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Focusing on the implications of recent experiments onMajorana zero modes in semiconductor-superconductor
(SM-SC) heterostructures, we critically examine the quantization of the zero-bias differential conductance as a
possible unambiguous signature of Majorana physics in the presence of disorder. By numerically calculating the
zero-bias conductance (ZBC) maps as function of Zeeman splitting and chemical potential for different disorder
realizations, we find that the large topological region associated with the clean system, which is characterized by
a quantized ZBC height 2e2/h, breaks up into progressively smaller “islands” as the disorder strength increases.
For strong disorder we show that the presence of small islands with ZBC value (approximately) equal to 2e2/h,
which we refer to as “quantized islands,” represents a unique signature of Majorana physics supporting partially
separated Majorana modes (ps-MMs). Because of the small area/volume of these quantized islands in the
parameter space, observing them in experiments may require sample selection and the systematic scanning of
a large volume in the control parameter space. Upon decreasing disorder, the quantized islands increase in size
and eventually coalesce into large topological regions. We conclude that the observation of quantized islands
with ZBC value approximately equal to 2e2/h demonstrates unambiguously the presence of the key ingredients
necessary for Majorana physics, provides an excellent diagnostic tool for evaluating the disorder strength, and,
consequently, represents the next natural milestone in Majorana search.
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I. INTRODUCTION

Majorana zero modes (MZMs) — the condensed matter
avatars of the Majorana fermion [1] — are not only po-
tential building blocks for topological quantum computation
(TQC) [2,3], but, in themselves, objects of deep fundamen-
tal interest [4]. These quasiparticles emerge in a class of
condensed matter systems called topological superconductors
and obey non-Abelian exchange statistics [5–7], a property
with no correspondent in high-energy physics. One of the
simplest proposed realizations of MZMs involves a strong
spin-orbit-coupled semiconductor (SM) nanowire with prox-
imity induced superconductivity (SC) and the presence of a
magnetic field applied parallel to the wire [8–11]. The appar-
ent simplicity of this proposal and its major practical and basic
science implications has spurred tremendous experimental ac-
tivity in recent years [12–28].

Despite remarkable progress, the unambiguous demonstra-
tion of topological MZMs remains an outstanding experi-
mental challenge. The most accessible experimental feature
consistent with the presence of MZMs, the emergence of a
zero-bias peak in differential tunneling conductance that is
robust against variations of the magnetic field, was observed
by several groups in multiple samples [12–14,16–29]. The

Achilles’ heel of this test is that certain topologically triv-
ial states can also give rise to similar features [30–45]. A
more stringent condition is the quantization of the zero-bias
conductance peak at zero temperature, which is predicted to
give rise to quantized zero-bias conductance (ZBC) plateaus
of height 2e2/h as a function of control parameters such
as the magnetic field and gate potentials [46–48]. Recently
reported observations of this type of feature [29] involve a
high degree of sample selection and parameter fine-tuning and
generated a heated controversy regarding not only the nature
of the underlying low-energy states, but key aspects of the
experimental procedure. The current experimental situation is
viewed as being affected by a “confirmation bias” problem
[49] and a “reproducibility crisis” [50]. As shown in this
study, the most likely current experimental situation involves
strongly disordered nanostructures. Our numerical calcula-
tions of the zero-bias conductance (ZBC) maps as function
of Zeeman splitting and chemical potential show that, upon
increasing the disorder strength, the large quantized topolog-
ical region associated with the clean system breaks up into
progressively smaller quantized “islands” of ZBC value ap-
proximately equal to 2e2/h, while nonquantized islands with
ZBC values exceeding 2e2/h also emerge. In the strong dis-
order regime, because of the smallness of the islands, finding
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a quantized ZBC peak of height 2e2/h is necessarily difficult
and may require extensive tuning of the control parameters.
Furthermore, we find that the mere observation of a quantized
ZBC plateau as a function of a single control parameter does
not provide sufficient evidence of Majorana physics, as it may
be associated with the (quantized) boundary of a nonquantized
island. However, as demonstrated below, the observation of
finite quantized “islands” in a higher-dimensional parameter
space does represent an unambiguous signature of Majorana
physics.

Given the rather muddy status of the MZM search, the key
questions concern the path forward. We propose a paradigm
for the MZM search based on three key elements. (1) Basic
assumption: All experimentally available Majorana hybrid
nanostructures are affected by relatively strong parameter
inhomogeneity, including random disorder. (2) Basic tasks:
(i) Identify a meaningful operational definition of “Majorana
physics” in the presence of disorder; (ii) Identify and char-
acterize the main sources of disorder/inhomogeneity; (iii)
Characterize in detail the low-energy physics of hybrid nanos-
tructures in the presence of disorder/inhomogeneity. (3) Basic
approach: Perform large-scale mappings of relevant observ-
able quantities as functions of the control parameters. We
note that basic task (i) is mainly theoretical and addresses
a simple question: if a system contains all necessary Ma-
jorana ingredients (i.e., superconductivity, Zeeman splitting,
and spin-orbit coupling), but disorder is strong enough to
destroy the topological phase, can one meaningfully talk about
Majorana physics? On the other hand, tasks (ii) and (iii) im-
ply combined experimental and theoretical efforts involving
different materials and device characteristics and observable
features.

This paper is a theoretical contribution to this compre-
hensive program addressing tasks (i) and (iii) and focusing
on the relevance of quantized ZBC peaks as a signature for
Majorana physics in disordered systems. First, we show that,
in the presence of disorder, remnant Majorana physics can be
operationally understood as emerging locally within a certain
disorder-controlled lengthscale and being characterized by the
presence of partially separated Majorana modes (ps-MMs).
The ps-MMs require the presence of the key Majorana “in-
gredients” (i.e., superconductivity, spin-orbit coupling, and
Zeeman splitting) and are adiabatically connected to the
topological MZMs upon formally expanding the lengthscale
associated with the emergence of remnant Majorana physics.
Next, we investigate the dependence of the zero-bias differ-
ential conductance on the Zeeman energy and the chemical
potential in the presence of disorder by calculating numeri-
cally the corresponding two-dimensional maps. We find that
the regions with quantized ZBC are either (i) finite area
islands or (ii) boundaries of islands characterized by ZBC
values that exceed 2e2/h. We show that the latter, nonquan-
tized, islands are generated by Andreev bound states (ABSs)
consisting of strongly overlapping pairs of Majorana modes,
while the finite area quantized islands with ZBC values
∼2e2/h are always associated with the presence of ps-MMs
and, therefore, represent a signature of remnant Majorana
physics. The quantized islands can occur both inside and out-
side the nominally topological region of the parameter space,
while the nonquantized islands emerge outside this region.

