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Stabilizing topological superfluidity of lattice fermions
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Attractive interaction between spinless fermions in a two-dimensional lattice drives the formation of a
topological superfluid. But the topological phase is dynamically unstable towards phase separation when the
system has a high density of states and large interaction strength. This limits the critical temperature to an
experimentally challenging regime where, for example, even ultracold atoms and molecules in optical lattices
would struggle to realize the topological superfluid. We propose that the introduction of a weaker longer-range
repulsion, in addition to the short-range attraction between lattice fermions, will suppress the phase separation
instability. Taking the honeycomb lattice as an example, we use the unrestricted Hartree-Fock approximation to
show that our proposal significantly enlarges the stable portion of the topological superfluid phase and increases
the critical temperature by an order of magnitude. Our work opens a route to enhance the stability of topological

superfluids by engineering interparticle interactions.
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I. INTRODUCTION

Interest in engineering topological superfluids stems from
fascinating aspects of their excitations [1-3]. When spin-
less fermions pair, the resulting superfluid can have a chiral
p-wave (px + ip,) Bardeen-Cooper-Schrieffer (BCS) order
parameter. Vortices in such two-dimensional (2D) superflu-
ids are predicted to host Majorana fermion zero modes and
therefore display non-Abelian braid statistics [4]. If observed,
these topological superfluids and related vortices could have
potential applications in topological quantum computing [3].

Atoms and molecules placed in optical lattices allow quan-
tum state engineering with accurately tunable parameters and,
as a result, have had tremendous success in realizing quantum
many-body phases of matter [5,6]. They are therefore prime
candidates for realizing topological superfluids. Several pro-
posals to introduce attractive interactions between ultracold
fermionic atoms or molecules hope to create 2D topologi-
cal superfluids via: p-wave Feshbach resonances [7], dipolar
moments [8—10], synthetic spin-orbit coupling [11,12], dis-
sipation [13], orbital effects [14], and atomic gas mixtures
[15-18]. However, it remains challenging to observe the
phase experimentally, partly due to its rather low critical
temperature.

Increasing the stability of a topological superfluid in a
lattice is not as straightforward as it first appears. Increas-
ing the attractive interaction strength V and increasing the
density of states at the Fermi level p are well-known routes
to raising the critical temperature 7. of a typical BCS state
since TCBCS ~exp (—1/Vp). Related theoretical studies [19]
of spinless fermions on 2D lattices at first confirmed this
by showing that a highly robust topological superfluid phase
is energetically favorable in a large family of lattice mod-
els therefore offering hope for realizing these states in the
laboratory. However, further studies showed that the sys-
tem becomes dynamically unstable towards phase separation,
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indicated by a negative inverse compressibility, at high den-
sities and large interactions [18,20]. The phase separation
instability that occurs at a high density of states and with large
attractive interactions between spinless lattice fermions hin-
ders prospects for achieving higher temperature topological
superfluidity.

We use Hartree-Fock theory to systematically study spin-
less fermions with just nearest-neighbor (NN) attraction on
various 2D lattices. We find that the unwanted competition
between a uniform pairing phase and phase separation is
common. The combination of particle-hole duality and a
renormalization of the chemical potential through the Hartree
contribution of the attractive interaction causes phase separa-
tion. This Hartree effect is generic to nearly any lattice and
is more pronounced at high density of states, for instance,
near a van Hove singularity, and at large attraction. But a high
density of states and a stronger attraction are, as argued above,
precisely what is needed to obtain a higher superfluid critical
temperature. We therefore see that the mechanisms needed to
stabilize topological superfluidity induce a strong Hartree ef-
fect such that the high-density superfluid phase is dynamically
unstable and separates into a mixture of two low-density (one
low particle-density and one low hole-density) superfluids,
associated with lower critical temperature. Phase separation
therefore poses a significant obstacle to realizing topological
superfluids with atoms or molecules in optical lattices.

