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ABSTRACT KEYWORDS
Ahmadi-Shparlinski conjectured that every ordinary, geometrically simple Jacobian over a finite field has Angle rank; abelian varieties;

maximal angle rank. Using the L-Functions and Modular Forms Database, we provide two counterexamples finite fields; arithmetic
to this conjecture in dimension 4. geometry

1. Introduction

The following is a conjecture of Ahmadi-Shparlinski (in slightly reformulated language; see Lemma 2.1):
Conjecture 1.1 ([1, Section 5]). Every ordinary, geometrically simple Jacobian over a finite field has maximal angle rank.

In this paper we report that this conjecture is false. Our work used the L-Functions and Modular Forms Database (LMFDB),
specifically its database of abelian varieties over finite fields which can be found here:

https://www.lmfdb.org/Variety/Abelian/Fq/.

Documentation, further conjectures, and interesting statistics are reported in [5].

Apart from the counterexamples of Section 7, this article briefly recalls the notion of angle rank in Section 2, presents how
geometric simplicity is computed in the LMFDB (Section 3) and how Jacobians are tested for in the LMFDB (Section 4). Following
this, we describe our search (Section 5), and because angle ranks are computed numerically in the LMFDB, we provide a proof of the
computation of the angle rank for both examples in Section 6. Readers can verify these counterexamples themselves using the code
provided at

https://github.com/LMFDB/abvar-fq/,

which uses Sage [12], PARI [9], and Magma [3]. We remark that in addition to providing counterexamples to the conjecture, we give
two new methods for algebraically certifying angle ranks (as remarked above, as of February 2021, in the LMFDB the angle ranks
are computed numerically using an LLL algorithm).

Remark 1.2. We began searching for counterexamples to Conjecture 1.1 since it is incompatible with the Shankar-Tsimerman
conjecture [11, Conj. 2.5] which states that every simple abelian fourfold over F, is isogenous to a Jacobian; since angle rank,
ordinarity, and geometric simplicity are preserved under base change and isogenies, this would imply that every simple abelian
fourfold has maximal angle rank.

2. Frobenius angle rank

This section very briefly presents the definition of the angle rank of an abelian variety defined over a finite field; for more context
and a longer discussion the reader is directed to [5, §2.6, 3.8] and [6].
For A an abelian variety of dimension g with L-polynomial L(T) = ]_[lzi 1(1 — o;T), the angle rank of A is the quantity

5(A) = dimQ(SpanQ({arg(ai) 1 <i<2giU{m})—-1€{0,...,g},

where arg denotes the principal branch of the logarithm. When §(A) = g, we say that A has maximal angle rank.

Lemma 2.1. With notation as above, assume that the o; have been numbered so that ajag; = q fori = 1,...,g. Then the following
conditions are equivalent.
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(a) The abelian variety A has maximal angle rank.

(b) Every vector (e, .. .,eg) € 78T such that af‘ . ~a§g = q® is identically zero. In this case, Ahmadi-Shparlinski [1, §5.1] say that
the Frobenius angles of A are linearly independent modulo 1.

(c) Everyvector (e, . ..,ex) € Z*8+! with the property that oy’ - - ~aZ,g = g has the property that e; = egy; fori = 1,...,g. In this
case, Zarhin [14, §2] says that A is neat (or more precisely, some finite base extension of A has this property).

Proof. We first check that (b) and (c) are equivalent. If (c) holds, then for every vector (e, . . ., &) € 78+ such that a‘fl cee a‘gg = g%,
we have ey = -+ = e; = 0 and hence also ¢g = 0. Conversely, if (b) holds, then for every vector (e, . ..,ey) € 728+ with the

property that oy’ - - ~aZg = g%, we have

afl_egﬂ e a;g_ez‘g = qeo_egﬂ_“'_elg
andsoe; =egyifori=1,...,g.

