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1. Introduction and motivation

Since the development of magnetic resonance imaging (MRI) in the 1970s [25], it has been widely used
in hospitals and clinics for medical diagnosis thanks to its non-invasive property of not requiring exposure
to radiation. Most of the MRI machines in use today utilize a spin-warp imaging scheme [14], where spatial
information and associated phase were encoded successively by varying the amplitude of the gradients of
the radio frequency (RF) pulses. Such a scheme is a Fourier-transform based MRI method that produces
data in the spatial frequency space, known as the K-space. The decoding process involves an inverse Fourier
transform to obtain an image. In order to produce an accurate image, it requires enough phase-encoding
steps to sufficiently cover the K-space, which can lead to long scan time [36]. To obtain accurate MRI
images with less scan time, modern parallel MRI (pMRI) techniques have been developed and advancing
during the past two decades. By using multiple RF coils, such as surface coils in an array, to simultaneously
receive partial information of the target slice with fewer positions in the K-space data, the pMRI approach
accelerates the imaging speed significantly [12], which leads to reduction of motion artifact, breath-hold
time, diagnostic duration, and so on. The information loss due to reduction of samples in the K-space can
be compensated by the duplicity of the data from multiple coil acquisitions using appropriate reconstruction
techniques, e.g., see [22]. However, pMRI has its own drawbacks in terms of specific aliasing artifacts due
to undersampling, hardware issues, field of view (FOV) selection, coil-calibration, etc. The success of the
PMRI techniques depends on their ability to remove such aliasing artifacts without sacrificing too much
of the diagnostic integrity. Current techniques for pMRI reconstruction can be categorized as image-based
methods, K-space based methods, or their hybrids [12,42]. The sensitivity encoding (SENSE), e.g., [33,37,44],
which is image-based, and the generalized autocalibrating partially parallel acquisitions (GRAPPA), e.g.,
[16,34,40], which is K-space based, are the two most well-known pMRI techniques for reconstruction and
are commercially available for clinical purposes. We next briefly discuss these two methods.

1.1. SENSE and GRAPPA

SENSE was the first pMRI method used routinely, which performs the K-space sampling in the phase-
encoding direction; that is, a field of view (FOV) reduction acquisition. To recover the skipped K-space
data, multiple receiver coils in an array of surface coils are used to produce multiple coil images. The coil-¢
K-space data g, from the receiving process can be modeled as follows:

9. =PFSu+n, v=1...,p,

where p is the number of coils, 7, is the white Gaussian noise, @ is the target ground-truth image, S, is
the individual coil sensitivity, F is the discrete Fourier transform operator, and P is the sampling operator
with respect to the downsampling procedure. See Fig. 1(a)—(d) for an example of coil images (with full
FOV selection). Due to the downsampling procedure, the obtained coil images are aliased. Moreover, the
accurate estimation of coil sensitivities is needed in the SENSE-based methods, but it is often difficult
to determine them due to the complex geometry of the coils. Consequently, the reconstructed images, to
approximate the ground-truth image by the SENSE model (e.g., via least square methods), often suffer from
aliasing and artifacts. More advanced regularization techniques using sparse representation systems with
desirable properties must be employed in order to reduce the aliasing artifact. The TV (Total Variation)-
based [23,43] and wavelet-based [6] regularization methods were successfully adopted into the SENSE-based
reconstruction problem to suppress the noise or artifacts. Recently, a 2-dimensional (2D) directional Haar
tight framelet (2DHTF) system was constructed and successfully applied for the pMRI problem in [28].
GRAPPA is currently the most commonly employed K-space based pMRI method. Unlike SENSE-based
methods, GRAPPA does not need the explicit computation of the coil sensitivity S,. Instead, it uses a few
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Fig. 1. (a)—(d) are the four coil images from the corresponding full K-space data; and (e) is the Sum-of-Squares (SoS) image.

extra lines of the full K-space data, sampled at the region near the center of the K-space during the scan.
Such extra lines of the K-space data are called auto-calibration signal (ACS) data. The more ACS lines are
used, the more accurate K-space data are reconstructed, but it comes at the cost of increased scan time.
Moreover, the number of interpolation kernels to be estimated may be extremely large, especially for the
random sampling model in the K-space.

In view of the above drawbacks of GRAPPA, the ¢;-SPIRIT (Iterative Self-Consistent Parallel Imaging
Reconstruction, [34,40]) method modifies the GRAPPA method by constructing exactly p interpolation
kernels regardless of sampling patterns, only one kernel for each coil, and iteratively reconstructs the target
K-space data by regularizing coil images together with the joint sparsity-promoting norm || - ||12. A general
study on sparsity promoting functions can be found in the recent work [38,39]. To avoid overloading symbols,
we present the £1-SPIRIT model here and postpone the discussion of the GRAPPA and ¢;-SPIRIiT with
more details in Section 4:

1
min /(€ = 1)(Qu+ )3 + N Waa 7y (Qu+ 9)]12, (1)

where u = (uq,...,up) collects p coil K-space data, Qu = (I, ® (I — P))u is the missing K-space data to
be recovered, g = (Pg,)"_; is the observed p coil K-space data, C = (C,)?_; is the pre-estimated kernel
matrix with C, being the matrix form of the kernel for coil-¢, F, = I, ® F is the stacked Fourier transform
operators, and Wy, = I, ® W is the stacked 2D wavelet transform operator W. Here I, is the identity
matrix of size p X p, I is the identity whose size is consistent with that of underlying image, the symbol ®
denotes the Kronecker product of matrices. Solving the model (1) eventually results in a 3D K-space data
usp = Qu + g, which gives a 3D image tsp = f;1U3D. The final reconstructed MRI image @ is obtained
by the SoS (Sum-of-Square) of dgp.

In model (1), only 2D transform-based systems are essentially used to decompose coil images [6,23,34,
40,43]. That is, W is applied to each coil image independently. However, multiple coil images (or coil K-
space data) in the pMRI system are correlated to each other since each coil image contains parts of the
information of the same target slice. For example, see Fig. 1(a)—(d) for the four coil images of size 512 x 512
from (the inverse discrete Fourier transform of) the corresponding full K-space data. The four coil images
contain essentially the same information except for varying pixel intensity due to different coil positions.
Using only 2D systems may not well exploit such correlated information. In fact, Fig. 2(b) is the SoS image
of the four coil images reconstructed by GRAPPA [16] while Fig. 2(c) is reconstructed by the ¢;-SPIRiT
[34] method using 2D wavelet regularization. Compared with the GRAPPA method without regularization,
one can see the effectiveness of the ¢;-regularization using the 2D wavelets (with sharper edges and smooth
background, also cf. Fig. 2(a) for the SoS image by full K-space data). However, due to the use of 2D
systems, the correlated information among coil images is considered by joint-sparsity regularization over
wavelet coefficients of multiple coils and the aliasing artifacts may not be well suppressed in the reconstructed
images. Fig. 2(b) by GRAPPA has obviously aliasing artifacts while Fig. 2(c) by ¢1-SPIRiT reduces aliasing
artifacts but many of them are still observable (see their zoom-in parts, respectively).
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(a) SoS(full) (b) GRAPPA (c) £1-SPIRIT (d) £1-ShearLab3D (e) ¢/1-3DHTF (f) ¢,-3DHSTF

Fig. 2. Reconstruction results on 32% K-space data of the four coil images in Fig. 1(a)-(d) by the uniform sampling mode (one
line taken from every four lines) with 48 ACS lines. (a) SoS image of full K-space data (Reference, upper) with zoom-in block
(lower). (b) GRAPPA [16]: aliasing artifacts and noise could not be suppressed clearly. (c) ¢£1-SPIRiT method [34]: noise removed
but with aliasing artifacts. (d) ¢1-ShearLab3D: noise and artifacts exist. (e¢) £;-3DHTF: noise and artifacts are suppressed nicely.
(h) £,-3DHSTF: best performance. The lower images are the zoom-in parts of upper images with respect to the same zoom-in
block in (a).

In view of the above discussion, it is very natural to consider the following ¢;-W3D model:

min 3 (€ ~ D)(Qu-+ )} + [TWanF, (Qu + )]l @)

where Wsp is a 3D wavelet/framelet transform applied to a 3D image data directly, and T is a diagonal
matrix with non-negative elements. Since the GRAPPA method does not need the explicit estimation of
coil sensitivity functions and in view of the effectiveness of the ¢1-SPIRIiT model (see Fig. 2(c)), we therefore
focus on the development of a suitable W3p system for the above GRAPPA-based model ¢;-W3D.

