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This work considers a super-resolution framework forovercomplete tensor decomposition. Specifically,
we view tensor decomposition as a super-resolution problem of recovering a sum of Dirac measures on
the sphere and solve it by minimizing a continuous analog of the �1 norm on the space of measures. The
optimal value of this optimization defines the tensor nuclear norm. Similar to the separation condition
in the super-resolution problem, by explicitly constructing a dual certificate, we develop incoherence
conditions of the tensor factors so that they form the unique optimal solution of the continuous analog of
�1 normminimization. Remarkably, the derived incoherence conditions are satisfied with high probability
by random tensor factors uniformly distributed on the sphere, implying global identifiability of random
tensor factors.

Keywords: atomic norm minimization; dual certificate; nonconvex; tensor decomposition; tensor nuclear
norm; super resolution.

1. Introduction

Tensors provide natural representations for massive multi-mode datasets encountered in many applica-
tions including image and video processing [6], collaborative filtering [31], array signal processing
[52], convolutional networks design [27] and psychometrics [53]. Tensor methods also form the
backbone of many machine learning, signal processing and statistical algorithms, including independent
component analysis [14], latent graphical model learning [2], dictionary learning [3] and Gaussian
mixture estimation [51]. The utility of tensors in such diverse applications is mainly due to the ability
to identify overcomplete, non-orthogonal factors from tensor data as already suggested by Kruskal’s
theorem [35]. This is known as tensor decomposition, which describes the problem of decomposing
a tensor into a linear combination of a small number of rank-1 tensors. The identifiability of tensor
factors is in sharp contrast to the inherent ambiguous nature of matrix decompositions without additional
assumptions such as orthogonality and non-negativity.
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2 Q. LI ET AL.

In addition to its practical applicability, tensor decomposition is also of fundamental theoretical
interest in solving linear inverse problems involving low-rank tensors. For one thing, theoretical results
for tensor decomposition inform what types of rank-1 tensor combinations are identifiable given full
observations. For another, a dual polynomial is constructed to certify a particular decomposition, which
is useful in investigating the regularization power of the tensor nuclear norm for tensor inverse problems,
including tensor completion, tensor denoising and robust tensor principal component analysis. We
expect that the dual certificate constructed in this work will play an important role in these tensor
inverse problems similar to that of the subdifferential characterization of matrix nuclear norm in matrix
completion and low-rank matrix recovery [13, 50].

1.1 The tensor decomposition problem

In this work, we focus on third-order nonsymmetric tensors that can be decomposed into a linear
combination of unit-norm, rank-1 tensors of the form u ⊗ v ⊗ w ∈ R

n1 ⊗ R
n2 ⊗ R

n3 . More precisely,
consider the following nonsymmetric tensor decomposition

T =
r∑

p=1

λ�
pu

�
p ⊗ v�

p ⊗ w�
p. (1.1)

Through this work, we assume the rank-1 tensor factors {(u�
p, v

�
p,w

�
p)} are living on the unit spheres and

might be overcomplete, that is, r is potentially greater than the individual tensor dimensions n1, n2 and
n3. Without loss of generality, we assume that the coefficients {λ�

p} are positive as their signs can be
absorbed into the factors.

Problem 1.1 The tensor decomposition problem is the inverse problem of retrieving those ground-truth
rank-1 tensor factors {(u�

p, v
�
p,w

�
p)}rp=1 from the tensor data T in (1.1) [36].

1.2 The super-resolution framework

Tensor decomposition is an extremely challenging problem [29]. This is because we lack proper
theories for basic tensor concepts and operations such as singular values, vectors and singular value
decompositions. To address these challenging issues, we will consider a super-resolution framework
for tensor decomposition. More precisely, we can view tensor decomposition as a problem of measure
estimation from moments. This is because we can rewrite the tensor decomposition (1.1) as a integral
on the unit spheres K := S

n1−1 × S
n2−1 × S

n3−1:

T =
∫
K

u ⊗ v ⊗ w d μ�. (1.2)

and then the problem of retrieving the rank-1 tensor factors {(u�
p, v

�
p,w

�
p)} from the observed tensor

entries in T is equivalent to recovering a linear combination of Dirac measures defined on the unit
spheres K:

μ� =
r∑

p=1

λ�
pδ(u − u�

p, v − v�
p,w − w�

p) (1.3)

Several advantages are offered by this super-resolution framework. First, it provides a natural way to
extend the �1 norm minimization in finding sparse representations for finite dictionaries [20] to tensor
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A SUPER-RESOLUTION FRAMEWORK FOR TENSOR DECOMPOSITION 3

decomposition. By viewing the set of rank-1 tensors A = {u ⊗ v ⊗ w : (u, v,w) ∈ K} as a dictionary
with an infinite number of atoms, this formulation allows us to find a sparse1 representation of T
by minimizing the �1 norm of the representation coefficients with respect to the dictionary A. More
precisely, we recover μ� from the tensor T by solving a continuous analog of �1 norm minimization
(a.k.a. the total mass minimization over the space of measures)

minimize μ∈M+(K)μ(K) subject to T =
∫
K

u ⊗ v ⊗ w d μ (1.4)

where M+(K) is the set of (non-negative) Borel measures on K, and μ(K) is the total measure/mass
of the set K measured by the Borel measure μ ∈ M+(K). Second, the optimal value of the total mass
minimization defines precisely the tensor nuclear norm [25, Proposition 3.1), which is a special case
of atomic norms [15, Eq. (2)) corresponding to the atomic set A. The tensor nuclear norm is useful in
many tensor inverse problems, such as tensor completion [10] and robust tensor principal component
analysis [45].

2. Main results

The main focus of this work is on characterizing the conditions when the tensor factors {(u�
p, v

�
p,w

�
p)}rp=1

correspond to the unique optimal solution of the continuous analog of �1 normminimization (1.4), which
is extension of the incoherence condition in matrix completion problem [13], the minimum separation
condition in mathematical super resolution [12] and the wrap-around distance condition in line spectral
estimation [54]. More precisely, we develop the following three assumptions, namely incoherence
condition, bounded spectral norm condition and Gram isometry condition. For ease of exposition, in
what follows, these assumptions and the main result of this work will be presented for square tensors
with n1 = n2 = n3 = n.

Assumption I: Incoherence condition.

Δ := max
p�=q

max{|〈u�
p,u

�
q〉|, |〈v�

p, v
�
q〉|, |〈w�

p,w
�
q〉|} ≤ τ(log n)√

n
, (2.1)

where τ(·) is a polynomial function of its argument.2

Assumption II: Bounded spectral norm condition.

max{‖U‖, ‖V‖, ‖W‖} ≤ 1 + c

√
r

n
(2.2)

for some constant c > 0, where U := [u�
1 · · · u�

r

]
, V := [v�

1 · · · v�
r

]
, and W := [w�

1 · · · w�
r

]
.

Assumption III: Gram isometry condition.

‖(U
U) � (V
V) − I‖ ≤ κ(log n)

√
r

n
, (2.3)

1 The decomposition (1.1) is sparse, because in most practical scenarios, r is much smaller than the product n1n2n3.
2 That being said, τ(·) is of the form τ(x) = amxm + am−1x

m−1 + . . . + a2x
2 + a1x + a0 with some (positive) real numbers

a’s being the coefficients of the polynomial and some positive integer m being the degree of the polynomial.
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4 Q. LI ET AL.

where κ(·) is a polynomial function of its argument. Similar bounds hold for U,W and V,W.

Theorem 2.1. Suppose the target tensor T ∈ R
n×n×n admits a decomposition (1.1) with the

normalized tensor factors {(u�
p, v

�
p,w

�
p)}rp=1 satisfying Assumptions I, II, III and

r ≤ n17/16

32c2
√
15τ(log n)

(2.4)

with the polynomial τ(·) given in (2.1), the constant c given in (2.2), and n being large enough. Then
the true factors {(u�

p, v
�
p,w

�
p)}rp=1 correspond to the unique optimal solution of the continuous analog of

�1 norm minimization (1.4) up to a sign ambiguity.

A few remarks follow. Firstly, since r = O
(
n17/16/

√
τ(log n)

) � n, total mass minimization
is guaranteed to recover overcomplete tensor decompositions. Secondly, the incoherence condition is
reasonable as we argue in the following. Tensor decomposition using total mass minimization is an
atomic decomposition problem. The latter determines the conditions under which a decomposition
in terms of atoms in an atomic set A achieves the corresponding atomic norm. For example, the
singular value decomposition is an atomic decomposition for the set of unit-norm, rank-one matrices.
Finally, if the incoherence bound in Assumption I is further strengthened to O( 1

nα(log n) ) for some
polynomial α(·), then Assumptions II and III are consequences of Assumption I. So if the rank-one
factors of an overcomplete tensor are incoherent enough, without needing Assumptions II and III, its
CP decomposition can always be uniquely identified.

We note that Assumptions I, II and III hold with high probability if the tensor factors are generated
independently according to uniform distributions on the unit spheres ([1], Lemmas 25, 31).

Corollary 2.1. If the true tensor factors {(u�
p, v

�
p,w

�
p)}rp=1 in (1.1) are uniformly distributed on the

unit spheres, and if r satisfies (2.4), then with high probability, the true tensor factors correspond
to the unique optimal solution of the continuous analog of �1 norm minimization (1.4) up to a sign
ambiguity.

3. Prior art and inspirations

Despite the advantages provided by tensor methods in many applications, their widespread adoption
has been slow due to inherent computational intractability. Although the decomposition (1.1) is a multi-
mode generalization of the singular value decomposition for matrices, extracting the decomposition
from a given tensor is a nontrivial problem that is still under active investigation (cf. [18, 34]). Indeed,
even determining the rank of a third-order tensor is an NP-hard problem [29]. A common strategy used to
compute a tensor decomposition is to apply an alternating minimization scheme. Although efficient, this
approach has the drawback of not providing global convergence guarantees [18]. Recently, an approach
combining alternating minimization with power iteration has gained popularity due to its ability to
guarantee the tensor decomposition results under certain assumptions [1, 33].

Tensor decomposition is a special case of atomic decomposition, which is to determine when a
decomposition with respect to some given atomic setA achieves the atomic norm [15]. For finite atomic
sets, it is now well-known that if the atoms satisfy certain conditions such as the restricted isometry
property, then a sparse decomposition achieves the atomic norm [11]. For the set of rank-1, unit-norm
matrices, the atomic norm (the matrix nuclear norm), is achieved by orthogonal decompositions [50].
When the atoms are complex sinusoids parameterized by the frequency, Candès and Fernandez-Granda
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A SUPER-RESOLUTION FRAMEWORK FOR TENSOR DECOMPOSITION 5

showed that atomic decomposition is solved by atoms with well-separated frequencies [12]. Similar
separation conditions also show up when the atoms are translations of a known waveform [16, 21,
56], spherical harmonics [5] and radar signals parameterized by translations and modulations [28].
Tang and Shah in [57] employed the same atomic norm idea but focused on symmetric tensors. In
addition, the result of [57] does not apply to overcomplete decompositions. Under a set of conditions,
including the incoherence condition ensuring the separation of tensor factors, this work characterizes
a class of nonsymmetric and overcomplete tensor decompositions that achieve the tensor nuclear
norm ‖T ‖∗.

Another closely related line of work is matrix recovery [19] and tensor recovery. Low-rank matrix
recovery based on the idea of nuclear norm minimization has received a great deal of attention in recent
years [13, 49, 50]. A direct generalization of this approach to tensors would have been using tensor
nuclear norm to perform low-rank tensor recovery. However, this approach was not pursued due to
the NP-hardness of computing the tensor nuclear norm [29] and the lack of analysis tools for tensor
problems. The mainstream tensor recovery approaches are based on various forms of matricization [6,
26, 47]. Alternating minimization can also be applied to tensor recovery with performance guarantees
established in recent work [32]. More recently, gradient descent with a good initialization is applied
to the noisy symmetric tensor completion and achieves near-optimal statistical guarantees [10]. Note
that all the above mentioned works study the low-rank tensor recovery problems, i.e. the number of
rank-1 tensor factors is less than the factor size n. While in general calculating tensor decomposition
is NP-hard, the theoretical computer science community has developed some interesting algorithms
for overcomplete tensor decomposition. For example, Anandkumar et al. [1, 1, 2] apply the iterative
power method with good initialization to the overcomplete tensor decomposition problem and provide
guarantees for the linear-overcomplete case (i.e. r ≤ βn). In addition to these local search algorithms
such as gradient descent, power method and alternating minimization, another line of algorithms for
overcomplete tensor decomposition are based on the sum-of-squares (SoS) semidefinite programming
(SDP) hierarchy [30, 46, 48]. Although the SoS relaxation approaches provide provable guarantees
for overcomplete tensor decomposition, they are essentially SDPs, which is not scalable to high-
dimensional tensors.