We next check that (a) implies (b). Note that since arg(e;) + arg(ag+i) € 27Z, (a) is equivalent to the condition that
arg(ay), . . ., arg(ag), 7 are linearly independent over Q. If this holds, then for every vector (ep, . . ., eg) € 78t such thatoef1 . -a;g =
q%, we have

erarg(ay) + - -+ + egarg(ay) € 2w Z

andsoe; = --- = e; = 0 (and also ey = 0 as above).
We finally check that (b) implies (a). If (a) fails, then we must have a nonzero vector (eo, . .., eg) such that e; arg(ery) + --- +

1

. e . . ey - —e
egarg(eg) = eorr. In particular, o' - - - ag’ is real and hence equal to its complex conjugate g™ %0 ' - - - ay ; we thus have

afm . Ol;eg =g, O

The angle rank detects multiplicative relations among the roots of L; these are closely related to exceptional Hodge classes on
powers of A. For example, by a theorem of Zarhin [13, Theorem 3.4.3], §(A) = g if and only if there are no exceptional Hodge classes
on any power of A. At the other extreme, §(A) = 0 if and only if A is supersingular.

3. Geometric simplicity

To check that an ordinary isogeny class defined over F, is geometrically simple, we compute the tensor square of the L-polynomial,
note that it has no nontrivial cyclotomic factors, and apply [4, Lemma 7.2.7 (b)] to deduce that all of the geometric endomorphisms
are defined over Fg; in particular, each simple isogeny factor is geometrically simple. In the counterexamples presented in this article,
simplicity over F, follows from the irreducibility of the L-polynomial and ordinarity from the Newton polygon. For a discussion of
the geometric endomorphism algebra in more generality, see [5, §3.5].

4. Searching for Jacobians

The current version of the LMFDB contains substantial data about whether isogeny classes contain Jacobians up to dimension 3 (see
[5, §3.7]). However, for this paper we need data in dimension 4, for which the LMFDB currently contains only negative results (e.g.,
a given isogeny class may fail to contain a Jacobian because it contains no principally polarizable variety, or because it corresponds
to an impossible sequence of point counts on a curve). We thus cannot use the LMFDB alone to certify that a given isogeny class
contains a Jacobian.

We instead take the approach of constructing curves, computing their zeta functions, and matching their numerators to the Weil
polynomials contained in the LMFDB. To construct the curves, we note that in genus 4, every nonhyperelliptic curve is isomorphic
(via its canonical embedding) to the intersection of a quadric and a cubic in P3. (See [7, Example IV.5.2.2] for the corresponding
statement over an algebraically closed field.) In practice, over F,, this allows us to make an exhaustive search over both hyperelliptic
and nonhyperelliptic curves, using Magma to compute zeta functions. (In the nonhyperelliptic case, we limit the options for the
quadric as in [10, Proposition 2.3].) Over F3 and Fs, we enumerate only over hyperelliptic curves, using Sage to compute zeta
functions. This was enough to find the two counterexamples presented here.

5. Results of the search

The Ahmadi-Shparlinski conjecture is a theorem in dimension 2, even without the ordinary condition [1, Theorem 2]. It is also a
theorem in dimension 3, but this time it requires the ordinary condition [14, Theorem 1.1]. (That result implies that if an abelian
threefold over a finite field is ordinary and absolutely simple, then it is neat; the latter condition is equivalent to having maximal angle
rank by Lemma 2.1.) We verified the consistency of these results with the LMFDB database.
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In dimension 4 over F,, there are 52 isogeny classes of ordinary, geometrically simple abelian varieties with angle rank at most
3 (in fact they are all equal to 3). Searching through curves, we found 620 distinct zeta functions, none of which occur among the
previous list of 52 isogeny classes. Therefore there are no such 4-dimensional Jacobians over F,, and the conjecture holds in this case.

By contrast, the conjecture fails in dimension 4 over F3 and Fs, as shown by the examples presented in Section 7. While we
chose specific examples for definiteness, these are not particularly exceptional: over F3 there are 210 isogeny classes of ordinary,
geometrically simple abelian varieties of dimension 4, and by comparing to a random sample of half a million hyperelliptic curves
we found that at least 66 isogeny classes contain a Jacobian. (Over Fs, there are 1304 isogeny classes of ordinary, geometrically simple
abelian varieties of dimension 4; we did not attempt to determine how many of these contain Jacobians.)