1.2. Motivation: a tailor-made 3D directional Haar semi-tight framelet

Sparsity is always the core in the development of wavelet/framelet representation systems and their
applications in image processing (e.g., see [8,7,10,18]). To capture sparsity of high dimensional signals,
directionality is one of the most desired properties when designing such representation systems. In fact,
directional systems have been intensively studied during the last two decades and shown to play an important
role in both theory and application. For example, see curvelets and shearlets in [5,13,26] and tensor product
complex tight framelets (TP-CTFs) in [20,21], and many references therein related to directional multiscale
representation systems. One would expect that the use of a 3D directional representation system Wsp in (2)
should lead to better results compared to the use of 2D systems. Unfortunately, without carefully picking
a 3D system, one would immediately run into trouble. We summarize the issues, results, and our findings,
after we tested various 3D directional systems, as follows.

Unbalanced dimensions. The support of 3D input data to be decomposed by W35 is not evenly distributed
due to the fact that the number of coils is much smaller than the dimension of the coil images. For example,
when stacking the 4 coil images of size 512 x 512 in Fig. 1(a)—(d), it becomes a 512 x 512 x 4 cuboid data
and the length 4 of the stacked dimension is significantly small compared to 512 in the other two image
dimensions. Typical 2D /3D directional systems of shearlets or TP-CTFs are bandlimited systems whose
underlying filter banks are with infinitely supported filters. Even with the compactly supported TP-CTF
systems developed in [20] and the compactly supported 3D shearlets in [27], the supports of those filters are
still too long.

Directionality. The more directionality of the 3D systems do not necessarily lead to the better perfor-
mance of such systems in the pMRI reconstruction. For example, shearlet systems can achieve directionality
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Fig. 3. The coil images of Fig. 2 (a)—(d) can be stacked as a 3D image data and decomposed by the 3D directional Haar tight
framelet filter banks in DHTF3. The framelet coefficient images (a)—(f) are slices of the 3D framelet coefficient data obtained by
the filters by, by, byy, bs,y, b, and by, respectively. Note that (a)-(d) are with sparse coefficients (in terms of black area), while
(e) and (f) are not sparse.

with desired number of directional filters, and we used the shearlet transforms in the software package
ShearLab3D! of [27] as the W3p system for model (2) by properly setting of filter parameters (cf. [32] on
MRI setting). It turns out that the performance of such a shearlet system in ShearLab3D (see Fig. 2(d)) is
not as good as the ¢;-SPIRIT though it is better than the GRAPPA in terms of suppression of noise and
aliasing artifacts. This result demonstrates that the use of general 3D systems with directionality, including
the TP-CTF systems (as demonstrated in [28]), do not necessarily perform well in the setting of pMRI
reconstruction.

Coil correlated information. The 3D data from pMRI contains intra-coil essential information and inter-
coil correlated information. A 3D system that does not take care of such information appropriately will
not result in good pMRI reconstruction images. The 2DHF system in [28] only captures the intra-coil
information. It is natural to ask whether one can extend the 2DHF system to a 3D setting. Indeed, the work
in [19,41] proved that similar directional Haar tight framelet (DHTF) systems exist in any dimension. The
underlying multi-dimensional high-pass filters of the DHTF system have only two nonzero filter coefficients
with opposite signs. Hence, all of them naturally exhibit directionality. In particular for the 3D case, the
respective 3DHTF system (an extension of the 2DHTF system) has 28 framelet functions supported on the
unit cube. Since the support of each high-pass filter is extremely short (only 2 taps), it fits the setting of
PMRI reconstruction well. We applied such a 3SDHTF system in our model (2) and it does produce better
results. See Fig. 2(e) for ¢1-3DHTF (i.e., W3p = 3DHTF). One can see that though the noise and aliasing
artifacts are still observable in Fig. 2(e), the resulted pMRI reconstruction image is clearly better than those
of GRAPPA, /1-SPIRIT, and #;-ShearLab3D.

The successful application of the 3DHTF system in Fig. 2(e) as well as its drawbacks (still observable
noise and artifacts) motives us to further examine the 3DHTF system carefully and eventually leads to the
construction of our tailor-made 3-dimensional directional Haar semi-tight framelet (3DHSTF) system (see
[30] for a preliminary version). Here, we briefly lay out the main ideas for the explanation of both why and
why not the 3DHTF system performs well and for the construction of our 3DHSTF system. We leave the
details in Section 3.

The 3DHTTF system, also denoted by DHTF%, consists of 28 high-pass filters, but essentially is equivalent
to a filter bank, denoted by DHTFg = {aH;bx,by,bz,bmy,bm,y,bmz,b$72,byz, bymbxyz,bmyyz,bzﬁyz,bmyy},
with 13 high-pass filters by eliminating same directional filters (see Section 3 for details). The low-pass filter
al is a 3D Haar low-pass filter while the others are 3D high-pass filters with only 2 taps. In short, the
low-pass filter captures essentially the inter-coil information while the high-pass filters can capture intra-
coil information. This explains the better performance of the ¢1-3DHTF result in Fig. 2(e) than those of
GRAPPA, ¢,-SPIRiT, and ¢;-ShearLab3D.

1 The code is available at: http://www.shearlab.org.
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Not all high-pass filters in DHTF%7 however, are effective. The subscripts z,y, z in the high-pass filters
indicate the directional information that the corresponding filter can capture. The z direction is with respect
to the stacked dimension (along p coils) while the z,y directions are with respect to the image dimensions.
One can clearly see from Fig. 3 that the high-pass filters b, by, byy, by, Produce sparse framelet coefficients
while other two filters b,,b,, do not produce sparse coefficient sequences. In fact, all filters in DHTF?))
involving the z-axis (the z-filters) do not give sparse representations. This is because the pixel intensity
varies along different coils and the z-filters taking difference between different coil images only reflect the
pixel intensity difference but not the key information. As a result, the use of z-filters may bring unnecessary
information that reduces the performance of the system. This answers the question why the ¢;-3DHTF
still has observable noise and aliasing artifacts, and eventually leads to our tailor-made 3D directional Haar
semi-tight framelet system 3DHSTF := {a;b,,by, bsy, by, baux } from the DHTF% by replacing all filters
involving the z-axis with only one filter b,,,. Such a system is called semi-tight since the system is very close
to a tight framelet system up to certain modifications. One may doubt that the filters b, by, byy, bs,y sSeem to
be 2D filters only. We would like to point out that together with the 3D low-pass filter a’?, they are indeed
3D filters that nicely fit to our setting of coil image data. The first level decomposition of 3DHSTF is able
to capture 2D features in each coil image while the second level decomposition of 3DHSTF (dealing with
data convolved with a® already) can detect the correlated information between every two consecutive coil
images. Our experimental result in Fig. 2(f) shows that model (2) with W3p being our 3DHSTF performs
the best among all methods in Fig. 2(b)—(f). Edge details are preserved, the noise is almost removed, and
there is almost no aliasing artifacts. We remark that the framelet coefficients from both af and b, will
not be not processed, instead will be directly used in the reconstruction of 3DHSTEF.

1.3. Our contributions

The contributions of this paper mainly lie in the following four aspects. First, we propose a GRAPPA-
based model using 3D wavelet/framelet regularization to reduce noise and aliasing artifacts in the pMRI
reconstruction; second, we carefully design a 3DHSTF that not only captures the crucial directional features
inside each coil image but also well utilizes the correlated information among different coil images. The
3DHSTF perfectly fits into the pMRI reconstruction algorithm using the GRAPPA-based model; third,
fast undecimated discrete framelet transform (UDFmT) algorithms as well as the ADMM scheme [15] for
efficiently solving our ¢;-W3D model are investigated and developed; and finally, our numerical experiments
demonstrate the effectiveness and efficiency of the £1-3DHSTF model. In fact, we show that aliasing artifacts
are significantly reduced using our model comparing to the GRAPPA and the ¢;-SPIRiT approaches.

The rest of this paper is organized as follows. In Section 2, we present the theoretical background of tight
framelets and tight framelet filter banks. In Section 3 we discuss the construction of 3DHTF filter banks
and our tailor-made 3DHSTF filter banks for our /;-W3D model. In Section 4, we present some details on
GRAPPA method and the ¢;-SPIRIiT method that related to our 3D wavelet/framelet regularization model
for the pMRI reconstruction. Moreover, using ADMM scheme, we gives the detailed algorithm for solving
our £1-W3D model step-by-step. Numerical experiments are presented in Section 5. Conclusions and further
remarks are given in Section 6.