In the low-disorder limit, the nonquantized islands disappear,
while the quantized islands coalesce into a large “quantized
continent” within the topological region corresponding to the
clean system. In the opposite, strong-disorder limit, the is-
lands move outside the nominally topological region, shrink,
and may eventually disappear.

Our findings suggest that the current experiments are con-
ducted on strongly disordered nanostructures, which warrants
the basic assumption of the paradigm proposed above. In
this scenario, finding a quantized ZBC plateau as a func-
tion of a control parameter, e.g., the applied magnetic field,
is necessarily hard and requires extensive fine tuning of all
control parameters. We emphasize, however, that a quantized
ZBC plateau as a function of a single control parameter
does not provide clear evidence of Majorana physics, as this
can be generated by a cut in parameter space tangent to
the (quantized) boundary of an ABS-induced nonquantized
island, as explicitly shown below (see, e.g., Fig. 8). By con-
trast, the observation of (even small) quantized islands would
constitute strong evidence of remnant Majorana physics and
partially separated Majorana modes. In other words, such an
observation would demonstrate that all necessary ingredients
for realizing topological superconductivity and MZMs are
actually present in SM-SC hybrid structures. Furthermore,
progress in materials growth and device engineering aimed
at reducing disorder can be conveniently traced by system-
atically studying the number, size, and position of quantized
and nonquantized islands within large regions of the control
parameter space. Since the basic ingredients necessary for re-
alizing ps-MMs are the same as those required by topological
MZMs, while the corresponding homogeneity conditions are
significantly less restrictive, the unambiguous experimental
demonstration of quantized ZBC islands represents the next
natural milestone in the Majorana search.

II. REMNANT MAJORANA PHYSICS IN DISORDERED
SYSTEMS: OPERATIONAL APPROACH

The simplest effective model that describes the low-energy
physics of a semiconductor-superconductor (SM-SC) hy-
brid structure is given by the Bogoliubov–de Gennes (BdG)
Hamiltonian

H = −t
∑

〈i, j〉,σ
c†iσ c jσ +

∑
i,σ

[V (xi ) − μ]niσ + �
∑
i

c†i σxci

+ iα

2

∑
〈i, j〉

(c†i σyc j+H.c.) + �
∑
i

(c†i↑ci↓+H.c.), (1)

where 〈i, j〉 are nearest-neighbor sites on a a one-dimensional
lattice, c†i = (c†i↑, c†i↓) is the electron creation operator on site

i, niσ = c†iσ ciσ is the number operator, and σν (with ν =
x, y, z) are Pauli matrices. The model parameters t , μ, �,
α, and � represent the nearest-neighbor hopping, chemical
potential, Zeeman splitting, Rashba spin-orbit coupling, and
induced pairing potential, respectively. In the presence of
inhomogeneity and/or random disorder all these parameters
are, in principle, position dependent. Here, we only consider
potential disorder, which is incorporated through the position-
dependent effective potential V (xi ). We note that a more
realistic modeling of hybrid SM-SC nanowires incorporates
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multiband physics [51], proximity-induced energy renormal-
ization effects [52], as well as various types of electrostatic
effects [53]. These additional ingredients are critical for devel-
oping an understanding of the quantitative impact of various
materials and control parameters on the low-energy physics of
the hybrid system. However, assuming that the semiconductor
spectrum is characterized by an interband spacing larger than
the other relevant energy scales, many of the effects generated
by the realistic additional ingredients can be absorbed into
renormalized effective parameters for Hamiltonian (1). Most
importantly, these effects do not modify qualitatively the basic
mechanism for the emergence of topological superconduc-
tivity and MZMs predicted by the toy model. The interband
spacing in the experimental system is given by the energy as-
sociated with the confinement in the transverse directions, but
also on other effects such as the gate voltage, work function
difference between the semiconductor and the superconduc-
tor, and the subband occupation. As discussed in Ref. [54],
the average interband separation for a wire of radius 35 nm
is 10–20 meV, and for a wire of radius 50 nm is 5–10 meV
(see Figs. 5 and 6). These values are sufficiently bigger than
the parameters considered in the present work, e.g., induced
pairing potential ∼0.25 meV, typical Zeeman field ∼1 meV,
spin orbit coupling ∼1.4 (or 2.2) meV for {μ,�} = {2, 1.5}
(or {6, 3}) meV, and so on, justifying the one-dimensional
(1D) model.

The key requirements for the emergence of MZMs are the
presence of (induced) superconductivity (i.e., finite �), spin-
orbit coupling (finite α) and Zeeman splitting (finite �), as
well as the realization of the so-called topological condition,
which for the model given by Eq. (1) takes the form

[V+(xi ) − μ][μ −V−(xi )] > �2, (2)

where V±(xi ) = V (xi ) ± � is the Zeeman-split effective po-
tential. Intuitively, condition (2) can be viewed as the
requirement of having the chemical potential within the gap
between V− and V+ and no closer than � from either of the
two limits. In principle, such a condition is always realized
for large-enough values of �. In practice, however, the ap-
plied magnetic field is limited by the collapse of the (parent)
superconducting gap, hence � cannot be arbitrarily large.
Therefore, in a nonuniform system with a position-dependent
effective potential V (xi ) it is possible that, for accessible val-
ues of �, condition (2) is only realized locally, within a certain
region of length δL smaller than the length L of the nanowire.
If δL is larger than a certain characteristic Majorana length-
scale, we operationally define the emergence of such a region
as remnantMajorana physics and dub the corresponding near-
zero energy modes as partially separated Majorana modes
(ps-MMs), also known as partially separated Andreev bond
states (ps-ABSs) [36,37,55,56] or quasi-Majorana modes (q-
MMs) [38,57]. We note that the relevant Majorana lengthscale
depends on nature of the ps-MMs [39]. If the two Majorana
modes are associated with the same spin subband, their over-
lap energy εM collapses toward zero if δL > ξM , where ξM is
the coherence length typically associated with the exponential
decay of the Majorana wave function. By contrast, if the two
Majorana modes are associated with opposite spin subbands
(e.g., in the presence of an effective potential with nonzero
average slope, or a step-like potential), the condition becomes