In contrast, we expect that the atomic norm, when specialized to tensors, will achieve the information
theoretical limit for tensor completion as it does for compressive sensing, matrix completion [19, 49] and
line spectral estimation with missing data [54]. Given a set of atoms, the atomic norm is an abstraction
of �1-type regularization that favors simple models. Using the notion of descent cones, Chandrasekaran
et al. in [15] argued that the atomic norm is the best possible convex proxy for recovering simple
models. Particularly, atomic norms are shown in many problems beyond compressive sensing and matrix
completion to be able to recover simple models from minimal number of linear measurements. For
example, when specialized to the atomic set formed by complex exponentials, the atomic norm can
recover signals having sparse representations in the continuous frequency domain with the number of
measurements approaching the information theoretic limit without noise [54] as well as achieving near
minimax denoising performance [55]. Continuous frequency estimation using the atomic norm is also
an instance of measure estimation from (trigonometric) moments.

4. Tensor decomposition, atomic norms and duality

In this work, we view tensor decomposition in the frameworks of both atomic norms and measure
estimation. The unit sphere of Rn is denoted by Sn−1 and the direct product of three unit spheres Sn−1 ×
S
n−1 × S

n−1 by K. The tensor atomic set is denoted by A = {u ⊗ v ⊗ w : (u, v,w) ∈ K} parameterized
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6 Q. LI ET AL.

by the set K, where u⊗ v⊗w is a rank-1 tensor with the (i, j, k)th entry being uivjwk. For any tensor T ,
its atomic norm with respect to A is defined by ([15], Eq. (2))

‖T ‖A = inf{t : T ∈ t conv(A)}

= inf

{∑
p

λp : T =
∑
p

λpup ⊗ vp ⊗ wp, λp > 0, (up, vp,wp) ∈ K

}
, (4.1)

where conv(A) is the convex hull of the atomic setA, and a scalar multiplying a set scales every element
in the set. Therefore, the tensor atomic norm is the minimal �1 norm of its expansion coefficients among
all valid expansions in terms of unit-norm, rank-1 tensors. The atomic norm ‖T ‖A defined in (4.1) is
also called the tensor nuclear norm and denoted by ‖T ‖∗ in ([25], Eq. (2.7)). We will use these two
names and notations interchangeably in the following. The way of defining the tensor nuclear norm is
precisely the same as that of defining the matrix nuclear norm.

We argue that the two lines in the definition (4.1) are consistent and are also equivalent to (1.4) as
follows. Since conv(A) = {T : T = ∫

K
u ⊗ v ⊗ w d μ,μ ∈ M+(K),μ(K) ≤ 1}, the first line in the

definition (4.1) implies that ‖T ‖A is equal to the optimal value of (1.4). Compared with the measure
optimization (1.4), the feasible region of the minimization defining the atomic norm in the second line of
(4.1) is restricted to discrete measures. However, these two optimizations share the same optimal value
as a consequence of Carathéodory’s convex hull theorem, which states that if a point x ∈ R

d lies in
the convex hull of a set, then x can be written as a convex combination of at most d + 1 points of that
set ([4], Theorem 2.3). Since T ∈ ‖T ‖A conv(A) = conv(‖T ‖AA), T can be expressed as a convex
combination of at most n3 + 1 points of the set ‖T ‖AA, implying that the optimal value is achieved
by a discrete measure with support size at most n3 + 1. This argument establishes that the two lines in
(4.1) as well as the measure optimization (1.4) are equivalent. Therefore, the atomic norm framework
and the measure optimization framework are two different formulations of the same problem, with the
former setting the stage in the finite dimensional space and the latter in the infinite-dimensional space
of measures.

Given an abstract atomic set, the problem of atomic decomposition seeks the conditions under
which a decomposition in terms of the given atoms achieves the atomic norm. In this sense, the tensor
decomposition considered in this work is an atomic decomposition problem.

4.1 Duality

Duality plays an important role in analyzing atomic tensor decomposition. We again approach duality
from both perspectives of atomic norms and measure estimation.

First, we find the dual problem of the optimization problem (1.4). GivenQ,T ∈ R
n×n×n, we define

the tensor inner product 〈Q,T 〉 := ∑i,j,k QijkTijk. Standard Lagrangian analysis shows that the dual
problem of (1.4) is the following semi-infinite program, which has an infinite number of constraints:

maximize
Q∈Rn×n×n

〈Q,T 〉

subject to 〈Q, u ⊗ v ⊗ w〉 ≤ 1,∀(u, v,w) ∈ K (4.2)

The polynomial q(u, v,w) := 〈Q,u ⊗ v ⊗ w〉 = ∑
i,j,k Qijkuivjwk corresponding to a dual feasible

solution Q of (4.2) is called a dual polynomial. The dual polynomial associated with an optimal dual
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A SUPER-RESOLUTION FRAMEWORK FOR TENSOR DECOMPOSITION 7

solution can be used to certify the optimality of a particular decomposition, as demonstrated by the
following proposition.

Proposition 4.1. Suppose the set of rank-1 tensors {u�
p ⊗ v�

p ⊗ w�
p}rp=1 given in (1.1) are linearly

independent. If there exists a dual solution Q ∈ R
n×n×n to (4.2) such that the corresponding dual

polynomial q : K → R

q(u, v,w) := 〈Q, u ⊗ v ⊗ w〉 (4.3)

satisfies the following Boundedness and Interpolation Property (BIP):

q(u�
p, v

�
p,w

�
p) = 1 for p ∈ [r] (Interpolation) (4.4a)

q(u, v,w) < 1 in K \ S� (Boundedness) (4.4b)

where [r] := {1, . . . , r} and
S� := {(apu�

p, bpv
�
p, cpw

�
p) :|ap| = |bp| = |cp| = apbpcp = 1, p ∈ [r]}, (4.5)

then μ� given in (1.3) is the unique optimal solution to (1.4) up to sign ambiguity.

Proof. In view of (4.2), any Q that satisfies the BIP in (4.4) is a dual feasible solution. We also have

〈Q,T 〉 =
〈
Q,

r∑
p=1

λ�
pu

�
p ⊗ v�

p ⊗ w�
p

〉
=

r∑
p=1

λ�
p〈Q, u�

p ⊗ v�
p ⊗ w�

p〉 =
r∑

p=1

λ�
pq(u

�
p, v

�
p,w

�
p) = μ�(K)

establishing a zero-duality gap of the primal-dual feasible solution (μ�,Q). As a consequence, μ� is a
primal optimal solution to (1.4) and Q is a dual optimal solution to (4.2).

For uniqueness, suppose μ̂ is another primal optimal solution to (1.4). If μ̂(K \ S�) > 0, then

μ�(K) = 〈Q,T 〉 =
〈
Q,
∫
K

u ⊗ v ⊗ w d μ̂

〉
< μ̂(S�) +

∫
K\S�

1 d μ̂ = μ̂(K)

contradicting the optimality of μ̂. So all optimal solutions are supported on S�. To remove the sign
ambiguity, we can assume an optimal solution is supported on {u�

p⊗v�
p⊗w�

p}rp=1. Since {u�
p⊗v�

p⊗w�
p}rp=1

are linearly independent by assumption, the coefficients λ�
p can be uniquely determined from solving

the linear system of equations encoded in T = ∑r
p=1 λ�

pu
�
p ⊗ v�

p ⊗ w�
p. This proves the uniqueness (up

to sign ambiguity).
�

4.2 Dual certificate and subdifferential

The dual optimal solution Q satisfying the BIP is called a dual certificate, which is used frequently as
the starting point to derive several atomic decomposition and super-resolution results [5, 12, 54, 57]. In
Section 5, we will explicitly construct a dual certificate to prove Theorem 2.1. In this subsection, we
will relate the dual certificate with the subdifferential of the tensor nuclear norm.
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8 Q. LI ET AL.

First, the dual norm of the tensor nuclear norm, i.e. the tensor spectral norm, of a tensor Q is given
by

‖Q‖ := sup
T :‖T ‖∗≤1

〈Q,T 〉 = sup
(u,v,w)∈K

〈Q, u ⊗ v ⊗ w〉. (4.6)

The equality is due to the fact that the atomic set A are the extreme points of the unit nuclear norm ball
{T : ‖T ‖∗ ≤ 1}. In light of the spectral norm definition, we rewrite the dual problem (4.2) as

maximize
Q∈Rn×n×n

〈Q,T 〉 subject to ‖Q‖ ≤ 1, (4.7)

which is precisely the definition of the dual norm of the tensor spectral norm, i.e. the tensor nuclear
norm.

The subdifferential (the set of subgradients) of the tensor nuclear norm is defined by ([24], Definition
B.20)

∂‖ · ‖∗(T ) = {Q ∈ R
n×n×n : ‖R‖∗ ≥ ‖T ‖∗ + 〈R − T ,Q〉, for allR ∈ R

n×n×n}, (4.8)

which has an equivalent representation ([59], Section 1)

∂‖ · ‖∗(T ) = {Q ∈ R
n×n×n : ‖T ‖∗ = 〈Q,T 〉, ‖Q‖ ≤ 1

}
. (4.9)

For T having an atomic decomposition given in (1.1), it can be established that the defining
properties of subdifferential (4.9) are equivalent to

〈Q, u�
p ⊗ v�

p ⊗ w�
p〉 = 1, for p ∈ [r] (4.10a)

〈Q, u ⊗ v ⊗ w〉 ≤ 1, for (u, v,w) ∈ K (4.10b)

We recognize that the BIP (4.4) is a strengthened version of the subdifferential conditions (4.10).
Therefore, a dual certificate, i.e. anyQ satisfying theBIP, is an element of the subdifferential ∂‖·‖∗(T ).
The BIP in fact means that Q is an interior point of ∂‖ · ‖∗(T ). Our proof strategy for Theorem 2.1 is
to construct such an interior point in Section 5. This is in contrast to the matrix case, for which we have
an explicit characterization of the entire subdifferential of the nuclear norm using the singular value
decomposition (more explicit than the one given in (4.9)). More specifically, suppose X = UΣV
 is
the (compact) singular value decomposition of X ∈ R

m×n with U ∈ R
m×r,V ∈ R

n×r and Σ being
an r × r diagonal matrix. Then the subdifferential of the matrix nuclear norm at X is given by ([50],
Eq. (2.9))

∂‖ · ‖∗(X) = {UV
 + W : U
W = 0,WV = 0, ‖W‖ ≤ 1}.

It is challenging to obtain such a characterization for tensors unless the tensor admits an orthogonal
decomposition.

4.3 Extension: regularization using tensor nuclear norm

Independent from practical considerations, we investigate tensor decomposition for theoretical reasons.
Similar to regularizing matrix inverse problems using the matrix nuclear norm, the tensor nuclear norm
can be used to regularize tensor inverse problems. Suppose we observe an unknown low-rank tensor
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A SUPER-RESOLUTION FRAMEWORK FOR TENSOR DECOMPOSITION 9

T � through the linear measurement model y = B(T �), we would like to recover the tensor T � from
the observation y. For instance, when B samples the individual entries of T �, we are looking at a tensor
completion problem. Remarkably, Yuan and Zhang exploited the tensor nuclear norm approach to tensor
completion and improved the state-of-the-art sample complexity in the seminal work [60]. We propose
recovering T � by solving

minimize
T ∈Rn×n×n

‖T ‖∗ subject to y = B(T ) (4.11)

which favors a low-rank solution. To establish recoverability, we can construct a dual certificate Q
of the form B∗(λ), whose corresponding dual polynomial satisfies the BIP. Here B∗ is the adjoint
operator of B. When the operator B is random, the concentration of measure guarantees that we
can construct a dual certificate B∗(λ) that is close to the one constructed in the full data case. This
fact can then be exploited to verify the BIP of B∗(λ) and to establish exact recovery. When the
atoms are complex exponentials parameterized by continuous frequencies, this strategy is adopted to
establish the compressed sensing off the grid result (the completion problem) [54] building upon the
dual polynomial constructed for the super-resolution problem (the full data case) [12]. It shows that
the number of random linear measurements required for exact recovery approaches the information
theoretical limit. In addition to exact recovery from noise-free measurements, the dual certificate for the
full data case can also be utilized to derive near-minimax denoising performance [7, 55], approximate
support recovery [22, 38] and robust recovery from observations corrupted by outliers [23, 58]. We
expect that the dual polynomial constructed for tensor decomposition will play a similar role for
tensor inverse problems, enabling the development of tensor results parallel to their matrix counterparts
such as matrix completion, denoising and robust principal component analysis. We leave these as our
future work.

5. Proof of Theorem 2.1

5.1 Proof outline

The proof of Theorem 2.1 relies on the construction of a dual polynomial that satisfies the BIP (4.4).
Towards that end, we first partitionK into the far region (controlled by Lemma 5.4) and the near region.
To control the dual polynomial in the near region, we use an angular parametrization to further divide
it into near vertex region (controlled by Lemma 5.6) and near band region (controlled by Lemma 5.7).
In the end, we can show the constructed dual polynomial satisfies the BIP in the whole region. We
summarize the proof map on the right.