2. Preliminaries on tight framelets

In this section, we lay out the foundation for the construction of directional Haar tight framelets and
introduce the fast undecimated discrete framelet transforms.
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2.1. Tight framelets and tight framelet filter banks

We first discuss the connections between tight framelets and filter banks. By La(R?), we denote the usual
space of square integrable functions defined on R¢. We say that {¢; 1, ...,1%s} C Ly(R%) is a (nonhomoge-
neous dyadic) tight framelet in Lo(R9) if

A7 may = D KFoC=RNP+D D D (L2027 - =k, V[ e Ly(RY). (3)

kezZ? j=0 =1 keZd

Denote £o(Z?) the set of all finitely supported sequences. A mask/filter h = {h(k)}yczq : Z¢ — C on Z% is
a sequence in £o(Z?). For a filter h, its Fourier series is defined to be h(€) := Y2, cza h(k)e ¢ for ¢ € R
In particular, by § we denote the Dirac sequence such that §(0) = 1 and §(k) = 0 for all & € Z4\{0}. For
v € Z%, we use &, to stand for the sequence (- — ), i.e., 8,(y) = 1 and 8, (k) = 0 for all k € Z4\{~}.
Note that g;(f) = e~ 17, We say that a filter bank {a;by,...,bs} C £o(Z?) is a (d-dimensional dyadic) tight
framelet filter bank if

a(€)al€ + mw) + > b()b, (€ + mw) = 8(w), £ € R, (4)

where w € {0,1}? and for a number 2 € C, & denotes its complex conjugate. Eq. (4) is equivalent to
the perfect reconstruction property of the discrete framelet transforms associated with a filter bank [18,
Theorems 1.1.1 and 1.1.4].

Assume that @(0) = >, 7. a(k) = 1. Then one can define compactly supported tempered distributions
¢ and 11, ..., 1, on R? through

Haw and  9,(6) = b(€/2)9(6/2),6 e R =1,...,5, (5)

where the Fourier transform f of a Lebesgue integrable function f € L;(R?) is defined to be f(g) =
Ja f(z)e™*8dx, € € R, and can be naturally extended for functions in Lo(R?). It is known that {¢; ¢4, ...,
Y5} is a tight framelet in Ly(R?) if and only if {a;by,...,bs} is a tight framelet filter bank [18, Theorem
4.5.4]. Also cf. [9,11] for related results and many references therein for extensive investigation on tight
framelets derived from refinable functions. Consequently, in this paper we mainly focus on the design of
framelet filter banks.

2.2. Discrete affine systems and fast discrete framelet transforms

A tight framelet filter bank can be used to (sparsely) represent data sequences through its associated
discrete framelet transforms as well as its underlying discrete affine system [17]. More precisely, given a data
sequence v € [(Z%) and a filter h € lo(Z?), the subdivision operator Sy, : [(Z4) — 1(Z?) and the transition
operator Tp, : I(Z%) — I(Z?) are defined to be:

[Shvl(y) =24 Y o( —2k) =2hx* (v12)](y), ez,

keZd (6)
(Tavl(y) =2 > w(k)h(k —27) = 2'[(h* % v) L 2)(7), v €ZY,

keZa

where * is the convolution operation:



Y.-R. Li et al. / Appl. Comput. Harmon. Anal. 60 (2022) 446—470 453

@ processing I|
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processing I|
Fig. 4. Multi-level discrete framelet transforms (DFmT) associated with a filter bank {a; by, ..., bs}. Each box with b, runs through
¢ =1,...,s and the circle with 4+, sums over all s outputs from boxes with b,.

[ v](y) ==Y h(y—kw(k), vel(Z?), hely(Z?),

kezd
h* is a filter defined by h*(k) = h(—k), k € Z%, and 1 m, | m are the up-, down-sampling operators with

m € N, respectively:

v m’l i m’l d.
[va](v):Z{( Ve AmTYELE i i ml() = o), 4 € 2.

0, otherwise,

For a given data v € [(Z%), the one-level framelet decomposition employing a filter bank {a;bi,...bs}
produces a set {vg; w1, ..., ws} of framelet coefficient sequences:

Vo = 27d/27:ﬂ}7 w, = 2id/27;hv7 =1,

while the one-level framelet reconstruction with {vg;ws,...,ws} outputs a reconstruction data sequence

T = 274/2 (Savo + ZSwaL> .

=1

TIteratively employing the one-level framelet decomposition (reconstruction) with vy := v gives the mult-level
discrete framelet transforms (DFmT):

Decomposition: v;_; = 2*d/27;vj, Wj_1;, = 2’d/277hvj, v=1,...,8, j=J,...,1

Reconstruction: v; = 2-d/2 <Savj1 + ZSb/Ule;L) o J=10,0

=1

See Fig. 4 for the illustration of the multi-level discrete framelet transforms (DFmT) with J = 2.
Define filters a; and b, ; for j > 1 by

@) = A©)a(2) a2 and by(€) == GOMRTE), 1=1,.s
with the convention that ag := §. That is,
aj=ax*(@t2)*---x(at27Y) and b, =a;j_1x (b 12/71).
Define
agje) = aj(- — k) and b, [jx =0, —k), t=1,...,s.

Then, the discrete affine system associated with the filter bank {a;b;,...,bs} at level J is given by
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 EAbSE |
Fig. 5. Undecimated discrete framelet transforms (UDFmT) associated with a filter bank {a;bq,...,bs}. Each box with b, runs
through ¢ = 1,...,s and the circle with 4+, sums over all s outputs from boxes with b,.

DAS;({a;by,...,bs}) == {277 Pay 00yt k € Z U{279/2b, [joiny 1k € Z% 0 =1,... s},

One can show that ([17, Theorems 2.1 and 2.4]) a filter bank {a;by,...,bs} is a tight framelet filter bank,
i.e., satisfying (4) if and only if it satisfies

(a) the perfect reconstruction property: SaTov + Y o Sp, To,v = 2% for all v € (Z?), if and only if it
satisfies,
(b) the energy preservation property:

17al3 + > [T, 0l3 = 29|I0ll3, Yo € 12(29), (7)

=1

if and only if it has,
(c) the discrete affine tight frame representation: v =3, cpas, ({asr... b.y) (Vs Wt for all v € 13(Z4) and for
all J € N.

2.8. Fast undecimated discrete framelet transforms

A tight framelet filter bank can be used to (sparsely) represent data sequences through its associated
discrete framelet transforms. However, noting that due to 7 (v(-—2n)) = [Tpv](-—n), for a translated version
of the input signal, the output framelet coefficient sequence may no longer be a translated version of the
original framelet coefficient sequence. In signal /image/video processing, translation invariance property of a
discrete framelet transform is very much desirable especially in the scenario of signal denoising/inpainting.
To preserve the translation invariance property, in this paper, we consider the more redundant version of
DFmT, that is, the undecimated discrete framelet transforms (UDFmT):

Decomposition: wvj_1 = v; * (a* 1 2770, j=J,..1,

wj—1; = v; * (b) 12779, 1=1,...,s.
Reconstruction: v; =vj_1 * (a1 2777) 4 ij—lu (b, 12779, j=1,...,J.
=1

Here vy := v is an input data sequence. See Fig. 5 for the illustration of UDFmT with J = 3.
The multi-level undecimated discrete framelet transforms correspond to a undecimated discrete affine
system, which is given by

UDAS;({a;b1,...,bs}) :={apm - k € Zd} U{bype : k€ Z%.,=1,..., 3}}']:1
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One can show that the undecimated discrete framelet transforms employing a filter bank {a; by, ..., bs} have
the perfect reconstruction property, i.e., any input data sequence and its reconstruction data sequence using
UDFmT are the same, if and only if it satisfies

(a) the partition of unity condition:

@@ +> (& =1, £eR, (®)
=1

if and only if it has,
(b) the undecimated discrete affine tight frame representation: v = EueUDASJ({a;b““’bS})(v,u>u for all
v € I5(Z?) and for all J € N.

3. A tailor-made 3D directional Haar tight and semi-tight framelet

We are ready to introduce the 3D directional Haar tight and semi-tight framelet (3DHTF and 3DHSTF)
systems. The 3DHSTF is called semi-tight since it is very close to the tight framelet system 3DHTF with
certain modifications. First, we have the following theorem from [19] that is motivated by the 2D directional
Haar tight framelet (2DHTF) constructed in [28].