FIG. 1. Position dependence of the Zeeman-split disorder poten-
tial, V +

dis(x) (red lines) and V −
dis(x) (blue lines), for a wire of length

L = 2μm and a Zeeman field � = 0.75meV. The black dashed lines
show the position of the chemical potential. In panels (a) and (b) the
topological condition given by Eq. (2) is manifestly satisfied within
the shaded regions. In panel (c) the condition is effectively satisfied
by the relevant, slowly varying component of the disorder potential
(see the main text).

δL > δM , where δM is the inverse characteristic Fermi k-
vector, or the width of the main peak of the Majorana wave
function [39]. In general, e.g., in the presence of disorder,
the Majorana modes mixed spin character and the relevant
Majorana lengthscale can only be determined numerically.
Nonetheless, the robust collapse toward zero of εM over fi-
nite ranges of control parameters is always associated with a
spatial separation of the Majorana modes.

For concreteness, and to gain further intuition, we con-
sider three specific examples of position-dependent effective
potentials corresponding to a system of length L = 2μm,
as shown in Fig. 1. We note that amplitude and charac-
teristic lengthscale of the disorder potential depend on the
source of disorder/inhomogeneity. For example, charge im-
purities generate an effective potential with amplitude of
the order of several meV and relatively short characteristic
lengthscales (10–20 nm) [58]. Disorder due to nonuniform
oxidation of the surface of the parent superconducting
film and inhomogeneities due to the presence of multiple
voltage gates or due to strain in the nanostructure may
involve larger lengthscales, although a detailed investiga-
tion of these sources of disorder/inhomogeneity remains
a critical outstanding task. For the hybrid structures used
in the laboratory it is likely that several different sources
of disorder/inhomogeneity contribute simultaneously, gen-
erating effective potentials characterized by two or more
lengthscales. In the illustrative examples shown in Fig. 1 we
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explicitly considered this possibility. Finally, we note that
larger-scale features can also be generated by sources with
short characteristic lengthscales (e.g., by charge impurities)
if they are nonuniformly distributed along the wire (e.g., if the
impurity concentration varies significantly).

The scenario shown in Fig. 1(a) corresponds to a set of
parameters that satisfy the topological condition given by
Eq. (2) within a segment of length δL ≈ 0.75μm near the left
end of the wire (shaded area). Within this region, the disorder
potential can be viewed as “effectively weak,” and effective
potential is equivalent to a weakly perturbed potential step
[39]. Similarly, in Fig. 1(b) the effective potential near the left
end of the wire can be viewed as a weakly perturbed smooth
confinement potential [39], and the topological condition is
satisfied within the shaded segment of length δL ≈ 0.5μm.
Note that in both cases the minimum Zeeman field required
for satisfying the topological condition throughout the whole
system is significantly higher than � = 0.75meV and may be
practically inaccessible due to the collapse of the supercon-
ducting gap.

The case shown in Fig. 1(c) is less straightforward. It is
obvious that the topological condition (2) is not explicitly
satisfied. However, the rapidly varying component of the ef-
fective potential has a weak effect on the low-energy physics.
More specifically, we estimate the characteristic lengthscale
of the low-energy BdG states ψn localized within the shaded
region as λ ≈ h/

√
2m�E ≈ 100 nm, where �E is the aver-

age value of V+ − μ, and note that λ is much larger than
the period of the rapidly oscillating component of Vdis. Con-
sequently, if we write the disorder potential as the sum of
fast and slow varying components, Vdis = V (fast)

dis +V (slow)
dis , we

have 〈ψn|V (fast)
dis |ψm〉 	 〈ψn|V (slow)

dis |ψm〉, which implies that
V (fast)
dis has negligible impact on the low-energy physics. Since

V (slow)
dis is consistent with the topological condition (2), we

conclude that the scenario in Fig. 1(c) is another example of
remnant Majorana physics in the presence of disorder.

To further clarify this picture, we calculate the Majorana
wave functions associated with the lowest BdG mode corre-
sponding to the disorder realizations illustrated in Fig. 1. The
results are shown in Fig. 2. Note that the main peaks of the
Majorana modes are separated by a distance δL consistent
with the length of the effectively topological (shaded) regions
in Fig. 1. The emergence of these partially separatedMajorana
modes is directly related to Eq. (2) being effectively satisfied
locally. This is a clear signature of Majorana physics indi-
cating (i) the presence of the key required ingredients (i.e.,
finite �, α, and �) and (ii) the local (effective) realization
of the topological condition. Furthermore, as a result of the
spatial separation between the two Majorana modes (i.e., the
red and yellow modes in Fig. 2), a tunnel probe at the left end
of the wire will only couple to the leftmost (red) Majorana
mode, which will lead to a quantized ZBC at zero tempera-
ture. This property is robust against (small) variations of the
control parameters (e.g., Zeeman field and gate potentials). By
contrast, any low-energy Andreev bound state that consists of
nearly overlapping Majorana modes, which both couple to the
tunneling probe, can only accidentally generate a quantized
ZBC peak. Hence, remnant Majorana physics is necessarily
associated with the emergence of ps-MMs and is manifested

FIG. 2. Majorana wave functions associated with the lowest BdG
modes corresponding to the disorder realizations shown in Fig. 1.
Note that the topological condition given by Eq. (2) being (effec-
tively) satisfied within the shaded regions in Fig. 1 translates into the
emergence of pairs of ps-MMs at the edges of these regions.

as robustness of certain properties (e.g., a quantized ZBC
peak) against variations of the control parameters.

