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a first-order algorithm, namely, a proximal-gradient-subgradient algorithm with
backtracked extrapolation (PGSA_BE) for solving this type of optimization
problem. It is worth pointing out that there are a few differences between our
backtracked extrapolation and other popular extrapolations used in convex and
nonconvex optimization. One of such differences is as follows: if the new iterate
obtained from the extrapolated iteration satisfies a backtracking condition, then
this new iterate will be replaced by the one generated from the non-extrapolated
iteration. We show that any accumulation point of the sequence generated by
PGSA_BE is a critical point of the problem regarded. In addition, by assuming
that some auxiliary functions satisfy the Kurdyka-Lojasiewicz property, we are
able to establish global convergence of the entire sequence, in the case where the
denominator is locally Lipschitz differentiable, or its conjugate satisfies the calmness
condition. Finally, we present some preliminary numerical results to illustrate the
efficiency of PGSA_ BE.
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1. Introduction

Fractional optimization, which refers to the problem of minimizing or maximizing an objective involving
one or several rations of functions, has been investigated for several decades. It encompasses a large class
of nonconvex optimization problems. In this paper, we consider a class of fractional minimization problems
which takes the form of

i {12161 o), ”

where f,g,h: R™ — R := (—o0, +-0c] are proper lower semicontinuous functions and the set  := {x € R™ :
g(x) # 0} is nonempty. Through this paper, we adopt the following blanket assumptions on problem (1.1).

Assumption 1.

(a) f is convex and continuous on dom(f).

(b) g is convex, real-valued and positive on N dom(f).

(c) h is Lipschitz differentiable with a Lipschitz constant L > 0.

(d) f+ h is non-negative on dom(f) and f(x) + h(z) # 0 for x € R™\Q.

Many optimization problems arising in applications, such as sparse recovery and machine learning, can
be cast into problem (1.1). Roughly speaking, the task of sparse signal recovery is to find a sparse solution
to the linear system Az = b where A € R™*™ and b € R™ are given (e.g., see [9,10,14,15,29,31]). Next, we
provide two concrete examples of problem (1.1) in sparse signal recovery.

Example 1 (Ly/Ls sparse signal recovery [25]). The model has received considerable attention very recently.

Let || - ||2 and || - |1 denote the Euclidean norm and ¢;-norm respectively. It is in the form of
min {Hwnl Az =0b, <z <T, IGR"}, (1.2)
T2

where z, T € R™ denote lower and upper bounds of the underlying signal. To deal with the equality constraint
Az = b, a penalty problem of (1.2) is considered in [32] as follows,

{/\Ilwll + 3l Az — 0|13

:ggmgx,xeR”}, (1.3)
[E41P

where A > 0 is a penalty parameter. Clearly, problem (1.1) reduces to (1.2) when f is the sum of A|| - ||1
and the indicator function on {z e R" 1z <2 <z}, g=|-[l2, h=1||A- —b||3 and Q@ = {z € R" : = # 0}.

Example 2 (L;/Sk sparse signal recovery). For x € R™ and a positive integer K, we use ||z|x), the
largest-K norm of z, to denote the sum of the K largest absolute values of entries in z. Motivated by the
truncated £; function |- ||y — || [|(x) (see, for example, [16]) and the scale invariant property of || - ||1/| - |2,
we introduce a scale invariant function || - ||1/[ - [[(x), i-e., the ratio of £;-norm and the largest-K norm,
which we name L;/Sk function. The L;/Sk function can serve as a sparsity-promoting function due to
its nondifferentiability at a vector with at least one zero element. We refer interested readers to [28] for
a rigorous definition of the sparsity promoting function. By applying the L;/Sk function, we obtain the
following two models for sparse signal recovery

min {|||3ﬁ||1 Ar=0b, z <z <7, xGR”}, (1.4)
x
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and

{/\Ilml + 3/ Az — b|13

:ggmgf,xeR”}. (1.5)
2l )

It is clear that problem (1.1) reduces to problem (1.5) when f is the sum of A||- ||; and the indicator function
on{zeR":z<x<z},g=|"l(x), h=3|A —b} and Q = {z € R" : x # 0}.

