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Abstract
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1 Introduction

Linear multiple regression is a classic method that is ubiquitous across numerous domains.

Its ability to accurately quantify a linear relationship between a response vector y ∈ R and a

set of predictor variables X ∈ Rn×p, however, is diminished in the presence of outliers. The

L2E method (Hjort, 1994; Scott, 2001, 2009; Terrell, 1990) presents an approach to robust

linear regression that optimizes the well-known L2 criterion from nonparametric density

estimation in lieu of the maximum likelihood. Usage of the L2E method for structured

regression problems, however, has been limited by the lack of a simple computational

framework. We introduce a general computational framework for performing a wide variety

of robust structured regression methods with the L2 criterion. Our work offers the following

novel contributions.

1) Our framework extends the L2E method from Scott (2001, 2009) to a wide variety of

robust structured regression methods with the L2 criterion.

2) Our framework enables simultaneous estimation of the regression coefficients and

precision parameter (Section 3). We accomplish this via a block-coordinate descent

algorithm. Therefore, our simultaneous estimation simplifies the process of choosing

a parameter that tunes the robustness of the estimation procedure.

3) Our framework can “robustify” existing implementations of non-robust structured

regression methods in a “plug-and-play” manner (Sections 3.3 and 4).

4) Our framework comes with convergence guarantees for the iterate sequence

(Proposition 2).

Section 2 presents motivation for L2 robust linear regression. Section 3 introduces

our computational framework with convergence guarantees. Section 4 demonstrates the
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simplicity and flexibility of our framework with robust implementations of several MLE-

based methods via existing structured regression solvers. Section 5 provides a discussion.

1.1 Related Work

The L2 minimization criterion has been employed in histogram bandwidth selection

and kernel density estimators (Scott, 1992). Applying this well-known criterion from

nonparametric density estimation to parametric estimation for regression problems enables

a trade-off between efficiency and robustness. In fact, Basu et al. (1998) introduced a

family of divergences that includes the L2E as a special case and the MLE as a limiting

case. The members of this family of divergences are indexed by a parameter that explicitly

trades off efficiency for robustness. The MLE is the most efficient but also the least

robust. Meanwhile, the L2E offers a reasonable trade-off between efficiency and robustness

(Warwick and Jones, 2005). The robustness of the L2E can also be anticipated since it is

a minimum distance estimator, which is known for robustness (Donoho et al., 1988).

Minimization of the L2 criterion has been employed in developing robust statistical

models including quantile regression (Lane, 2012), mixture models (Lee, 2010),

classification (Chi and Scott, 2014), forecast aggregation (Ramos, 2014), and survival

analysis (Yang and Scott, 2013). It also has uses in engineering applications including

signal processing tasks such as wavelet-based image denoising (Scott, 2006) and image

registration (Ma et al., 2015, 2013; Yang et al., 2017).

Some of the example methods we use to demonstrate our framework in Section 4

have robust implementations. These include robust multiple linear regression (Andrews,

1974; Audibert et al., 2011; Davies, 1993; Holland and Welsch, 1977; Meng and Mahoney,

2013), robust convex regression (Blanchet et al., 2019), robust isotonic regression (Álvarez
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and Yohai, 2012; Lim, 2018), and robust sparse regression (Alfons et al., 2013; Chang

et al., 2018; Ma et al., 2015; Nguyen and Tran, 2013; She and Owen, 2011; Yang et al.,

2018). The purpose of our experiments is not to compare the L2E to each of these

robust methods. Rather, it is to demonstrate the flexibility and wide applicability of

this computational framework and to show how it can obtain robust versions of existing

non-robust implementations in lieu of case-by-case development of robust implementations.

Our framework’s ability to simultaneously optimize over both the precision parameter

and regression coefficients is a unique contribution to the literature. To highlight this, we

briefly discuss two lines of prior work that are closely related to our proposed framework.

1.1.1 Minimum distance estimators for sparse regression and image

registration

In the context of sparse regression, Wang et al. (2013) and Lozano et al. (2016) propose

minimum distance estimators that coincide with our formulation when utilizing an `1-norm

sparsity promoting regularizer. Lozano et al. (2016) employ a modification that applies a log

transform on the empirical minimum distance criterion. The key difference between these

prior approaches and our framework lies in obtaining the precision parameter. Wang et al.

(2013) propose a hybrid block alternating scheme that estimates the regression coefficients

by minimizing the L2E criterion with the precision parameter fixed, and then the precision

parameter is chosen to maximize efficiency subject to satisfying an asymptotic breakdown

point of 1
2
. Their procedure alternates between these two steps and we refer to this approach

as “hybrid” since the algorithm iterates are not minimizing a single objective function.

Based on their simulation experiments, they conclude that their algorithm appears to

converge within 1 to 3 steps but they lack a convergence proof. Lozano et al. (2016) treat
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the precision parameter as a hyper-parameter that can be selected via cross-validation. For

a fixed precision parameter, the Lozano et al. (2016) algorithm has algorithmic guarantees.