Our next task is to explicitly test the generality of this
framework. By focusing on one specific feature — the quan-
tized zero-bias differential conductance — we (i) demonstrate
that quantized ZBC “islands” emerging in a disordered sys-
tem within a finite volume of a multi-dimensional parameter
space are necessarily associated with the presence of MZMs
or ps-MMs, hence represent a unique signature of (remnant)
Majorana physics and (ii) investigate the evolution of the
quantized islands as a function of disorder strength. Result (i)
implies that ZBC quantization is a good criterion for testing
the presence of Majorana physics, but it should necessarily
pass the robustness criterion within a multi-dimensional pa-
rameter space, i.e., one should demonstrate the presence of
quantized islands, rather that quantized plateaus as function of
a single parameter. Result (ii) provides a powerful tool for dis-
order diagnostics in hybrid nanostructures and demonstrates
the critical importance of performing large-scale mappings
of relevant observable quantities as functions of the con-
trol parameters, rather than focusing on fine-tuning and data
selection.

III. ZERO-BIAS CONDUCTANCE MAPS: DISORDER
DIAGNOSTICS AND REMNANT MAJORANA PHYSICS

The analysis presented in this section is based on the
numerical solution of the BdG equation corresponding to
Hamiltonian (1) for a system of length L = 2μm and dif-
ferent disorder potentials. The parameter values used in the
calculation are as follows: lattice constant a = 5 nm, hopping
t = 50.8meV (which corresponds to an effective mass meff =
0.03m0, with m0 being the electron mass), Rashba coefficient
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FIG. 3. Spatial profiles of four disorder potentials generated us-
ing Eq. (4) with V0 = 1 and parameters nd and λ given in the
corresponding panels. Note that the positions xi of the impurities, as
well as the corresponding amplitudes Ai were randomly generated.

α = 5meV (i.e., 250meV·Å), and induced pairing potential
� = 0.3meV. The chemical potential (μ) and Zemman field
(�) are used as control parameters. We model the effective
disorder potential V (x) = Vdis(x) as the total potential gener-
ated by Nd randomly distributed short-range impurities [58].
The potential of a single impurity located at position xi is

V (i)
imp(x) = Ai exp

(
−|x − xi|

λ

)
, (3)

where λ is the characteristic length of the impurity potential
and Ai is a random amplitude characterized by a Gaussian
probability distribution P (A). Given a value of the (linear)
impurity density nd , a wire of length L will contain Nd = ndL
randomly distributed impurities, which generate the (total)
effective potential

Vdis(x) = V0

Nd∑
i=1

V (i)
imp(x) = V0

Nd∑
i=1

Ai exp

(
−|x − xi|

λ

)
, (4)

where V0, a “global” disorder amplitude that enables the con-
trol of the disorder strength.We consider four specific disorder
realizations with spatial profiles shown in Fig. 3 and three
different values of the global amplitude, V0 = 1, 2.5, and 5,
which is equivalent to having 12 different simulated wires.

The presence of disorder induces low-energy (subgap)
states. To illustrate this point and to better understand the
dependence of this property on the control parameters, we
calculate the “phase diagrams” corresponding to the energy
of the lowest BdG state as a function of � and μ for a
system with Vdis = V0 ×Vimp1 and V0 = 0, 1, 2.5, and 5. The
results are shown in Fig. 4. First, we note that the clean
system (Vdis = 0) is characterized by the emergence of a large
near-zero energy area (dark blue in Fig. 4) corresponding to
the presence of Majorana zero modes within the nominally
topological region defined by the (clean) topological condition
�2 > μ2 + �2. Second, we note that Majorana physics is
robust against weak disorder, which is reflected here by the
relatively small changes in the phase diagram occurring as
a result of having a nonzero disorder potential Vdis = Vimp1.

FIG. 4. Energy of the lowest BdG state as a function of Zeeman
splitting and chemical potential for a system with a disorder profile
given by Vimp1 in Fig. 3 and different values of the global amplitude
V0. Dark blue indicates to the presence of near-zero energy states with
|E | < 10μeV. For V0 = 0 (clean system), the low-energy states are
Majorana modes emerging within the nominally topological region
�2 > μ2 + �2. In a strongly disordered system, most of the low-
energy states emerge outside the nominally topological region within
small islands in the parameter space.

However, upon increasing the amplitude of the disorder po-
tential, the correlation between the area in parameter space
characterized by low-energy values and the (clean) topolog-
ical phase diagram is completely lost. Also note that in the
presence of strong disorder most of the low-energy states
emerge outside the nominally topological region within small
islands in the parameter space. The typical area of such an
island decreases with increasing V0. We emphasize that low-
energy states responsible for the emergence of these islands
are generally not localized near the ends of the wire and,
consequently, remain “invisible” to local probes connected
to the edges of the system, such as, for example, charge
tunneling. If, however, a low-energy state is localized near the
end of the wire, it generates a zero-bias conductance (ZBC)
peak in a tunneling measurement. If the low-energy states are
associated with a finite-area low-energy island, the ZBC peak
is robust against variations of the control parameters within
a certain range given by the size of the island. Nonetheless,
since the emerging low-energy state can be a MZM, or a
ps-MM, or simply an Andreev bound state consisting of over-
lapping Majorana modes [36], the observation of robust ZBC
peaks by itself does not demonstrate the presence of Majorana
physics, i.e., the presence of MZMs or ps-MMs.