The parametric approach, that relates a fractional optimization problem to its associated parametric
problem [13,18], is one of the classical approaches for the fractional programming. By the parametric ap-
proach, problem (1.1) has an optimal solution z* € R”™ if and only if z* is an optimal solution to the
following optimization problem:

min {f(z) + h(z) — cxg(z) : x € 2}, (1.6)

_ f&)+h(z¥)
g(z*)

Therefore, iterative algorithms, which may date back to the Dinkelbach’s method [12], were proposed to

where ¢, . It is worth noting that the optimal objective value ¢, is unknown in general.

remedy this issue (e.g., see [17,24,27]). More precisely, beginning with 2°, an initial estimate of x, the x*+!
in the k-th iteration is the solution of the following subproblem:

2" € argmin{f(z) + h(z) — cpg(x) : z € Q}. (1.7)
Here, c¢;, is renewed via cj := %. However, problem (1.7) is in fact a nonconvex programming, and

it is very difficult to obtain its optimal solutions generally.
A proximal-gradient algorithm has been proposed for a class of fractional optimization problems in [7],
where the numerator is convex and the denominator is a smooth convex function. It can be suitably applied

to problem (1.1) in the case of smooth g and convex h. The resulting algorithm computes the new iterate
by

21 € arg min {f(x) + h(z) — erp(Vg(z®), z) + ZLHCC —zM2:ze Q} ) (1.8)
Mk

where 1, > 0 and ¢, is the objective value of problem (1.1) at z*. Very recently, it was proposed that a
proximity-gradient-subgradient algorithm (PGSA) in [32] for solving problem (1.1), where f is allowed to
be nonconvex. Given an iterate 2¥, PGSA generates the new iterate by

2+ € argmin {f(x) +(Vh(z®) — cpy®, x — by + ﬁ”x —ahiz e Q} (1.9)
for some y* € dg(z*), 0 < ay < 1/L and ¢, = (f(z*) + h(z*))/g(«*). Additionally, PGSA with line search
(PGSA_L) is also developed in [32] for possible acceleration, which solves almost the same subproblems as
(1.9) except that the line search technique is applied to seeking for a potentially larger step size ay. Almost
as early as PGSA_ L was proposed, an extrapolated proximal subgradient algorithm (ePSG) was presented
in [8] for solving a similar class of fractional programs to (1.1), which allows g to be weekly convex but
requires h to be convex. It is worth noting that when the infimum of g over Q N dom(f) is zero, then all
the extrapolation parameters of ePSG are required to be zero too, which actually makes the iterations of
ePSG coincide with (1.9), i.e., no extrapolations are performed in the method. It has been shown that any
accumulation point of the sequence generated by the aforementioned algorithms is a critical point of problem
(1.1). Convergence of the entire sequence generated by these algorithms is further established by assuming
that a certain potential function satisfies the Kurdyka-f.ojasiewicz property and g is differentiable with a
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locally Lipschitz continuous gradient. However, this requirement on ¢ is not fulfilled in some applications
such as Example 2. Thus, the analysis of sequential convergence can not be applied to the above algorithms
for these applications.