Both Wang et al. (2013) and Lozano et al. (2016) require pre-specifying a grid of values

for the precision parameter. A fine grid enables finding a better precision parameter at the

cost of more computational effort. In our work, we estimate the regression coefficients and

precision parameter by solving an optimization problem. Like Wang et al. (2013), we also

employ a block alternating algorithm but unlike their approach, our approach is not hybrid

and is kept completely within an optimization framework, enabling algorithmic convergence

guarantees (Proposition 2). Our strategy can also lead to better statistical performance in

our simulation studies (Section 4). We anticipate this since our strategy enables exploring

the joint space of regression coefficients and precision parameter more comprehensively. Our

improved empirical performance comes without huge additional computational cost since

the precision update involves solving a univariate optimization problem. This is a modest

computational trade-off compared with searching over a grid of precision parameters.

In the context of image registration, Ma et al. (2015, 2013) and Yang et al. (2017)

employ minimum distance estimation to robustly fit a linear model. The primary difference

between their work and ours also lies in obtaining the precision parameter. They employ

a deterministic annealing approach for choosing the precision parameter. Their algorithm

solves an optimization problem to minimize the L2E criterion with respect to the regression

coefficients for a fixed precision parameter, and then decreases the precision parameter by

a user-defined amount. Finally, they re-estimate the regression coefficients and alternate

between updating the regression coefficient estimates and the precision parameter. Once

again, a key question is whether the algorithm iterate sequence is guaranteed to converge.
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1.1.2 Trimmed estimators for high dimensional regression

An alternative approach to obtaining robustness is to maximize a trimmed likelihood.

Alfons et al. (2013) employ this for sparse robust multiple linear regression and estimate a

sparse regression coefficient vector β by solving

min
β

1

2

h∑
i=1

r[i](β)2 + λ‖β‖1, (1)

where r(β) = y −Xβ is a vector of residuals and r[i](β) is the ith order statistic of r(β).

The nonnegative parameter λ trades off model fit with sparsity in β. The trimming hyper-

parameter h imparts robustness to the standard residual sum of squares term by “trimming

away” observations with large residuals. Yang et al. (2018) extend Alfons et al. (2013) to

a general framework for robust penalized estimation similar to ours in the sense that they

introduce a single framework for computing structured robust regression problems. The

robustness of the estimator hinges on an appropriate h. Alfons et al. (2013) recommend

employing prior knowledge to set h while Yang et al. (2018) utilize cross-validation.

The hyper-parameter h plays the same role as the precision parameter in the L2E

formulation. A first key difference between the approach in Yang et al. (2018) and ours

is that we jointly estimate both the structured model and amount of trimming. This

has three benefits. First, we reduce the potential for cross-validation to regularization

parameters associated with the structure-incentivizing penalties, e.g. λ in (1). Second,

our framework enables a continuous (and therefore, larger) search space for choosing the

precision parameter, as opposed to pre-specifying a finite but potentially very large grid

of trimming parameters for many observations. Third, our framework estimates both

the regression coefficients and the precision parameter within an optimization framework,

enabling convergence guarantees over the iterates.

6



A second key difference between the approach in Yang et al. (2018) and ours is that

the precision parameter in our framework performs a “soft-trimming” action by adaptively

choosing new down-weights for observations that are less consistent with the proposed

model in each iteration. Rather than a single trim applied to all the observations,

this enables additional flexibility for automatically varying the contribution of individual

observations to the model fit. Section 4.4 demonstrates these advantages.

2 Robust regression with the L2 criterion

Let f be the true but unknown density generating the observed data y1, . . . , yn ∈ R, and

let f̂θ be a probability density function indexed by a parameter θ ∈ Θ ⊂ Rq approximating

f . We assume throughout that all vectors are column vectors. If we were to estimate f

using the f̂θ that is closest to it, we could minimize the L2 distance between f and f̂θ in

lieu of the negative log-likelihood with

min
θ̂∈Θ

∫ [
f̂θ(y)− f(y)

]2

dy. (2)

In practice, however, identifying θ̂ in this way is impossible since f remains unknown.

While we typically cannot minimize the L2 distance between f and its estimate f̂θ directly,

we can minimize an unbiased estimate of this distance. To do this, we first expand (2) as∫
f̂θ(y)2 dy − 2

∫
f̂θ(y) f(y) dy +

∫
f(y)2 dy.

Notice that the second integral is the expectation EY [f̂θ(Y )], where Y is a random variable

drawn from f . Therefore, the sample mean provides an unbiased estimate of this quantity.

Meanwhile, the third integral does not depend on θ. Therefore, we arrive at the the
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following fully data-based loss function h(θ) that provides an unbiased estimate for (2) up

to an irrelevant additive constant

h(θ) =

∫
f̂θ(y)2dy − 2

n

n∑
i=1

f̂θ(yi), (3)

assuming f̂ is square integrable over an appropriate region. Minimizing over this fully

observed loss function presents us with our estimator θ̂, also called an L2E (Scott, 2001).

Section 3.2 provides intuition for how the L2E imparts robustness in our framework.