Theorem 1. Let af := 274 Zve{O,l}d 8., be the d-dimension Haar low-pass filter. Define the high-pass filters
b1,...,bs with s := (2;) =29"1(2¢-1) by b, :=b,, ,, := 2*‘1(6%1 —0,,,) and1 <1 <12 < 24 where we label
the 2% vertices in {0,1}% as {0,1}* = {~,,,..., v, } and L = w +19—1t1. Then {a™;by,...,bs}
is a tight framelet filter bank such that all the high-pass filters by,...,bs have directionality and exhibit
%(Sd — 1) directions in dimension d. The functions ¢ and i1, ..., associated with {a*;by,...,bs} is a
compactly supported d-dimension directional Haar tight framelet in Lo(R%) with

o — L2

¢ = X[o,1)2 ¥ = X[o,1] ('*%) X[o 5

2

az]

forv=1,... s, where xa is the characteristic function of A such that xa(x) =1 if x € A and xa(z) =0
ifz ¢ A for a set A CR?,

In [19], the proof of the tightness in Theorem 1 is based on the proof of (4) from a geometric point of
view. We now provide an alternative algebraic proof to show the tightness of the directional Haar tight
framelets in Theorem 1 from the viewpoint of the energy preservation property of the discrete framelet
transforms in (7).

Proof of Theorem 1. Because all the filters in Theorem 1 are supported inside {0,1}¢ and noting that
Tro = 243", v(k + 2-)h(k), the d-dimensional discrete framelet transform (decomposition) using the filter
bank {a;b;,...,bs} in Theorem 1 can be simply implemented by applying the discrete framelet transform
acting on data supported on each disjoint {0,1}¢ + 2k, k € Z<¢, where {0,1}% is the set of all vertices
of the unit cube [0,1]%. We now exam the framelet coefficient sequences Tpv for h € {a;by,...,bs}. For
simplicity, we list the vertices in {0,1}¢ as {71,...,724} = {0,1}% and assume that the data value of v at
the point 7, 4 2k is z; € R. Then all the high-pass filters in Theorem 1 are given by by := +27%(8,, — d.,)
with 1 < j < k < 2% The framelet coefficient sequence 7T; v produced by this high-pass filter is simply
+(x; — ). The coefficient sequence T,z v produced by the Haar low-pass filter a® in Theorem 1 is simply
(x1 + + - 4+ x9q4). Hence, the total squared energy of all the framelet coefficient sequences is
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Fig. 6. The 2-Dimensional directional Haar tight framelet (2DHTF) system is generated from 6 framelet functions 1,...,9s
supported on the unit square [0, 1]%. Left to Right (First 6 squares): ¢*, ..., %% The unit square is split to 4 sub-blocks By, ..., Bs.
Each colored sub-block represents either 1 (blue) or -1 (orange) of the function value. White blocks mean 0 function value. The 6
framelet functions clearly cover the directions of 0°, 90°, and +45°. The last 3D cube: The unit 3D cube [0, 1]3 evenly divided to
8 sub-cubes C1,...,Cg and it is the support of the 28 framelet generating functions 1, ..., 12s for the 3-dimensional directional
Haar tight framelet (3DHTF) system. Each function ; = XCi, — XCiy» 1< <iy <8andi= % + iy — i1, of the

28 functions is supported on two sub-cubes Cj;,, C;, selected from the 8 sub-cubes. Note that (Z) = 28. See Theorem 1 for more

details. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

(@4 Hm)’+ D (- )
1<j<k<g2d

Noting that (z1 4 - 4 294)* = 2 4+ - + 234 + 201 cpcoa 20521 and (z; — xx)? = (23 + a3) — 2,23, we
conclude that the total squared energy of all the framelet coefficient sequences is

S Thele =@+’ Y (-
he{a;by,...,s} 1<j<k<2d
= @i+ )+ Y (2 +af)
1<j<k<2d
=2%at + - +ada) = 27|03,
which proves the energy preservation property of the discrete framelet transforms in (7). Hence, the fil-

ter bank {a;b1,...,bs} in Theorem 1 must be a tight framelet filter bank. Their associated functions
@,11,...,1s can be easily deduced according to (5). O

(1) When d = 1, Theorem 1 simply gives the standard Haar orthogonal wavelet filter bank DHTF; :=
{af; b} with

aH:%((so—i—él) andb:%(éo—él).

(2) When d = 2, Theorem 1 recovers the 2D directional Haar tight framelet filter bank DHTF, :=
{aH; bl, ey bﬁ} in [28, (35)] with (ZH = %(5(0’0) + 5(0)1) + 5(1’0) + 5(1)1)) and

1 1 1
by = 1(5(0,0) —0(0,1))s by = 1(5(0,0) —0(1,0))s bz = 1(5(0,0) —0(1,1)),
1 1 1
by = 1(5(0,1) —0(1,0))s bs = 1(5(0,1) —01,1))s bg = 1(5(1,0) —0(1,1))-
See Fig. 6 for their associated framelet functions 1, ..., ¥s.

(3) When d = 3, Theorem 1 gives the following 3D directional Haar tight framelet filter bank DHTF% =
{CLH; bl, ey bgg} with

1
at = §(5(0,0,0) +0(0,0,1) +900,1,00 T 0,1,1) + (1,00 +0(1,0,1) +I(1,1,0) F1,1,1));

and
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y (0.9.1) (0,1,1)

(041) (1,1) (1,0,4) (. LA)

o (940, 9) (¥/1,0)

0 1 ! (0,0) (1,0) ' 20,0) (1,1,0)
xIr

Fig. 7. Left to Right: Directional Haar tight framelet filter banks in d = 1, 2, 3 respectively, where each line connecting two vertices
v1,72 € {0,1}% represents a high-pass filter b := 274(§,, — d4,).

1 1 1 1

by = 5(5(0,0,0) —3800,01)) b2= 5(5(0,0,()) —80,1,0) bz= g(fs(o,o,o) —-60,1,1)), ba= g(é(o,o,o) —8(1,0,0))s
1 1 1 1

bs = 5(5(0,0,0) —d811.01)) be= 5(5(0,0,0) -61,1,0) br= 5(5(0,0,0) —-61,1,1)), bs= 5(5(0,0,1) —6800,1,0))»
1 1 1 1

by = (8,01 = 801n) b0 = (0001 ~8a00): b= (800 ~8aon) bz = (8001 ~daa0)
1 1 1 1

biz = §(5(o,0,1> —081,1,1)), bia= 5(5(0,1,0) —3d00,1,1)), bis= 5(5(0.1,0) —38(1,0,0)), bie = 5(5(0,1.0) —3(1,0,1))>

1 1
bi7 = 8¢0,1,00 — 8(1,1,1)); big = 5(5(0,1,1) —08(1,0,0)), b2 = 5(5(0,1,1) —38(1,0,1))>

—(6 -4 big = —
8( (0,1,0) (1,1,0))7 18 8(

1 1 1 1
b1 = 2801 —0a1.0), b2 = (801 —8aam) b= (800 ~Fa0) b2 = (00 ~ a0

1 1 1 1
bas = 5(5(1,0,[)) —681,1,1)), b2 = §(5(1,0,1) —681,1,0)), bar= 5(5(1,0,1) —681,1,1)), b= 5(5(1,1,0) —681,1,1))-

See Fig. 6 the 3D unit cube for the support of their associated framelet functions 1, ..., 1asg.

Fig. 7 illustrates the high-pass filters of DHTF filter banks DHTF{, DHTF5, DHTF%, respectively.

As discussed, the pMRI coil data are degenerated with noise and aliasing artifacts. For such tasks,
redundant representation systems are more favor since it provides more information for data recovery.
Thus, it is useful to use the UDFmT. In such a case, we only need the filter bank to satisfy the partition
of unity condition in (8). However, the more the number of filters in a filter bank, the less efficiency of
the UDFmT. Hence, we further simplify the filter bank DHTF%. In terms of directionality, there are many
filters in DHTF% characterizing the same directional property. For example, the filters in {b1, b14, ba3, bag}
represent the same z-direction (vertical), the filters in {ba, by, bas, ba7} represent the same y-direction, and
so on so forth. Here b; = %(5(0’0,0) —0(0,0,1))b1a = %(5(0’1,0) —0(0,1,1)), and others are similarly defined
according to Theorem 1 (see Fig. 8 for the illustration). Consequently, the 28 high-pass filters in DHTF3
can be regrouped to 13 filters in a simplified filter bank

DHTF2 = {aH; bzv by» bzv bmya bz,ya b:vzv bm,z; byzv by,za bzyzv bmy,za bm,ym bzz,y}

(see Fig. 8 left) with

1 1 V2
by = 1(5(1,0,0) = 8(0,0,0))5 by = 1(5(0,1,0) —8(0,0,0))sbz,y = ?(5(1,0,0) —0(0,1,0));
V2 1 V2
byy = ?(5(1,1,0) —00,0,0))s b, = 1(5(0,0,1) —0(0,0,0)) b2z = ?(5(1,0,1) —8(0,0,0))
V2 V2 V2
by = ?(5(1,0,0) —08(0,0,1)) by. = ?(5(0,1,1) —08(0,0,0)):by.z = ?(5(0,1,0) —800,0,1))5
1 1 1
ba:yz = g(a(l,l,l) - 6(0,0,0))7 b:vy,z = g(é(l,l,O) - 6(0,0,1))7bm,yz = é(a(l,0,0) - 6(0,1,1))7
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Fig. 8. The 3D directional Haar tight framelet filter banks DHTFg = {aH;bz,by,bz,bwy,bw,y,bzz,bzﬁz,byz,bywz,bmyz,
bay,zs be,yzsbaz,y} (solid edges on left), and the 3D directional Haar semi-tight framelet filter banks 3DHSTF :=
{aH;bm,by,bmy,bm,y,bm,x} (solid edges on right, baux is not shown). Each line connecting two vertices v1,v2 € {0, 1}d repre-
sents a high-pass filter b := ¢(d8,, — 8-,) for some constant c.