Inspired by extrapolation techniques in accelerating the proximal-gradient type algorithms for convex
and nonconvex optimization (see, for example, [5,22,30]), we introduce in this paper so-called backtracked
extrapolation to possibly accelerate PGSA for solving problem (1.1). The proposed algorithm is called PGSA
with backtracked extrapolation (PGSA_BE). In each iteration of PGSA_BE, the new iterate is obtained
by (1.9) with an extrapolation step when the backtracked condition evaluated at this new iterate is violated.
Otherwise, the next iterate is simply computed by (1.9). We prove that, for a general choice of extrapolation
parameters which is independent of the function g, any accumulation point of the sequence generated by
PGSA_BE is a critical point of problem (1.1). Furthermore, we establish global sequential convergence
of the sequence generated by PGSA_BE in two cases: (i) g is locally Lipschitz differentiable and (ii) the
conjugate of g satisfies the calmness condition. It is easy to check that Example 1 falls in both cases while
Example 2 only falls in the second case. In fact, there are many convex functions whose conjugates satisfy
the calmness condition, e.g., positively homogeneous functions, whose conjugate functions are indicator
functions of some closed convex sets [3, Proposition 14.11]. Finally, we conduct numerical experiments on
sparse signal recovery problems to demonstrate the efficiency of PGSA_ BE.

The rest of this paper is organized as follows. In Section 2, we present some preliminary materials.
In Section 3, we propose our algorithm PGSA_BE and show subsequential convergence of the sequence
generated by PGSA__BE. The convergence of the entire sequence generated by PGSA_BE is established in
Section 4. Numerical results are presented in Section 5. Finally, we conclude this paper in Section 6.

2. Notation and preliminaries

We begin with our notation. Let N be the set of nonnegative integers. For n € N, we denote the n-
dimensional Euclidean space by R™ and the standard inner product by (-,-). The Euclidean norm and
¢1-norm are denoted by || - |2 and || - ||1 respectively. For a nonempty closed set S C R™, the indicator
function on S is defined by

+o00, otherwise.

0, ifxels,
ts(x) == {

Also, the distance from a point z € R™ to S is denoted by dist(z, S) := inf{||z — y||2 : y € S}.
In the remaining part of this section, we introduce some technical preliminaries on subdifferential of
nonconvex functions [20,26] and the Kurdyka-FLojasiewicz property [1].

2.1. Fréchet subdifferential

For an extended-real-valued function ¢ : R™ — R, its domain is defined by dom(p) := {z € R™ : p(z) <
+oo}. The Fréchet subdifferential of ¢ at z € dom(yp), written as dp(z), is defined as follows:

5@(3:) =<y € R": liminf () — o) = {y, 2~ @) >05.
2y 2 —zll2

The limiting (Fréchet) subdifferential, or simply the subdifferential for short, of ¢ at = € dom(yp), is defined
by

dp(x) = {y e R": 3aF — z, p(a*) = p(z), v* € dp(a®) — y}.
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It is obvious that 5(,0(90) C 9p(x) for all x € R™, where 590(33) is closed and convex, and dp(z) is closed. If ¢
is differentiable at z, then 5@(@ = {Vy(x)} with Vo(z) being the gradient of ¢ at z. If ¢ is continuously
differentiable at z, then dp(z) = {V¢(x)}. For a convex function ¢, the above subdifferentials reduce to
the classical subdifferential [26, Proposition 8.12].

Op(z) = 0p(z) = {y € R" : p(2) — p(x) — (y,2 —x) > 0,Vz € R"}.
Moreover, for ¢ : R" — R, we use ¢* to denote the Fenchel conjugate function of ¢, that is, for y € R®
¢"(y) :=sup{(y,z) — p(z) : # € R"}.

If ¢ is a proper lower semicontinuous convex function, then y € Jdp(x) if and only if x € dp*(y). We
also need the notion of partial subdifferential. Let the variable x be decomposed into p + 1 separated

blocks xg,x1,...,zp for p € N. For each z; and fixing the other p blocks xg,z1,...,2i—1,Tit1,- .., Tp,
we denote the Fréchet subdifferential of the function ¢(xg,z1,...,%i—1, - ,Tit1,...,%p) at u by
On, p(T0, @1, -+, Tim 1, Uy i1, -+ -, Tpp)-