We propose that while short-range attraction in a lattice can
induce a superfluid, a weaker longer-range repulsion enhances
the critical temperature of the superfluid by suppressing phase
separation in a mechanism similar to the one studied in the
context of frustrated phase separation for the #-J model [21].
As has been discussed for the 7-J model in the context of high-
T, cuprates, the tendency to phase separate into phases with
unequal hole densities is frustrated by a repulsive Coulomb
interaction tail [21]. This is because the repulsive interaction

©2021 American Physical Society


https://orcid.org/0000-0001-6174-7819
https://orcid.org/0000-0002-8653-2723
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.104.033322&domain=pdf&date_stamp=2021-09-27
https://doi.org/10.1103/PhysRevA.104.033322

ZHANG, TEWARI, AND SCAROLA

PHYSICAL REVIEW A 104, 033322 (2021)

tends to drive the charge carriers away from each other, giv-
ing rise to a uniform average charge density that lowers the
Coulomb energy [22].

Interactions with such an alternating sign (attractive at
short range but repulsive at long range) akin to an Ruderman-
aKittel-aKasuya-aYosida (RKKY) interaction [23] have been
examined in the context of ultracold atoms and molecules.
For example, an alternating sign interaction was discussed
in the context of multispecies boson mixtures [24]. Exper-
iments have also realized a related RKKY-type interaction
with Bose-Fermi mixtures [25,26]. Another promising route
to engineering an interaction with an alternating sign has
been discussed in the context of microwave dressed states
of polar molecules [8]. We envision one of these platforms,
e.g., microwave dressed polar molecules placed in an optical
lattice, as aroute to realizing topological superfluids stabilized
by weak repulsion.

We use unrestricted Hartree-Fock theory to examine a
minimal model of interacting spinless fermions on a lattice.
Recent work shows that phase diagrams produced using this
approximation compare well with exact diagonalization re-
sults when applied to models of this type [27,28]. We study
the honeycomb lattice as a demonstration. Our results are con-
sistent with exact diagonalization results on the honeycomb
lattice at half-filling [29,30] where we do not expect a super-
fluid. We expect the unrestricted Hartree-Fock approximation
to be qualitatively accurate away from phase transitions. We
use our method to go on to study lower densities where
attraction between NNs on the lattice leads to a topological
superfluid. The critical temperature is found to be very low,
three orders of magnitude below the lattice bandwidth, as
expected from the unwanted Hartree effect. We then include
longer-range repulsion to find an order of magnitude increase
in the critical temperature. We therefore explicitly demon-
strate the following mechanism: the addition of a weaker
longer-range repulsion to the otherwise attractive interparticle
interaction enhances topological superfluidity by suppressing
phase separation. Our work sets the stage to examine the use
of interactions with alternating signs to stabilize topological
superfluids.

The paper is organized as follows. In Sec. II we discuss
an interacting model of spinless fermions on the honeycomb
lattice and the unrestricted Hartree-Fock method used to solve
it. Section III overviews the competing orders that arise in
our model. These include the topological superfluid, a normal
metal, a zigzag stripe phase, and phase separation. Section IV
presents the results of our calculation. Here we show that,
without a weaker longer-range repulsion, attractive fermions
form a topological superfluid only at low temperatures be-
cause of competing phase separation. We then show that the
addition of longer-range repulsion enhances the stability of
the topological superfluid. Here we optimize parameters and
compute the phase diagram to reveal where the topological
superfluid is most stable. We conclude in Sec. V.

II. MODEL AND METHODS

We consider spinless fermions hopping on a 2D lattice
captured by a Hamiltonian:

H = Hy + Hiy, (1
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FIG. 1. (a) Schematic of a honeycomb lattice. The red (dark
gray) and green (light gray) arrows denote the three nearest-neighbor
and six next-nearest-neighbor bonds emanating from a central lattice
site, respectively. In our model, spinless fermions have a nearest-
neighbor attraction, V| < 0, and next-nearest-neighbor repulsion,
V, > 0. (b) Choices of the unit cells used in our self-consistent
mean-field calculations with two, four, and six sites.

with a noninteracting part:

Hy=—tY (cjc,+He)—pY ce, )
(ij) i

and an interacting part:

1 .
Hine = 5 ;Vi,jC,TC}cjci, 3)

where cj (c;) creates (annihilates) a fermion at site i, t > 0 is
the hopping amplitude, (ij) represent the bonds that connect
NN lattice sites i and j, u is the chemical potential, and
V;,j denotes the interaction between fermions at sites i and j.
For the interaction, we consider a minimal V;-V, model with
attractive NN interaction V| < 0 and repulsive next-nearest-
neighbor (NNN) interaction V, > 0:

Hiy = % Zc} c}cjci + % ch‘ c}cjci, )
(i) ()

where ((ij)) denotes bonds connecting NNN lattice sites. In

the following we work in units with kg = 1. We also set the

NN lattice spacing to unity.