Since a robust ZBC peak does not provide a selective-
enough Majorana signature, we consider three additional
criteria: (a) the quantization of the ZBC peak in the zero
temperature limit, (b) the correlation between the area in the
parameter space characterized by the emergence of ZBC and
the topological phase diagram, and (c) the presence of edge-
to-edge Majorana correlations [36]. Criterion (c) is the most
restrictive and is only consistent with the presence of MZMs
localized at the two ends of the system. While this represents
an excellent MZM signature, it requires (effectively) weak
disorder, a condition that is probably not satisfied by currently
available hybrid structures. Criterion (b) is consistent with the
presence of either MZMs or ps-MMs and, in some cases, is
less stringent regarding the acceptable strength of the disorder
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potential. For example, a system characterized by the disorder
potential shown in Fig. 1(a) is consistent with the emergence
of ZBC (when tunneling into the left end of the system) inside
a parameter region roughly corresponding to the topological
phase of a clean wire (up to an overall shift of the chemical
potential). This is the case because the left (shaded) segment
of the wire has effectively weak disorder. Note, however, that
the system will not satisfy criterion (c) because the “yellow”
Majorana has no significant weight at the right end of the wire,
until much higher values of the Zeeman field, a regime that
may be experimentally inaccessible because of the collapse of
the superconducting gap. Analyzing the maps shown in Fig. 4
reveals that the correlation between the low-energy areas and
the nominally topological region holds only for weak disorder
(Vdis = Vimp1), being completely lost even for the intermediate
case Vdis = 2.5Vimp1.

We now turn our attention to criterion (a) — the quan-
tization of the ZBC peak — and address the following key
questions: (i) How does it compare with criterion (b) with
respect to the disorder strength requirements. (ii) Is it selec-
tive enough, i.e., does it exclude the possibility of having
garden variety ABSs as the source of the characteristic ob-
servable feature? The first question can be reformulated in
terms of the existence of remnant Majorana physics and ps-
MMs — which necessarily generate quantized ZBC peaks
when one of the modes is localized near the end of the wire
and is separated-enough from the other mode — at disorder
strengths higher than those consistent with criterion (b), when
the correlation between the low-energy regions and the topo-
logical phase diagram has disappeared. The answer to this
question is straightforward and can be obtained by simply
inspecting the nature of the low-energy states in Fig. 4 for
V0 = 2.5 and V0 = 5. Indeed, we find that some of these
states are ps-MMs, which implies that Majorana physics sur-
vives at disorder strengths higher than those consistent with
criterion (b).

Previous theoretical studies found that ZBC peaks gener-
ating quantized ZBC plateaus of height 2e2/h as a function
of control parameters such as the Zeeman field can be asso-
ciated with genuine (topological) MZMs, ps-MMs [37], or
even trivial (nonseparated) ABSs [35]. This would suggest
that criterion (a) has no more selective power than the sim-
ple observation of (robust) ZBC peaks. Here, we strengthen
the robustness requirements associated with this criterion and
show explicitly that the observation of quantized islands hav-
ing a finite volume in the parameter space is consistent with
the presence of MZMs and ps-MMs, but cannot be associated
with the presence of trivial ABSs. Consequently, we conclude
that the observation of quantized islands represents an unam-
biguous signature of (remnant) Majorana physics.

To properly characterize the presence of quantized ZBC
islands, we calculate the ZBC maps as function of the Zee-
man field and chemical potential. The results corresponding
to a disordered system with Vdis = V0 ×Vimp1 are shown in
Fig. 5. The topological phase boundary corresponding to a
clean system is marked by a red line. First, note that for weak
disorder (V0 = 1) the high conductance area almost coincides
with the nominally topological region. Upon increasing the
disorder strength, this large area breaks into smaller islands
located both inside an outside the topological region. Some

FIG. 5. Top panels: Zero-bias conductance maps for a disor-
dered system with Vdis = V0 ×Vimp1. Bottom panels: Three-color
ZBC maps. Blue corresponds to conductance values within a ±5%
window of the quantized conductance, 2e2/h, while yellow and gray
correspond to conductance values above and below this window,
respectively. The topological phase boundary of the clean system
is marked by a red line. The system with low disorder (V0 = 1) is
characterized by a large quantized area (blue) that almost coincides
with topological region. Upon increasing the disorder strength, this
area breaks into small islands that migrate outside the nominally
topological region and are not necessarily quantized.

of these islands are quantized (blue islands in Fig. 5), while
others are characterized by ZBC values larger than 2e2/h.
The typical area of an island reduces with increasing disorder
strength and the location of the islands changes from inside
to outside of the nominally topological region. To understand
the “migration” of quantized islands outside of the nomi-
nally topological region, we first note that the average over
position of the disorder potential is zero, 〈Vdis〉 = 0, which
means that the “migration” is not the result of an overall
disorder-induced shift of the chemical potential. However,
the relevant low-energy states |ψ〉 do not extend uniformly
throughout the whole wire, so that the quantity relevant to
the “Majorana condition” in the presence of disorder is not
the (nominal) chemical potential μ, but rather the “effective”
chemical potential μeff = μ + 〈ψ |Vdis|ψ〉. Consequently, one
can have μeff within the nominally topological region (i.e.,
satisfying the “Majorana condition”), while μ lies outside the
topological boundary predicted by the disorder-free model. In
addition, we note that the states corresponding to low values
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FIG. 6. Zero-bias conductance maps for a disordered system
with Vdis = V0 ×Vimp2 (top panels), Vdis = V0 ×Vimp3 (middle pan-
els), and Vdis = V0 ×Vimp4 (bottom panels). Blue corresponds to
conductance values within a ±5% window of the quantized con-
ductance, 2e2/h, while yellow and gray correspond to conductance
values above and below this window, respectively. The short magenta
and gray lines inside the right panels indicate the locations of the
constant chemical potential cuts shown in Fig. 7.

of the chemical potential tend to be very localized, typically
away from the ends of the wire, and, consequently, do not
contribute to the zero-bias differential conductance. By con-
trast, the states corresponding to large values of μ are more
delocalized and may couple strongly to the lead, generating
signatures in the ZBC maps.