6. Algebraic certification of angle ranks

We now describe the procedure we used to compute a rigorous upper bound on §(A). See [5, §3.8] for an alternate approach that also
gives a rigorous lower bound, which we do not need here; instead we use an estimate on the size of relations based on linear forms
in logarithms (see Lemma 6.3).

Let L(T) = ]_[?il(l — a;T) be the L-polynomial of an abelian variety A over F;. Fix a precision p = o2 (we default to p = 625).

1. Compute the inverse roots {o;} of L(T') that have positive imaginary part, in a complex field C of precision p. Set t; = arg(e;) /7,

where arg is the principal branch of the logarithm. Throw away duplicates, obtaining (after possibly reordering) 0 < t; < --- <
tm < L.
2. Use LLL to find independent integer relations Ry, . . ., Ry among {t1, . . ., tm, 1}. A relation is considered spurious if all coefficients

are larger than 27, with 0 = ,/p as above, and we interrupt the computation if some value is larger than 27 but others are not
(this did not happen for any isogeny class in the database). The numerical angle rank is m — s.

3. Find a number field K in which L(T) splits completely. Choose an embedding ¢: K < C, where as before C is a complex field of
precision p, and let B, . . ., B be the roots of P(T) in K with 0 < arg(¢(B1)) < - -- < arg(t(Bm)) < 7. (In other words, the root
Bi has argument approximated by 7 ¢; above.)

4. The roots B, . . . , Bm together with the relations Ry, . . ., R; provide a certificate that the angle rank of A is at most m — s. One can
check using exact arithmetic in K that a relation R; = (¢i, . . ., ¢m+1) holds by confirming that

m
(g [T =1.
i=1
Remark 6.1. The upper bound m — s can only fail to be sharp if at some point we discarded a relation as spurious when it was real.

Such a relation would have all coefficients larger than 2.

Remark 6.2. Let P(T) = ]_[lzi 1(e; — T) be a Weil polynomial, with roots ordered so that &ty = g (where the indices are taken
modulo 2g). This remark explains an alternative method, using resultants and “taking cyclotomic parts,” to verify the existence of a
relation of the form

er e & __ . j/2
ah aiz ”.aij - Cq’ > (1)
where ey, . .., ¢; are specified positive integers and ¢ is an unspecified root of unity. Such a relation is guaranteed to be nontrivial
(i.e, not a consequence of the known relations a;a;+g = ¢) provided that iy, ..., i; are pairwise distinct mod g; when this occurs,

the existence of the relation implies that the angle rank is not maximal. Note however that as presented, this method cannot always
certify a sharp upper bound on the angle rank.
Before presenting this method, we present three preliminary facts which we will need and take for granted:
1. If F(T) and G(T) are any two polynomials, the polynomial
H(T) = Ress(F(S), G(T/$)$™5 )

is a polynomial whose roots are products of the roots of F and G.

Proof. It is well known that if F(S) = a[[;(S — ;) and G(S) = b ]_[j(S — p;j) then

Ress(F(S), G(S)) = a*8 D™ [T (@ — ).
if
Without loss of generality, we can suppose F and G are monic. In the above we have SdEg(G)G(T/S) = (—1)de8@ Hj Bj Hj
(S — T/B)). This means
deg(G)
Ress(F(S), G(T/$)$*8C) = (—1)ds(@des® | [T g, [ Ji=1/8) =] — iy,
j i i
as claimed. O
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2. If A is an abelian variety over F; of dimension g with characteristic polynomial P(T) = PAFq (T = ]_[,zﬁ (T — «a;), then for any

positive integer n, PAFqn (T) = ]_[lzi (T — a"). One can show that there is a formula for this polynomial in terms of resultants
given by PAFqn (T) = Resg(P(S),S" — 7).
3. If F(T) is a polynomial with integer coeflicients, then it factors as F(T) = C(T)G(T) where C(T) is a cyclotomic polynomial and

G(T) has no cyclotomic factors. The computation of the cyclotomic part C(T) can be done efficiently using an algorithm described
in [2]; this is implemented in Sage by the function cyclotomic part () called on F(T), which returns C(T).

