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ABSTRACT

Ahmadi-Shparlinski conjectured that every ordinary, geometrically simple Jacobian over a �nite �eld has
maximal angle rank. Using the L-Functions and Modular Forms Database, we provide two counterexamples
to this conjecture in dimension 4.
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1. Introduction

The following is a conjecture of Ahmadi–Shparlinski (in slightly reformulated language; see Lemma 2.1):

Conjecture 1.1 ([1, Section 5]). Every ordinary, geometrically simple Jacobian over a �nite �eld has maximal angle rank.

In this paper we report that this conjecture is false. Our work used the L-Functions and Modular Forms Database (LMFDB),
speci�cally its database of abelian varieties over �nite �elds which can be found here:

https://www.lmfdb.org/Variety/Abelian/Fq/.

Documentation, further conjectures, and interesting statistics are reported in [5].
Apart from the counterexamples of Section 7, this article brie�y recalls the notion of angle rank in Section 2, presents how

geometric simplicity is computed in the LMFDB (Section 3) and how Jacobians are tested for in the LMFDB (Section 4). Following
this, we describe our search (Section 5), and because angle ranks are computed numerically in the LMFDB, we provide a proof of the
computation of the angle rank for both examples in Section 6. Readers can verify these counterexamples themselves using the code
provided at

https://github.com/LMFDB/abvar-fq/,

which uses Sage [12], PARI [9], andMagma [3]. We remark that in addition to providing counterexamples to the conjecture, we give
two new methods for algebraically certifying angle ranks (as remarked above, as of February 2021, in the LMFDB the angle ranks
are computed numerically using an LLL algorithm).

Remark 1.2. We began searching for counterexamples to Conjecture 1.1 since it is incompatible with the Shankar-Tsimerman
conjecture [11, Conj. 2.5] which states that every simple abelian fourfold over Fp is isogenous to a Jacobian; since angle rank,
ordinarity, and geometric simplicity are preserved under base change and isogenies, this would imply that every simple abelian
fourfold has maximal angle rank.

2. Frobenius angle rank

This section very brie�y presents the de�nition of the angle rank of an abelian variety de�ned over a �nite �eld; for more context
and a longer discussion the reader is directed to [5, §2.6, 3.8] and [6].

For A an abelian variety of dimension g with L-polynomial L(T) =
∏2g

i=1(1 − αiT), the angle rank of A is the quantity

δ(A) = dimQ(SpanQ({arg(αi) : 1 ≤ i ≤ 2g} ∪ {π})) − 1 ∈ {0, . . . , g},

where arg denotes the principal branch of the logarithm. When δ(A) = g, we say that A hasmaximal angle rank.

Lemma 2.1.With notation as above, assume that the αi have been numbered so that αiαg+i = q for i = 1, . . . , g. Then the following
conditions are equivalent.
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(a) The abelian variety A has maximal angle rank.

(b) Every vector (e0, . . . , eg) ∈ Zg+1 such that α
e1
1 · · · αeg

g = qe0 is identically zero. In this case, Ahmadi–Shparlinski [1, §5.1] say that
the Frobenius angles of A are linearly independent modulo 1.

(c) Every vector (e0, . . . , e2g) ∈ Z2g+1 with the property that αe1
1 · · · αe2g

2g = qe0 has the property that ei = eg+i for i = 1, . . . , g. In this

case, Zarhin [14, §2] says that A is neat (or more precisely, some �nite base extension of A has this property).

Proof. We�rst check that (b) and (c) are equivalent. If (c) holds, then for every vector (e0, . . . , eg) ∈ Zg+1 such thatαe1
1 · · · αeg

g = qe0 ,
we have e1 = · · · = eg = 0 and hence also e0 = 0. Conversely, if (b) holds, then for every vector (e0, . . . , e2g) ∈ Z2g+1 with the

property that αe1
1 · · ·αe2g

2g = qe0 , we have

α
e1−eg+1

1 · · ·αeg−e2g
g = qe0−eg+1−···−e2g

and so ei = eg+i for i = 1, . . . , g.
We next check that (a) implies (b). Note that since arg(αi) + arg(αg+i) ∈ 2πZ, (a) is equivalent to the condition that