2.1 Regression model formulation

Let y ∈ R denote a vector of n observed responses and let X ∈ Rn×p denote the

corresponding observed design matrix of p-dimensional covariates. The standard linear

model assumes the response and covariates are related via the model

y = Xβ0 + τ−1
0 ε,

where β0 ∈ Rp is an unobserved vector of regression coefficients, τ0 ∈ R+ is an unobserved

precision parameter, and the unobserved noise εi ∈ R for 1 ≤ i ≤ n are independently and

identically distributed (iid) standard Gaussian random variables. We phrase the regression

model in terms of the precision rather than the variance to obtain a more straightforward

optimization problem later.

Let θ = (βT, τ)T denote the vector of unknown parameters. Additionally, let r denote

the residual vector obtained from the current prediction estimate for β so that its ith

component is ri = yi − xT
i β, where xi ∈ Rp contains the ith row of X. Given any suitable

pair of β and τ , the conditional density of yi for 1 ≤ i ≤ n is

f̂
(i)
θ (yi) =

τ√
2π

exp

(
−τ

2

2
r2
i

)
.

8



Following Scott (2001), we utilize the L2E loss function for linear regression by averaging

the L2 distance over the observed data and minimize

h(θ) = 1
n

∑n
i=1 h

(i)(θ) =
τ

2
√
π
− τ

n

√
2

π

n∑
i=1

exp

(
−τ

2

2
r2
i

)
, (4)

where

h(i)(θ) =

∫ ∞
−∞

[
f̂

(i)
θ (yi)

]2

dyi − 2 f̂
(i)
θ (yi) =

τ

2
√
π
− τ
√

2

π
exp

(
−τ

2

2
r2
i

)
.

The solution θ̂ = (β̂
T
, τ̂)T of (4) contains the L2E regression estimates.

3 Computational framework

We pose our estimation and model fitting task as a nonsmooth optimization problem.

For references on optimization techniques employed in this paper, please refer to Lange

(2010, 2013); Lange et al. (2014); Polson et al. (2015). Our computational framework

for performing robust structured regression via the L2 criterion is a general algorithm

that combines the L2E method (Scott, 2001, 2009) with a structural constraint or penalty

term φ(β). As an example, suppose we wish to enforce a nonnegativity constraint on the

regression coefficients β. Then we can take φ(β) = ιC(β), the indicator function of the

nonnegative orthant C = {β ∈ Rp : βj ≥ 0, 1 ≤ j ≤ p}. Recall that the indicator function

of a set C, denoted ιC(β), is a function that takes values on the extended reals and is zero

when β ∈ C and is ∞ otherwise. As another example, φ(β) may be an indicator function

requiring that the elements of β satisfy a monotonicity constraint. Other examples include

taking φ(β) to be sparsity inducing penalities like the `1-norm (Tibshirani, 1996) or elastic

net (Zou and Hastie, 2005). Section 4 contains several examples of potential constraint
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terms φ(β). Concretely, we seek a minimizer of the objective function

`(β, τ) = h(β, τ) + φ(β) (5)

subject to β ∈ Rp and τ ∈ [τmin, τmax], where τmin ∈ R and τmax ∈ R are minimum and

maximum values for τ , respectively.

There are two computational challenges in minimizing (5). The first is that ` is non-

convex in θ since h(θ) is non-convex. The second is that commonly-used constraint terms

φ(β) are often non-smooth or non-differentiable. We focus on the case where the φ are

nonnegative, continuous, and convex functions. Continuity and convexity ensure that the

proximal mappings of φ always exist and are unique. In minimizing (5), we utilize the key

property that the block derivatives of h with respect to β and τ , that is ∇βh(β, τ) and

∂
∂τ
h(β, τ), respectively, are Lipschitz differentiable.

Proposition 1. The L2E loss function h(β, τ) is block Lipschitz differentiable with respect

to β and τ so that

‖∇βh(β, τ)−∇βh(β̃, τ)‖2 ≤ Lβ(τ)‖β − β̃‖2

for all β and β̃, and ∣∣∣∣ ∂∂τ h(β, τ)− ∂

∂τ
h(β, τ̃)

∣∣∣∣ ≤ Lτ (β) |τ − τ̃ |

for all τ and τ̃ . The Lipschitz constant Lβ(τ) is Lβ(τ) = τ3

n

√
2
π
σ(X)2, where σ(X) is the

largest singular value of X. The Lipschitz constant Lτ (β) is Lτ (β) = 3
n

√
2
π

‖r‖22
ρ

exp
(
−1

2

)
,

where ρ = min
i:ri 6=0

|ri|.

The supplement contains the proof. The block Lipschitz differentiability of h(β, τ) and

the regularity conditions on φ lead us to employ block coordinate descent to minimize (5).

10



At a high level, we alternate between minimizing with respect to β holding τ fixed, and

minimizing with respect to τ holding β fixed. We solve two subproblems at the kth update:

Subproblem 1: Update β

β(k) = arg min
β∈Rp

h(β, τ (k−1)) + φ(β), and (6)

Subproblem 2: Update τ

τ (k) = arg min
τ∈[τmin,τmax]

h(β(k), τ). (7)

In practice, we do not exactly solve either subproblem and instead take a few proximal

gradient descent steps to partially minimize or inexactly solve (6) and (7). Note that each

update is guaranteed to monotonically decrease the loss function `(θ). This is a feature

that all block coordinate descent algorithms possess as a special case of majorization-

minimization algorithms (Lange, 2016).