To verify the generality of these trends, we calculate the
ZBC maps corresponding to the other three disorder profiles
from Fig. 3. The results shown in Fig. 6 clearly confirm
the trends discussed above and reveal the quantitative dif-
ferences between different disorder realizations. Focusing on
the stronger disorder cases (V0 = 5), we note that the large
conductance areas consist of relatively small quantized (blue)
and nonquantized (yellow) islands typically located outside
the nominally topological region. Of course, the boundary of
a yellow island is always quantized, i.e., blue, as the ZBC
varies continuously from values larger that 2e2/h inside the
island to values below 2e2/h outside the island. We also note
that the map corresponding to Vdis = 5 ×Vimp4 has only small
nonquantized (yellow) islands scattered outside the nominally
topological region. This property is also associated with the
other disorder profiles, but occurs at larger values of the global
disorder amplitude V0. Hence, we conclude that in the strong
disorder limit finding quantized ZBC peaks is difficult and

FIG. 7. Constant chemical potential traces through representa-
tive quantized and nonquantized islands. The corresponding values
of the chemical potential are marked by short magenta and gray lines
in the right panels of Figs. 5 and 6. The panels correspond, from top
to bottom, to Vdis = 5 ×Vimp1, 5 ×Vimp2, 5 ×Vimp3, and 5 ×Vimp4,
respectively. Note that cutting through a finite quantized (blue) area
translates into a (finite width) ZBC plateau as a function of the
Zeeman field.

may require a lot of fine-tuning and sample selection. In par-
ticular, if quantized (blue) islands are absent, the only way of
obtaining a quantized ZBC peak is by tuning the system near
the (quantized) boundary of a yellow island. If accidentally
this boundary is relatively straight along the direction of the
driving parameter, this may result in a quantized ZBC plateau.

To further characterize the high-conductance islands, we
calculate constant chemical potential ZBC traces through
representative quantized (blue) and nonquantized (yellow) is-
lands. The corresponding values of the chemical potential are
marked by short magenta and gray lines in the right panels
of Figs. 5 and 6, while the corresponding traces are shown
in Fig. 7. Note that a well-defined quantized ZBC plateau is
always associated with the presence of a finite area quantized
(blue) islands. We also note that some of the quantized (blue)
islands contain nonquantized (yellow) “mountains.” We still
classify these “mixed” cases as “quantized islands,” as long as
they contain two-dimensional, finite-area quantized regions.
This is in contrast to the purely yellow, nonquantized islands,
which only have one-dimensional quantized boundaries. For
example, the gray line in the bottom panel of Fig. 7 cor-
responds to a “mixed” case. Notice, the narrow quantized
plateaus on both sides of the ZBC maximum. Such plateaus
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FIG. 8. Traces obtained by fine tuning the chemical potential
near the boundary of a nonquantized island corresponding to Vdis =
5 ×Vimp4. Note that small variations of the chemical potential lead
to the disappearance of the quantized “plateau.” The correspond-
ing values of the chemical potential are μ = 5.58meV (cyan line),
μ = 5.60meV (red), and μ = 5.61meV (green).

are absent in traces associated with the nonquantized (yellow)
islands (see, e.g., the gray line fronm the top panel in Fig. 7).

We emphasize the any quantized plateau that corresponds
to a cut through the bulk of a quantized (blue) island is ro-
bust against small variations of the chemical potential. This
is the very essence of having a “quantized island” of finite
area/volume in the parameter space and an illustration of
the enhanced robustness requirements that we apply to the
quantized ZBC criterion. To contrast the robust ZBC plateaus
associated with quantized islands with the quantized conduc-
tance peak obtained by fine tuning the control parameters
near the boundary of a nonquantized island, we consider
the three cuts shown in Fig. 8, which correspond to slightly
different values of the chemical potential. Note that the red
curve exhibits a (nearly) quantized maximum, but very small
variations of the chemical potential destroy this quantization.
This property is a direct consequence of the fact that robust
quantization necessarily involves a finite area/volume in the
parameter space and the boundaries of a nonquantized (yel-
low) island do not satisfy this requirement.

Additional evidence regarding the robust quantization as-
sociated with the blue islands can be obtained by studying the
dependence of the ZBC on the third available control param-
eter, the height Ubarrier of the tunnel barrier. For concreteness,
we focus on the parameters marked by red and blue triangles
in the left panels of Fig. 7. The results are shown in Fig. 9.
First, we notice that the curves marked by blue triangles,
which correspond to parameters associated with quantized is-
lands, exhibit a quantized ZBC plateau at small enough values
of the barrier height. Even the tiny blue island corresponding
to Vdis = 5 ×Vimp4 near μ = 5.98meV and � = 2.55meV
has an almost quantized height over a significant range of
Ubarrier values. Of course, upon increasing the barrier height,
the ZBC peak becomes very narrow, as a result of reducing
the effective coupling to the normal lead, and the quantized
conductance value cannot be reached due to the presence
of a finite broadening, η = 0.4μeV. We introduced a small

FIG. 9. Dependence of the ZBC on the tunnel barrier height for
parameters corresponding to the red and blue triangles in Fig. 7 (left
panels). Blues triangles, which correspond to quantized islands, show
quantized plateaus as a function of Ubarrier. Narrower plateau-like
features are also associated with “mixed” cases — see the red curves
in the lower panels. By contrast, the red curves in the upper panels are
associated with non-quantized (yellow) islands and show no evidence
of quantized plateaus.

finite broadening in the calculation to avoid the emergence
of extremely narrow ZBC peaks, which, in practice, can never
be observed. By contrast to the blue triangles, the red triangles
corresponding toVdis = 5 ×Vimp1 andVdis = 5 ×Vimp3, which
are associated with nonquantized (yellow) islands exhibit no
quantized plateau and generate ZBC values higher than 2e2/h
for certain values of the tunnel barrier height. Finally, the red
triangles in the Vdis = 5 ×Vimp2 and Vdis = 5 ×Vimp4 panels
correspond to mixed cases and are characterized by ZBC
values that exceed 2e2/h in the low Ubarrier limit, but exhibit
narrow plateau-like features for Ubarrier ≈ 10–13meV, indi-
cating that the area corresponding to the yellow, nonquantized
“mountain” inside the blue island decreases with increasing
Ubarrier. The bottom line is that large quantized (blue) islands
exhibit ZBC quantization that is quite robust against variations
of the tunnel barrier height, small quantized islands are less
robust against such variations, while nonquantized (yellow)
islands generate ZBC quantization only accidentally, at very
specific values of the control parameters.