5.2 Minimal energy construction

Since the BIP (4.4) (especially the Boundedness property (4.4b)) is hard to enforce directly, we start
from a candidate dual certificate or pre-certificateQ in the subdifferntial set ∂‖T ‖∗ defined by (4.10):

〈Q, u�
p ⊗ v�

p ⊗ w�
p〉 = 1, for p ∈ [r]

〈Q, u ⊗ v ⊗ w〉 ≤ 1, for (u, v,w) ∈ K

which essentially characterizes the optimal solution set of following optimization

maximize(u,v,w)∈K 〈Q, u ⊗ v ⊗ w〉 (5.1)
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10 Q. LI ET AL.

Then applying the Karush–Kuhn–Tucker (KKT) conditions to the constrained optimization (5.1), we
can further relax the subdifferential conditions (4.10) to a set of linear constraints.

Lemma 5.1. The following conditions are necessary for (4.10):

∑
j,k

Qijkv
�
p(j)w

�
p(k) = u�

p(i), ∀i ∈ [n],∀p ∈ [r];

∑
i,k

Qijku
�
p(i)w

�
p(k) = v�

p(j), ∀i ∈ [n],∀p ∈ [r];

∑
i,j

Qijku
�
p(i)v

�
p(j) = w�

p(k), ∀i ∈ [n],∀p ∈ [r]

or⇐⇒
Q×2v

�
p×3w

�
p = u�

p,∀p ∈ [r];

Q×1u
�
p×3w

�
p = v�

p,∀p ∈ [r];

Q×1u
�
p×2v

�
p = w�

p,∀p ∈ [r]

(5.2)

where {×k} are the k-mode tensor-vector product [34] whose definitions are apparent from context.

The proof of Lemma 5.1 is given in Appendix A.
Apparently, the subdifferential conditions (4.10) is necessary for the BIP (4.4), but generally not

sufficient, by comparing the second line of (4.10) and the Boundedness Property (4.4b). Indeed, as we
argued before, anyQ satisfying the BIP is an interior point of the subdifferential ∂‖ · ‖∗(T ). To satisfy
the Boundedness Property (4.4b), we further minimize the energy ‖Q‖2F = ∑ijk Q

2
ijk in the hope that

this will push q(u, v,w) towards zero such that Q is an interior point of ∂‖ · ‖∗(T ). Thus, we propose
solving the following minimum-energy problem to obtain a pre-certificate:

minimize
Q

1

2
‖Q‖2F subject to (5.2) (5.3)

Lemma 5.2. (Explicit form of the pre-certificate) The solution of the least-norm problem (5.3) has the
form (normal equation)

Q =
r∑

p=1

(α�
p ⊗ v�

p ⊗ w�
p + u�

p ⊗ β�
p ⊗ w�

p + u�
p ⊗ v�

p ⊗ γ �
p) (5.4)

D
ow

nloaded from
 https://academ

ic.oup.com
/im

aiai/advance-article/doi/10.1093/im
aiai/iaac002/6564353 by guest on 08 April 2022



A SUPER-RESOLUTION FRAMEWORK FOR TENSOR DECOMPOSITION 11

with the unknown coefficients {α�
p,β

�
p, γ

�
p}rp=1 being chosen such that Q in (5.4) satisfies (5.2). So we

get an explicit form of a pre-certificate

q(u, v,w) = 〈Q,u ⊗ v ⊗ w〉

=
r∑

p=1

[〈α�
p,u〉〈v�

p, v〉〈w�
p,w〉 + 〈u�

p,u〉〈β�
p, v〉〈w�

p,w〉 + 〈u�
p,u〉〈v�

p, v〉〈γ �
p,w〉]. (5.5)

The proof of Lemma 5.2 is given in Appendix B.
To obtain some intuition of what these dual-polynomial coefficients {α�

p,β
�
p, γ

�
p}rp=1 would look like,

let us assume {u�
p}rp=1, {v�

p}rp=1, {w�
p}rp=1 are almost orthogonal and plug the explicit form ofQ (5.4) into

the first equation in (5.2)

α�
p + u�

p〈β�
p, v

�
p〉 + u�

p〈γ �
p,w

�
p〉 ≈ u�

p. (5.6)

Then multiplying u�

p on both sides gives

〈α�
p,u

�
p〉 + 〈β�

p, v
�
p〉 + 〈γ �

p,w
�
p〉 ≈ 1. (5.7)

Finally combining (5.6) and (5.7) together with the symmetry property of (5.4), we get these coefficients
{α�

p,β
�
p, γ

�
p}rp=1 are located approximately at {u�

p/3, v
�
p/3,w

�
p/3}rp=1. The accurate description of this

phenomenon is given by the following lemma with the proof listed in Appendix C.

Lemma 5.3 (Control the dual polynomial coefficients). Under Assumptions II and III together with
r = o(n2/κ(log n)2), the following estimates are valid for sufficiently large n:∥∥∥∥A − 1

3
U

∥∥∥∥ ≤ 2κ(log n)

(√
r

n
+ c

r

n1.5

)
;∥∥∥∥B − 1

3
V

∥∥∥∥ ≤ 2κ(log n)

(√
r

n
+ c

r

n1.5

)
;∥∥∥∥C − 1

3
W

∥∥∥∥ ≤ 2κ(log n)

(√
r

n
+ c

r

n1.5

)

where the norm ‖ · ‖ is the matrix spectral norm and

A = [α�
1, · · · ,α�

r

]
,B = [β�

1, · · · ,β�
r

]
,C = [γ �

1, · · · , γ �
r

]
,U = [u�

1, · · · ,u�
r

]
,

V = [v�
1, · · · , v�

r

]
,W = [w�

1, · · · ,w�
r

]
.

5.3 Far region

For a parameter δ ∈ (0, 1), the far region is defined by

F(δ) :=
r⋂

p=1

{(u, v,w) ∈ K : |〈u, u�
p〉| ≤ δ or|〈v, v�

p〉| ≤ δ or|〈w,w�
p〉| ≤ δ}, (5.8)
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12 Q. LI ET AL.

Fig. 1. Projection of the far region in the u coordinate. The blue band represents the region {u : |〈u,u�
1〉| ≤ δ} that is far away

from u�
1, while the green region {u : |〈u,u�

2〉| ≤ δ} is the far-region associated with u�
2. The far region is their intersection⋂2

p=1{u : |〈u,u�
p〉| ≤ δ}, consisting of the two black diamonds.

which consists of points (u, v,w) in K that are far away (in the angular sense) from

S
� := {(±u�

p,±v�
p,±w�

p) : p = 1, . . . , r} (5.9)

in at least one coordinate of (u, v,w). For n = 3 and r = 2, the far region projected onto the unit sphere
{u : ‖u‖2 = 1} is shown in Figure 1.

5.3.1 Controlling in far region Instead of bounding the dual polynomial q directly, we will bound
its absolute value |q|. To obtain some intuition of how to bound it, we rewrite the explicit form (5.5) as
follows

q(u, v,w)

=
r∑

p=1

[
〈α�

p − 1

3
u�
p,u〉〈v�

p, v〉〈w�
p,w〉 + 〈u�

p,u〉〈β�
p − 1

3
v�
p, v〉〈w�

p,w〉 + 〈u�
p,u〉〈v�

p, v〉〈γ �
p − 1

3
w�
p,w〉

]
(5.10)

+
r∑

p=1

〈u�
p,u〉〈v�

p, v〉〈w�
p,w〉. (5.11)

The main idea is first using the closeness of {α�
p,β

�
p, γ

�
p}rp=1 and {u�

p/3, v
�
p/3,w

�
p/3}rp=1 to bound (5.10)

and then using angular-distance between F(δ) and (u�
p, v

�
p,w

�
p), ∀p to bound (5.11).

The accurate argument is made by the following lemma with the proof given in Appendix D.

Lemma 5.4 (Controlling in far region). Under Assumptions I, II, III, if r � n1.25 and r ≤ n
24δc2

for

δ ∈ (0, 1
24 ], then for sufficiently large n, we have |q(u, v,w)| < 1 in F(δ).
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A SUPER-RESOLUTION FRAMEWORK FOR TENSOR DECOMPOSITION 13

Fig. 2. The two yellow spherical caps form the near regionN1(δ) around the point (u
�
1, v

�
1,w

�
1) projected onto the u coordinates.

N2(δ), which is not shown here, consists of another two spherical caps. The union ofN1(δ),N2(δ) and the far regionF(d) shown
in Figure 1 will cover the entire sphere {u : ‖u‖ = 1}.

5.4 Near region

For the union of the far and near regions to cover the entire region K, we define the near region as

N (δ) :=K \ F(δ) =
r⋃

p=1

{(u, v,w) ∈ K : |〈u�
p,u〉| ≥ δ, |〈v�

p, v〉| ≥ δ, |〈w�
p,w〉| ≥ δ} :=

r⋃
p=1

Np(δ)

(5.12)

with each individual near region Np(δ) close to (u�
p, v

�
p,w

�
p) in all coordinate of (u, v,w).

For n = 3, r = 2, we plot the near region N1(δ) projected onto the sphere {u : ‖u‖2 = 1} in
Figure 2.

5.4.1 Angular parametrization of near region In order to show the dual polynomial satisfying the
BIP in the entire near regionN (δ), we use the ‘Divide-and-conquer’ idea to bound the dual polynomial
in each individual near region Np(δ) for p ∈ [r]. The main technique used to control each individual
near region is applying angular parametrization to each individual near region.

As the domain K is essentially a direct product of spheres, we re-parameterize each individual near
region Np(δ) in the angular sense. Without loss of generality, let us consider p = 1. Pick (x, y, z) ∈ K

such that x ⊥ u�
1, y ⊥ v�

1, z ⊥ w�
1 and consider the parameterized points

(u(θ1), v(θ2),w(θ3)) ∈ K with

⎧⎪⎨⎪⎩
u(θ1) = u�

1 cos(θ1) + x sin(θ1)

v(θ2) = v�
1 cos(θ2) + y sin(θ2)

w(θ3) = w�
1 cos(θ3) + z sin(θ3).

(5.13)

When θ1 ranges from 0 to π , u(θ1) traces out a 2D semi-circle that starts at u�
1, passes through x, and

finally reaches −u�
1; while for a fixed θ1 ∈ [0,π ], the set

⋃
x⊥u�

1
{u(θ1)} parameterizes all the points on

S
n−1 having an angle of θ1 with u

�
1. The same properties hold for v(θ2) and w(θ3). This parametrization
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14 Q. LI ET AL.

projected onto the u coordinate is shown on right.

In fact, using this angular parametrization, the individual near region N1(δ) in (5.12) can be
expressed as

N1(δ) =
⋃

(x,y,z):x⊥u�
1,y⊥v�1,z⊥w�

1

{(u(θ1), v(θ2),w(θ3)) : | cos(θi)| ≥ δ, θi ∈ [0,π ], i = 1, 2, 3}. (5.14)

Proposition 5.1 (Near angular region). For any δ ∈ (0, 1), the near region N1(δ) is contained in the
following set

N1(δ) ⊂
⋃

(x,y,z):x⊥u�
1,y⊥v�1,z⊥w�

1

{(u(θ1), v(θ2),w(θ3)) : (θ1, θ2, θ3) ∈ N(δ)} (5.15)

with the near angular region N(δ) defined by

N(δ) :=
{
(θ1, θ2, θ3) : θi ∈

[
0,

π

2
− δ
]

∪
[π
2

+ δ,π
]
, i = 1, 2, 3

}
. (5.16)

Proof. Since the function | cos(θ)| is symmetric at π
2 on the interval [0,π ] and is decreasing on [0,π/2],

we know that {θ : | cos(θ)| ≥ δ} ∩ [0,π ] = [0, arccos(δ)] ∪ [π − arccos(δ),π ]. Note that arccos(δ) =
π
2 − arcsin(δ) and δ < arcsin(δ), so we get {θ : | cos(θ)| ≥ δ} ∩ [0,π ] ⊂ [0, π

2 − δ] ∪ [π
2 + δ,π ]. The

inclusion (5.15) follows from (5.14) immediately. �
The near angular region N(δ) contains the eight cubes with side length π

2 − δ, located at the eight
corners of the cube [0,π ]× [0,π ]× [0,π ]. Moreover, one can see that the smaller the parameter δ is, the
larger the near angular region N(δ) will be. In particular, when δ approaches to zero, the near angular
region N(δ) becomes the whole cube N(0) = [0,π ] × [0,π ] × [0,π ]. The near angular region N(δ) is
plotted in Figure 3.
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A SUPER-RESOLUTION FRAMEWORK FOR TENSOR DECOMPOSITION 15

Fig. 3. The eight gray cubes of side-length π/2 − δ at the corners form the near angular region N(δ).

