods utilizing synthetic data. Table 3 of the supplement shows that the LyE obtains
lower relative error on average and additionally selects fewer false positives. Although

Sparse LTS and ESL Lasso employ the ¢; penalty for variable selection, they both select

nearly all the variables in those experiments in the presence of outliers.

5 Discussion

Least squares regression models can be extended to encode a wide array of prior structure
through non smooth penalties and constraints. While regression via least squares — and
its constrained and penalized extensions — does not require any parametric assumptions,

making a normality assumption on the residuals opens the door to applying the Lo E method

27



for robustly fitting a parametric regression model. In this work, we introduce a user-friendly
computational framework, or recipe, for performing a wide variety of robust structured
regression methods by minimizing the Ly criterion. We highlight that our framework can
“robustify” existing structured regression solvers by utilizing existing non-robust solvers in
the B-update step in a plug-and-play manner. Thus, our framework can readily incorporate
newer and improved technologies for existing structured regression methods; as faster and
better algorithms for these non-robust structured regression solvers appear, users may
simply replace the previous solver with the new one in the B-update step.

We also highlight the significance of the convergence properties of our computational
framework. As long as the structural constraints or penalties satisfy convexity and
continuity conditions, a solution obtained with our framework is guaranteed to converge to a
first order stationary point. Since many commonly-used structural constraints and penalties
satisfy these conditions, our framework provides convergence guarantees for robust versions
of many non-robust methods with readily available software.

We close by noting that our LoE framework focuses on structured regression problems
under a normality assumption, which may not be appropriate in all situations. Meanwhile,
the LoE framework has also been used to robustly estimate parametric models under
different distributional assumptions, e.g. Weibul (Yang and Scott, 2013), Poisson (Scott,
2001), and logistic (Chi and Scott, 2014). An interesting direction for future work is the
development of a unified computational framework for fitting structured regression models

under a wider range of distributional assumptions.

SUPPLEMENTARY MATERIAL

Title: Supplement to “A User-Friendly Computational Framework for Robust Structured
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Regression with the Ly Criterion” (.tex file)

Software: L2E R-package for performing LoE structured regression. (GNU zipped tar file)
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