Recall that proximal gradient descent is a first order iterative method for solving

optimization problems of the form

minimize
θ

h(θ) + φ(θ), (8)

where h is a Lipschitz differentiable function and φ is a convex and lower semicontinuous

function (Combettes and Wajs, 2005; Parikh and Boyd, 2014). Further recall that the

proximal map of φ

proxφ(θ) = arg min
θ̃

1

2
‖θ̃ − θ‖2

2 + φ(θ̃)

exists and is unique whenever φ(θ) is convex and lower semicontinuous. Many regularizers

φ(β) that are useful for recovering models with structure satisfy these conditions and
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also admit proximal maps that can be evaluated via explicit formulation or an efficient

algorithm. For example, the proximal map of the scaled `1-norm λ‖·‖1 is the element-wise

soft-thresholding operator, namely[
proxλ‖·‖1(θ)

]
i

= sign(θi) max(|θi| − λ, 0). (9)

Notice that the proximal map can be viewed as the generalization of the Euclidean

projection, which we refer to as the projection. Specifically, the projection of a point

θ onto a set C is the point PC(θ) ∈ C that is closest in Euclidean distance to θ, namely

PC(θ) = arg min
θ̃∈C

‖θ̃ − θ‖2.

Similarly, the proximal map of the indicator function ιC of a set C is the projection onto

the set C. This projection exists and is unique when C is a closed convex set. For example,

when C = [τmin, τmax], proxι[τmin,τmax]
(τ) = P[τmin,τmax](τ). As its name suggests, the proximal

gradient descent method for solving problems of the form in (8) combines a gradient descent

step with a proximal step. Given an iterate θ, the update θ+ is

θ+ = proxtφ[θ − t∇h(θ)], (10)

where t is a positive step-size parameter and tφ is the function φ scaled by t.

We emphasize that our framework does not require exactly computing the global

minimizers in (6) and (7) at each iteration. Nonetheless, we will see that the algorithm

still comes with some convergence guarantees.

Remark. We make the modestly stronger assumption that φ is continuous to establish

convergence guarantees. Assuming continuity is not restrictive as commonly employed,

convex nonsmooth φ includes norms, compositions of norms with linear mappings, and

indicator functions of closed convex sets.
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3.1 A general algorithm for L2E robust structured regression

Algorithm 1 presents pseudocode for minimizing (5) via inexact block coordinate descent.

For the update step on τ , the operator P[τmin,τmax] denotes the projection onto [τmin, τmax].

When updating β in (6) and τ in (7), we take a fixed number of proximal gradient steps,

Nβ and Nτ respectively, in (10). The gradients for updating β and τ are

∇βh(β, τ) = −τ
3

n

√
2

π
XTWr, (11)

where W ∈ Rn×n is a diagonal matrix that depends on β with ith diagonal entry

wii = exp

[
−τ

2

2
r2
i

]
, and (12)

∂

∂τ
h(β, τ) =

1

2
√
π
− 1

n

√
2

π

[
n∑
i=1

wii
(
1− τ 2r2

i

)]
.

Algorithm 1 has the following convergence guarantee. Recall that a point θ = (βT, τ)T

is a first order stationary point of a function f(θ) if for all directions v, the directional

derivative f ′(θ;v) of f is nonnegative.

Proposition 2. For any choice of Nβ and Nτ , under modest regularity conditions on (5)

and step-sizes tβ = Lβ(τ)−1 and tτ = L−1
τ , where Lβ(τ) and Lτ (β) are in Proposition 1,

the sequence (β(k), τ (k)) generated by Algorithm 1 has at least one limit point and all limit

points are first order stationary points of (5). If there are finitely many first order stationary

points of (5), then the sequence (β(k), τ (k)) will converge to one of them.

The supplement contains a proof. We briefly comment on the assumption about the

number of stationary points. It may seem strong to assume that the L2E objective `(β, τ) in
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(5) has finitely many first order stationary points but a closer inspection of h(β, τ) suggests

that this is reasonable. The supplement contains an exploration of this assumption.

Algorithm 1 Block coordinate descent for minimizing (5)

Initialize β(0), τ (0) and fix Nβ, Nτ

1: k ← 0

2: repeat

3: tβ ← Lβ(τ (k))−1 // Update Lβ(τ (k)) via Proposition 1

4: β ← β(k) // Update β (6)

5: for i = 1, . . . , Nβ do

6: β ← proxtβφ

[
β − tβ∇βh(β, τ (k))

]
7: end for

8: β(k+1) ← β

9: tτ ← Lτ (β
(k+1))−1 // Update Lτ (β

(k+1)) via Proposition 1

10: τ ← τ (k) // Update τ (7)

11: for i = 1, . . . , Nτ do

12: τ ← P[τmin,τmax]

[
τ − tτ ∂

∂τ
h(β(k+1), τ)

]
13: end for

14: τ (k+1) ← τ

15: k ← k + 1

16: until convergence

3.2 Algorithmic intuition

We present a simple scenario illustrating intuition for Algorithm 1. This scenario applies

to isotonic and convex regression, which we discuss in Section 4. Let the design matrix X

be the n × n identity matrix In, and let the structural constraint φ(β) be the indicator

function of a closed and convex set C. Then φ(β) = ιC(β) is zero if β ∈ C, and is ∞

14



otherwise. This results in simplifications to (6) and the update rule for β becomes

β+ = PC (z) ,

where PC (z) is the Euclidean projection of z = Wy + (I −W)β onto C, and W is a

diagonal matrix with diagonal elements as defined in (12).