5.4.2 Angular parametrization of dual polynomial Evaluating the dual polynomial q(u, v,w) at
(u(θ1), v(θ2),w(θ3)) in (5.13), we get the angular dual polynomial F(θ1, θ2, θ3) := q(u(θ1), v(θ2),w(θ3))

as

F(θ1, θ2, θ3) =q(u�
1, v

�
1,w

�
1) cos(θ1) cos(θ2) cos(θ3) + q(u�

1, v
�
1, z) cos(θ1) cos(θ2) sin(θ3)

+ q(u�
1, y,w

�
1) cos(θ1) sin(θ2) cos(θ3) + q(x, v�

1,w
�
1) sin(θ1) cos(θ2) cos(θ3)

+ q(u�
1, y, z) cos(θ1) sin(θ2) sin(θ3) + q(x, v�

1, z) sin(θ1) cos(θ2) sin(θ3)

+ q(x, y,w�
1) sin(θ1) sin(θ2) cos(θ3) + q(x, y, z) sin(θ1) sin(θ2) sin(θ3). (5.17)

Among these eight terms, the first term is cos(θ1) cos(θ2) cos(θ3) since q(u
�
1, v

�
1,w

�
1) = 1. The next three

terms involving one sine function are zero as, for example,

q(u�
1, v

�
1, z) = Q×1u

�
1×2v

�
1×3z = w�

1×3z = w�
1

z = 0,

where we have used Q×1u
�
1×2v

�
1 = w�

1 and the third equality of (5.2). Hence, we get a more concise
form of F:

F(θ1, θ2, θ3) = cos(θ1) cos(θ2) cos(θ3) + q(u�
1, y, z) cos(θ1) sin(θ2) sin(θ3) + q(x, v�

1, z) sin(θ1) cos(θ2)

sin(θ3) + q(x, y,w�
1) sin(θ1) sin(θ2) cos(θ3) + q(x, y, z) sin(θ1) sin(θ2) sin(θ3). (5.18)

By further bounding the other quantities q(u�
1, y, z), q(x, v

�
1, z), q(x, y,w

�
1) and q(x, y, z), we get the

following lemma to uniformly upper-bound F(θ1, θ2, θ3) with the proof given in Appendix E.

Lemma 5.5 (Upper bound of angular dual polynomial). Under Assumptions I, II, III, if r ≤ n1.25−1.5rc

with rc ∈ (0, 16 ), then for sufficiently large n, we have

|F(θ1, θ2, θ3)| ≤ | cos(θ1) cos(θ2) cos(θ3)| + | sin(θ1) sin(θ2) sin(θ3)| + 4

3
τ(log n)n−rc . (5.19)
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16 Q. LI ET AL.

Fig. 4. The eight colored cubes of size δv × δv × δv form the near vertex region Nv(δv): the red ones are corresponding to the
vertexes in S�, whereas the blue ones are corresponding to other vertexes in the cube.

5.4.3 Angular parametrization of Boundedness and Interpolation Property By Proposition 5.1, a
sufficient condition for the BIP (4.4) to hold in the individual near region N1(δ), is the following
Angular BIP (Angular-BIP):

F(θ1, θ2, θ3) = 1 inS� (Angular Interpolation) (5.20a)

F(θ1, θ2, θ3) < 1 inN(δ) \ S� (Angular Boundedness) (5.20b)

with S� := {(0, 0, 0), (0,π ,π), (π , 0,π), (π ,π , 0)} such that u(θ1) ⊗ v(θ2) ⊗ w(θ3) = u�
1 ⊗ v�

1 ⊗ w�
1 for

any (θ1, θ2, θ3) ∈ S
�.

Similar as before, the Angular Interpolation property (5.20a) is a consequence of the construction
process. In the rest of the paper, we will focus on showing the Angular Boundedness property (5.20b).
Specifically, we will divide the near angular region into near vertex region and near band region, and
then control the angular dual polynomial F in both near vertex region and near band region.

5.4.4 Near vertex region The near vertex region, denoted by Nv(δv), is defined as the union of the
eight small cubes all with side length δv in 8 corners of the cube [0,π ]3. We plot the near vertex region
Nv(δv) in Figure 4. Comparing with the definition of the near angular region N(·), the near vertex region
is also an near angular region but with a different parameter:

Nv(δv) = N(
π

2
− δv). (5.21)

Without loss of generality, we can always assume the near vertex region Nv(δv) is included in the near
angular regionN(δ); otherwise, we only need to show theAngular-BIP holds inNv(δv). This assumption
together with (5.21) implies

δv ≤ π

2
− δ. (5.22)

Note that π/2 − δ is the side length of the corner-cubes in N(δ).
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A SUPER-RESOLUTION FRAMEWORK FOR TENSOR DECOMPOSITION 17

Controlling in near vertex region. To control the angular dual polynomial F in the near vertex
region Nv(δv), we further classify the eight small cubes in Nv(δv) into two groups depending on if their
vertices are in S

� or not.

Lemma 5.6 (Controlling in near vertex region). Under Assumptions I, II, III, if r � n1.25, then for any

ξi ∈
(

−
√
2−1
3 ,

√
2−1
3

)
, we have

F(θ1 + ξ1, θ2 + ξ2, θ3 + ξ3) ≤ 1 (5.23)

for (θ1, θ2, θ3) ∈ {(0, 0, 0), (0,π ,π), (π , 0,π), (π ,π , 0)} and
F(θ1 + ξ1, θ2 + ξ2, θ3 + ξ3) < 0 (5.24)

for (θ1, θ2, θ3) ∈ {(π ,π ,π), (π , 0, 0), (0,π , 0), (0, 0,π)}. Here, equality in (5.23) holds only if ξ1 =
ξ2 = ξ3 = 0.

The proof of Lemma 5.6 is in Appendix F.

Remark 5.1. Lemma 5.6 proves the Angular-BIP holds in the near vertex region Nv(δv) with δv =√
2−1
3 :

F(θ1, θ2, θ3) = 1 inS�

F(θ1, θ2, θ3) < 1 inNv(δv) \ S�

5.4.5 Near band region. The near band region is introduced to cover the remaining region N(δ) \
Nv(δv). Invoking the definitions of the near angular region (5.16) and the near vertex region (5.21):

N(δ) =
{
(θ1, θ2, θ3) : θi ∈

[
0,

π

2
− δ
]

∪
[π
2

+ δ,π
]}

Nv(δv) = {(θ1, θ2, θ3) : θi ∈ [0, δv] ∪ [π − δv,π ]
}

we have

N(δ) \ Nv(δv) =
{
(θ1, θ2, θ3) : θi ∈

(
δv,

π

2
− δ
)

∪
(π

2
+ δ,π − δv

)}
∩ N(δ), (5.25)

which is nonempty since δv ≤ π/2 − δ by the assumption (5.22). We plot the remaining region N(δ) \
Nv(δv) projected onto the (θ1, θ2)-coordinates in Figure 5.

To let the near band region cover N(δ) \ Nv(δv), we define it as

Nb(δb) :=
{
(θ1, θ2, θ3) : θi ∈

(
δb,

π

2
− δb

)
∪
(π

2
+ δb,π − δb

)
, i = 1, 2, 3

}
. (5.26)

We plot the near band region Nb(δb) projected onto the (θ1, θ2)-coordinates in Figure 6.

Remark 5.2. From (5.25) and (5.26), we have Nb(δb) covers N(δ) \ Nv(δv) if δb ≤ min{δv, δ}, or
equivalently,

N(δ) ⊂ Nb(δb) ∪ Nv(δv), ifδb ≤ min{δv, δ}. (5.27)
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18 Q. LI ET AL.

Fig. 5. The remaining region N(δ) \ Nv(δv) projected onto the (θ1, θ2)-coordinates.

Fig. 6. The near band region Nb(δb) projected onto the (θ1, θ2)-coordinates.

Controlling in near band region. We start with the uniform upper-bound in Lemma 5.5:

|F(θ1, θ2, θ3)| ≤ | cos(θ1) cos(θ2) cos(θ3)| + | sin(θ1) sin(θ2) sin(θ3)| + 4

3
τ(log n)n−rc

≤1

3
(| cos(θ1)|3 + | cos(θ2)|3 + | cos(θ3)|3) + 1

3
(| sin(θ1)|3 + | sin(θ2)|3 + | sin(θ3)|3) + 4

3
τ(log n)n−rc

≤1

3
(| cos(θi)|3 + | sin(θi)|3) + 2

3
+ 4

3
τ(log n)n−rc , ∀i ∈ {1, 2, 3} (5.28)

where the first inequality follows from (5.19) in Lemma 5.5 (under Assumptions I–III and r ≤
n1.25−1.5rc with rc ∈ (0, 16 )), the second inequality follows from the inequality of arithmetic and
geometric means, and the last one is a consequence of | sin(θ)|3 +| cos(θ)|3 ≤ 1. So, |F(θ1, θ2, θ3)| < 1
in Nb(δb) if

| cos(θi)|3 + | sin(θi)|3 < 1 − 4τ(log n)n−rc (5.29)
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A SUPER-RESOLUTION FRAMEWORK FOR TENSOR DECOMPOSITION 19

for some i ∈ {1, 2, 3}. The final result is summarized in the following lemma, with the proof listed in
Appendix G.

Lemma 5.7 (Controlling in near band region). Under Assumptions I, II, III, if r ≤ n1.25−1.5rc with rc ∈
(0, 16 ), then for sufficiently large n, we have |F(θ1, θ2, θ3)| < 1 in Nb(δb) for δb =

√
80τ(log n)

3 n−0.5rc .

5.4.6 Combining the near vertex region and near band region. Finally the Angular-BIP (5.20)
follows from Lemma 5.6 and Lemma 5.7 if the union of the near vertex region Nv(δv) and the near
band region Nb(δb) covers the near angular region N(δ):

N(δ) ⊂ Nv(δv) ∪ Nb(δb).

From (5.27), this happens when

δb ≤ min{δ, δv},

which is equivalent to

δb ≤ δ, (5.30)

since δb =
√

80τ(log n)
3 n−0.5rc �

√
2−1
3 = δv.

Then by Proposition 5.1, q satisfies the BIP in N1(δ). Similar results apply to all individual near
region Np(δ), for p ∈ [r]. Therefore, we claim the BIP holds in the whole near region N (δ) =⋃r

p=1Np(δ).

Lemma 5.8 (Near-region bound). Under Assumptions I, II, III, if r ≤ n1.25−1.5rc with rc ∈ (0, 16 ), then
for sufficiently large n, the dual polynomial q satisfies the BIP in N (δ) for any δ ≥ δb.

5.5 Combining the far region and near region

Combining Lemma 5.4 (for far region) and Lemma 5.8 (for near region), we conclude that the BIP holds
in the whole domain K if Assumptions I, II, III are satisfied and

r ≤ n

24δc2
forδ ∈ [δb,

1

24
] and r ≤ n1.25−1.5rc forrc ∈ (0,

1

6
). (5.31)

Then letting δ = δb (to maximize r) and rc = 1
8 , the requirements (5.31) on r are reduced to the desired

bound (2.4): r ≤ n17/16

32c2
√

15τ(log n)
. The proof of Theorem 2.1 is completed.

6. Computational method

Theorem 2.1 shows that when the tensor factors {(u�
p, v

�
p,w

�
p)}rp=1 satisfy Assumptions I, II, III, we

can recover the tensor decomposition of r up to the order of n17/16 by solving the convex, infinite-
dimensional optimization (1.4). However, as a measure optimization problem, optimization problem
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(1.4) is not directly solvable on a computer. In this section, we first propose a computational method
based on the popular Burer–Monteiro factorization method [9] and then test it by numerical experiments.

Theorem 6.1. Suppose the decomposition that achieves the tensor nuclear norm ‖T ‖∗ involves r terms
and r̃ ≥ r, then ‖T ‖∗ is equal to the optimal value of the following optimization:

minimize
{up,vp,wp}r̃p=1

r̃∑
p=1

1

3

(
‖up‖32 + ‖vp‖32 + ‖wp‖32

)
subject to T =

r̃∑
p=1

up ⊗ vp ⊗ wp (6.1)

Proof. Suppose the tensor nuclear norm is achieved by the decomposition

T =
r∑

p=1

λ�
pu

�
p ⊗ v�

p ⊗ w�
p.