1
brzy = 5(5(1,0,1) —0(0,1,0))-

Note that the filter bank DHTF3 satisfies the partition of unity condition in (8).

As pointed out in Section 1, for the output framelet coefficient sequences, information involving the
z-filters, i.e., those b,bs., byyz, etc., are actually ‘bad’ features for the 3D framelet regularization. They
represent local contrast discrepancy between coil images and are not sparse features suitable for the reg-
ularization process. More precisely, taking the coil images in Fig. 1 for example, they can be stacked as a
512 x 512 x 4 data. When fed into the UDFmT decomposition with J = 1, we obtain one low-pass framelet
coefficient sequence with respect to a and 13 high-pass framelet coefficient sequences of size 512 x 512 x 4
with respect to those high-pass filters. Among those 13 high-pass framelet coefficient sequences, only four
of them with respect to the high-pass filters by, b, byy, by, in DHTF are sparse; see Fig. 3 (a)-(d) for
image slices (512 x 512) from those high-pass framelet coefficient sequences. The other framelet coefficient
sequences involving the z-filters are not sparse at all and are similar to those shown in Fig. 3 (e) and (f).
Same phenomena happen for further decomposition using UDFmT with high level J > 1. Involving such
‘non-sparse’ features in our regularization process no doubt damages our purpose of sparse regularization.
To regularize the framelet coefficients with true sparsity, we utilize this prior information and neglect the
high-pass framelet coefficients involving the z-filters. Hence, further reduction of those filters gives us an
even simplified filter bank

3DHSTF := {a";b,,by, by, bz y, baux }
(see Fig. 8 right) with an auxiliary filter b,,x defined by

1

1 1
baux = {—5(0,0,0) 16 (5(0,0,1) + 5(0,0,—1)) ~ 32 (

5 6 0(1,0—1) T 9(—1,01) +00,1,—1) +0(0,—1,1) T I(1,0,1)

1
+8(—1,0,—1) +00,1,1) + 5(0,—1,—1)) 6l (5(1,1,—1) +01,-1,1) +0a,—1,1) T 01,1, T O(—1,1,-1)
+6(—1,1,1) +01,—1,1) T+ 5(71,71,71)) },

to fulfill the partition of unity condition in (8). That is, the filter b,ux is deduced from

—

b = 1= (171 + (Bl + 1B + b + 1oy )

Since the decomposition and reconstruction filters involving b, are different in the UDFmT and the filter
bank is very close to a tight framelet filter bank, we call the filter bank {a’f iba, by, by, by gy baux b & 3-
dimensional directional Haar semi-tight framelet (3DHSTF) filter bank. Indeed, the decomposition filter
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Table 1
Computation complexity in terms of multiplications and additions, and memory storage of UDFmT
decomposition and reconstruction using DHTF% and 3DHSTF with J = 1.

UDFmT Decomposition Reconstruction Memory
3DHSTF + X + X size
a' 7 1 7 1 1

by 1 1 2 1 1

by 1 1 2 1 1
ba,y 1 1 2 1 1
bay 1 1 2 1 1
bauz 18 4 1 0 1
Total 29 9 16 5 6
DHTFg + X + X size
a' 7 7 1

13 b, 13 13 26 13 13
Total 20 14 33 14 14

bank is {a®; by, by, bry, bz 4, baux } While the reconstruction filter bank is {a*?;b,, by, byy, bs 4, 6 }. Using such
a 3DHSTTF filter bank, we have a very simple and efficient fast UDFmT. The pseudo code can be found in
Algorithms 1 and 2, where ® denotes circular convolution and the input data employ periodic extension.

Algorithm 1 (UDFmT: Decomposition with SDHSTF).

1. Input: a 3D data vy with J € N and the filter bank 3DHSTF = {af;b,, by, bsy, by, baux |-
2 Forj=J,J—1,...,1,
(a) Vj—1 ¢ V; ® (CLH 1T 2J_j)*,'
(b) For h € {bg,by,bs 4, bry, baux }-
o Wi 1, < V; ® (ht QJ_j)*,'
3. Output: framelet coefficient sequences: {vo} U {w;n : h € {bz, by, bz y, bay, baux}}‘j]:l.

Algorithm 2 (UDFmT: Reconstruction with 3SDHSTF).

1. Input: framelet coefficient sequences {vo} U {wjpn : h € {by, by, bz y, bay, baux}}}]:l-
2. Forj=1,2,...,J,
(a) vj < vj—1 ® (o 1277);
(b) For h € {by,by, by y, by}
o v+ vj+wj_1., ® (h12779);
(€) V) = V) + W1 b
3. Output: a 3D data v =vy.

Table 1 presents the computational complexity, scaled by the size of the underlying 3D data, in terms of
multiplication (x), addition (+), and the memory storage requirement of the UDFmT with the 3DHSTF
and DHTF% for J = 1. It clearly shows that our 3DHSTF filter bank not only is simpler but also significantly
reduces the computational complexity as well as the memory storage requirement.

4. Model and algorithm for the 3D framelet regularization in pMRI reconstruction
In this section, we briefly review the GRAPPA model and the ¢;-SPIRiT model that lead to our £;-W3D

model using 3D framelet regularization. We present an algorithm for solving the ¢;-W3D model using the
ADMM scheme.
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@ samvled

Fig. 9. Reconstruction model by GRAPPA (Left) and SPIRIT (Right) on 3 x 3 interpolating window. For GRAPPA, in the upper
square 2D window, four K-space points (black dots) are known, p coils have 4p data to predict the target point (gray dot), and then
interpolating kernel m} e C*rxt g needed; in the lower square window, 2p points (black dots) data are collected, then interpolating
kernel nf € C?PX1 is needed. For SPIRIT, the data on known and unknown points is fully utilized to predict the target, thus only
one template for each coil kernel x, € CP=1Dx1 i5 needed. The shift-invariant kernel can be estimated on the ACS data according
to the template by the model (9) or (10).

4.1. 8D framelet regularization for pMRI reconstruction

Suppose we have p coil K-space data g, € C"*!, , = 1,...,p. Here, n is the size of one coil full K-space
data. For example, we regard the K-space data for each coil image of 512 x 512 in Fig. 1 as an n x 1
vector data with n = 5122. It does not mean that the data is vectorized, but simply for the purpose of
explaining the models in matrix form. The sampling matrix P € R™*" is diagonal with 0 and 1 (indicating
the corresponding K-space data is skipped or not) at its diagonal elements. The collected data of each coil
is denoted by Pg,.

For the GRAPPA method, every K-space coefficient of a coil image can be considered as a linear combi-
nation of the data within its neighbor and the data from the same local neighbors of the other coils. The
interpolation kernel may have different patterns for each coil data and its template is determined by the
positions of the collected data with respect to a target point within the interpolation window. For example,
in the illustration of two kernels shown in the left image in Fig. 9, one template is four K-space points (black
dots) collected in the upper square 2D window of each coil, but another one is only two points known in
the lower window for one coil. We denote x! € C™P*! the interpolation kernel with the i*" template for a
missing position in the (/" coil, where 7; is the number of the known data in the 2D template around the
missing position of g,, ¢t = 1,...,p. The interpolation kernels x are supposed to be shift-invariant and are
estimated according to the sampling model by using the ACS data, fully sampled at the region near the
center of K-space. For the (! coil, we construct a matrix D! row-by-row through collecting 7;p known data
points of the i*" template from ACS K-space data of p coils and denote its corresponding target data as a
vector d!, then the kernel x! is estimated by

min||Dfmf—df||§, i=1,...,8k;t=1,...,p, (9)
Ky

where f##, is the number of kernels determined by the sampling model for the +** coil. Once the interpolation
kernels k' are available, the missing coefficients of the same interpolation template can be predicted by its
linear combination.