We observe how the L2E imparts robustness through the action of W. Consider z ∈ Rn

as a vector of pseudo-observations, where each element zi is a convex combination of yi

and the current prediction βi. If the current residual ri is large compared to the current

precision τ , wi is small and the corresponding pseudo-observation zi resembles the current

predicted value βi. Meanwhile, if the current residual ri is small compared to the current

precision τ , the corresponding pseudo-observation resembles the observed response yi.

Therefore, the pseudo-observations impart the following algorithmic intuition. Given an

estimate β̃ of the regression coefficients, the algorithm performs constrained least squares

regression using a pseudo-response z, whose entries are a convex combination of the entries

of the observed response y and the prediction β̃. Observations with large current residuals

relative to the current precision are essentially replaced by their predicted value.

In this way, the algorithm can fit a fraction of the observations very well while also

accounting for outlying observations by replacing them with pseudo-response values more

consistent with a model that fits the data. Notice that the algorithm is oblivious to whether

large residuals arse from outliers in the response or in the predictor variables. Consequently,

it can handle outliers arising from either source or both.
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3.3 Robustifying existing non-robust implementations

We now discuss how one can employ this framework to automatically “robustify” existing

non-robust structured regression implementations solving problems of the form

min
β

1

2
‖y −Xβ‖2

2 + φ(β).

Concretely, we can utilize existing non-robust solvers to perform line 6 in Algorithm 1.

Recall that line 6 performs the β update with

β+ = PC (z) or β+ = proxtβφ(z)

depending on whether φ is a projection operator or a more general proximal mapping. In

both cases, we perform this step by calling the existing non-robust solver and inputing z

in place of the original response y. Our computation for z depends on whether X is the

identity. If X is the identity, as in isotonic and convex regression, then z in Algorithm 1 line

6 simplifies to z = Wy + (I−W)β with W as described in (12). Therefore, Algorithm

1 line 6 inputs z = Wy + (I−W)β in place of y into the existing non-robust solver.

If X is not the identity, as in Lasso regression, then z in Algorithm 1 line 6 is the more

complex z = β − tβ∇βh(β, τ) with ∇βh(β, τ) as described in (11). Recall that the β

update involves a penalized least squares problem with identity design I (Section 3.2)

β+ = proxtβφ(z) = minimize
β̃

1

2
‖z− Iβ̃‖2

2 + tβφ(β̃).

Therefore, Algorithm 1 line 6 inputs z = β − tβ∇βh(β, τ) in place of y and I in place of

X into the existing non-robust solver.
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3.4 Practical considerations

We discuss guidance on setting the hyperparameters in Algorithm 1. The constraint

set [τmin, τmax] on τ was introduced to establish the existence of a limit point for the

algorithm iterate sequence. In practice, the constraints do not appear to strongly influence

performance. Nonetheless, it is possible to run into a numerical issue if τmin is set to zero.

Specifically, it is possible that the gradient step in the τ -update outputs a negative value,

which would then be projected to 0. This results in Lβ(τ) set to zero, which leads to

an undefined step-size tβ. To guard against this, we recommend setting τmin as follows.

A conservative estimate of the standard deviation follows from assuming no association

between the response and covariates and all the variation in the response y is due to noise,

namely σ̂ =
√

1
n−1

∑n
i=1(yi − y)2. Therefore, take τmin = σ̂−1. For the upper bound, taking

τmax to be infinity does not appear to create any issues in practice.

A natural question is how to set Nβ and Nτ in Algorithm 1. Choosing these values too

small or too large can lead to slow convergence. In our experience, setting Nβ = Nτ = 1

does not make sufficient progress in minimizing the objective functions in (6) and (7).

Meanwhile, setting Nβ and Nτ to be a larger value such as 1,000 leads to diminishing

returns in minimizing the objective functions in (6) and (7). In our experiments, we set

Nβ and Nτ to be 100 as it strikes a balance between these two extremes.

Finally, given the nonconvexity of the L2E objective function in (5), some thought to

initialization is required. We recommend the following simple “null model” initialization

strategy. When we have a non-identity design matrix X, similar to choosing τmin, we

assume there is no association between the response and covariates. Therefore, we set the

initial regression coefficient vector β(0) = 0. When X is the identity, we set β(0) = y1,

namely the vector of all ones 1 multiplied by the mean y of the response y. In both cases,
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we set the initial precision to be τ (0) = MAD(y)−1, the reciprocal of the median absolute

deviations of the response y. We employ this initialization strategy throughout Section 4.

The supplement contains a simulation study demonstrating that the output of Algorithm 1

appears stable to perturbations in this initialization heuristic.

4 Examples of L2E robust structured regression

We demonstrate our framework on a variety of robust structured regression methods.