Then, we note that {λ�
p
1/3u�

p, λ
�
p
1/3v�

p, λ
�
p
1/3w�

p}r̃p=1 forms a feasible solution to (6.1) when r̃ = r. When

r̃ > r, we can zero-pad the remaining factors {up, vp,wp}r̃p=r+1. The objective function value at this

feasible solution is 1
3 (
∑r̃

p=1 3λ
�
p) = ‖T ‖∗. This shows that ‖T ‖∗ is greater than the optimal value of

(6.1).
To show the other, suppose an optimal solution of (6.1) is {up, vp,wp}r̃p=1. Define λp :=

‖up‖2‖vp‖2‖wp‖2, for p ∈ [r̃]. Then,

T =
∑

p:λp �=0

λp

up
‖up‖2

⊗ vp
‖vp‖2

⊗ wp

‖wp‖2
.

By definition of the tensor nuclear norm (4.1), we have

‖T ‖∗ ≤
∑

p:λp �=0

λp =
r̃∑

p=1

λp =
r̃∑

p=1

‖up‖2‖vp‖2‖wp‖2 ≤ 1

3

r̃∑
p=1

[
‖up‖32 + ‖vp‖32 + ‖wp‖32

]
,

which is the optimal value of (6.1). Therefore, the optimal value of (6.1) is equal to ‖T ‖∗. �
Theorem 6.1 implies that when an upper bound on r is known, we can solve the nonlinear

(and non-convex) program (6.1) to compute the tensor nuclear norm (and obtain the corresponding
decomposition). Despite the nonconvex nature of (6.1), numerical simulations suggest that the ADMM
approach [8] has superior performance in solving (6.1).

7. Numerical experiments and beyond

Now we perform some numerical results to test the performance of the proposed Burer–Monteiro
factorization method. In particular, we will examine the phase transition of the rate of success for
the ADMM implementation of the proposed Burer–Monteiro factorization approach (6.1) with random
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initialization. To illustrate the superiority of the proposed tensor nuclear norm approach, we compare it
with the Least Squares formulation, that is, the L2 error minimization problem

minimize
{up,vp,wp}r̃p=1

∥∥∥∥∥∥T −
r̃∑

p=1

up ⊗ vp ⊗ wp

∥∥∥∥∥∥
2

F

. (7.1)

In the experiments, the r tensor factors {(u�
p, v

�
p,w

�
p)}rp=1 were generated following i.i.d. Gaussian

distribution, and then each u�
p, v

�
p,w

�
p was normalized to have a unit norm. We set the coefficients

λ�
p = (1 + ε2p)/2, where εp is chosen from the standard normal distribution, to ensure a minimal

coefficient of at least 1/2. With the generated ground-truth factors {(u�
p, v

�
p,w

�
p)}rp=1 and coefficients

{λp}rp=1, we generated the tensor T =∑r
p=1 λ�

pu
�
p ⊗ v�

p ⊗ w�
p. To generate the phase transition plot, we

varied the dimension n and factor-number r, and for each fixed (r, n) pair, 20 instances of such tensor
were generated. We then ran the ADMM algorithm to minimize (6.1), and ran LBFGS to minimize
the L2 error function (7.1), from the same random initialization. We remark that the global minimum
value of the minimization (6.1) keeps the same for any r̃ ≥ r but the global minimum solution doesn’t.
Therefore, to find all the true tensor factors, we choose r̃ = r in both methods. For each instance,

we declared success if the relative recovery error Err

({(̂
up, v̂p, ŵp

)}r
p=1

)
of the output tensor factors{(̂

up, v̂p, ŵp

)}r
p=1

(after removing sign and permutation ambiguities) is within 10−3 where

Err
(
{(̂up, v̂p, ŵp)}rp=1

)
:=

r∑
p=1

( ‖̂up − u�
p‖2

‖u�
p‖2

+ ‖̂vp − v�
p‖2

‖v�
p‖2

+ ‖ŵp − w�
p‖2

‖w�
p‖2

)
.

We plot the experiment results in Figure 7, which shows that the proposed method is clearly superior
compared to the traditional Least Squares method.

Due to the nonconvexity nature of the two tensor decomposition formulations, we believe that the
performance gain achieved by the proposed ADMM approach is because the optimization landscape
of the Least Squares formulation of tensor decomposition is not as good as that of the tensor nuclear
norm formulation (6.1). We therefore conjecture that the tensor nuclear norm is crucial in flatting out
the spurious local minima and high-order saddle points so that it helps to provide a benign optimization
landscape, e.g. ‘strict saddle property’, i.e. every critical point is either a strict saddle (where the Hessian
has negative eigenvalues) or a global minimizer, see [17, 37, 39–44, 61–63] for more literature of
landscape analysis. In contrast, the Least Squares formulation of tensor decomposition doesn’t satisfy
the ‘strict saddle property’. To verify this conjecture, we perform some preliminary analysis. To simplify
the notations and analysis, we consider the symmetric case as a first step. We believe the nonsymmetric
case will have similar properties. More precisely, we consider the following L2 loss function

g(U) = 1

6
‖u1 ⊗3 +u2 ⊗3 −a1 ⊗3 −a2 ⊗3 ‖2F (7.2)
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Fig. 7. Rate of success using Least Squares method (left) and ADMM implementation of (6.1) (right) for tensor decomposition,
respectively.

where u⊗3 := u ⊗ u ⊗ u and U := [u1,u2] ∈ R
2×2. For this function, the critical points are given by

the following equation:

∇g(U) = U[(U
U) � (U
U)] − A[(A
U) � (A
U)] = 0. (7.3)

For simplicity, assume A = I the identity matrix. Then the stationary equation reduces to

U[(U
U) � (U
U)] = U � U (7.4)

Directly solving the above equation (7.4) (through Mathematica) generates three sets of solutions.

Case I

U1(x) =
[

0 0
3
√
1 − x3 x

or
3
√
1 − x3 x
0 0

]
where x ∈ R . In this case, we then compute the eigenvalues of the Hessian matrix:

λ(∇2g(U1(x))) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0(

x4 − x3
3
√
1 − x3 + 3

√
1 − x3

)
︸ ︷︷ ︸

≥3(2
2
3 )

3
(
x4 − x3

3
√
1 − x3 + 3

√
1 − x3

)
︸ ︷︷ ︸

≥3(2
2
3 )

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,
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where λ(·) denotes the eigenvalue list of its argument. We conclude that the first set of critical
pointsU1(x) are neither strict saddle points (since Hessian matrix has no negative eigenvalues)
nor global minima (since it is not a permuted version of Identify matrix). Therefore, the
Least Squares formulation of tensor decomposition doesn’t satisfy the ‘strict saddle property’.
In addition, since the Hessian doesn’t have negative curvature at these critical points, the
iterative algorithm such as gradient descent easily gets trapped by these points. This explains
the relatively poor performance of the Least Squares formulation of tensor decomposition in
Figure 7.

Case II

U2(x) =
[ 3

√
0.25 − x3 x

3
√
0.25 − x3 x

]
For this set of critical points, there are no closed-form eigenvalues of its Hessian matrix. For
convenience, we plot the four eigenvalues as a function of x.

We therefore conclude that this set of critical points are strict saddle points at least when
x ∈ [−2, 2] because the Hessian matrix has a negative eigenvalue for x ∈ [−2, 2].

Case III

U3(x) =
[
0 0
0 0

]
It is clear that the zero point is a special critical point and it is actually a high-order saddle
point, because the Hessian matrix at zero point is also zero.

Although the 2-by-2 case is very simple, it provides some evidence that the Least Squares formulation
of tensor decomposition doesn’t satisfy the ‘strict saddle property’ and has high-order saddle points.

8. Conclusion

By explicitly constructing a dual certificate, we derive similar incoherence conditions (as the separation
conditions in super-resolution problem) for a tensor decomposition to achieve the tensor nuclear norm.
This implies that the infinite dimensional total mass minimization can globally identify those decom-
positions satisfying the developed incoherence conditions. Computational method based on Burer-
Monteiro factorization approach is used to solve the measure optimization. Numerical experiments show
that the Burer–Monteiro factorization approach achieves amazingly superior performance. Future work
will analyze the nonconvex landscape of the Burer–Monteiro factorization approach.
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A. Proof of Lemma 5.1

Proof. From the KKT conditions of the constrained optimization (5.1), we have the partial derivatives
of its Lagrangian

L(u, v,w, a, b, c) =q(u, v,w) − a(‖u‖22 − 1) − b(‖v‖22 − 1) − c(‖w‖22 − 1)

at u = u�
p, v = v�

p, and w = w�
p, p = 1, . . . , r, must vanish. Therefore,

∂L(u�
p, v

�
p,w

�
p, a, b, c)

∂u
= ∂q(u�

p, v
�
p,w

�
p)

∂u
− 2au�

p = 0,

∂L(u�
p, v

�
p,w

�
p, a, b, c)

∂v
= ∂q(u�

p, v
�
p,w

�
p)

∂v
− 2bv�

p = 0,

∂L(u�
p, v

�
p,w

�
p, a, b, c)

∂w
= ∂q(u�

p, v
�
p,w

�
p)

∂w
− 2cw�

p = 0. (A.1)

Hence, 2a = 〈 ∂q(u�
p,v

�
p,w

�
p)

∂u ,u�
p〉, 2b = 〈 ∂q(u�

p,v
�
p,w

�
p)

∂v , v�
p〉, and 2c = 〈 ∂q(u�

p,v
�
p,w

�
p)

∂w ,w�
p〉. Note that q satisfies

the Interpolation condition and ∂q(u,v,w)
∂u(i) =∑j,k Qijkv(j)w(k), we have that

2a =
∑
i,j,k

Qijku
�
p(i)v

�
p(j)w

�
p(k) = q(u�

p, v
�
p,w

�
p) = 1.

That is a = 1/2. With similar arguments, one can show that b = c = 1/2. The conclusion of this lemma
follows from (A.1). �

B. Proof of Lemma 5.2

Proof. First, the Lagrangian form of (5.3) is

L(Q, {α�
p,β

�
p, γ

�
p}rp=1) = 1

2
‖Q‖2F −

r∑
p=1

(
Q×1α

�
p×2v

�
p×3w

�
p + Q×1u

�
p×2β

�
p×3w

�
p + Q×1u

�
p×2v

�
p×3γ

�
p

)

= 1

2
‖Q‖2F −

〈
Q,

r∑
p=1

α�
p ⊗ v�p ⊗ w�

p + u�
p ⊗ β�

p ⊗ w�
p + u�

p ⊗ v�p ⊗ γ �
p

〉

with the Lagrangian multipliers {α�
p,β

�
p, γ

�
p}rp=1 to be chosen such that Q satisfies (5.2). Then, by the

KKT necessary conditions, the solution of the least-norm problem (5.3) should satisfy

0 =∂L(Q, {α�
p,β

�
p, γ

�
p}rp=1)

∂Q = Q −
r∑

p=1

(
α�
p ⊗ v�

p ⊗ w�
p + u�

p ⊗ β�
p ⊗ w�

p + u�
p ⊗ v�

p ⊗ γ �
p

)
.

�
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C. Proof of Lemma 5.3

Proof. We need to find coefficients {α�
p,β

�
p, γ

�
p}rp=1 so that

Q =
r∑

p=1

(
α�
p ⊗ v�

p ⊗ w�
p + u�

p ⊗ β�
p ⊗ w�

p + u�
p ⊗ v�

p ⊗ γ �
p

)

satisfies

Q×2v
�
p×3w

�
p = u�

p, ∀p ∈ [r],

Q×1u
�
p×3w

�
p = v�

p, ∀p ∈ [r],

Q×1u
�
p×2v

�
p = w�

p, ∀p ∈ [r]. (C.1)

�

C.1 An iteration scheme

We adopt the following iterative scheme to find such {α�
p,β

�
p, γ

�
p}rp=1:

αt+1
q = αt

q − ρ
(
Qt

1×2v
�
p×3w

�
q − u�

q

)
, q ∈ [r],

β t+1
q = β t

q − ρ
(
Qt

2×1u
�
p×3w

�
q − v�

q

)
, q ∈ [r],

γ t+1
q = γ t

q − ρ
(
Qt

3×1u
�
p×2v

�
q − w�

q

)
, q ∈ [r], (C.2)

initialized by α0
q = 1

3u
�
q, β

0
q = 1

3v
�
q, and γ 0

q = 1
3w

�
q with q ∈ [r]. Here the parameter ρ is a step size to

be chosen later and the tensors

Qt
1 :=

r∑
p=1

(
αt
p ⊗ v�

p ⊗ w�
p + u�

p ⊗ β�
p ⊗ w�

p + u�
p ⊗ v�

p ⊗ γ �
p

)
,

Qt
2 :=

r∑
p=1

(
αt
p ⊗ v�

p ⊗ w�
p + u�

p ⊗ β t
p ⊗ w�

p + u�
p ⊗ v�

p ⊗ γ �
p

)
,

Qt
3 :=

r∑
p=1

(
αt
p ⊗ v�

p ⊗ w�
p + u�

p ⊗ β t
p ⊗ w�

p + u�
p ⊗ v�

p ⊗ γ t
p

)
. (C.3)

