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Chiral anomaly induced nonlinear Hall effect in semimetals with multiple Weyl points

Snehasish Nandy,':* Chuanchang Zeng

,23-" and Sumanta Tewari®

' Department of Physics, University of Virginia, Charlottesville, Virginia 22904, USA
2Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE),
School of Physics, Beijing Institute of Technology, Beijing 100081, China
3Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology,
Beijing 100081, China
4Department of Physics and Astrononty, Clemson University, Clemson, South Carolina 29634, USA

® (Received 20 June 2021; accepted 8 November 2021; published 22 November 2021)

After the experimental realization, the Berry curvature dipole (BCD) induced nonlinear Hall effect (NLHE)
has attracted tremendous interest to the condensed matter community. Here, we investigate another family of
Hall effect, namely, chiral anomaly induced nonlinear Hall effect (CNHE) in multi-Weyl semimetal (mWSM).
In contrast to the BCD-induced NLHE, CNHE appears because of the combination of both chiral anomaly
and anomalous velocity due to nontrivial Berry curvature. Using the semiclassical Boltzmann theory within the
relaxation time approximation, we show that, in contrast to the chiral anomaly induced linear Hall effect, the
magnitude of CNHE decreases with the topological charge n. Interestingly, we find that the CNHE has different
behaviors in different planes for single and triple Weyl semimetals. Our prediction on the behavior of CNHE in

mWSM can directly be checked in experiments.

DOI: 10.1103/PhysRevB.104.205124

I. INTRODUCTION

In recent years, the three-dimensional Dirac and Weyl
semimetals have attracted tremendous interest in topologi-
cal condensed matter physics. Weyl semimetals (WSMs) can
accommodate gapless chiral quasiparticles, known as Weyl
fermions, near the touching of a pair of nondegenerate bands
(also called Weyl nodes) [1-9]. In a WSM, the nontrivial
topological properties emerge due to Weyl nodes which can
act as a source or sink of the Abelian Berry curvature. Each
Weyl node is associated with a chirality quantum number,
known as the topological charge, whose strength is related to
the Chern number and is quantized in integer values [10].

Recently a number of inversion-broken and time-reversal
(TR) symmetric materials such as (TaAs, MoTe,, WTe,)
have been experimentally proposed as WSMs [11-15,39].
Although these systems have Weyl nodes with topological
charge (n) equal to %1, it has been proposed that Weyl nodes
with higher topological charge n > 1 can also be realized
in condensed matter systems [9,16—18]. These are called
multi-Weyl semimetals (mWSMs). Unlike the single WSM
whose dispersion is linear in momentum along all directions
(i.e., isotropic dispersion), the mWSM (n > 1) shows natural
anisotropy in dispersion. In particular, the double WSM (n =
2) and triple WSM (n = 3) depict linear dispersion along one
symmetry direction and quadratic and cubic energy dispersion
relations for the other two directions, respectively. Using the
density functional theory (DFT) calculations, it has been pro-
posed that HgCr,Se4 and SrSi; [9,16,17] can be the candidate
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materials for double WSM, whereas A(MoX); (with A = Rb,
TI; X = Te) can accommodate triple-Weyl points [19]. It is
important to note that only the Weyl nodes with topological
charge n < 3 can be allowed in real materials due to restric-
tion arising from discrete rotational symmetry on a lattice
[16,18]. Moreover, the single WSM can be viewed as a three-
dimensional (3D) analog of graphene, whereas the double
WSM and triple WSM can be represented as 3D counterparts
of bilayer and ABC-stacked trilayer graphene, respectively
[20-22].

Weyl semimetals offer a plethora of fascinating transport
properties due to the manifestation of quantum anomalies in
the presence of external electromagnetic fields. Until now,
chiral anomaly (also known as Adler-Bell-Jackiw anomaly)
induced negative longitudinal magnetoresistance (LMR) and
planar Hall effect (PHE) are the two most remarkable trans-
port properties studied in theory and experiments [23-29]. In
WSMs, the numbers of left-handed and right-handed Weyl
fermions are separately conserved in the absence of any ex-
ternal gauge or gravitational field coupling. On the other
hand, this number conservation is violated in the presence
of nonorthogonal electric (E) and magnetic (B) fields (i.e.,
E - B # 0). This effect is known as chiral anomaly [7-9,30-
37]. The proposed LMR and PHE induced by the chiral
anomaly have already been realized in several experiments
[38-49]. The corresponding current (J), which is linear in
electric field in both cases, can be expressed as J o« (E - B)B.