arg(α1), . . . , arg(αg),π are linearly independent overQ. If this holds, then for every vector (e0, . . . , eg) ∈ Zg+1 such thatαe1
1 · · · αeg

g =
qe0 , we have

e1 arg(α1) + · · · + eg arg(αg) ∈ 2πZ

and so e1 = · · · = eg = 0 (and also e0 = 0 as above).
We �nally check that (b) implies (a). If (a) fails, then we must have a nonzero vector (e0, . . . , eg) such that e1 arg(α1) + · · · +

eg arg(αg) = e0π . In particular, αe1
1 · · · αeg

g is real and hence equal to its complex conjugate qe1+···+egα
−e1
1 · · · α−eg

g ; we thus have

α
2e1
1 · · ·α2eg

g = q−e1−···−eg .

The angle rank detects multiplicative relations among the roots of L; these are closely related to exceptional Hodge classes on
powers ofA. For example, by a theorem of Zarhin [13, Theorem 3.4.3], δ(A) = g if and only if there are no exceptional Hodge classes
on any power of A. At the other extreme, δ(A) = 0 if and only if A is supersingular.

3. Geometric simplicity

To check that an ordinary isogeny class de�ned over Fq is geometrically simple, we compute the tensor square of the L-polynomial,
note that it has no nontrivial cyclotomic factors, and apply [4, Lemma 7.2.7 (b)] to deduce that all of the geometric endomorphisms
are de�ned over Fq; in particular, each simple isogeny factor is geometrically simple. In the counterexamples presented in this article,
simplicity over Fq follows from the irreducibility of the L-polynomial and ordinarity from the Newton polygon. For a discussion of
the geometric endomorphism algebra in more generality, see [5, §3.5].

4. Searching for Jacobians

The current version of the LMFDB contains substantial data about whether isogeny classes contain Jacobians up to dimension 3 (see
[5, §3.7]). However, for this paper we need data in dimension 4, for which the LMFDB currently contains only negative results (e.g.,
a given isogeny class may fail to contain a Jacobian because it contains no principally polarizable variety, or because it corresponds
to an impossible sequence of point counts on a curve). We thus cannot use the LMFDB alone to certify that a given isogeny class
contains a Jacobian.

We instead take the approach of constructing curves, computing their zeta functions, and matching their numerators to the Weil
polynomials contained in the LMFDB. To construct the curves, we note that in genus 4, every nonhyperelliptic curve is isomorphic
(via its canonical embedding) to the intersection of a quadric and a cubic in P3. (See [7, Example IV.5.2.2] for the corresponding
statement over an algebraically closed �eld.) In practice, over F2, this allows us to make an exhaustive search over both hyperelliptic
and nonhyperelliptic curves, using Magma to compute zeta functions. (In the nonhyperelliptic case, we limit the options for the
quadric as in [10, Proposition 2.3].) Over F3 and F5, we enumerate only over hyperelliptic curves, using Sage to compute zeta
functions. This was enough to �nd the two counterexamples presented here.

5. Results of the search

The Ahmadi-Shparlinski conjecture is a theorem in dimension 2, even without the ordinary condition [1, Theorem 2]. It is also a
theorem in dimension 3, but this time it requires the ordinary condition [14, Theorem 1.1]. (That result implies that if an abelian
threefold over a �nite �eld is ordinary and absolutely simple, then it is neat; the latter condition is equivalent to havingmaximal angle
rank by Lemma 2.1.) We veri�ed the consistency of these results with the LMFDB database.
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In dimension 4 over F2, there are 52 isogeny classes of ordinary, geometrically simple abelian varieties with angle rank at most
3 (in fact they are all equal to 3). Searching through curves, we found 620 distinct zeta functions, none of which occur among the
previous list of 52 isogeny classes. Therefore there are no such 4-dimensional Jacobians over F2, and the conjecture holds in this case.

By contrast, the conjecture fails in dimension 4 over F3 and F5, as shown by the examples presented in Section 7. While we
chose speci�c examples for de�niteness, these are not particularly exceptional: over F3 there are 210 isogeny classes of ordinary,
geometrically simple abelian varieties of dimension 4, and by comparing to a random sample of half a million hyperelliptic curves
we found that at least 66 isogeny classes contain a Jacobian. (Over F5, there are 1304 isogeny classes of ordinary, geometrically simple
abelian varieties of dimension 4; we did not attempt to determine how many of these contain Jacobians.)