The final element of our analysis consists of determining
the nature of the low-energy states associated with different
types of high-ZBC islands. In Fig. 10 we show the position de-
pendence of the Majorana wave functions of the lowest energy
BdG state corresponding to a few representative parameter
sets associated with quantized (blue) and nonquantized (yel-
low) islands. The clearly distinguishing feature is that all
low-energy states associated with quantized blue islands con-
sists of partially separated Majorana modes (ps-MMs), while
the states associated with nonquantized yellow islands are
regular ABS states consisting of pairs of highly overlapping
Majorana modes. In the mixed cases, the yellow “mountains”
emerge because the leftmost (red) Majorana mode strongly
overlaps with a Majorana mode corresponding to the third
lowest BdG state (cyan in Fig. 10), again forming a regular
ABS localized near the left end of the system. Note that the
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FIG. 10. Majorana wave functions of the lowest-energy BdG
states (yellow and red) and leftmost Majorana modes of the third
lowest states (cyan) for parameters corresponding to the triangles in
Fig. 7 (left panels). Note that for 5 ×Vimp2 and 5 ×Vimp4 the first
three BdG modes are nearly degenerate. No other Majorana mode
associated with low-energy BdG states overlaps with the leftmost
red Majoranas. The left and right panels correspond to red (nonquan-
tized ZBC) and blue (quantized ZBC) triangles, respectively. Note
that the Majorana wave functions associated to the blue triangles
(right panels), which correspond to quantized islands, consist of
partially separated Majorana modes (ps-MMs). By contrast, the wave
functions corresponding to red triangles (i.e., nonquantized ZBC)
form pairs of highly overlapping Majorana modes (red-yellow or
red-cyan), which generate regular ABSs.

robustness of the ZBC quantization is intrinsically connected
to the spatial separation of the ps-MMs and is the result of
(i) having only one Majorana mode effectively coupled to
the tunnel probe and (ii) having the spatial separation (and,
implicitly, the couplings of the Majorana modes to the probe)
vary continuously with the control parameters. Since the
emergence of ps-MMs is directly connected to the presence
of (remnant) Majorana physics, as discussed previously, we
conclude that the observation of quantized islands having a
finite area/volume in the parameter space represents a unique
signature of Majorana physics that cannot be mimicked by
garden variety low-energy Andreev bound states, which are
ubiquitous in disordered systems.

IV. DISCUSSION AND CONCLUSION

We investigated the quantization of the zero-bias differen-
tial conductance as a possible signature of Majorana physics
in disordered semiconductor-superconductor hybrid struc-
tures. By numerically calculating the zero-bias conductance
(ZBC) maps as a function of Zeeman splitting and chemi-
cal potential, we showed that, upon increasing the disorder
strength, the large topological region associated with the clean

system breaks up into progressively smaller quantized islands
of ZBC value approximately equal to 2e2/h, simultaneously
with the emergence of non-quantized islands characterized by
ZBC values larger that 2e2/h. In the strong disorder regime,
because of the smallness of the islands, finding a quantized
ZBC peak of height approximately equal to 2e2/h should be
experimentally difficult and may require sample selection and
extensive tuning of the control parameters. Nonetheless, we
demonstrate that the very presence of quantized islands char-
acterized by a ZBC value approximately equal to 2e2/h and
having a finite area/volume in a multi-dimensional parameter
space is uniquely linked to the emergence of Majorana physics
supporting Majorana zero modes (MZMs) or partially sepa-
rated Majorana modes (ps-MMs). By contrast, nonquantized
islands characterized by ZBC values that exceed 2e2/h are as-
sociated with the presence of trivial near-zero energy Andreev
bound states that consist of highly overlapping Majorana
components.

In the strong disorder limit, we find that the high-
conductance islands are typically small and located outside
the nominally topological region associated with the clean
system. In this limit, the conductance maps may contain no
quantized island. If this is the case, quantized ZBC peaks
occur only accidentally at the (quantized) boundaries of non-
quantized islands and observing them requires fine tuning
the control parameters. Consequently, observing a quantized
ZBC plateau as a function of a single control parameter is
not a unique signature of Majorana physics, as it can be
obtained by moving along a (locally) straight-enough bound-
ary of a nonquantized island, which is generated by a trivial
low-energy Andreev bound state (see Fig. 8). By contrast, ob-
serving quantized islands of finite area/volume in parameter
space represents an unambiguous demonstration of Majorana
physics. Note, however, that the presence of ps-MMs (or
even MZMs) does not automatically imply a quantized ZBC
peak, e.g., if none of the Majorana modes is close enough
to the end of the wire to ensure a measurable coupling to
the tunnel probe. In other words, the quantized island Majo-
rana criterion does not exclude false negatives. We also note
that, although we introduced the quantized island criterion
using a specific model and a specific type of disorder, we
expect our main conclusions to hold in general. This includes
different types of quasi-one-dimensional systems, such as,
for example, nanowires realized in patterned two-dimensional
electron systems hosted by semiconductor-superconductor
heterostructures [59,60] and full-shell nanowires [61,62], as
well as different types of disorder/inhomogeneity, such as,
for example, the presence of a quantum dot coupled to the
wire end [18,36], which can be viewed as a strong local
inhomogeneity affecting almost all parameters, and position-
dependent fluctuations of the semiconductor-superconductor
coupling at the interface, which generate not only position-
dependent variations of the induced pairing, but, as a result of
proximity-induced renormalization [52], produce variations
of all relevant parameters (e.g., g-factor, spin-orbit coupling
strength, etc.). Indeed, the presence of disorder will generally
produce in-gap states that, in the Majorana basis, correspond
to pairs of Majorana modes. If (and only if) the system con-
tains the main ingredients for Majorana physics, some of
these Majorana pairs will be spatially separated. Assuming
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that a normal lead is attached to one of the ends of the wire,
one will obtain quantized zero-bias conductance peaks that
are robust against variations of the control parameters (i.e.,
quantized ZBC islands) whenever (i) the lead couples to a
single Majorana mode and (ii) the mode has a certain spatial
separation with respect to all other Majorana modes in the
system.