Recently, another interesting transport property induced
by chiral anomaly—nonlinear Hall effect (NLHE)—has been
proposed in the context of single WSM [50]. This chiral
anomaly induced nonlinear Hall effect (CNHE) is different
from NLHE induced by Berry curvature dipole (BCD) [51,52]
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because the latter can survive in the absence of external mag-
netic field. The CNHE is second order in electric field and
appears due to the combination of both the chiral anomaly
and the anomalous velocity (v,) due to Berry curvature ().
The corresponding current density can be expressed as JV =
—e qus viAny, where s is the chirality of the Weyl node,
vi ~ E x & [10], and An; ~ sE - B is the modification of
the chiral electron density in the vicinity of each Weyl node.
The NLHE caused by both the chiral anomaly as well as BCD
has been studied in single WSMs [50,53-55], whereas they
have not yet been explored in the context of mWSMs. Recent
experimental realizations [56,57] of BCD-induced NLHE in
single WSM add to the interest of experimental verification of
these effects in various systems.

In this paper we investigate the chiral anomaly induced
nonlinear Hall effect in mWSMs using a low-energy model.
The main findings of this work are the following: Using
the quasiclassical Boltzmann transport theory within the re-
laxation time approximation, we show that the CNHE in
mWSMs can only survive in the presence of achiral tilt (i.e.,
tilt of the opposite chirality nodes are in the same direction) of
the Weyl nodes when the Weyl nodes are at the same energy.
On the other hand, this restriction no longer exists in WSMs
with nonzero chiral chemical potential (i.e., the Weyl nodes
are located at different energies). We further analytically
show that the magnitude of CNHE depends nontrivially on
topological charge n [see Egs. (7) and (8)]. Although the de-
pendencies are nontrivial, the magnitude of CNHE decreases
with n. This is in contrast with the case of a chiral anomaly
induced linear Hall effect, where the magnitude increases with
n. Interestingly, the chemical potential dependence (u=2/")
remains unchanged in both linear and nonlinear cases. More-
over, we also find that the CNHE shows different behavior
(i.e., different coefficients) in single and triple WSMs when
external electromagnetic fields are rotated in different planes,
whereas they have the same behavior in the case of double
WSM [see Eqgs. (7) and (8)].

The rest of the paper is organized as follows. In Sec. II
we formulate the general expression of CNHE using quasi-
classical Boltzmann formalism. In Sec. III we introduce the
low-energy Hamiltonian of multi-Weyl semimetals. In Sec. [V
we derive the analytical expressions of CNHE in mWSMs and
find the dependencies of CNHE with topological charge n.
Finally, we summarize our results and discuss possible future
directions in Sec. V.

II. FORMALISM OF CHIRAL ANOMALY INDUCED NLHE

In the presence of electric and magnetic fields, transport
properties are substantially modified due to the presence of
nontrivial Berry curvature, which acts as a fictitious magnetic
field in the momentum space. The steady-state phenomeno-
logical Boltzmann transport equation within the relaxation
time approximation takes the form [58]

80 — 8k
t(k)
where go = m is the equilibrium Fermi-Dirac

distribution function, with 7, u, and €k the temperature,
chemical potential, and energy dispersion, respectively. t (k)

- Ve +k-Vi)ge =

ey

is the intranode scattering time, assuming the internode scat-
tering time (7,) is much greater than intranode scattering time.
We neglect internode scattering time because the terms related
to internode scattering do not contribute to CNHE as shown in
Ref. [50]. Here, gk is the distribution function in the presence
of perturbative fields. In this work we ignore the momentum
dependence of t for simplifying the calculations and assume it
to be a constant [24,26,50]. In the presence of Berry curvature
as well as an electromagnetic field, the semiclassical equations
of motion for an electron can be written as [59,60]

i = D(B, szk)[vk + %(E x @) + %(vk : szms},

2
ik = D(B, szk)[eE + %(vk x B) 4+ %(E . B)Slk}, (2

where vy is the group velocity, and D(B, k) = (1 + %(B .
@)~ is the phase-space factor as the Berry curvature
2, modifies the phase-space volume element dkdx —
D(B, Q)dkdx [59]. The term o (E - B) is responsible for
chiral anomaly which arises in axion electrodynamics of
WSM. Now plugging the above equation into Eq. (1), the
distribution function gk up to second order in E for spatially
uniform external fields can be obtained as gx = go + g1 + &2,
where