To reduce the number of interpolation kernels and reconstruct image from arbitrary sampling patterns in
the K-space, iterative self-consistent parallel imaging reconstruction method, SPIRIT (see the right image
in Fig. 9 for an example), is proposed to estimate exactly one interpolation kernel for each coil [31] and
reconstruct the coil images through a 2D wavelet regularization [34]. The data within the cuboid, except for
the target position, are all linearly combined together to predict the information in the ¢;-SPIRiT method.
Suppose the interpolating window for each coil is of size 7' x n?. Then the (" coil interpolation kernel,
denoted by r, € C'*P=1Xx1 g egtimated by
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HEHHDL/‘%_dLH; t=1,...,p, (10)

where D, and d, are the known data and target interpolated data from the ACS lines, respectively. For the
kernel , from (10), we use C, € C™*"P as the matrix representation of x,. Once the p kernels are obtained,
the optimization model by ¢1-SPIRIT [34] was presented by (1) in Section 1.

We make some remarks here. (i) Compared with the GRAPPA model in (9), the SPIRiT model in (10)
reduces the number of interpolation kernels significantly. Though only the use of (10) may not sufficient
for pMRI reconstruction, yet by using the sparsity-promoting technique [[Wya0F, HQu + g)]1,2 with 2D
wavelet regularization, the ¢;-SPIRIiT model in (1) improves the performance of GRAPPA. (ii) Although
Wiav acts on the 3D data F, L(Qu+g), essentially, it is just a simple stacking of the 2D wavelet transforms
of coil data. The correlated information among coils is not taken into account through the ¢1-f5 norm of
the 2D wavelet coeflicients of each coil.

Each surface coil of a parallel imaging system receives some parts of the information of the target slice,
and can be stacked together as 3D data with redundancy. By stacking the coil data, we treat the 3D cuboid
data as a whole object so that we could make good use of correlated information and reduce the aliasing
artifacts more efficiently. In view of the effectiveness of the ¢;-SPIRiT model and the importance of the
correlated information among coils, we hence propose the ¢1-W3D model in (2) for pMRI reconstruction.
When Wsp in (2) is our 3DHSTF system in Section 3, we call it ¢;-3DHSTF.

4.2. An algorithm for pMRI reconstruction

We elaborate on how to apply alternating direction method of multiplier (ADMM [15]) to solve the
£,-W3D model (2). By introducing an auxiliary variable v, the ¢1-W3D can be reformulated as

1 . _
min §||(C —D(Qu+9g)|5+||Tv|; subject to v = WspF, HQu+g). (11)

Consequently, ADMM can be applied to solve the optimization problem (11) via solving several resulting
subproblems. First, the augmented Lagrangian function of (11) can be written as

1
£y(u.v,0) =3 ]|(C = D(Qu+g) 3 + [Tv]i+
Re(a (v — WapF, ' (Qu+9) + Lo = WanFy (Qu+ 9)]3

where Re takes the real part of a complex number, « is the Lagrange parameter vector, and p > 0 is a
penalty parameter on the linear constraint. Then, the iterative scheme of ADMM can be specified below in

(12).

k1 = arg min, £,(u, v, o),

v = arg min,, Ep(uk+1,v,ak), (12)
ot = ¥ 4 p(oF T — Wyp FH(QuET + g)).

u
k+1

The convergence of the above iterative scheme is guaranteed under the condition that p > 0 ([15]). We list
u-subproblem and v-subproblem at each iteration for solving (11).
The u-subproblem in (12) can be written as

.1 _ 1
W = angmin { S(C = D(@ut )l + §le* ~ Wan 7, (Quo+) + 5o 13) -

The minimizer of the above problem is given by solving the following linear system
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(QC =D)(C=1) + pI)Qu = (W3pF, ' Q) (pv* + a*) = Q(C = 1) (C — I)g — pQg, (13)

where T is the complex conjugate transpose operator. The linear system (13) can be solved by the con-
jugate gradient method [35]. In our later numerical experiments, three iterations are performed to get an
approximate solution of (13).

The v-subproblem in (12) can be written as

1 1 _ 1
v**! = argmin ;HF’U||1 +5llv=Wsp 7, HQuM 4 g) + ;akH%,

whose closed-form solution will be given later.

We next present precisely what T' is. The estimation of I" is based on an approach in our previous
work [29]. Let {w;p : h € {aH;bm,by,bm’y,bzy,baum}}}]:1 be the set of the framelet coefficient sequences
obtained from Algorithm 1. Note that each w;j is a 3D data of size ny X no X p and can be regarded
as wjp = {wéh € Cmxn2 .y =1, ... ,p}, where each wjy, is a 2D image slice of size n; X ng from wj
and p is the number of coils. That is, w; is from the stacking of w? ;. Then w? ,(k),k = (k1,k2) is the
framelet coefficient at position k in the ** slice at the j** level decomposition with respect to the filter
h€ {af;b,,by, bz, bey, baus - This index (4, h, ¢, k) corresponds to a diagonal entry of ', which we denote
it as 7% 5, (k) and it is defined as follows:

. K 07 h S {aHabaux}z 14
’)/j,h( ) - ):]:ff(;)], h e {bwyby7bz,yabmy}a ( )

where the parameter A is set by hand, a;,h(k) is the average of the absolute value of the 3 x 3 neighbor
coefficients around position k of wj ;,, the number 8 in A x 8777 comes from that after low-pass filtering by
a'?| the energy of the low-pass filtered framelet coefficient sequence is reduced to 1/8th. In our numerical
experiments, UDFmTs are utilized with J = 2 and 7;,;;(") only updates 3 times in the first 10 iterations
(see Algorithm 3).

For a vector v in the v-problem, define the shrinkage operator y = shrinkr,(v) by

vjn(k) V.0 (k)
L k) = J,h [ K)| — Js
yj,h( ) "l);h(k)‘ max {vj,h( )‘ P 70} )

where the index (4, h, ¢, k) is with respect to a diagonal entry of T" indicated as above. Then, the solution of
the v-subproblem can be obtained as follows:

vt = shrinkp,, (I/VP,D]-"pl(QM€+1 +g)— %ak) . (15)
The pMRI reconstruction algorithm for our ¢;-W3D model can then be described as in Algorithm 3.
Algorithm 3 (¢1-W3D pMRI Reconstruction Algorithm,).
1. Setp=1, ul =g, v = Wngp_l(Qul +g), al =0;

2. Fork=1,2,..
(a) u-problem: Utilize the CG algorithm to compute u**+1 in equation (13);

*

(b) v-problem:
o Ifk=1,4,7, update T in formula (14);
e Compute v**1 by the shrinkage operator (15) for every entry of v;
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(a) 512 Random (b) 512 Uniform (c) 256 Random (d) 256 Uniform

Fig. 10. Sampling models for K-space (‘white’ indicating the corresponding K-space data collected, but ‘black’ not). (a) The 512x 512
random sampling matrix of 15% K-space data with 24 ACS lines; (b) The 512 X 512 uniform sampling matrix (one line taken from
every four lines) of 32% K-space data with 48 ACS lines; (¢) The 256 x 256 random sampling matrix of 19% K-space data with
6 ACS lines; (d) The 256 x 256 uniform sampling matrix (one line taken from every four lines) of 27% K-space data with 6 ACS
lines.

k+1

(¢) a-problem: ot using (12);

(d) Compute the 3D coil images @ = ]—'p_l(Qu’“‘l + g) when the stopping condition is satisfied.

Here, for the stopping condition, in our numerical experiments, we set it as k reaching the maximal number
of iterations 25.

Note that @ is a 3D cuboid data and can be regarded as @ = {a, € C"**"2 :, =1,...,p}. To get a final
reconstruction image from our ¢;-W3D pMRI reconstruction algorithm, we use the real domain SoS image of

the observed coil images @, by @sos(k) = (3F_; |, (k)[?) 2 ,where k = (k1, ko) € {1,2,...,n1}x{1,2,...,n2}.

5. Numerical experiments

In this section, we illustrate the effectiveness of our proposed ¢;-3DHSTF model (2) for the pMRI
reconstruction in comparison with the well-known model ¢;-SPIRiT [34].