6. Algebraic certi�cation of angle ranks

We now describe the procedure we used to compute a rigorous upper bound on δ(A). See [5, §3.8] for an alternate approach that also
gives a rigorous lower bound, which we do not need here; instead we use an estimate on the size of relations based on linear forms
in logarithms (see Lemma 6.3).

Let L(T) =
∏2g

i=1(1 − αiT) be the L-polynomial of an abelian variety A over Fq. Fix a precision ρ = σ 2 (we default to ρ = 625).

1. Compute the inverse roots {αi} of L(T) that have positive imaginary part, in a complex �eld C of precision ρ. Set ti = arg(αi)/π ,
where arg is the principal branch of the logarithm. Throw away duplicates, obtaining (a�er possibly reordering) 0 < t1 < · · · <

tm < 1.
2. Use LLL to �nd independent integer relations R1, . . . ,Rs among {t1, . . . , tm, 1}. A relation is considered spurious if all coe�cients

are larger than 2σ , with σ = √
ρ as above, and we interrupt the computation if some value is larger than 2σ but others are not

(this did not happen for any isogeny class in the database). The numerical angle rank ism − s.
3. Find a number �eld K in which L(T) splits completely. Choose an embedding ι : K →֒ C, where as before C is a complex �eld of

precision ρ, and let β1, . . . ,βm be the roots of P(T) in K with 0 < arg(ι(β1)) < · · · < arg(ι(βm)) < π . (In other words, the root
βi has argument approximated by π ti above.)

4. The roots β1, . . . ,βm together with the relations R1, . . . ,Rs provide a certi�cate that the angle rank of A is at mostm− s. One can
check using exact arithmetic in K that a relation Ri = (c1, . . . , cm+1) holds by con�rming that

(−q)cm+1

m∏

i=1

β
ci
i = 1.

Remark 6.1. The upper boundm − s can only fail to be sharp if at some point we discarded a relation as spurious when it was real.
Such a relation would have all coe�cients larger than 2σ .

Remark 6.2. Let P(T) =
∏2g

i=1(αi − T) be a Weil polynomial, with roots ordered so that αiαi+g = q (where the indices are taken
modulo 2g). This remark explains an alternative method, using resultants and “taking cyclotomic parts,” to verify the existence of a
relation of the form

α
e1
i1

α
e2
i2

· · ·αej
ij

= ζqj/2, (1)

where e1, . . . , ej are speci�ed positive integers and ζ is an unspeci�ed root of unity. Such a relation is guaranteed to be nontrivial
(i.e., not a consequence of the known relations αiαi+g = q) provided that i1, . . . , ij are pairwise distinct mod g; when this occurs,
the existence of the relation implies that the angle rank is not maximal. Note however that as presented, this method cannot always
certify a sharp upper bound on the angle rank.

Before presenting this method, we present three preliminary facts which we will need and take for granted:

1. If F(T) and G(T) are any two polynomials, the polynomial

H(T) = ResS(F(S),G(T/S)SdegG)

is a polynomial whose roots are products of the roots of F and G.

Proof. It is well known that if F(S) = a
∏

i(S − αi) and G(S) = b
∏

j(S − βj) then

ResS(F(S),G(S)) = adeg(G)bdeg(F)
∏

i,j

(αi − βj).

Without loss of generality, we can suppose F and G are monic. In the above we have Sdeg(G)G(T/S) = (−1)deg(G)
∏

j βj
∏

j
(S − T/βj). This means

ResS(F(S),G(T/S)SdegG) = (−1)deg(G) deg(F)

⎛
⎝∏

j

βj

⎞
⎠

deg(G)
∏

i,j

(αi − T/βj) =
∏

i,j

(T − αiβj),

as claimed.
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2. If A is an abelian variety over Fq of dimension g with characteristic polynomial P(T) = PAFq
(T) =

∏2g
i=1(T − αi), then for any

positive integer n, PAFqn
(T) =

∏2g
i=1(T − αn

i ). One can show that there is a formula for this polynomial in terms of resultants

given by PAFqn
(T) = ResS(P(S), Sn − T).