2 d
g1 = _t eE~Vk+e—(E'B)(9k'Vk) & ’
h aék

D(B, )
e’ g1
E(E -B)(R - Vk)j| <3—€k)

T
3

D(B, )
From the general expression of the current density J =
—e f [dk1D™'igy where [dk] = (2 )3, the nonlinear Hall cur-

rent density up to the order of (rE’B) in the presence of
external fields can be obtained as [50]

Zer

a k,S
(Vies - Ry (E x szk,o(ago ) )
6k,s

&= |:eE-Vk+

o )3[(E Vies)(B - i) — (E - B)

where € ; is the energy dispersion of a Weyl node associ-
ated with chirality s. The above equation indicates that the
CNHE is a purely Fermi surface quantity and vanishes in
an inversion-symmetric system. Here, we have ignored the
higher-order (i.e., 7> dependent) contribution.

It is important to note that along with the chiral anomaly
induced contribution, there may exist other contributions to
the nonlinear Hall current, such as BCD-induced contribution
and disorder-mediated contributions such as nonlinear side
jump and skew-scattering contributions. However, the chiral
anomaly induced NLHE is different from the BCD induced
[52] as well as disorder-mediated NLHE [62], both of which
are independent of magnetic field. Therefore, CNHE can be
separated from BCD- and disorder-induced NLHE by exam-
ining their dependence on the magnetic field [52,54,55,61,62].
Moreover, the chiral anomaly induced nonlinear Hall effect

205124-2



CHIRAL ANOMALY INDUCED NONLINEAR HALL EFFECT ...

PHYSICAL REVIEW B 104, 205124 (2021)

can also be differentiated from linear Hall effects by measur-
ing second harmonic Hall resistance in ac experiments.

III. MODEL HAMILTONIAN

The low-energy effective Hamiltonian describing a Weyl
node with topological charge n and chirality s can be written
as [63-65]

H, (k)
= s[a, k' [cos (ngy)oy + sin (ngy )o,] + vk, — sQ)o]
+Csv(k; — sQ) — 5Qo, (%)

where k| = \/kf + k%, ¢ = arctan(k,/k;), and o0;’s
(v, 0y, 0;) are the Pauli matrices representing the pseudospin
indices. The Weyl nodes are shifted by an amount £Q in
momentum space due to broken time-reversal symmetry,
whereas the broken inversion symmetry shifts the nodes in
energy by +0Q,. Here, o, = k';—il, where v, is the effective

velocity of the quasiparticles [in the plane perpendicular to
the z axis and k( represents a material-dependent parameter
having the dimension of momentum. v and C; denote the
velocity and tilt parameter along the z direction, respectively.
In this work, we restrict ourselves to the type-I multi-Weyl
node, i.e., |G| < 1, which indicates that the Fermi surface
is pointlike at the Weyl node. The energy dispersion of
the multi-Weyl node associated with chirality s is given by
ef,s = Cyv(k, —sQ) — sQp £ x/ot,%ki” + v2(k, — sQ)?, where
=+ represents conduction and valence bands, respectively. It
is now clear that the dispersion around a Weyl node with
n =1 is isotropic in all momentum directions for v = v, .
On the other hand, for n > 1, we find that the dispersion
around a double (triple) Weyl node becomes quadratic (cubic)
along both k, and k, directions, whereas it varies linearly
with k,. Now, the different Berry curvature components of a
multi-Weyl node associated with the chirality s are given by

27,2n—2
o — :|:£ nva;ky’
k,s — 2 /33
Kk,s

where By = v a,zlki” + v%(k, — sQ)?, and = represents con-
duction and valence bands, respectively. It is clear from
Eq. (6) that, similar to energy dispersion, the Berry curvature
is isotropic in all momentum directions for the single Weyl
case, whereas it becomes anisotropic for WSMs with n > 1,
i.e., for double WSM (n = 2) and triple WSM (n = 3), due
to the presence of the ki"_z factor and monopole charge n.
The above observation itself is an indication that the multi-
Weyl nature can indeed modify CNHE, which appears due to
combination of both chiral anomaly and anomalous velocity
induced by nontrivial Berry curvature, in double and triple
WSMs as compared to the single Weyl case.