Our examples illustrate how our framework can “robustify” existing structural regression

solvers. We refer to the estimates obtained from optimizing the maximum likelihood and

the L2 criterion as the MLE and L2E, respectively. Software for our framework is available

in the L2E package on the Comprehensive R Archive Network (CRAN).

4.1 L2E robust multiple linear regression

We begin with multivariate L2E regression (Scott, 2001, 2009), where φ(β) = 0. Let

X ∈ Rn×p with rank(X) = p. The data come from an Italian bank (Riani et al., 2014) where

the response y ∈ R is the annual investment earnings for n = 1,949 banking customers.

The design X contains measurements on p = 13 bank services.

Since φ(β) = 0, proxtβφ is simply the identity operation. Subproblem 1 for updating β

in (6) reduces to iteratively performing: 1) Compute current residuals, 2) Update weights

wii in (12), and 3) Update β with current residuals and gradient described in Section 3.1.

Figures 1a and 1b depict scatter plots of the fitted values against the residuals. A

good fit is evidenced by normally distributed noise in the residuals, or symmetric scatter of

points about the zero residual level (depicted by the orange dashed line). Figure 1a shows
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a discernible pattern in the MLE residuals with asymmetric scatter of points about the

zero residual level. This indicates that additional trends in the data not captured by the

Gaussian linear model remain in the residuals and are not captured by the MLE fit.

Meanwhile, Figure 1b shows that after excluding outlying points identified by automatic

tuning of τ in our framework (depicted by the blue triangles), the residuals from the L2E

fit are normally distributed about zero. To identify outliers, we compute the L2E residuals

and select observations whose residuals exceed a factor of the precision parameter, e.g. 3

divided by τ . Thus, the L2E adequately captures the linear relationship between investment

earnings and bank services for the non-outlying customers. Notice that one can recursively

repeat L2E regression on outlying customers to identify an appropriate linear relationship

between investment earnings and bank services for customer subgroups.

This example also highlights how our framework enables joint estimation of the

regression coefficient vector β and the precision τ , enabling automatic identification

of outlying observations in the data. This is practically useful since the L2E can

simultaneously identify subpopulations within the data and appropriate fits for each of

those groups when applied recursively to the subgroups.

4.2 L2E robust isotonic regression

Our next example is L2E robust isotonic regression. Let an observed response y ∈ Rn

consist of n samples drawn from a monotonic function f sampled at discrete time points

t1 ≤ t2 ≤ · · · ≤ tn with additive independent Gaussian noise. The ith entry of y is

yi = f(ti) + εi for 1 ≤ i ≤ n,
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Figure 1: (a) Asymmetric spread of points about the zero residual line suggests additional variation in the

data not captured by the MLE linear fit. (b) Blue triangles denote outlying observations identified by the

L2E. Non-outlying observations are well-fit by the L2E linear fit, as seen in normal distribution of points

about the zero residual line.

where f is monotonic, εi
iid∼ N(0, 1

τ
), and τ ∈ R+. The goal of isotonic regression (Barlow

and Brunk, 1972; Brunk et al., 1972; Dykstra et al., 1982; Lee et al., 1981; Mair et al.,

2009) is to estimate f by solving

min
β(t1), ... , β(tn)

n∑
i=1

[yi − β(ti)]
2

subject to β(t1) ≤ β(t2) ≤ · · · ≤ β(tn).

We construct a piece-wise constant estimate for f using the elements of the estimator

β̂ =
(
β̂(t1) β̂(t2) · · · β̂(tn)

)T
.

For the corresponding L2E problem, the design X = In and φ(β) = ιM(β) is the

indicator function over the set of vectors M satisfying element-wise monotonicity so that
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β1 ≤ β2 ≤ · · · ≤ βn for β ∈ Rn. Subproblem 1 for updating β in (6) reduces to iteratively

performing: 1) Compute current residuals, 2) Update weights wii in (12), and 3) Update

β with current residuals and gradient described in Section 3.1 and project onto the setM.

The gpava function for implementing the generalized pool-adjacent-violators algorithm

(generalized PAVA) in the isotone package (Mair et al., 2009) for R performs this last

step. Therefore, we utilize it in Algorithm 1 line 6.

We illustrate with a univariate cubic function. Figure 2a shows how the MLE and L2E

produce similar estimates in the absence of outliers. The true underlying cubit fit f is in

black. The gray points depict observations generated from f with additive Gaussian noise.

The dashed orange line depicts the MLE from generalized PAVA while the solid blue line

depicts the L2E . Meanwhile, Figure 2b shows how the MLE is skewed towards the outliers

while the L2E estimate remains less sensitive to them.

Figure 3 depicts results of Monte Carlo simulations comparing the MLE and the

L2E while varying the number of outliers. We simulate three datasets with n = 1,000

observations of a cubic function with additive Gaussian noise and 50, 100, and 200 outliers,

respectively. We introduce outliers by selecting points from approximately the 25th quartile

along the x-axis and assigning them a value equal to slightly less than the maximal

polynomial value and additive standard Gaussian noise. This corresponds to simulating

samples from a bimodal distribution to create high leverage points in the covariate space.