3. If F(T) is a polynomial with integer coe�cients, then it factors as F(T) = C(T)G(T) where C(T) is a cyclotomic polynomial and
G(T) has no cyclotomic factors. The computation of the cyclotomic partC(T) can be done e�ciently using an algorithm described
in [2]; this is implemented in Sage by the function cyclotomic_part() called on F(T), which returns C(T).

With these facts granted, note �rst that, for purposes of verifying the nontrivial relation as in (1), we are free to make the test
a�er performing a base change as in the second point above; we may thus assume without loss of generality that q is a perfect square,
so that P(T) = P(q1/2T) is a root-unitary polynomial with rational coe�cients. Set α̃i = q−1/2αi, so that the roots of P(T) are
α̃1, . . . , α̃2g . For our counter-examples in Section 7, we will not renormalize as in this remark.

Using the �rst and second points, we compute the polynomial

Q(T) =
∏

i1,i2,...,ij

(T − α̃
e1
i1

α̃
e2
i2

· · · α̃ej
ij
),

where the product is taken over all tuples (i1, i2, . . . , ij) in which 1 ≤ ik ≤ 2g. When j is even, whenever there is a way to divide the
set of ei into equal pairs, then the relations αiαi+g = q will yield a cyclotomic factor ofQ(T) that does not correspond to a nontrivial
relation. However, we can compute the degree of this expected factor and compare with the degree of the cyclotomic part determined
as in (3). A nontrivial factor with the given eis will arise exactly when these two degrees don’t match.

In practice, we predict j and e1, . . . , ej in the relation (1) using LLL, and then verify the existence of a relation as we have just
described.

The following gives an upper bound on the size of any ei in a relation (e1, . . . , en). This can be used to derive a lower bound on
the angle rank.

Lemma 6.3. Let α1, . . . ,αn be roots of characteristic polynomials of Frobenius of an abelian variety over Fq. If there exist integers
e1, . . . , en, not all zero, such that α

e1
1 · · · αen

n = 1, then these integers may be chosen to satisfy

max
i

|ei| ≤ (n − 1)!(e log2 q
1/2)n−1.

Proof. In [8] they give a general bound for relations among root unitary polynomials. We apply [8, Theorem 1, part (a), equation
(5)] to our situation by letting

d(αi) = log q1/2

E = max{e, d(βj) log 2/ log q
1/2} = e

Vj = max{d(βj), (e/ log 2) log q
1/2}/ log(E/ logE) = (e/ log 2) log q1/2.

7. Counterexamples

In the examples that follow we re-index the roots as in the previous section. That is,

0 < arg(β1) < · · · < arg(βg) < π

and βiβi+g = q.

7.1. A Counterexample when g = 4 and q = 3

Let C be the hyperelliptic curve over F3 given by

y2 = x9 + x8 + x7 + 2x5 + x.

Then

L(C/F3,T) = 1 − T + 2T2 − 4T3 − 2T4 − 12T5 + 18T6 − 27T7 + 81T8,

so the JacobianA ofC belongs to isogeny class 4.3.ab_c_ae_ac, which is ordinary and geometrically simple.We compute theminimal
splitting �eld of this polynomial, which has degree 48 over Q. Using the method of Section 6, we show that these roots satisfy the
nontrivial relation

β1β3β4 = −3β2.

The angle rank ofA is thus atmost 3, and is equal to 3 unless there is a relationwith exponents all larger than 225. However, Lemma 6.3
implies that if the angle rank is less than 3, then there is a relation among β1,β2,β3 with exponents of absolute value at most 9.
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7.2. A Counterexample when g = 4 and q = 5

Similarly, let C be the hyperelliptic curve over F5 given by

y2 = x9 + x6 + 2x5 + x.

Then

L(C/F5,T) = 1 − T + 2T2 − 4T3 + 16T4 − 20T5 + 50T6 − 125T7 + 625T8,

so the JacobianA ofC belongs to isogeny class 4.5.ab_c_ae_q. Again,A is ordinary, geometrically simple, and has angle rank bounded
above by 3. There is now a nontrivial relation of the form

β1β4 = β2β3.

In this case, Lemma 6.3 implies that if the angle rank is less than 3, then there is a relation among β1,β2,β3 with exponents of absolute
value at most 19.
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