We consider fermions hopping on a honeycomb lattice,
Fig. 1, where interesting superconducting order can arise [31].
The red (dark gray) arrows denote NN bonds and the green
(light gray) arrows denote NNN bonds. The noninteracting
band structure of the particles hopping between NNs on the
honeycomb lattice, Eq. (2), has two bands with particle-hole
symmetry with respect to the Dirac points at the Brillouin
zone corners, which lie at the Fermi level when the system is
half-filled, i.e., n = 0.5. Here n is the fermion number density
(or filling fraction), which is the average fermion number per
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site:

n=—Y (cle,), (5)

where N is the total number of lattice sites. The density of
states vanishes at the Dirac points. On the other hand, the
bands have van Hove singularities at the filling fractions 3/8
and 5/8, and the band character switches between particle and
hole band across the van Hove fillings. Interaction effects can
be significantly enhanced near the van Hove fillings due to the
large density of states.

We treat the interaction term, Eq. (3), using the unrestricted
Hartree-Fock approximation. It can be decoupled into three
channels: the Hartree, Fock, and pairing channels. Introducing
the mean fields: 77; = (cjc[), Yij = (c}cj), and A;; = (cicj),
the mean-field Hamiltonian takes the form:

Hyg = —t Z(c;cj +H.c)—u Zc;ci
i

(i)

1
+ 3 Zvi,j[ﬁicj‘cj +iijelc,
i#]
+ AjiClTCj' - 1//j,~cjcj +He]

3 Vst~ Wl 1AL ©
i#]
where the pairing field A;; = —A j; is of odd parity to comply
with Fermi-Dirac statistics.

The term responsible for phase separation can be seen in
the third term in Eq. (6). Nonlinear density dependence of
the chemical potential may give rise to a complex behavior
of the inverse compressibility, k= ~ du/dn, which, if neg-
ative, signals phase separation. As seen in Eq. (6), Hartree
terms of the form: ), V;, jiijclc,, effectively renormalize the
chemical potential. Equation (6) shows that we can rewrite
the chemical potential term as u — pu — > j Vijiij, where we
see that the new chemical potential gains an additional density
dependence via Vi, V5. With V| < 0, V, = 0 (nearest-neighbor
attraction only), we will see that the renormalization of the
chemical potential by V| gives rise to a complex nonlinear
behavior of p with n, and for some region of the phase di-
agram du/on is negative, indicating phase separation. At a
qualitative level, we expect that the addition of V, > 0 term to
Eq. (4) may serve to offset the Hartree renormalization of the
chemical potential by V| < 0 and therefore may keep the in-
verse compressibility positive and suppress phase separation.
More generally, as has been discussed for the #-J model in the
context of high-T, cuprates, the tendency to phase separate
into phases with unequal hole density is frustrated by repul-
sive Coulomb interaction [21]. This is because the repulsive
interaction tends to drive the charge carriers away from each
other, giving rise to a uniform average charge density that
lowers the Coulomb energy [22].

To find the possible ordered states of the system, we take
random complex numbers as initial values of the mean fields
i, ¥ij, and A;; in Eq. (6). We then transform the Hamil-
tonian into momentum space to obtain Hyr(k), where k is
the crystal momentum in the Brillouin zone. By diagonalizing
the Hamiltonian in momentum space, we find the eigenenergy

and eigenstates at each momentum k in each band. Then the
chemical potential is determined by fixing the fermion number
density n through Eq. (5). Using these intermediate results we
calculate the mean fields (cj'cl.), (c;c j), and (c,c j), which are
used as the new input values in Eq. (6) to repeat the above
calculation until the values of the mean fields converge. In the
self-consistent calculation, we do not impose any particular
structure of the mean fields (except for A;; = —Aj;), but
allow them to self-evolve and converge to the lowest-energy
state.