It is important to note that to calculate NLHE we assume
that the Weyl nodes are reasonably well separated such that
the Fermi surface is a set of disconnected regions around each
Weyl node. Therefore, each Weyl node will contribute to the
total CNHE additively. In a real WSM or a lattice model
of a WSM where multiple pairs of Weyl node coexist, we
expect that the qualitative behavior will remain similar to the
linearized model studied here if we consider those Weyl nodes

{ky, ky, n(k; — sQ)}, (6)

in the Brillouin zone whose energies are very close to the
Fermi energy and add the contributions from each of those
Weyl nodes.

IV. RESULTS

To calculate the different components of chiral anomaly
induced nonlinear current (CNC), we apply in-plane (xy
plane) electric and magnetic fields. To perform the integration
[Eq. (4)] for type-I multi-Weyl semimetal, we use cylindrical
coordinate geometry and make several transformations—
() ki =k, ', ko=kv; (D) ko= k" (i) kL =
ksin@, k, =kcos@. After some algebra, J°V at zero tem-
perature can be obtained as

e'ra nln(9+2n) — 2102 — 1]

JCN xy = 3
T et TR
Cs N
X E W(E'B)(ZXE), (7N

where we have added the contribution of two nodes of op-
posite chirality. Here, u; = u + sQp and I'(m) = (m — 1)!
for any positive integer m. It is clear from Eq. (7) that the
nonlinear current is restricted in the same plane (xy) with the
applied fields and flows perpendicular to the tilt direction (z
direction in current study). Therefore, we can define this effect
as a chiral anomaly induced nonlinear planar Hall effect.

We now first consider Qy = 0, i.e., the Weyl nodes are at
the same energies. In this case, it is evident from the above
equation that the chiral anomaly induced nonlinear planar Hall
current (CNPHC) becomes finite only when the sign of the tilt
of opposite chirality nodes are the same (Cy = C_). In other
words, the CNPHC vanishes in the absence of tilt (C;. = C_ =
0) and even in the presence of chiral tilt (C;. = —C_) of the
Weyl node. Considering Qy # 0, i.e., when the Weyl nodes are
located in different energy, one can see from Eq. (7) that the
condition for finite CNPHC changes. In this case, the CNPHC
can be nonzero in both cases, i.e., for chiral as well as achiral
tilt configurations of the Weyl nodes.

From Eq. (7), it is clear that the magnitude of chiral
anomaly induced nonlinear Hall current depends nontrivially
on topological charge n. Although the dependency is non-
trivial, the magnitude of CNPHC decreases with n. This is
in contrast with the case of the linear planar Hall effect
where the magnitude increases with n [66]. Moreover, we
also find that the multi-Weyl nature (i.e., the n dependence)
also comes into CNPHC through chemical potential as ;%"
Interestingly, the chemical potential dependence (u; /") re-
mains unchanged in both linear and nonlinear cases [66].
These scaling factors of CNPHC with the topological charge
might distinguish a single, double, and triple WSM from each
other in experiment. Having done a more detailed analysis,
surprisingly, we find that in the presence of nonorthogonal
external fields (i.e., E - B # 0), although the second term of
Eq. (4) is contributing to CNPHC for all WSMs, the first term
vanishes in the case of double WSM.

We would like to point out the most striking difference
between the BCD-induced and chiral anomaly induced non-
linear Hall effect. In the case of BCD-induced nonlinear Hall
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FIG. 1. Chiral anomaly induced nonlinear Hall current JV as
a function of chemical potential with different tilt strengths (C; =
0.1, 0.5, 0.8v) for a single multi-Weyl node with chirality s = +1.
Panels (a, b) show the component Jff’ of the nonlinear Hall current
with n =2 and n = 3, respectively, while panels (c, d) show the
component J& of the nonlinear Hall current with n =2 and n =
3, respectively. The symbols represent numerical results calculated
directly from Eq. (4), while the corresponding black lines indicate
the analytical results based on Egs. (7) and (8) (for a single node
s =41 only). Here we use v =0.37eV A, v, =0.32eVA, k =
0.8A, 0y =0.1eV.

effect, the contribution associated with the Weyl nodes van-
ishes (irrespective of the presence or absence of the tilt of the
Weyl nodes). On the other hand, the whole contribution of
the chiral anomaly induced nonlinear Hall effect is generated
from the Weyl nodes.