With these facts granted, note first that, for purposes of verifying the nontrivial relation as in (1), we are free to make the test
after performing a base change as in the second point above; we may thus assume without loss of generality that g is a perfect square,
so that P(T) = P(ql/ 2T) is a root-unitary polynomial with rational coefficients. Set &; = qil/ 2q;, so that the roots of P(T) are
a1, . . .,0a. For our counter-examples in Section 7, we will not renormalize as in this remark.

Using the first and second points, we compute the polynomial

an =[] a-aa;---a),
11 ,l2 ,,,,, l]
where the product is taken over all tuples (i1, i, . . ., ;) in which 1 < iy < 2g. When j is even, whenever there is a way to divide the
set of e; into equal pairs, then the relations a1, = g will yield a cyclotomic factor of Q(T) that does not correspond to a nontrivial
relation. However, we can compute the degree of this expected factor and compare with the degree of the cyclotomic part determined
as in (3). A nontrivial factor with the given e;s will arise exactly when these two degrees don’t match.

In practice, we predict j and ey, . . .,¢; in the relation (1) using LLL, and then verify the existence of a relation as we have just
described.
The following gives an upper bound on the size of any e; in a relation (ey, . .., e,). This can be used to derive a lower bound on

the angle rank.

Lemma 6.3. Let ay,...,ay be roots of characteristic polynomials of Frobenius of an abelian variety over Fy. If there exist integers
e] én . .
e1,...,ey, not all zero, such that ay' - - - a = 1, then these integers may be chosen to satisfy

max |e;| < (n — 1)!(elog, g"/*)" .
1

Proof. In [8] they give a general bound for relations among root unitary polynomials. We apply [8, Theorem 1, part (a), equation
(5)] to our situation by letting

d(a;) = log ql/2
E = max{e, d(B;) log 2/ log ql/z} =e
Vj = max{d(8), (e/ log2) log q'/*}/ log(E/ log E) = (¢/ log2) logq'/*. O

7. Counterexamples
In the examples that follow we re-index the roots as in the previous section. That is,

0 <arg(fy) <---<arg(By) <7
and BiBi+g = q.

7.1. A Counterexample wheng = 4andq = 3
Let C be the hyperelliptic curve over F3 given by
y2 =2 + 28+ +2¢° +x.
Then
L(C/F3,T) =1—T+2T% — 4T3 —2T* — 127° +18T° — 2777 + 8178,

so the Jacobian A of C belongs to isogeny class 4.3.ab_c_ae_ac, which is ordinary and geometrically simple. We compute the minimal
splitting field of this polynomial, which has degree 48 over Q. Using the method of Section 6, we show that these roots satisfy the
nontrivial relation

B1B3Bs = —3pa.

The angle rank of A is thus at most 3, and is equal to 3 unless there is a relation with exponents all larger than 27>. However, Lemma 6.3
implies that if the angle rank is less than 3, then there is a relation among B1, 85, 83 with exponents of absolute value at most 9.

225
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7.2. A Counterexample wheng =4andq =5

Similarly, let C be the hyperelliptic curve over Fs given by

y2=x9+x6+2x5+x.

Then
L(C/F5,T) =1 — T +2T% —4T> + 16T* — 20T° + 50T® — 12577 + 62578,

so the Jacobian A of Cbelongs to isogeny class 4.5.ab_c_ae_q. Again, A is ordinary, geometrically simple, and has angle rank bounded
above by 3. There is now a nontrivial relation of the form

B1Bs = B2 Bs.

In this case, Lemma 6.3 implies that if the angle rank is less than 3, then there is a relation among B, B2, #3 with exponents of absolute
value at most 19.
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