In a honeycomb lattice each site interacts with three NNs
and, for V, # 0, six NNNs as shown in Fig. 1(a). To explore
possible phases, we choose different unit cells containing
m = 2,4, and 6 sites, respectively, as depicted in Fig. 1(b). As
a result, there are m independent real-valued density fields 7;,
9m independent complex-valued exchange fields v;;, and 9m
independent complex-valued pairing fields A;;, which must
be solved self-consistently. When the system converges to dif-
ferent solutions, for instance resulting from different choices
of the unit cell, the solution that minimizes the free energy is
accepted.

Our self-consistent mean-field calculation is performed at
finite temperatures. But the temperatures can be taken suffi-
ciently low to extrapolate to the zero temperature limit. For
example, in the results shown below, the chemical poten-
tial is calculated at low temperatures and then extrapolated
to zero temperature. Here we observe that the temperature
dependence of the chemical potential is very weak in the
low-temperature regime. Also, here we use the mean-field
temperature as a proxy for the stability of the topological
superfluid with the understanding that a realistic 2D sys-
tem undergoes a Berezinskii-Kosterlitz-Thouless transition
[32,33] with increasing temperature.

III. COMPETING ORDERS

The Hartree-Fock equations reveal several competing or-
ders but care must be taken in analyzing the underlying phase
diagram because of phase separation. We find the following
phases as we take different limits of our model: a normal
metal phase (A;; = Imy;; = 0), a superfluid (|A;;| > 0 on
NN and/or NNN bonds) sometimes with very weak chiral
currents (Imyr, # 0, where v, is the exchange field ¥;; on
NNN bonds), a zigzag stripe phase (where 7; oscillates spa-
tially), and phase separation. We note that a nonzero Re;;
renormalizes the dispersion relation but does not lead to phase
transition in this work. In this section we discuss these orders
in detail.

We first discuss the uniform superfluid case that can arise
from just NN attraction, i.e., Vi = =V and V, =0 for V > 0
in Eq. (4). In this work we consider weak to intermediate
interaction strengths V < 2.0¢. For weak interactions, at all
particle densities but half-filling, 0 < n < 1 and n # 0.5, the
system develops a pairing instability towards the uniform
superfluid phase with chiral p-wave symmetry at low tem-
peratures. The red arrows on the left of Fig. 2(a) depict the
complex pairing order parameter on NN bonds. The pairing
order parameter we find has a phase structure with relative
phase on different bonds determined by the relative bond
orientations, i.e., the order parameter on the NN bonds has
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FIG. 2. (a) Bond order parameter pattern in the superfluid phase.
The left red (middle green) arrows depict the pairing order parameter
along NN (NNN) bonds in the honeycomb lattice. And the right
green arrows show the exchange field along the NNN bonds when
it has a finite imaginary part. (b) The zigzag stripe phase pattern in
the honeycomb lattice.

the form of Ae*"?7/3 where | = 0, 1,2 and A is a complex
number with an arbitrary global phase. Therefore, the pairing
order is of chiral p-wave symmetry and the chirality +1 is
spontaneously chosen. As a result of the pairing instability, the
spectrum is fully gapped on the Fermi surface in the superfluid
phase. (In the half-filling » = 0.5 case the system does not
open a gap and remains a semimetal at all temperatures).