Now we study the CNHE when the external fields are
restricted in the xz plane. In this configuration, JV at zero
temperature can be written as

JCN —
e = T

- 1]

e4rmx,’,z’ |:[n(9 +2n) — 2]1"[2 — ﬁ]EXBx
2 n

48n°T'[3 — 1]E.B.
(Tn —2)(5n — 2)(3n — 2)T'[} — 1]

G
x Z W(z x Ey). (®)

The above equation suggests that unlike the xy plane, the non-
linear Hall current flows perpendicular to the plane containing
external electric and magnetic fields (i.e., along y direction).
Comparing Eq. (7) and Eq. (8), it is clear that in the case
of [JV],., the coefficients proportional to E2B, and E,E,B,
are different, whereas the coefficients proportional to E)?Bx
and E.E,B, for JnyN are the same. This leads to the fact that
the current in the y direction in the presence of external elec-
tromagnetic fields restricted in the xy plane will be different
when the electromagnetic fields are rotated in the xz plane.
This fact gives rise to the planar anisotropy for chiral anomaly

@ /2 (b) /2

TN (0=3)

1107

i \ Vs
// N o7
s A
-

- \

= = OMM off] - - .OMM Off
OMM on OMM on
37/2 37/2

FIG. 2. The polar plot of chiral anomaly induced nonlinear Hall
current J$V as a function of field angle & (where 6 is the angle
between the components of electric and magnetic fields on the xz
plane) for a single multi-Weyl node with chirality s = +1. Panels
(a) and (b) show the polar distribution JfZN @) forn=2and n =3,
respectively. The solid red and blue lines indicate the magnitudes
of JXCN proportional to E,B, (0 =0, 7) and E.B, (0 = n/2,31/2),
respectively. The different lengths of the blue and red lines indicate
the anisotropy of the chiral anomaly induced nonlinear Hall effect in
multi-Weyl systems. Note that the factor (£ x E,) as given in Eq. (8)
is perpendicular to the xz plane and is ignored here. We also consider
the effect of orbital magnetic moment (OMM) on the magnitude of
JX‘;N ; the numerical results are represented by the green dots.

induced nonlinear Hall effect. Interestingly, we find that this
planar anisotropy is present in the case of single and triple
WSMs, whereas this no longer exists in double WSM.

From Eq. (8), it is clear that similar to the xy plane, the
chiral anomaly induced nonlinear Hall current depends non-
trivially on topological charge n. In particular, the magnitude
of CNC decreases as we go from single WSM to higher-order
WSMs (n > 1) at a fixed chemical potential. Although the
topological charge dependence of CNC is different for the
xz plane compared to the xy plane, the chemical potential
dependence (1 ~>/") remains unchanged in both planes.

The analytical results obtained in Egs. (7) and (8) agree
very well with the numerical calculations, as shown in Fig. 1.
Note that JXCyN has the same coefficients proportional to E2B,
and E(E,B,, while J&" shows different coefficients propor-
tional to E2B, and E.E.B,. To illustrate this point more
clearly, we plot the magnitude of JXCZN as a function of angle
0, the angle formed between the projections of the electric
and magnetic fields on the xz plane (i.e., (E, B) =0). As
shown in Fig. 2, JS¥(0 = /2,37 /2) equals zero for the
case of n = 2, while J)gN (n = 3) shows an obvious anisotropy
among its x-direction [0 = 0, 7 /2, the first term in Eq. (8)]
and z-direction [0 = /2, 37 /2, the second term in Eq. (8)]
contribution, whose magnitudes are implied by the blue and
red solid lines, respectively. Interestingly, a close look into
Egs. (7) and (8) suggests that the magnitude as well as n
dependence of nonlinear Hall current along the y direction is
different for single and triple WSMs whereas it remains same
for double WSMs.