In our experiments, we adopt four sampling models of the K-space data in the phase-encoding direction
on the Cartesian coordinate that are shown in Fig. 10. Two pseudo random sampling models in Fig. 10(a)
and 10(c) collect about 15% and 19% K-space data with 24 and 6 ACS lines (fully sampling), respectively.
Two uniform sampling models in Fig. 10(b) and 10(d) by taking one line data from every four lines, are
about 32% and 27% K-space data with 48 and 6 ACS lines, respectively. With these sampling models, both
the £1-SPIRiT method and our proposed ¢1-3DHSTF method are using the calibration kernel of size 5 x 5 for
each coil K-space data to reconstruct an image from the coil images. The source code of ¢1-SPIRiT method
was downloaded from the website of one of the authors.? In our proposed Algorithm 3 for ¢;-3DHSTF
model, the number of iterations for CG is set to be 3 and the number of iterations is set to be 25.

Section 5.1 presents the results of the pMRI reconstruction from phantom MR coil images acquired by
an MRI machine while Section 5.2 present the results of the pMRI reconstruction from in-vivo medical MR
coil images.

5.1. MRI phantoms

In this subsection, four phantom MR images of each slice from a 3T MRI system (Tim Trio, Siemens,
Erlangen, Germany) are the Th-weighted images acquired by a turbo spin-echo sequence. The detailed

imaging parameters are set as follows: field of view = 256 x 256 mm?

, image matrix size = 512 x 512,
slice thicknesses = 3 mm, flip angle = 180 degree, repetition time = 4000 ms, echo time = 71 ms, echo
train length = 11, and number of excitation = 1. For these phantom MR images, the random sampling

model in Fig. 10(a) and the uniform sampling model in Fig. 10(b) will be applied for these images to test

2 The code is available at: http://people.eecs.berkeley.edu/~mlustig/Software.html.
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P

(a) SoS (full) (b) SoS (15%) (¢) £1-SPIRIT (0.012) (d) ¢,-3DHSTF

(e) £1-SPIRIT (0.08) (f) £1-SPIRIT (0.003) (g) £1-SPIRIT (0.08) (h) £1-SPIRIT (0.003)

A

Fig. 11. Reconstruction results on 15% K-space data by the sampling matrix in Fig. 10 (a). (a) SoS image of the full K-space
with zoom-in parts; (b) SoS image of the 15% K-space data; (c) £1-SPIRIT [34] with parameter 0.012; (d) the ¢,-3DHSTF with
parameter 0.022; First row is the obtained images while the second and the third row are the corresponding zoom-in parts of the
first row images. {(e),(g)} and {(f),(h)} are the zoom-in parts of same positions by ¢;-SPIRiT [34] with different parameter 0.08
and 0.003, respectively.

the ¢1-SPIRiT method and the ¢;-3DHSTF method in the pMRI reconstruction. The SoS image of the
full K-space data from the four phantom MR images is considered as a reference image and is shown in
Fig. 11(a).

We first present the results using the random sampling model. Fig. 11(b) is the SoS image of the coil
images obtained by applying the inverse discrete Fourier transform for the collected K-space data with
zero-padding for missing data. We can clearly see aliasing artifacts and blurred edges in this image. The
image in Fig. 11(c) is the result from the ¢;-SPIRIT method using the default settings in the source code
of £1-SPIRIT algorithm except that the calibration kernel is size of 5 x 5, and the regularization parameter
A is set to be 0.012 after an extensive trial-and-error searching the best one. The reconstruction image by
the ¢;-3DHSTF method with regularization parameter A = 0.022 is shown in Fig. 11(d). Clearly, aliasing
artifacts appeared in Fig. 11(b) are significantly suppressed by both ¢;-SPIRIT and ¢;-3DHSTF. However,
the aliasing artifacts in the reconstruction image by the ¢;-SPIRiT method is more obvious than those in
the image by the £;-3DHSTF method.

To further evaluate the quality of the reconstructions, two regions shown in Fig. 11(a) are zoomed in the
second and third rows of Fig. 11. The structural similarity index measure (SSIM) [45] is used for measuring
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g
1A

(a) SoS(full) (b) GRAPPA (c) £,-SPIRIT (d) ¢,-3DHSTF

Fig. 12. Reconstruction results on 32% K-space data by the uniform sampling mode (one line taken from every four lines) with 48
ACS lines in Fig. 10(b). (a) SoS image of the full K-space with zoom-in part; (b) GRAPPA [16]; (c) £1-SPIRiT method [34] with
parameter 0.005; (d) the ¢;-3DHSTF method with parameter 0.003. The second row is the zoom-in parts of first row, respectively.

the similarity between two zoom-in images. The higher index value means that the input image is closer
to the reference one. For the ‘rectangular’ region, the zoom-in image in column (d) by the ¢,-3DHSTF
method preserves the rectangular edges and reduces aliasing artifacts in the smoothed area, which are close
to the reference one in (a) and more shaper than that in the zoom-in images in (c) by the ¢;-SPIRIT
method. The SSIM indexes for the ‘rectangular’ region are 0.686 and 0.875 by ¢;-SPIRIT, and ¢;-3DHSTF,
respectively. For the ‘circle’ region, the edges of two circles in the zoom-in image (c) reconstructed by the
¢1-SPIRIiT method are blurring with ringing artifacts, but the ¢;-3DHSTF method in the zoom-in image
(d) can remove the artifacts and retrieve the shape of the circle more close to the reference one. The SSIM
index by ¢;-3DHSTF is 0.884, but it is 0.645 by ¢;-SPIRiT. The last row in Fig. 11 is to show the ability
of the ¢;-SPIRIT method to remove aliasing artifacts and preserve edges by its regularization parameter .
The values of A used in ¢;-SPIRIT is 0.012 in Fig. 11(c), 0.08 in Fig. 11(e) and 11(g), and 0.003 in Fig. 11(f)
and 11(h). We see that the aliasing artifacts caused by the downsampling operation appeared in all images
and can not be removed by using larger regularization parameters.

Next, we present the results for the uniform sampling model. The SoS image in Fig. 12(a) is identical to
the one in Fig. 11(a). Fig. 12(b) is reconstructed by the GRAPPA method, and Fig. 12(c) and 12(d) are
reconstructed by the ¢1-SPIRiT method and the ¢1-3DHSTF method with regularization parameters 0.005
and 0.003, respectively. Both £;-SPIRiT and ¢;-3DHSTF reconstruct most of the target information, and
are better than the GRAPPA method. For the zoom-in images, aliasing artifacts occur in Fig. 12(c) by the
£1-SPIRIT method, but are efficiently removed by the ¢1-3DHSTF method. The SSIM indexes for zoom-in
images of Fig. 12(c) and (d) by ¢;-SPIRIT and ¢;-3DHSTF, respectively, are 0.873 and 0.878.

In summary, for the random and uniform sampling cases on MRI phantoms, the ¢;-3DHSTF method
performs much better than the ¢1-SPIRiT method in terms of keeping edges and remove aliasing artifacts.
Moreover, unlike the sensitivity of the ¢;-SPIRiT model to the regularization parameter A, our specific
designed T" in (14) makes the ¢;-3DHSTF model robust to the regularization parameter A. For the MRI
phantom cases in Fig. 2 and Fig. 12 with the same uniform sampling model in Fig. 10(b), though the
target slices are different, the ¢1-3DHSTF method is efficient to reconstruct high quality images by the
same parameter A = 0.003. It shows that our model is not sensitive to A for the K-space data acquired on
the same MRI System with the same sampling model.
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(a) SoS (full) (b) SoS (19%) (c) £1-SPIRIT (d) ¢,-3DHSTF

Fig. 13. Reconstruction results on 19% K-space data of the matrix in Fig. 10 (¢). (a) SoS image of the full K-space with zoom-in
parts; (b) SoS image of the 19% K-space data; (c) £;-SPIRIT [34] with parameter 0.018; (d) the ¢;-3DHSTF with parameter 0.0003.

A 47478

(a) SoS (full) (b) SoS (19%) (c) £1-SPIRIiT (d) £,-3DHSTF

(e) SoS (full) (f) SoS (19%) (g) ¢;-SPIRIT (h) ¢,-3DHSTF

(i) SoS (full) (G) SoS (19%) (k) ¢;-SPIRiT (1) ¢,-3DHSTF

(m) SoS (full) (n) SoS (19%) (0) ¢;-SPIRIT (p) ¢1-3DHSTF

Fig. 14. Zoom-in parts of the reconstruction results in Fig. 13. First column: (a), (e), (i) and (m) SoS image of the full K-space.
Second column: (b), (f), (j) and (n) SoS image of the 19% K-space data. Third column: (c), (g), (k) and (o) ¢1-SPIRIT [34] with
parameter 0.018. Fourth column: (d), (h), (1) and (p) the £;-3DHSTF with parameter 0.0003.