The addition of repulsive NNN interactions (V, > 0) leads
to the possibility of density-wave order that competes with the
chiral superfluid. The dominant effect of NNN repulsion is to
drive the formation of a zigzag stripe phase near half-filling.
Unlike the uniform superfluid phase where there is no density
order, i.e., ii; = n, the zigzag stripe phase has alternating par-
ticle number occupation of the high-density sites n, = n + dn
denoted by the bigger red dots in Fig. 2(b), and the low-
density sites n; = n — dn represented by the smaller blue dots.
én reaches a maximum at half-filling. The same-density sites
form stripes along one of the six zigzag directions, which lead
to a sixfold degeneracy of the zigzag stripe state. In the zigzag
phase, at very low temperatures we find a residual anisotropic
(nonchiral) p-wave pairing order with maximal pairing ampli-
tude along the high-density stripes and zero pairing amplitude
perpendicular to the stripes, but this p-wave pairing vanishes
quickly with increasing temperature. In the following we ig-
nore the weak pairing order in the stripe phase. The critical
temperature of the zigzag stripe phase itself is much higher
than that of the uniform topological superfluid phase.

The superfluid phase established in the system with NN
attractions and NNN repulsion also exhibits NNN pairing. In
such a case the superfluid phase is characterized not just by
finite pairing fields on the NN bonds, but also on NNN bonds
as shown by the green arrows in the middle of Fig. 2(a). Here,
the pairing order parameter on the NNN bonds is Ae™7/3
with /=0, 1,..,5 and A, a complex number (A, also has a
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FIG. 3. The solid circles plot the low-temperature (7' = 0.001¢)
magnitudes of the order parameters in the superfluid phase in the
casesof Vi = =V and V, =V/3 with(a) V = 1.7t and (b) V = 1.9¢
as a function of density. The lines are guides to the eye that refer
to the magnitudes of the NN pairing fields |A;| (top line), the NNN
pairing fields |A,| (middle line), and the imaginary part of the NNN
exchange fields |Imy,| (bottom line) at filling fractions n < 0.5. The
blue (dark gray) shaded area represents the stripe zigzag phase (ZZ7)
and the green (light gray) shaded area refers to the region with phase
separation (PS). The results at n > 0.5 are the same as those at (1 —
n). The van Hove singularity is at filling 3/8.

relative phase with respect to A determined by the NN and
NNN bond orientation difference).

Figures 3(a)-3(b) show the calculated pairing magnitudes
|Aq] and |A;| at T = 0.001¢ for V; = —V and V, = V/3 inthe
cases of V.= 1.7t and V = 1.9¢. The results at n > 0.5 are
the same as those at (1 — n) due to particle-hole symmetry.
In addition to the pairing fields, there is also a small but
nonzero imaginary part of the exchange field on the NNN
bonds Imyr, # 0, indicating a small bond current generated
by the nontrivial Berry curvature of the band. The pattern of
the NNN exchange fields is shown on the green arrows on
the right of Fig. 2(a). Note that both the pairing field and
the exchange field depend on the bond direction: A;; = —Aj;
and ;; = ;. Both the chiral p-wave pairing and the tiny
loop current order exist in the topological superfluid phase as
allowed by time-reversal symmetry breaking.

By comparing the calculated pairing strength with the
Fermi energy Er, we can back test the validity of the mean-
field approximation. Clearly, |ViA|/Er < 1, even near the
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van Hove singularity as shown in Fig. 3(a). This indicates that
the interaction effects in our case are in the weak-coupling
regime, therefore the mean-field results are at least qualita-
tively correct away from phase transitions.

We now discuss phase separation. We start with the purely
attractive case, i.e., ¥, = 0. At fixed particle density n (n #
0.5), increasing the attraction strength V; leads to higher
critical temperature 7, of the superfluid phase. And at fixed
attraction strength, the pairing order is enhanced by larger
filling fractions n and reaches its maximum around the van
Hove filling. For 0 < n < 0.5, one would expect that the
critical temperature rises with increasing n and maximizes
around the van Hove fillings before decreasing to zero at
half-filling. (The case at 0.5 <n < 1 is the same as that
at 1 — n). However, when interactions are large enough, the
system becomes dynamically unstable starting in the neigh-
borhood of the van Hove fillings and expanding to the whole
filling regime when above a critical interaction strength. This
instability is characterized by the nonmonotonic dependence
of the chemical potential © on the particle density n. In the
case with NNN repulsion added (V, > 0), the competition
from the density-wave order can also lead to a nonmonotonic
u-n dependence at large interactions. We must therefore also
consider the possibility of phase separation.