The wave packet of a Bloch electron carries an orbital
magnetic moment (OMM) in addition to its spin moment
due to the self-rotation around its center of mass. The orbital
moment m(K) which couples to the magnetic field (B) through
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a Zeeman-like term m(k) - B modifies the unperturbed band
energy and quasiparticle group velocity as é; = ¢, —m - B
and vk = v — %V(m -B) and consequently, semiclassical
equations of motion. The orbital magnetic moment for a
multi-Weyl node with chirality s is given by

e r2l il { ( Q)} ( )
m = kx,k,,n k, N . 9
k,s Zh/g]%’s Y 4

where =+ represents valence and conduction bands, respec-
tively. It is clear from Eq. (9) that the orbital magnetic moment
is anisotropic in mWSMs compared to single WSM. In order
to calculate chiral anomaly induced nonlinear Hall current
numerically in mWSMs, we have chosen ky = 0.8, v = 0.37
eV A, v, =032eV A, |G| =0.8,0)=0,0 =0. We find
that the presence of orbital magnetic moment does not affect
the magnitude of JEV, as shown in Fig. 2. This feature, distinct
from that in the anomalous responses in the linear regime
[67-69], in turn can also be used to distinguish the chiral
anomaly induced nonlinear Hall effect from linear Hall effects
in experiments.

V. DISCUSSION AND CONCLUSION

We investigate the chiral anomaly induced nonlinear
Hall effect in multi-Weyl semimetals. In the presence of
nonorthogonal electromagnetic fields, it appears because of
the combination of both chiral anomaly and anomalous ve-
locity due to nontrivial Berry curvature in WSM. Using the
quasiclassical Boltzmann theory within the relaxation time
approximation, we have predicted the behavior of CNHE con-
sidering a low-energy model of type-I mWSMs, specifically,
using two separate multi-Weyl nodes of opposite chiralities in
the presence of external electric and magnetic fields rotating
in the (i) xy plane and (ii) xz plane.

We find that the chiral anomaly induced nonlinear Hall
current flows perpendicular to the tilt direction, i.e., perpen-
dicular to the z direction in the present work. In both cases
we show that when the Weyl nodes are located at the same
energy, the CNHE in mWSMs can only be nonzero in the
presence of achiral tilt (i.e., tilt of the opposite chirality nodes
are in the same direction) of the Weyl nodes. Interestingly, this
restriction no longer exists when the Weyl nodes are located at
different energies in WSM (i.e., in the presence of a nonzero
chiral chemical potential). We further analytically show that,
in both cases, the magnitude of CNHE depends nontrivially on
topological charge n [see Eqgs. (7) and (8)]. Although the de-
pendencies are nontrivial, the magnitude of CNHE decreases
with n. This is in contrast with the case of chiral anomaly

induced linear Hall effect where the magnitude increases with
n. Interestingly, the chemical potential dependence (i, /™)
remains unchanged in both linear and nonlinear cases.

We find that the CNHE shows different behavior (i.e., dif-
ferent coefficients) when external electromagnetic fields are
rotated in different planes [see Egs. (7) and (8)]. Specifically,
we find that the current in the y direction with the external
electromagnetic fields rotated in the xy plane will be different
than the case when the external electromagnetic fields are
rotated in the xz plane. This fact gives rise to the planar
anisotropy for chiral anomaly induced nonlinear Hall effect.
Interestingly, we find that this planar anisotropy is present in
the case of single and triple WSMs, whereas this no longer
exists in double WSM. Therefore, the CNHE can be used as
a probe to distinguish single, double, and triple WSMs from
each other in experiments. We also find that unlike the linear
response case, the orbital magnetic moment has no affect on
CNHE.

In contrast to the linearized model we used in this work,
a real mWSM may contain Weyl nodes with different tilts
with respect to one another, and a number of pair of nodes
can be greater than 1. In addition, the CNHE calculated using
the low-energy model becomes dependent on the momentum
cutoff in the case of type-Il mWSMs [50]. On the other hand,
we know that a lattice model of Weyl fermions with lattice
regularization provides a natural ultraviolet cutoff to the low-
energy Dirac spectrum. Therefore, to predict the quantitatively
correct experimental behavior of CNHE in mWSMs, one
needs to study a mWSM Hamiltonian using DFT or a lattice
Hamiltonian of an inversion-broken mWSM. Finding a lattice
description of an inversion-broken mWSM and calculation of
CNHE are interesting questions which we leave for future
study. Investigating CNHE in the quantum regime (high mag-
netic field), where the Landau-level quantization is applicable,
would also be a fascinating question to look into. Similar
to a chiral anomaly induced linear Nernst effect [66,70], we
also expect a finite nonlinear Nernst effect induced by chiral
anomaly in mWSMs, which is yet to be explored.
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