We employ the gpava function in the isotone package (Mair et al., 2009) for R to obtain

the MLE. We obtain 100 replicates for each scenario on a 3.00 GHz Intel Core i7 computer

with 32 GB of RAM and present boxplots of the mean squared error (MSE) and time in

seconds. We obtain the MSE between the model y and the computed solution.
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(a) Isotonic regression without outliers.
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(b) Isotonic regression with outliers.

Figure 2: The black, orange, and blue lines depict the true, MLE, and L2E fits for isotonic regression,

respectively. The MLE and L2E produce similar results in the absence of outliers. The MLE is skewed

towards the outliers while the L2E provides a more robust estimate.
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(b) Isotonic regression time (sec).

Figure 3: Monte Carlo experiments for isotonic regression with n = 1,000 observations drawn from a

univariate cubic function with additive Gaussian noise. Boxplots depict the (a) mean squared error (MSE)

and (b) time in seconds required for 50, 100, and 200 outliers over 100 replicates for the MLE (orange)

and L2E (blue). The L2E requires more time since its solution requires multiple computations of the MLE.

Experiments highlight the trade-off between MSE and time between the MLE and L2E solutions.
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The MLE produces increasingly larger MSE as the number of outliers increases.

Meanwhile, the L2E produces a smaller increase in MSE for the same number of outliers

but requires more computation time since the L2E employs multiple computations of the

MLE procedure. Thus, the L2E can produce an isotonic regression fit that is much less

sensitive to outliers than the MLE.

4.3 L2E robust convex regression

Our next example is L2E robust convex regression. For illustration, we consider the

univariate case (Ghosal and Sen, 2017; Wang and Ghosh, 2012). However, our framework

applies to multivariate convex regression (Aybat and Wang, 2016; Bertsimas and Mundru,

2021; Birke and Dette, 2007; Chen and Mazumder, 2021; Guntuboyina and Sen, 2015;

Hannah and Dunson, 2013; Lim and Glynn, 2012; Lin et al., 2020; Mazumder et al., 2019;

Meyer, 2003; Seijo and Sen, 2011) in a similar manner. Let an observed response y ∈ Rn

consist of n samples drawn from a convex function f sampled at discrete time points

t1 ≤ t2 ≤ · · · ≤ tn with additive independent Gaussian noise. The ith entry of y is

yi = f(ti) + εi for 1 ≤ i ≤ n,

for convex f , εi
iid∼ N(0, 1

τ
), and τ ∈ R+. Shape-restricted convex regression estimates f via

min
β(t1), ... , β(tn)

n∑
i=1

[yi − β(ti)]
2

subject to β(ti) ≤
ti+1 − ti
ti+1 − ti−1

β(ti−1) +
ti − ti−1

ti+1 − ti−1

β(ti+1) for 2 ≤ i ≤ n− 1.

Let β =
(
β(t1) β(t2) · · · β(tn)

)T
. We recast this constraint in terms of a scaled second-

order differencing matrix D ∈ Rn×n with Dβ ≥ 0 so that all the elements of Dβ are
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non-negative. We construct a piece-wise constant estimate for f utilizing the elements of

β̂ =
(
β̂(t1) β̂(t2) · · · β̂(tn)

)T
.

For the corresponding L2E problem, the design X = In and φ(β) = ιC(β) is the indicator

function over the set of vectors in C ≡ {β : Dβ ≥ 0}. Subproblem 1 for updating β in

(6) reduces to iteratively performing: 1) Compute current residuals, 2) Update weights

wii in (12), and 3) Update β with current residuals and gradient described in Section 3.1

and project onto the convex cone C. The conreg function in the cobs package (Ng and

Maechler, 2007) for R performs this last step so we can employ it in Algorithm 1 line 6.

Figure 4a shows how the MLE and L2E produce similar fits in the absence of outliers.

The true underlying convex fit f is in black and gray points depict observations generated

from f with additive Gaussian noise. The dashed orange line depicts the MLE obtained

from the cobs package in R while the solid blue line depicts the L2E . Meanwhile, Figure 4b

shows how the MLE is substantially skewed towards the outliers while the L2E is less

distorted. This example highlights how the L2E is less sensitive to outliers than the MLE.

Figure 5 depicts results of Monte Carlo simulations comparing the MLE and L2E on

shape-restricted convex regression while varying the number of outliers. We simulate

three datasets with n = 1,000 observations using a fourth-order polynomial with additive

Gaussian noise and 50, 100, and 200 outliers, respectively. We introduce outliers by selecting

points from approximately the 25th quartile along the x-axis and assigning them a value

that is equal to a little less than the maximal polynomial value and additive standard

Gaussian noise. This corresponds to simulating samples from a bimodal distribution to

create high leverage points in the covariate space. We employ the conreg function in the

cobs package for R (Ng and Maechler, 2007) to obtain the MLE. We obtain 100 replicates

on a 3.00 GHz Intel Core i7 computer with 32 GB of RAM.
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(a) Convex regression without outliers.
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(b) Convex regression with outliers.

Figure 4: Black, orange, and blue lines depict the true, MLE, and L2E fits for convex regression. The

MLE and L2E produce similar results in the absence of outliers while the L2E is much less sensitive to

outliers.