To define the phase separated region in parameter space,
we must compute the free energy gain in forming the phase
separated state. We quantify phase separation into a mixture of
two domains with different densities n; and n, using Maxwell
construction. Note that the two domains can have either the
same order (as in the case of NN attractions only) or different
orders (as in the case with NNN repulsion added). The density
region (n1, np) of phase separation is determined as follows
[34]. For a system with fixed particle density n (n; < n < ny),
in the state of phase separation the system separates into two
domains with particle density n; and n,, respectively,

n=an; + (1 —a)ny, @)

where « is the fraction of the domain with particle density
ny while (1 — «) is the fraction of the domain with n,. And
the free energy density (the free energy per site) of the phase
separated state is

Jes(ni, np) = afi(n) + (1 — @) f2(n2), ®)

where f;(n;) (i = 1, 2) is the free energy density of a uniform
phase with particle density ;. The value of fpg is determined
by minimizing (8) with respect to n; and n,. This, together
with (7), yields the equilibrium condition:

mi(n) = pa(no) = wps, &)
fi() — pwing = fo(mo) — pany, (10)

where wps is the chemical potential of the phase separated
state, which is independent of the particle density n, i.e.,
oups/on = 0. Equations (9)—(10) are the conditions used to
identify the values of n; and n, for the densities with phase
separation.
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FIG. 4. The solid circles plot results from our calculation of the
chemical potential 1 against particle number density n extrapolated
to zero temperature. The lines are a guide to the eye. A flat horizontal
line indicates a phase separated region. The interaction is chosen to
be attractive between nearest neighbors, V; = —V and V, = 0, where
@V =1.1t,(b)V =14, (c) V = 1.7t,and (d) V = 2.0r. We see
that increasing the strength of the attractive interaction leads to phase
separation (PS) over a larger range of densities and superfluid (SF)
over a smaller range of densities.

IV. ENHANCING TOPOLOGICAL SUPERFLUIDITY

We can now discuss how to systematically strengthen topo-
logical superfluidity. As discussed above, increased attraction
V1 leads to phase separation for V, = 0. In the following we
show that V, > 0O helps stabilizing superfluidity to a certain
degree to allow higher-temperature superfluids.

We first demonstrate that only NN attraction [V} = —V and
V, =0forV > 0in Eq. (4)] does not have a strong superfluid
phase. Figure 4 shows the calculated values of the chemical
potential (the dotted lines) at varying densities at T = 0 (ex-
trapolated from low temperature results) with the interaction
strength V = 1.1¢ in Fig. 4(a), V = 1.4t in Fig. 4(b), V = 1.7t
in Fig. 4(c), and V = 2.0¢ in Fig. 4(d). The chemical potential
varies continuously with the particle density and the inverse
compressibility k! ~ du/dn is well defined. The appear-
ance of the negative inverse compressibility, i.e., the chemical
potential becomes a decreasing function of the density, in
the neighborhood around the van Hove filling in Fig. 4(a)
signals that the system is unstable towards phase separation.
The density region n; < n < n; of phase separation can be
deduced by the Maxwell construction as discussed above.

Here the system separates into two domains of different
particle densities n; and n,, each associated with a lower su-
perfluid critical temperature, i.e., T.(n;) < T.(n) and T.(n;) <
T.(n). And the chemical potential of the mixture remains
constant from n; to n,, as indicated by the flat line segments in
the p-n plots. With increasing interaction strengths as shown
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FIG. 5. The same as Fig. 4 where (a) and (b) are cases with
V==V and V, =0. (c) and (d) are cases with V; = —V and
V, = V/3. By comparing the top row to the bottom row we see that
the next-nearest-neighbor repulsion suppresses PS in favor of SE. A
stripe zigzag phase (ZZ) also appears near n = 0.5.

in Figs. 4(b)—4(d), the phase separation region is enlarged and
eventually the system becomes completely phase separated at
all densities displayed in Fig. 4(d). It is this instability towards
phase separation that limits the ability to increase the critical
temperature by increasing interaction strengths or increasing
the density of states. In the honeycomb system with just NN
attraction, we find that the highest critical temperature 7\N
of a uniform topological superfluid phase is very low, on the
order of 0.001z.