Note that the above iterative scheme is for theoretical analysis only as we used {α�
p,β

�
p, γ

�
p}rp=1 in the

definitions of Qt
1,Qt

2 and Qt
3.
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C.2 Convergence analysis

We next establish the convergence of the iterations (C.2). Plugging the tensor eigenvalue equations (C.1)
into (C.2) followed by subtracting the true solutions from both sides yields for q ∈ [r]

αt+1
q − α�

q =αt
q − α�

q − ρ[Qt
1 − Q]×2v

�
q×3w

�
q,

β t+1
q − β�

q =β t
q − β�

q − ρ[Qt
2 − Q]×1u

�
q×3w

�
q,

γ t+1
q − γ �

q =γ t
q − γ �

q − ρ[Qt
3 − Q]×1u

�
q×2v

�
q. (C.4)

Then plugging the definitions ofQt
1,Qt

2,Qt
3 (C.3) into (C.4) and using the following matrix notations

At := [αt
1, · · · ,αt

r

]
,A := [α�

1, · · · ,α�
r

]
,

Bt := [αt
1, · · · ,αt

r

]
,B := [α�

1, · · · ,α�
r

]
,

Ct := [γ t
1, · · · , γ t

r

]
, C := [γ �

1, · · · , γ �
r

]
,

we have

At+1 − A =(At − A)
(
I − ρ

[
(V
V) � (W
W)

] )
,

Bt+1 − B =(Bt − B)
(
I − ρ[(U
U) � (W
W)]

)− ρV
[
((At − A)
U) � (W
W)

]
,

Ct+1 − C =(Ct − C)(I − ρ[(U
U) � (V
V)])

− ρW
{
[((At − A)
U) � (V
V)] + [(U
U) � ((Bt − B)
V)]

}
. (C.5)

Denoting eta = ‖At − A‖, etb = ‖Bt − B‖, etc = ‖Ct − C‖ and

ρ̃ := ρ min

⎧⎨⎩
λmin((V


V) � (W
W))

λmin((U

U) � (W
W))

λmin((U

U) � (V
V))

⎫⎬⎭ ,

it follows from (C.5) that

et+1
a ≤ (1 − ρ̃)eta,

et+1
b ≤ ρ‖U‖‖V‖‖W‖2eta + (1 − ρ̃)etb,

et+1
c ≤ ρ‖U‖2‖V‖‖W‖eta + ρ‖U‖2‖V‖‖W‖etb + (1 − ρ̃)etc, (C.6)

where we have used that ‖P � Q‖ ≤ ‖P ⊗ Q‖ = ‖P‖‖Q‖. Converting (C.6) into matrix form gives⎡⎣et+1
a
et+1
b
et+1
c

⎤⎦ ≤
⎡⎣ 1 − ρ̃ 0 0

ρ‖U‖‖V‖‖W‖2 1 − ρ̃ 0
ρ‖U‖‖W‖‖V‖2 ρ‖U‖2‖V‖‖W‖ 1 − ρ̃

⎤⎦⎡⎣etaetb
etc

⎤⎦ ,

where the lower triangular system matrix share the same value

η = 1 − ρ̃ ∈
[
1 − ρ

(
1 + κ(log n)

√
r

n

)
, 1 − ρ

(
1 − κ(log n)

√
r

n

)]
⊂ (0, 1) (C.7)
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where ‘∈’ follows from applying Weyl’s inequality to (2.3) in Assumption III and ‘⊂’ holds for any

ρ ∈
(
0, (1 + κ(log n)

√
r

n )−1
)
.

Therefore, the error sequence (eta, e
t
b, e

t
c) is convergent to (0, 0, 0) geometrically with a rate η ∈

(0, 1). Thus,

lim
t→∞(At,Bt,Ct) = (A,B,C).

C.3 Convergence of {‖At − At−1‖}, {‖Bt − Bt−1‖}, {‖Ct − Ct−1‖}
Subtracting the following two consecutive iterations for {At} in (C.5):

At+1 − A = (At − A)
(
I − ρ

[
(V
V) � (W
W)

] )
At − A = (At−1 − A)

(
I − ρ

[
(V
V) � (W
W)

] )
�⇒ At+1 − At = (At − At−1)(

I − ρ
[
(V
V) � (W
W)

] )
.

Similar manipulations applied to {Bt} and {Ct} lead to

Bt+1 − Bt =(Bt − Bt−1)(I − ρ
[
(U
U) � (W
W)

]
) − ρV

[
((At − At−1)
U) � (W
W)

]
,

Ct+1 − Ct =(Ct − Ct−1)(I − ρ
[
(U
U) � (V
V)

]
)

− ρW
{[

((At − At−1)
U) � (V
V)
]

+
[
(U
U) � ((Bt − Bt−1)
V)

]}
Defining êta = ‖At − At−1‖, êtb = ‖Bt − Bt−1‖, êtc = ‖Ct − Ct−1‖, we can get the same form as (C.6)
and therefore claim that (êta, ê

t
b, ê

t
c) converge to (0, 0, 0) geometrically with the same rate η ∈ (0, 1) in

(C.7).

C.4 Controlling the accumulative errors

The geometric convergence of {‖Ct − Ct−1‖} implies

‖Ct − Ct−1‖ ≤ ηt−1‖C1 − C0‖
which implies that

‖Ct − C0‖ ≤
t−1∑
s=0

‖Cs+1 − Cs‖ ≤
t−1∑
s=0

ηs‖C1 − C0‖ ≤ 1

1 − η
‖C1 − C0‖.

Let t go to infinity:

‖C − C0‖ ≤ 1

1 − η
‖C1 − C0‖. (C.8)

We next bound ‖C1 − C0‖. From (C.2), we have

γ 1
q − γ 0

q = ρ(Q0
3×1u

�
q×2v

�
q − w�

q) = ρ

⎛⎝ r∑
p=1

〈u�
p,u

�
q〉〈v�

p, v
�
q〉w�

p − w�
q

⎞⎠
�⇒ C1 − C0 = ρW((U
U) � (V
V) − I).
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Then from Assumptions II and III, we have

‖C1 − C0‖ ≤ ρ‖W‖‖(U
U) � (V
V) − I‖ ≤ ρ

(
1 + c

√
r

n

)
κ(log n)

√
r

n
. (C.9)

Combining All Finally, combining (C.7), (C.8) and (C.9) and using C0 = 1
3W, we have

∥∥∥∥C − 1

3
W

∥∥∥∥ ≤
1 + c

√
r
n

1 − κ(log n)
√
r

n

κ(log n)
√
r

n
≤ 2

(
1 + c

√
r

n

)
κ(log n)

√
r

n
= 2κ(log n)

(√
r

n
+ c

r

n1.5

)
where the second inequality follows from the assumption r = o(n2/κ(log n)2), which implies 1 −
κ(log n)

√
r

n ≥ 1
2 for a sufficiently large n. Similar arguments and bounds apply to ‖A− 1

3U‖ and ‖B− 1
3V‖.

D. Proof of Lemma 5.4

Proof. The following lemma is required in the proof of Lemma 5.4. Let us first admit Lemma D.1
to prove Lemma 5.4. Since q is the sum of two parts given in (5.10) and (5.11), to bound |q|, we will
control these parts separately. �

Lemma D.1. Under Assumptions I and II, if r ≤ n1.25−1.5rc withrc ∈ (0, 1/6), then for any integer
p ≥ 3,

‖U
‖2→p ≤ 1 + 1

p
τ(log n)n−rc

The same bounds hold for V and W. Here, we define ‖H‖2→p := sup{‖Hx‖p : x ∈ S
n−1}.

Proof. Proof of Lemma D.1 See Appendix D.1. �
Bounding absolute value of (5.10):

r∑
p=1

|〈α�
p − 1

3
u�
p,u〉〈v�

p, v〉〈w�
p,w〉| ≤

√√√√ r∑
p=1

〈α�
p − 1

3
u�
p,u〉2

√√√√ r∑
p=1

〈v�
p, v〉2〈w�

p,w〉2

≤
√√√√ r∑

p=1

〈α�
p − 1

3
u�
p,u〉2 4

√√√√ r∑
p=1

〈v�
p, v〉4 4

√√√√ r∑
p=1

〈w�
p,w〉4

= ‖(A − 1

3
U)
u‖2‖V
v‖4‖W
w‖4

≤ ‖A − 1

3
U‖‖V
‖2→4‖W
‖2→4

≤ 2κ(log n)

(√
r

n
+ c

r

n1.5

)
(1 + o(1))

= o(1),
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where the last second line follows from Lemma 5.3 and Lemma D.1 when r � n1.25 (by letting rc in

‘r � n1.25−rc ’ approach to zero). The last line holds for r � n1.5
κ(log n) .

Similar bounds hold for the other two terms in (5.10).
Bounding the absolute value of (5.11): First of all, for any (u, v,w) ∈ F(δ), there exists a division

of [r] = Ωu ∪ Ωv ∪ Ωw such that

|〈u�
p,u〉| ≤ δ, ∀p ∈ Ωu,

|〈v�
p, v〉| ≤ δ, ∀p ∈ Ωv,

|〈w�
p,u〉| ≤ δ, ∀p ∈ Ωw. (D.1)

We will denote by UΩu
the submatrix of U forming from those columns of U with indexes in Ωu.

Similarly, we can define VΩv
and WΩw

. With these preparation, we have that

r∑
p=1

|〈u�
p,u〉〈v�

p, v〉〈w�
pw〉| =

∑
p∈Ωu∪Ωv∪Ωw

|〈u�
p,u〉〈v�

p, v〉〈w�
pw〉|

≤ δ(‖VΩu
‖‖WΩu

‖ + ‖UΩv
‖‖WΩv

‖ + ‖UΩw
‖‖VΩw

‖)

≤ 3δ

(
1 + c

√
r

n

)2
≤ 12δmax{1, c2r/n}

≤ 1

2
,

where the first inequality follows from (D.1) and
∑

p∈Ωu
|〈v�

p, v〉〈w�
p,w〉| ≤ ‖VΩu

‖‖WΩu
‖, etc. The

second inequality uses the fact that the spectral norm of any submatrix is smaller than the original one
and Assumption II. The last inequality holds when δ ≤ 1

24 and and r ≤ n/(24δc2).

Combining All Under Assumptions I, II, III, if r � n1.25 and r ≤ n
24δc2

for δ ∈ (0, 1
24 ], we have

|q| ≤ o(1) + 1
2 < 1 in F(δ) for sufficiently large n.

D.1 Proof of Lemma D.1

The proof refines the one for Lemma 4 of [1]. We only prove it for U since the same arguments apply
toW and V. We start with a general integer p ≥ 3.

‖U
‖2→p = sup
x∈Sn−1

‖U
x‖p := ‖U
x�‖p (D.2)

where we define x� ∈ S
n−1 to be the optimal solution of supx∈Sn−1 ‖U
x‖pp. Further note that

‖U
x�‖pp = ‖U

S x

�‖pp + ‖U

Scx

�‖pp (D.3)

where S denotes the indices of the largest (in absolute value) L entries of U
x� and US denotes the
column submatrix of U indexed by S. Similar notations apply to its complement set Sc = [r] \ S.
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Bound the first term:

‖U

S x

�‖pp ≤ ‖U

S x

�‖22 ≤ ‖USU


S ‖ ≤ 1 +

∑
i∈S\{j}

|〈ui,uj〉| ≤ 1 + (L − 1)
τ (log n)√

n
. (D.4)

Note this upper-bound is independent of p. Here, the first inequality is because |u�

i x�| ≤ ‖u�

i ‖2‖x�‖2 =
1 and the last second inequality follows from Gershgorin’s circle theorem. Finally, the last inequality
is from Assumption I and L being the cardinality of the set S.