Figure 5a highlights how the MLE produces increasingly larger MSE values as the

number of outliers increases. Meanwhile, the L2E MSE is much less sensitive to outliers.

This example again underscores how our framework can perform a robust version of a

structured regression problem utilizing a readily available non-robust implementation.

4.4 L2E robust `1 penalized regression

Our last example is L2E `1 penalized regression. We utilize the Lasso (Tibshirani, 1996)

min
β

1

2
‖y −Xβ‖2

2 + λ‖β‖1

as our reference. For the corresponding L2E problem, let X ∈ Rn×p with rank(X) = p and

let φ(β) = λ‖β‖1. Subproblem 1 for updating β in (6) reduces to iteratively performing:
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Figure 5: Monte Carlo experiments for convex regression with n = 1,000 observations drawn from a

convex function with additive Gaussian noise. Boxplots of the (a) mean squared error (MSE) and (b) time

in seconds required for 50, 100, and 200 outliers over 100 replicates compare the MLE (orange) and the L2E

(blue). The L2E requires more time as its solution employs multiple computations of the MLE. Experiments

highlight the trade-off between MSE and time between the MLE and L2E solutions.

1) Compute current residuals, 2) Update weights wii in (12), and 3) Update β with current

residuals and gradient in Section 3.1 and apply the soft-thresholding operator in (9).

We illustrate with real data on prostate cancer patients from Stamey et al. (1989). The

response y ∈ Rn is the percent of Gleason score (measure of a prostate-specific antigen) for

n = 97 patients receiving a radical prostatectomy. The design X contains measurements

on p = 8 clinical variables. To introduce outliers in the covariates, we identify the top five

percent of observations in X with highest leverage and scale these points by 3.3.

Figure 7 in the supplement depicts solution paths for Lasso, L2E `1 penalized regression,

sparse least trimmed squares (Sparse LTS) (Alfons et al., 2013; Yang et al., 2018), and

exponential squared loss Lasso (ESL Lasso) (Wang et al., 2013) as a function of the
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shrinkage factor s = ‖β(λ)‖1
‖β̂0‖1

. We set β̂0 as the β estimate obtained at λ = 0 for each

method and employ a λ sequence with a log linear scale of 15 values between 10−5 and a

conservative data-dependent estimate of λ at which β̂(λ) = 0.

Since all methods employ the `1 penalty, the latter three can be viewed as alternative

approaches to robust Lasso. Therefore, the Lasso solution paths, which quantify the relative

contributions of the covariates to the regression model, without outliers (top-left panel)

serve as a control. Ideally, a robust implementation preserves these relative contributions

in the presence of outliers. Qualitatively, the L2E solution paths most closely resemble

the Lasso solution paths and suffer the least distortion in the presence of outliers. By

comparison, Sparse LTS and ESL Lasso qualitatively appear very different from Lasso,

even without outliers. We employ the default trimming percentage (retains 75 percent of

the data) for Sparse LTS so it should be robust to the five percent of outliers.

Section 5.1 of the supplement contains more quantitative experiments with these four

methods utilizing synthetic data. Table 3 of the supplement shows that the L2E obtains

lower relative error on average and additionally selects fewer false positives. Although

Sparse LTS and ESL Lasso employ the `1 penalty for variable selection, they both select

nearly all the variables in those experiments in the presence of outliers.

5 Discussion

Least squares regression models can be extended to encode a wide array of prior structure

through non smooth penalties and constraints. While regression via least squares – and

its constrained and penalized extensions – does not require any parametric assumptions,

making a normality assumption on the residuals opens the door to applying the L2E method
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for robustly fitting a parametric regression model. In this work, we introduce a user-friendly

computational framework, or recipe, for performing a wide variety of robust structured

regression methods by minimizing the L2 criterion. We highlight that our framework can

“robustify” existing structured regression solvers by utilizing existing non-robust solvers in

the β-update step in a plug-and-play manner. Thus, our framework can readily incorporate

newer and improved technologies for existing structured regression methods; as faster and

better algorithms for these non-robust structured regression solvers appear, users may

simply replace the previous solver with the new one in the β-update step.

We also highlight the significance of the convergence properties of our computational

framework. As long as the structural constraints or penalties satisfy convexity and

continuity conditions, a solution obtained with our framework is guaranteed to converge to a

first order stationary point. Since many commonly-used structural constraints and penalties

satisfy these conditions, our framework provides convergence guarantees for robust versions

of many non-robust methods with readily available software.

We close by noting that our L2E framework focuses on structured regression problems

under a normality assumption, which may not be appropriate in all situations. Meanwhile,

the L2E framework has also been used to robustly estimate parametric models under

different distributional assumptions, e.g. Weibul (Yang and Scott, 2013), Poisson (Scott,

2001), and logistic (Chi and Scott, 2014). An interesting direction for future work is the

development of a unified computational framework for fitting structured regression models

under a wider range of distributional assumptions.

SUPPLEMENTARY MATERIAL

Title: Supplement to “A User-Friendly Computational Framework for Robust Structured
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Regression with the L2 Criterion” (.tex file)

Software: L2E R-package for performing L2E structured regression. (GNU zipped tar file)
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