We now discuss the addition of NNN repulsion to stabi-
lize topological superfluidity, i.e., V» > 0. Figure 5 shows the
comparison of the calculated chemical potential at varying
densities at 7 = 0 in the case of V| = —V, V, = 0 [black dot-
ted lines in Figs. 5(a)-5(b)] and in the case of V; = =V, V, =
V/3 [red dotted lines in Figs. 5(c)-5(d)] for V = 1.7¢ and
V = 2.0¢, where the superfluid phase in the latter case has
chiral p-wave symmetry as well.

Although the presence of longer-range repulsive interac-
tion weakens the pairing strength at a certain density, it more
efficiently reduces the phase separation and sustains the uni-
form superfluid phase to higher densities at larger interactions.
Comparison between Figs. 5(a)-5(b) and Figs. 5(c)-5(d)
shows that the density region of a uniform topological su-
perfluid phase is significantly enlarged by the addition of the
weaker NNN repulsion V.

Another effect from the additional NNN repulsion is the
emergence of zigzag stripe density-wave order around half-
filling when the interaction is large enough. This density wave
order competes with the topological superfluidity. As shown
in Fig. 5(c), there is a direct first-order phase transition from
the chiral p-wave pairing order to the zigzag stripe order when

increasing the particle density towards half-filling at V = 1.7¢
or below.

Further increasing the interaction strength V results in a
nonsmooth change in the chemical potential. The chemical
potential drops right above a critical density n., associated
with a transition from the chiral p-wave pairing state to the
zigzag stripe state, and continues to decrease slightly before
increasing again. At large interactions, the drop in chemical
potential becomes substantially discontinuous as shown in
Fig. 5(d) by the red dots, where V' = 2.0¢ and the calculated u
value drops discontinuously right above n, = 0.35 and 0.65.
Meanwhile the system transits from the chiral p-wave order to
the zigzag stripe.

We therefore see that, at V = 2.0¢ as shown in Fig. 5(d),
the chiral p-wave pairing phase is dominant at lower densities,
but with increasing density there appears a density region with
phase separation where the chemical potential wpg remains
constant (the red flat line segment) and the system becomes a
mixture of topological superfluid and zigzag stripe domains.
The system moves into the zigzag stripe phase when further
increasing the density towards half-filling. The zigzag stripe
order is the strongest at half-filling » = 0.5 [29]. Although
in the case of V = 2.0¢ the density region of the uniform
topological superfluid phase is smaller than that in the case of
V = 1.7¢, the pairing strength at the same density is stronger
in the former due to its larger interaction strength. Hence, the
search for the optimal values of interactions needs to take into
account both pairing strength and pairing density.

As illustrated above, the addition of a weaker NNN re-
pulsion to the NN attraction suppresses the phase separation
instability in favor of the topological superfluid phase to a
certain degree. To further optimize parameters, we perform
a systematic study for a fixed value of V. =2.0¢t (V; = V)
by varying the ratio V,/V (we choose V,/V = 1/4, 1/3, 2/5,
1/2, and 3/5). We find that V, can not be too weak in order
to prevent the phase separation instability resulting from the
Hartree effect of the attractive interaction V. But V5 can not
be strong because its repulsive nature weakens the pairing
strength and its induced density wave order (zigzag stripe)
competes with superfluidity. The optimal value we find is
WV = 1/3.

We also search for optimal values of V. We set a fixed
ratio V,/V = 1/3 while varying V/t (We choose V/t = 1.7,
1.8, 1.9, 2.0, and 2.1). We find that weaker V lowers the
pairing strength. But a too strong V gives rise to a large phase
separation region and reduces the pairing density significantly.
Taking into account both the pairing strength and pairing
density, we find that the optimal choice of V and V,/V values
isaround V/t = 1.9 and V,/V = 1/3.