5.2. In-vivo data

In this subsection we test the ¢;-3DHSTF method on MRI data that is obtained by head examination
from a healthy volunteer. The imaging was done on a 3T MRI system. Transverse To-weighted images were
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g 1

(a) SoS (full) (b) SoS (27%) (c) £1-SPIRIiT (d) ¢,-3DHSTF

Fig. 15. Reconstruction results (First row) and corresponding zoom-in parts (Second row) on 27% K-space data by the uniform
sampling mode (one line taken from every four lines) with 6 ACS lines in Fig. 10 (d). (a) SoS image of the full K-space; (b) SoS
image of the 27% K-space data; (c) £1-SPIRiT method [34] with parameter 0.008; (d) the ¢;-3DHSTF method with parameter
0.0003. Second row is the zoom-in parts of first row, respectively.

Table 2

SSIM index for the zoom-in parts from reconstructed images on In-vivo data.
Fig. 13 (a) SoS (19%) £,-SPIRIT ¢1-3DHSTF Fig. 14
Ry 0.600 0.879 0.912 First row
Ro 0.683 0.862 0.933 Second row
Rs 0.662 0.857 0.920 Third row
R4 0.718 0.872 0.924 Fourth row
Fig. 15 (a) SoS (27%) £,-SPIRIT (1-3DHSTF Fig. 15
Ry 0.572 0.919 0.958 Second row

acquired with a turbo spin-echo sequence. The detail imaging parameters are as follows: field of view =
256 x 256 mm?, image matrix size = 256 x 256, slice thicknesses = 3 mm, flip angle = 150 degree, repetition
time = 5920 ms, echo time = 101 ms, echo train length = 11 and number of excitation = 1. Two slices of
32-coil images were collected to compare the performance of the ¢;-SPIRiT method and the ¢;-3DHSTF
method.

For the first slice, the full K-space data of 32-coil images are collected and their SoS image is considered
as a reference image shown in Fig. 13(a). About 19% full K-space data with only 6 ACS lines are collected
using the sampling model in Fig. 10(c). The resulting SoS image of the 19% full K-space data in Fig. 13(b)
is noisy and the brain structures in this image are blurry. Furthermore, faint semicircle-like aliasing artifacts
can be seen in the upper and lower portions of the image due to accelerating K-space sampling model. The
regularization parameters of the ¢1-SPIRiT method and the /;-3DHSTF method are respectively set to be
0.018 and 0.0003 to reconstruct high quality images. From Fig. 13(c) and 13(d), we see that the ¢,-SPIRiT
and the ¢1-3DHSTF reconstruct edge information of structure and suppress aliasing artifacts which are
observable in the downsampling SoS image in Fig. 13(b). For conveniently comparing the difference, four
parts labeled by Rj, Ra, R3 and Ry in Fig. 13(a) are zoomed-in in Fig. 14, and the zoom-in images in the
first, second, third and fourth columns are corresponding to Fig. 13(a)—(d), respectively.

For the first row of Fig. 14, zoom-in images in Fig. 14(c) and 14(d) have better structures of skull and scalp
than those in Fig. 14(b), and their corresponding SSIM values are 0.879 and 0.912 according to SSIM index
in Table 2. Comparing with reference SoS image of the full K-space in Fig. 14(a), the image in Fig. 14(c)
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by the ¢1-SPIRiT method has faint ripple artifacts (arrow pointing to), but the image in Fig. 14(d) by
the ¢1-3DHSTF method does not suffer from these artifacts and is more close to the reference one. For
the second region of lobus occipitalis, ‘black concave artifacts’ (arrow pointing to) obviously occurs in the
Fig. 14(g) with SSIM value 0.862 by the ¢;-SPIRiT method, but the ¢;-3DHSTF method can inhibit these
artifacts by 3D semi-tight framelet regularization and provides close structures in Fig. 14(h) with SSIM
value 0.933 with respect to the reference one in Fig. 14(e).

For the zoom-in images in the third row of Fig. 14, the cerebellum lobulus in Fig. 14(j) is discernible
and blurred. However, images in Fig. 14(k) and 14(1) have better structures of cerebellum than images in
Fig. 14(j). Comparing with reference SoS image of the full K-space in Fig. 14(i), the image in Fig. 14(1) with
SSIM value 0.920 by the ¢,-3DHSTF method obviously preserves tiny detail (lower arrow pointing to) and
edges (upper arrow pointing to) more noticeable than those in the Fig. 14(k) by the ¢;-SPIRiT method.
The lobulus structures by the ¢1-3DHSTF method are high contrast and more obvious to be observed in
Fig. 14(1), but the geometrical structures in Fig. 14(k) with SSIM value 0.857 are blurred by the ¢;-SPIRiT
method. The final region of suprasellar cistern is provided in the last row of Fig. 14. ‘White aliasing artifacts’
(upper arrow pointing to) occurs in Fig. 14(o) with SSIM value 0.872 by the ¢;-SPIRiT method. However,
the ¢;-3DHSTF method can remove these aliasing artifacts and provide distinguishable structures (lower
arrow pointing to) at upper-middle position of Fig. 14(p) with SSIM value 0.924.

For the second set of 32 coil images, the reference SoS image of full K-pace data is shown in Fig. 15(a)
and the SoS image of 27% K-space data by the uniform sampling model with 6 ACS lines in Fig. 10(d) is
presented in Fig. 15(b). Regularization parameters of the ¢1-SPIRiT method and the ¢;-3DHSTF method
are set to be 0.008 and 0.0003, respectively. The reconstruction images in Fig. 15(c) and 15(d) respectively
by the ¢1-SPIRiT method and our ¢;-3DHSTF method mostly reduce the up and down half aliasing circles
which are seen in Fig. 15(b). But one aliasing circle still obviously exists at the middle and the lower position
of Fig. 15(c) by the £;-SPIRiT method, which is removed in Fig. 15(d) by our ¢;-3DHSTF method. We
zoom in the region of genu corpus callosum in the second row of Fig. 15 to compare the difference between
the ¢1-SPIRIiT and ¢;-3DHSTF methods. Edge geometrical structures in Fig. 15(b) of the SoS image of
27% K-space data are blurred and discernible. From the zoom-in images in Fig. 15 (¢) and 15(d) with
their corresponding SSIM value 0.919 and 0.958, we see that the ¢1-3DHSTF method preserves edges much
shaper and removes aliasing artifacts better than the ¢;-SPIRiT method, and provides almost as same as
the reference zoom-in one by SoS image of the full K-space data.

These experiments show that the ¢1-3DHSTF method efficiently removes aliasing artifacts through con-
sidering correlation information of coil images. It has a grater capacity of preserving edges, tiny details, and
structures in constructed images to facilitate doctor’s diagnosis.

6. Conclusions and further remarks

In this paper, we propose a ¢1-W3D model for the pMRI reconstruction with 3DHSTF system that is
tailor-made for the sparse representation of 3D cuboid data from different coil images. The 3DHSTF system
has many desirable properties that nicely fits into the setting pMRI reconstruction. We use ADMM scheme
to solve our £1-W3D model and our numerical experiments demonstrate the effectiveness and efliciency of
the ¢1-3DHSTF model in removing aliasing artifacts and preserving edges.

We remark that the ¢;-3DHSTF model reconstructs images with significantly less aliasing artifacts and at
the same time requires only a few ACS lines. Moreover, the £1-3DHSTF model is robust to the regularization
parameter when the sampling model and number of coils are fixed. Further improvement of our ¢;-W3D
could be considered. For example, we could consider 3D directional tight framelet systems with higher
order of vanishing moments and short support; or incorporated with machine learning techniques, which
have recently been proposed to improve the pMRI reconstruction quality; see e.g., [4,24]. These techniques
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include both image domain approaches for better image regularization and K-space approaches for better
K-space completion.

We also remark that the neural network has recently been used for the pMRI reconstruction [2]. The
challenges of the neural network based pMRI problem are (i) lack of public databases with a large number
of multi-coil K-space data [24]; (ii) varying imaging parameters’ setting of each MRI machine (for example,
field of view, slice thicknesses, and so on), which are essential for a successful reconstruction [1]; and (iii) the
patients’ heartbeat, slight body moving and other factors in the process of scanning that can form gradient
information similar to adversarial attack, which affects the accuracy of prediction, resulting in blurred
anatomical structure details and artifacts in reconstructed MRI images [3]. Hence, in this paper, we do
not consider neural network approach for pMRI reconstitution but focus on the pMRI reconstruction via
optimization model (2) regularized by the proposed framelet systems.
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