In addition to demonstrating that the observation of
quantized ZBC islands is selective-enough to exclude false
positives generated by trivial low-energy states, which are
ubiquitously present in a disordered system, we showed that
systematically generating ZBC maps over large windows in
parameter space represents a powerful diagnostic of the disor-
der present in the hybrid system. If, for example, no quantized
island can be observed within the accessible parameter range
and after testing multiple nominally identical structures, there
are two possibilities: (a) the system is in the extreme disorder
limit or (b) one of the necessary Majorana ingredients (spin-
orbit coupling, Zeeman splitting, superconducting pairing)
is absent. Within scenario (a), there is no segment of the
wire with effectively low disorder long-enough to enable the
emergence of ps-MMs. We explicitly tested scenario (b) by
setting the spin-orbit coupling to zero; the resulting ZBC map
contains only nonquantized (yellow) islands. Upon reducing
disorder from the extreme disorder limit, one should observe
(small) quantized islands, which are signatures of (remnant)
Majorana physics. The number and size of these islands in-
crease with decreasing disorder and, eventually, they start
to coalesce into larger quantized regions. At this point, the
disorder may be low-enough to enable additional Majorana
signatures, such as ZBC peaks emerging within the nominally
topological region (and not outside it) and conductance fea-
tures exhibiting edge-to-edge correlations.

We emphasize that the zero-bias conductance maps and
other similar tools consistent with our proposed approach
— performing large-scale mappings of relevant observable

quantities as functions of the control parameters — can be
extremely useful for navigating the unpaved road toward topo-
logical Majorana zero modes, as they represent (i) systematic
surveys for identifying unique Majorana features (e.g., quan-
tized islands) and (ii) powerful diagnostic tools for evaluating
disorder. Specifically, the observation of (even small) quan-
tized Majorana islands should be the next milestone along
this road because it represents the unique Majorana feature
that is least susceptible to disorder. Indeed, the emergence
of quantized islands only requires “local” Majorana physics,
which can be realized even in the presence of strong disorder,
yet it demonstrates unambiguously that the hybrid system
actually possesses all necessary Majorana ingredients. From
this perspective, looking for edge-to-edge correlations as a
signature of MZMs in samples that do not systematically
exhibit quantized islands would be premature. Finally, we
emphasize that the observation of small quantized islands in
strongly disordered systems may require sample selection and
involves tuning the control parameters over extensive regions
of the parameter space with high-enough resolution to capture
the small islands. Nonetheless, since large zero-bias conduc-
tance peaks of height approaching or exceeding 2e2/h were
already observed [21,28,29], the obvious next step is demon-
strating unambiguous signatures of Majorana physics through
the observation of quantized islands, which may still require a
reduction of the disorder strength in the hybrid system.
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[46] K. Sengupta, I. Žutić, H.-J. Kwon, V. M. Yakovenko, and S. Das
Sarma, Midgap edge states and pairing symmetry of quasi-one-
dimensional organic superconductors, Phys. Rev. B 63, 144531
(2001).

[47] K. T Law, P. A. Lee, and T. K. Ng, Majorana Fermion Induced
Resonant Andreev Reflection, Phys. Rev. Lett. 103, 237001
(2009).

[48] K. Flensberg, Tunneling characteristics of a chain of majorana
bound states, Phys. Rev. B 82, 180516(R) (2010).

[49] S. Das Sarma and H. Pan, Disorder-induced zero-bias peaks in
Majorana nanowires, Phys. Rev. B 103, 195158 (2021).

[50] S. Frolov, Quantum computing’s reproducibility crisis: Majo-
rana fermions, Nature (London) 592, 350 (2021).

[51] B. D. Woods, J. Chen, S. M. Frolov, and T. D. Stanescu,
Zero-energy pinning of topologically trivial bound states
in multiband semiconductor-superconductor nanowires, Phys.
Rev. B 100, 125407 (2019).

[52] T. D. Stanescu and S. Das Sarma, Proximity-induced
low-energy renormalization in hybrid semiconductor-
superconductor Majorana structures, Phys. Rev. B 96,
014510 (2017).

[53] B. D. Woods and T. D. Stanescu, Electrostatic effects and topo-
logical superconductivity in semiconductor-superconductor-
magnetic insulator hybrid wires, Phys. Rev. B 104, 195433
(2021).

[54] B. D. Woods, S. Das Sarma, and T. D. Stanescu, Subband
occupation in semiconductor-superconductor nanowires, Phys.
Rev. B 101, 045405 (2020).

[55] C. Zeng, C. Moore, A. M. Rao, T. D. Stanescu, and S. Tewari,
Analytical solution of the finite-length Kitaev chain coupled to
a quantum dot, Phys. Rev. B 99, 094523 (2019).

[56] G. Sharma, C. Zeng, T. D. Stanescu, and S. Tewari, Hy-
bridization energy oscillations of Majorana and andreev bound
states in semiconductor-superconductor nanowire heterostruc-
tures, Phys. Rev. B 101, 245405 (2020).

[57] C. Zeng, G. Sharma, T. D. Stanescu, and S. Tewari, Feasibility
of measurement-based braiding in the quasi-Majorana regime
of semiconductor-superconductor heterostructures, Phys. Rev.
B 102, 205101 (2020).

[58] B. D. Woods, S. D. Sarma, and T. D. Stanescu, Charge Impurity
Effects in Hybrid Majorana Nanowires, Phys. Rev. Appl. 16,
054053 (2021).

[59] M. Kjaergaard, F. Nichele, H. J. Suominen, M. P. Nowak,
M. Wimmer, A. R. Akhmerov, J. A. Folk, K. Flensberg,
J. Shabani, C. J. Palmstrøm, and C. M. Marcus, Quantized
conductance doubling and hard gap in a two-dimensional
semiconductor-superconductor heterostructure, Nat. Commun.
7, 12841 (2016).

[60] M. Hell, M. Leijnse, and K. Flensberg, Two-Dimensional Plat-
form for Networks of Majorana Bound States, Phys. Rev. Lett.
118, 107701 (2017).
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