Figure 6 shows the calculated 7-n phase diagrams at n <
0.5 with V; = =V and V, = V/3, where the red connected
dotted lines refer to the critical temperature 7. of the topolog-
ical superfluid phase. The results at n > 0.5 are the same as
those at (1 — n). In the case of V = 1.7t as shown in Fig. 6(a)
at low temperatures with increasing particle density n the
system first experiences a second-order phase transition from
the normal (metallic) phase to the superfluid phase, and then a
direct first-order phase transition from the uniform topological
superfluid phase, denoted by the red (left) shaded area, to
the zigzag stripe phase, denoted by the blue (right) shaded
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FIG. 6. Calculated T-n phase diagrams. The solid circles refer
to the critical temperature 7. of the chiral p-wave pairing phase
obtained from our calculation. The solid lines are a guide to the
eye. The results at n > 0.5 are the same as those at (1 — n). Here
we have chosen interaction parameters V, = —V and V, = V/3 with
(@) V =1.7t and (b) V = 1.9¢ to optimize the critical temperature
of the superfluid. We find that the case with V = 1.9¢ leads to a sig-
nificant increase in critical temperature near n ~ 0.3. The horizontal
dashed line shows, for comparison, the highest critical temperature
found for just NN attraction and no NNN repulsion.

area, when the density approaches half-filling n = 0.5. And
the highest critical temperature is approximately 7. =~ 0.007z.
In the case of V = 1.9t as shown in Fig. 6(b), instead of a
direct first-order phase transition from the superfluid to the
zigzag stripe phase, a phase-separated region denoted by the
green (middle) shaded area occurs indicating the system be-
comes a mixture of two phases before moving into the zigzag
stripe phase near half-filling. Larger interaction strengthens
the pairing such that the highest critical temperature in this
case is around 7, =~ 0.013¢. In both cases, the maximal critical
temperatures are much higher than that in the case of V, = 0,
ie., TNN ~ 0.001z.

The results found in this section further confirm the quali-
tative accuracy of our approximation. The calculated values
of T, are much lower than the Fermi temperature 7T, i.e.,
T./Tr < 1, which reflects the weak-coupling nature of the

interaction effects in our problem. This provides a self-
consistency check for use of the mean-field approximation.

We have also performed calculations including the third-
and fourth-neighbor interactions to study the impact of a
long-range tail. For weak enough repulsive long-range tail the
topological superfluid phase is not affected, and is even more
robust if the long-range tail is of the RKKY type, i.e., having
alternating interaction sign change with distance.

V. DISCUSSION AND CONCLUSION

Our studies identify a mechanism to enhance the stabil-
ity of a topological superfluid made from spinless lattice
fermions. We propose that the addition of weaker longer-
range repulsion to the short-range attraction helps stabilize
the topological superfluid phase against phase separation at
high density of states and large interaction strength. Our unre-
stricted Hartree-Fock calculation is argued to be qualitatively
accurate. We find that for a honeycomb lattice reveals an
order of magnitude enhancement of the topological superfluid
critical temperature, making this intriguing phase more exper-
imentally accessible. For the honeycomb lattice, the addition
of the longer-range repulsive interactions also introduces a
competing zigzag stripe order, which becomes dominant near
half-filling at large interactions, consistent with exact diag-
onalization studies [29,30]. Although the competition from
the zigzag phase at larger interactions leads to the appearance
of another type of phase separation at certain densities, the
superfluid order can still benefit from the increased interaction
strength thus allowing a higher critical temperature.

Atoms and molecules placed in a honeycomb optical lattice
[35-37] can be used to engineer the essential properties of H.
The alternating sign can, for example, arise in a Bose-Fermi
mixture where the bosons would mediate a sign-alternating
interaction between fermions trapped in the lattice. Polar
molecules, e.g., 40K 8TRp, placed in an optical lattice offer
another example. A combination of an ac microwave and a
weak dc field can induce a spatially alternating sign interac-
tion between molecules [8].

We expect that our results apply to other lattices. This
expectation is based on the observation that the Hartree effect
driving phase separation is a generic mean-field shift effec-
tively adding density dependence to a renormalized chemical
potential. On a qualitative level, the addition of longer-range
repulsion tends to roughly cancel the Hartree effect thus al-
lowing the topological superfluid to persist. Future work will
quantitatively explore this mechanism in other lattices where
we expect [18] even higher critical temperatures.
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