Bound the second term: First note that

min
i∈S |u


i x
�|2 ≤ 1

L

∑
i∈S

|u

i x

�|2 ≤ 1

L
‖USU



S ‖‖x�‖22 ≤ 1

L
(1 + o(1)) ≤ 2

L

for sufficiently large n. The last second inequality follows from (D.4) and an additional assumption on
L

(L − 1)
τ (log n)√

n
= o(1). (D.5)

We conclude that

max
i∈Sc |u


i x
�|2 ≤ min

i∈S |u

i x

�|2 ≤ 2

L
,

since S consists of the indices of the L largest (in absolute value) elements of U
x�. As a consequence,
we have

‖U

Scx

�‖pp =
∑
i/∈S

|u

i x

�|p

≤ (max
i/∈S |u


i x
�|p−2)∑

i/∈S
|u


i x|2 = (max
i/∈S |u


i x
�|p−2)‖U


Scx
�‖22 ≤

(
2

L

) p
2−1(

1 + c

√
r

n

)2
(D.6)

where the last inequality follows from the fact that ‖U

Scx

�‖22 ≤ ‖USc‖2 ≤ ‖U‖2 ≤ (1 + c
√

r
n )

2 by

Assumption II. Furthermore, since (1+ c
√

r
n )

2 ≤ 4max{1, c2 r
n }, c2 r

n ≤ c2n0.25−1.5rc from the condition

of r ≤ n1.25−1.5rc , and 1 � c2n0.25−1.5rc for rc ∈ (0, 1/6), we have (1 + c
√

r
n )

2 ≤ 4c2n0.25−1.5rc for

rc ∈ (0, 1/6). So from (D.6), we get

‖U

Scx

�‖pp ≤ 4

(
2

L

) p
2−1

c2n0.25−1.5rc . (D.7)

From (D.3), (D.4) and (D.7), we have

‖U
x�‖pp ≤ 1 + (L − 1)
τ (log n)√

n
+ 4

(
2

L

) p
2−1

c2n0.25−1.5rc .
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By choosing L =
⌈
1
2n

0.5−rc
⌉

⇒
{
L ≤ 1

2n
0.5−rc + 1

L ≥ 1
2n

0.5−rc
(which satisfies the condition (D.5)), we have

that

‖U
x�‖pp ≤ 1 + 1

2
τ(log n)n−rc + 4

p
2 c2n( 34− p

4 )+(
p
2− 5

2 )rc .

Then from the assumptions p ≥ 3 and rc ∈ (0, 16 ), we get(
3

4
− p

4

)
+
(
p

2
− 5

2

)
rc ≤

(
3

4
− p

4

)
6rc +

(
p

2
− 5

2

)
rc = (2 − p)rc ≤ −rc. (D.8)

So, we have

‖U
x�‖pp ≤ 1 +
(
1

2
τ(log n) + 4

p
2 c2
)
n−rc .

Since 4
p
2 c2 � 1

2τ(log n) and (1 + t)1/p ≤ 1 + 1
p t for all t ≥ 0, then

‖U
x�‖p ≤ 1 + 1

p
τ(log n)n−rc

holds for any p ≥ 3. This completes the proof since ‖U
‖2→p = ‖U
x�‖p by (D.2).

E. Proof of Lemma 5.5

Proof. We start by the angular dual polynomial

q(u(θ1), v(θ2),w(θ3)) = cos(θ1) cos(θ2) cos(θ3)

+ q(u�
1, y, z) cos(θ1) sin(θ2) sin(θ3) + q(x, v�

1, z) sin(θ1) cos(θ2) sin(θ3)

+ q(x, y,w�
1) sin(θ1) sin(θ2) cos(θ3) + q(x, y, z) sin(θ1) sin(θ2) sin(θ3).

To bound q, we only need to bound the coefficients q(u�
1, y, z), q(x, v

�
1, z), q(x, y,w

�
1), and q(x, y, z).

We first show that q(u�
1, y, z), q(x, v

�
1, z), and q(x, y,w�

1) are close to zero. To see this, we examine

q(x, y,w�
1) =

r∑
p=1

[〈α�
p, x〉〈v�

p, y〉〈w�
p,w

�
1〉 + 〈u�

p, x〉〈β�
p, y〉〈w�

p,w
�
1〉 + 〈u�

p, x〉〈v�
p, y〉〈γ �

p,w
�
1〉]

=x
[A diag (W
w�
1)V


 + U diag (W
w�
1)B


 + U diag (C
w�
1)V


]y

=x

(
A diag (W
w�

1)V

 − 1

3
u�
1v

�
1 + U diag (W
w�

1)B

 − 1

3
u�
1v

�
1 + U diag (C
w�

1)V

 − 1

3
u�
1v

�
1

)
y,

since x ⊥ u�
1, y ⊥ v�

1. This implies

|q(x, y,w�
1)| ≤

∥∥∥∥A diag (W
w�
1)V


 − 1

3
u�
1v

�
1

∥∥∥∥
+
∥∥∥∥U diag (W
w�

1)B

 − 1

3
u�
1v

�
1

∥∥∥∥+
∣∣∣∣x

(
U diag (C
w�

1)V

 − 1

3
u�
1v

�
1

)
y

∣∣∣∣ .
�
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We first bound
∥∥∥A diag (W
w�

1)V

 − 1

3u
�
1v

�
1

∥∥∥.∥∥∥∥A diag (W
w�
1)V


 − 1

3
u�
1v

�

1

∥∥∥∥ ≤
∥∥∥∥A diag (W
w�

1)V

 − 1

3
U diag (W
w�

1)V


∥∥∥∥

+
∥∥∥∥13U diag (W
w�

1)V

 − 1

3
u�
1v

�

1

∥∥∥∥
≤
∥∥∥∥A − 1

3
U

∥∥∥∥ ‖ diag (W
w�
1)‖‖V‖ + 1

3
‖U‖‖ diag (W
w�

1 − e1)‖V
‖

≤2κ(log n)

(√
r

n
+ c

r

n1.5

)(
1 + c

√
r

n

)
+ τ(log n)

3
√
n

(
1 + c

√
r

n

)2
=
[
2κ(log n)

√
r

n
+ τ(log n)

3
√
n

](
1 + c

√
r

n

)2
,

where the third inequality first uses the facts ‖ diag (W
w�
1)‖ = 1 and ‖ diag (W
w�

1 − e1)‖ =
maxp�=1 |〈w�

p,w
�
1〉| and then follows from Assumptions I and II and Lemma 5.3.

Similarly,∥∥∥∥U diag (W
w�
1)B


 − 1

3
u�
1v

�
1

∥∥∥∥ ≤
[
2κ(log n)

√
r

n
+ τ(log n)

3
√
n

](
1 + c

√
r

n

)2
.

The similar arguments also apply to bounding |x
(U diag (C
w�
1)V


 − 1
3u

�
1v

�
1)y|. Note that

x

(
U� diag (C
w�

1)V

 − 1

3
u�
1v

�

1

)
y =x
(U diag ((C − W/3)
w�

1)V

)y

+ 1

3
x
(U diag (W
w�

1 − e1)V

)y

and the first term can be rewritten as

x
(U diag ((C − W/3)
w�
1)V


)y =
r∑

i=1

x
 ((ci − wi/3)

w�

1uiv


i

)
y

=
r∑

i=1

(x
ui)(v

i y)(ci − wi/3)


w�
1)

= x

r∑

i=1

(
ui(v



i y)(ci − wi/3)


)w�
1

= x
 (U diag (V
y)(C − W/3)

)
w�
1,

and so∣∣∣∣x

(
U� diag (C
w�

1)V

 − 1

3
u�
1v

�

1

)
y

∣∣∣∣ ≤‖U‖‖ diag (V
y)‖‖C − W/3‖ + 1

3
‖U‖‖ diag (W
w�

1 − e1)‖V
‖.
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Finally, we obtain

|q(x, y,w�
1)| ≤

[
6κ(log n)

√
r

n
+ τ(log n)√

n

](
1 + c

√
r

n

)2
=O

(
κ(log n)

√
r

n
,
τ(log n)√

n
,
κ(log n)r1.5

n2
,
τ(log n)r

n1.5

)

=O

(
κ(log n)

n3/8+ 3
4 rc

,
τ(log n)

n5/8− 3
4 rc

,
κ(log n)

n1/8+ 9
4 rc

,
τ(log n)

n
1
4+1.5rc

)

=O(κ(log n)n−3rc , τ(log n)n−3rc) = o(n−2rc)

with the notation O(f (n), g(n)) := max{O(f (n)),O(g(n))}. Then the last second line holds if r ≤
n1.25−1.5rc and the last line follows from the assumption rc ∈ (0, 1/6).

The same bound holds for |q(x, v�
1, z)| and |q(u�

1, y, z)|.
The coefficient of the last term of (5.17) is q(x, y, z) and its absolute value is bounded by the tensor

spectral norm of Q and should be close to constant as Q is close to
∑r

p=1 u
�
p ⊗ v�

p ⊗ w�
p, the spectral

norm of which is 1 + O(n−rc) by the following lemma.

Lemma E.1. Under Assumptions I and II, and if r ≤ n1.25−1.5rc with rc ∈ (0, 1/6),

∥∥∥∥ r∑
p=1

u�
p ⊗ v�

p ⊗ w�
p

∥∥∥∥ ≤ 1 + 5

4
τ(log n)n−rc .

Proof of Lemma E.1

∥∥∥∥ r∑
p=1

u�
p ⊗ v�

p ⊗ w�
p

∥∥∥∥ = sup
(a,b,c)∈K

〈U
a, (V
b) � (W
c)〉

≤ sup
(a,b,c)∈K

‖U
a‖3‖(V
b) � (W
c)‖3/2

≤ sup
(a,b,c)∈K

‖U
a‖3‖V
b‖3‖W
v‖3

≤‖U
‖2→3‖V
‖2→3‖W
‖2→3

≤
(
1 + 1

3
τ(log n)n−rc

)3
=1 + τ(log n)n−rc + 1

3
τ(log n)2n−rc + 1

9
τ(log n)3n−3rc ≤ 1 + 5

4
τ(log n)n−rc ,

where the first inequality follows from Hölder’s inequality and the second follows from Cauchy’s
inequality. The fourth follows from Lemma D.1 when r ≤ n1.25−1.5rc with rc ∈ (0, 16 ). The last holds
since 1

3τ(log n)2n−rc + 1
9τ(log n)3n−3rc � 1

4n
−rc . �
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It remains to bound the difference between Q and
∑r

p=1 u
�
p ⊗ v�

p ⊗ w�
p:∥∥∥∥Q −

r∑
p=1

u�
p ⊗ v�

p ⊗ w�
p

∥∥∥∥
≤
∥∥∥∥ r∑
p=1

(α�
p − 1

3
u�
p) ⊗ v�

p ⊗ w�
p

∥∥∥∥︸ ︷︷ ︸
Π1

+
∥∥∥∥ r∑
p=1

u�
p ⊗ (β�

p − 1

3
v�
p) ⊗ w�

p

∥∥∥∥︸ ︷︷ ︸
Π2

+
∥∥∥∥ r∑
p=1

u�
p ⊗ v�

p ⊗ (γ �
p − 1

3
w�
p)

∥∥∥∥︸ ︷︷ ︸
Π3

First we bound Π1:

Π1 = sup
(a,b,c)∈K

〈(A − 1

3
U)
a, (V
b) � (W
c)〉

≤ sup
(a,b,c)∈K

‖(A − 1

3
U)
x‖2‖(V
b) � (W
c)‖2

≤ sup
(a,b,c)∈K

‖(A − 1

3
U)
x‖2‖(V
b)‖4‖(W
c)‖4

≤ ‖A − 1

3
U‖‖V
‖2→4‖W
‖2→4

≤ 2κ(log n)

(√
r

n
+ c

r

n1.5

)
(1 + o(1)) ≤ 8κ(log n)max

{√
r

n
, c

r

n1.5

}
≤ 8κ(log n)n−3rc = o(n−2rc)

where the first and second inequalities follows from Cauchy’s inequality and the fourth inequality
follows from Lemma 5.3 and Lemma D.1 when r � n1.25. The last inequality follows by plugging
r ≤ n1.25−1.5rc with rc ∈ (0, 16 ).

The same bound also holds for Π2 and Π3.

Combining All If r ≤ n1.25−1.5rc withrc ∈ (0, 1/6), we have

|q(u�
1, y, z)| = o(n−2rc),

|q(x, v�
1, z)| = o(n−2rc),

|q(x, y,w�
1)| = o(n−2rc),

|q(x, y, z)| ≤ 1 + 5

4
τ(log n)n−rc + o(n−2rc) (E.1)

which together with (5.17) gives

|q(u(θ1), v(θ2),w(θ3))| ≤| cos(θ1) cos(θ2) cos(θ3)| + | sin(θ1) sin(θ2) sin(θ3)| + 5

4
τ(log n)n−rc

+o(n−2rc) ≤| cos(θ1) cos(θ2) cos(θ3)| + | sin(θ1) sin(θ2) sin(θ3)| + 4

3
τ(log n)n−rc

where the last inequality follows from o(n−2rc) � 1
12τ(log n)n−rc .
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F. Proof of Lemma 5.6

Proof. Recall that

F(θ1, θ2, θ3) = cos(θ1) cos(θ2) cos(θ3) + q(u�
1, y, z) cos(θ1) sin(θ2) sin(θ3)

+ q(x, v�
1, z) sin(θ1) cos(θ2) sin(θ3) + q(x, y,w�

1) sin(θ1) sin(θ2) cos(θ3)

+ q(x, y, z) sin(θ1) sin(θ2) sin(θ3). (F.1)

The points of special interest are the eight vertices of the cube [0,π ] × [0,π ] × [0,π ], i.e.

{(θ1, θ2, θ3) : θi ∈ {0,π}, i = 1, 2, 3}
which we classify into two sets:

(1) The first set of vertices involve an even number of π : (0, 0, 0), (0,π ,π), (π , 0,π), (π ,π , 0);

(2) The second set of vertices involve an odd number of π : (π , 0, 0), (0,π , 0), (0, 0,π), (π ,π ,π).

�

F.1 Control the first vertex set

For the first set of points, we only show that

F(θ1 + ξ1, θ2 + ξ2, θ3 + ξ3) ≤ 1, ∀ξi ∈
(

−
√
2 − 1

3
,

√
2 − 1

3

)⋃(π

2
−

√
2 − 1

3
,
π

2
+

√
2 − 1

3

)
holds for (θ1, θ2, θ3) = (0, 0, 0). The same arguments apply to the other cases (π , 0,π), (0,π ,π),
(π ,π , 0) since (F.1) implies

F(ξ1, ξ2, ξ3) = F(ξ1,π + ξ2,π + ξ3) = F(π + ξ1, ξ2,π + ξ3) = F(π + ξ1,π + ξ2, ξ3)

for all ξ1, ξ2 ξ3 ∈ R.
Let us apply the first-order Taylor expansion to F(θ1, θ2, θ3) over some smaller cube [−θ0, θ0] ×

[−θ0, θ0] × [−θ0, θ0] with θ0 ∈ (0,π/2) to be determined later,

F(θ1, θ2, θ3) =F(0, 0, 0) + θ
∇F(ξ1, ξ2, ξ3) ≥ 1 − ‖θ‖1 sup
|ξ1|,|ξ2|,|ξ3|≤θ0

‖∇F(ξ1, ξ2, ξ3)‖∞,

where θ = [θ1 θ2 θ3
]
. Since

∂

∂θ1
F(ξ1, ξ2, ξ3) = − sin(ξ1) cos(ξ2) cos(ξ3) − q(u�

1, y, z) sin(ξ1) sin(ξ2) sin(ξ3)

+ q(x, v�
1, z) cos(ξ1) cos(ξ2) sin(ξ3) + q(x, y,w�

1) cos(ξ1) sin(ξ2) cos(ξ3)

+ q(x, y, z) cos(ξ1) sin(ξ2) sin(ξ3),

we have ∣∣∣∣ ∂

∂θ1
F(ξ1, ξ2, ξ3)

∣∣∣∣ ≤| sin(θ0)| + o(1)(| sin(θ0)|3 + 2| sin(θ0)|) + (1 + o(1))| sin(θ0)|2

≤| sin(θ0)| + | sin(θ0)|2 + o(1) ≤ 3| sin(θ0)|
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where the first inequality follows from (E.1), and so

|q(u�
1, y, z)| = o(1),

|q(x, v�
1, z)| = o(1),

|q(x, y,w�
1)| = o(1),

|q(x, y, z)| = 1 + o(1) (F.2)

under Assumptions I–III and r � n1.25 (by letting rc in “r � n1.25−rc” approach to zero). The last
inequality uses the facts that | sin(θ0)|2 ≤ | sin(θ0)| and o(1) ≤ | sin(θ0)| for sufficiently large n. The
same bound holds for

∣∣ ∂
∂θ2

F(ξ1, ξ2, ξ3)
∣∣ and ∣∣ ∂

∂θ3
F(ξ1, ξ2, ξ3)

∣∣. We therefore have

F(θ1, θ2, θ3) ≥ 1 − 3‖θ‖1| sin(θ0)| ≥ 1 − 9θ20 . (F.3)

Let us recall the integral form of the second-order Taylor expansion of F(θ1, θ2, θ3):

F(θ1, θ2, θ3) = F(0, 0, 0) + θ
∇F(0, 0, 0) +
∫ 1

0

t2

2
θ
∇2F(tθ1, tθ2, tθ3)θ d t

As a consequence of the construction process of the dual polynomial, we have F(0, 0, 0) = 1 and
∇F(0, 0, 0) = 0, implying

F(θ1, θ2, θ3) = 1 +
∫ 1

0

t2

2
θ
∇2F(tθ1, tθ2, tθ3)θ d t

Therefore, as long as the Hessian matrix ∇2F is negative definite over the region [−θ0, θ0]
3 for some

θ0 > 0, then F(θ1, θ2, θ3) ≤ 1 for any (θ1, θ2, θ3) ∈ [−θ0, θ0]
3 with equality holds only if (θ1, θ2, θ3) =

(0, 0, 0).
We next estimate the Hessian matrix ∇2F(ξ1, ξ2, ξ3). Direct computation gives

∇2F(ξ1, ξ2, ξ3) =
⎡⎣−F(ξ1, ξ2, ξ3) ∗ ∗

∗ −F(ξ1, ξ2, ξ3) ∗
∗ ∗ −F(ξ1, ξ2, ξ3)

⎤⎦
whose off-diagonal elements are nonsymmetric partial derivatives of F, for example,

∂2

∂θ1∂θ2
F(ξ1, ξ2, ξ3) = sin(ξ1) sin(ξ2) cos(ξ3) − q(u�

1, y, z) sin(ξ1) cos(ξ2) sin(ξ3)

+ q(x, y,w�
1) cos(ξ1) cos(ξ2) cos(ξ3)

− q(x, v�
1, z) cos(ξ1) sin(ξ2) sin(ξ3)

+ q(x, y, z) cos(ξ1) cos(ξ2) sin(ξ3),

which implies by (F.2) that for any |ξi| ≤ θ0, i = 1, 2, 3,∣∣∣∣ ∂2

∂ξ1∂ξ2
F(ξ1, ξ2, ξ3)

∣∣∣∣ ≤| sin(θ0)|2 + o(1)(1 + 2| sin(θ0)|2) + (1 + o(1))| sin(θ0)|

≤| sin(θ0)| + | sin(θ0)|2 + o(1) ≤ 3| sin(θ0)|.
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The same bound holds for other mixed partial derivatives
∣∣ ∂2

∂ξi∂ξj
F(ξ1, ξ2, ξ3)

∣∣with i, j = 1, 2, 3 and i �= j.

To make ∇2F(ξ1, ξ2, ξ3) negative definite, by Gershgorin’s circle theorem and the bound (F.3),
we only need

−F(ξ1, ξ2, ξ3) + 6| sin(θ0)| ≤ −1 + 9θ20 + 6θ0 < 0

which holds for any θ0 ∈ (−√
2−1
3 ,

√
2−1
3 ), including (−√

2+1
3 ,

√
2−1
3 ). This completes the first part of the

proof.

F.2 Control the second vertex set

Similarly as before, we first show

F(π + ξ1,π + ξ2,π + ξ3) < 0, ∀|ξi| <

√
2 − 1

3
.

It follows from the intermediate result (F.3):

F(ξ1, ξ2, ξ3) ≥ 1 − 9θ20 > 0, ∀|ξi| ≤ θ0

by recognizing that F(π+ξ1,π+ξ2,π+ξ3) = −F(ξ1, ξ2, ξ3), ∀ξ1, ξ2, ξ3 and choosing θ0 = (
√
2 − 1)/3.

Finally, we claim the same conclusion applies to the remaining three cases since

F(π + ξ1,π + ξ2,π + ξ3) = F(π + ξ1, ξ2, ξ3) = F(ξ1,π + ξ2, ξ3) = F(ξ1, ξ2,π + ξ3)

for all ξ1, ξ2, ξ3 ∈ R.

G. Proof of Lemma 5.7

Proof. First, solve for θ such that

| cos(θ)3| + | sin(θ)|3 < 1 − 4τ(log n)n−rc . (G.1)

To this end, we define f (θ) := | cos(θ)3| + | sin(θ)|3 for θ ∈ [0,π ]. It can be verified directly that f is
symmetric around π

2 on [0,π ], symmetric around π
4 on [0, π

2 ] and strictly decreasing on [0, π
4 ]. Since

1−4τ(log n)n−rc ∈ (0, 1), there exists a unique� ∈ (0, π
4 ) such that f (�) = 1−4τ(log n)n−rc ∈ (0, 1).

Thus, the inequality (G.1) holds on (� , π
2 − �) ∪ (π

2 + � ,π − �). �
To have an approximation of � , we need the following lemma.

Lemma G.1. Let f and g be any two real functions with g being strictly decreasing in some interval
(α,β) and satisfying g(x) ≥ f (x), ∀x ∈ (α,β). Suppose both equations f (x) = b and g(x) = b admit one
root in [α,β], denoted by xf and xg, respectively. Then xg ≥ xf .

Proof of Lemma G.1. Since g(x) > g(xf ) ≥ f (xf ) = b for any x ∈ [α, xf ), g(xg) = b could only happen
within [xf ,β]. �

We recognize that

f (θ) ≤ 1 − 3

20
θ2, forθ ∈ [0,π/4] (G.2)
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and g(θ) := 1 − 3
20θ

2 is strictly deceasing [0,π/4]. Clearly,

δb :=
√
80τ(log n)

3
n−0.5rc

is the root of g(θ) = 1−4τ(log n)n−rc over the interval [0, π
4 ]. By Lemma G.1, δb ≥ � . Therefore, (G.1)

holds on (δb,
π
2 − δb)∪ (π

2 + δb,π − δb). By (5.28), we obtain F(θ1, θ2, θ3) < 1 for(θ1, θ2, θ3) ∈ Nb(δb).

G.1 Proof of (G2)

Showing (G.2) is equivalent to showing

sin3(x) + cos3(x) ≤ 1 − 3

20
x2, ∀x ∈ [0,π/4] (G.3)

since sin(x), cos(x) > 0 for x ∈ [0,π/4]. Before moving on, we need the following lemma to prove
(G.3).

Lemma G.2. The following inequality

(32n−1 − 3)

4 · (2n − 1)!
x2n−1 + (32n + 3)

4 · (2n)!
x2n − (32n+1 − 3)

4 · (2n + 1)!
x2n+1 − (32n+2 + 3)

4 · (2n + 2)!
x2n+2 ≥ 0 (G.4)

holds for all x ∈ [0,π/4] and n ≥ 2,

Proof. Let p equal the expression on the left side of Equation (G.4). A simplification on p yields

p(x) = q1(x)
x2n−1

4(2n − 1)!
+ q2(x)

x2n+2

4(2n)!
,

where q1(x) = (32n−1 − 3) − 32n+1−3
2n(2n+1)x

2 and q2(x) = (32n + 3) − 32n+2+3
(2n+1)(2n+2)x

2.
As functions of x, q1 and q2 have roots at

±
√
2n(2n + 1)(32n−1 − 3)

32n+1 − 3
and ±

√
(2n + 1)(2n + 2)(32n + 3)

32n+2 + 3
,

respectively, provided n ≥ 1.
Since

10(32n−1 − 3) ≥ 32n+1 − 3, for alln ≥ 2,

9(32n + 3) > (32n+2 + 3), for alln ≥ 2,

it follows that the positive root of q1 satisfies√
2n(2n + 1)(32n−1 − 3)

32n+1 − 3
≥
√
2n(2n + 1)

10
>

√
2 >

π

4
, forn ≥ 2,

and the positive root of q2 satisfies√
(2n + 1)(2n + 2)(32n + 3)

32n+2 + 3
>

√
(2n + 1)(2n + 2)

9
>

√
10

3
>

π

4
, forn ≥ 2.

Therefore, both q1 and q2 are positive on [0,π/4] for all n ≥ 2, and Equation (G.4) holds. �
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Lemma G.3. The following statement

sin3(x) + cos3(x) ≤ 1 − 3

20
x2

holds for all x ∈ [0, π
4 ].

Proof. Recall that

sin3(x) = 1

4
(3 sin(x) − sin(3x)) ,

cos3(x) = 1

4
(3 cos(x) + cos(3x)) .

Therefore,

sin3(x) = x3 +
∞∑
n=5

(−1)n
32n−1 − 3

4(2n − 1)!
x2n−1,

cos3(x) = 1 − 3

2
x2 + 7

8
x4 +

∞∑
n=3

(−1)n
32n + 3

4(2n)!
x2n.

Thus,

sin3(x) + cos3(x) ≤ 1 − 3

2
x2 + x3 + 7

8
x4,

for all x ∈ [0,π/4] since by Lemma G.2
∞∑
n=3

(−1)n
32n−1 − 3

4(2n − 1)!
x2n−1 +

∞∑
n=3

(−1)n
32n + 3

4(2n)!
x2n

= −
∞∑

n=3, n odd

(
32n−1 − 3

4(2n − 1)!
x2n−1 + 32n + 3

4(2n)!
x2n − 32n+1 − 3

4(2n + 1)!
x2n+1 − 32n+2

4(2n + 2)!
x2n+2

)
≤0.

Finally, note that

1 − 3

2
x2 + x3 + 7

8
x4 = 1 − 3

20
x2 + x2h(x)

with

h(x) = −27

20
+ x + 7

8
x2 ≥ 0 whenx ∈ [0,π/4].
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