Next we recall some useful calculus results on Fréchet subdifferential. For any a > 0 and =z € R”,
() () = adp(x). Let @1,y : R™ — (—00, +00] be proper lower semicontinuous. Then we have 9(¢p; +
©2)(x) 2 Dy (2)+0py(x) for 2 € dom(¢1+p2). Furthermore, if oo is differentiable at 2, then 0(p;+¢2) () =
dp1(x) + Ve (z). It was presented in [20, Corollary 1.111 and Proposition 3.45] some quotient rules for
limiting subdifferential of ¢1/ps at T with ¢o(Z) # 0 when 1 and s are assumed to be locally Lipschitz
continuous around Z. Unfortunately, these quotient rules are not available at the border of dom(y1) if
dom(p;) # R™, since in this case the local Lipschitz continuity is not satisfied. Hence, we shall derive some
rules for the Fréchet subdifferential 5(@1 /w2) which can be used for z at the border of dom(y;). To this
end, we first assume that dom(¢2) = R™ and introduce two functions defined by the quotient of 1 and vs.

We define ¢ : R™ — (—o0, +00] at z € R™ as

(o) = {5252?37 if @ € dom(p1) and a(z) # 0,

400, else.

Given d > 0, let p : R™ X R™ — (—00, +00] be defined at (z,y) € R™ x R™ as

Sy s, (z,y) € dom(ipy) x dom(p) and (z,y) — ¢5(y) > d,
7 +00, else.
We also need the concept of calmness condition.

Definition 2.1 (Calmness condition [26]). The function ¢ : R" — R is said to satisfy the calmness condition
at x € dom(yp) (resp., relative to S C R™), if there exist x > 0 and a neighborhood O of x, such that

[p(u) = (@) < Kllu— ]2

for all u € O (resp., u € O N S). We say ¢ satisfies the calmness condition on S if ¢ satisfies the calmness
condition at any point in S relative to S.

The following two propositions concern the Fréchet subdifferentials of 1 and p respectively.

Proposition 2.2 ([52]). Let x € dom(v) with a1 = ¢1(x) and az = @a(x) > 0. Suppose that 1 is continuous
at x relative to dom(p1) and ps satisfies the calmness condition at x. Then
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~

51/}(33) _ O(azp1 —a%aMz)(l‘).

Furthermore, if @ is Fréchet differential at x, then

Ju(a) = 2001V ealD)

az

Proposition 2.3. Let (x,y) € dom(p) with a1 = ¢1(z) > 0 and az = (x,y) — ¢5(y) > d. Suppose that @1 is
continuous at x relative to dom(p1) and @3 satisfies the calmness condition at y relative to dom(p3). Then

~ ~ ~

Op(z,y) = Oxp(x,y) X Oyp(x,y),

where
~ a&px—ay ~ é\ago*y—aa:
Bupl.y) = D=0 iy ) = A0 —ear,
2 2

The proof is given in Appendix A.
2.2. Kurdyka-Lojasiewicz (KL) property

Definition 2.4 (KL property [1]). A proper function ¢ : R™ — R is said to satisfy the KL property at
& € dom(dy) if there exist n € (0,+cc], a neighborhood O of & and a continuous concave function ¢ :
[0,7) = R4 := [0, +00), such that:

(i) ¢(0) =0,
(ii) ¢ is continuously differentiable on (0,7) with ¢’ > 0,
(iii) For any x € ON{z € R™ : o(&) < p(z) < ¢(&) + n}, there holds ¢'(¢(x) — v(2)) dist(0, dp(x)) > 1.

A proper lower semicontinuous function ¢ : R” — R is called a KL function if ¢ satisfies the KL property
at all points in dom(9¢p). A wide range of functions is KL functions. Among those functions, the proper lower
semicontinuous semialgebraic functions (see [2]) cover most frequently appeared functions in applications.
Recall that a function ¢ : R — R is semialgebraic if its graph Graph(y) := {(z,s) € R®* x R : s = o(z)}
is a semialgebraic subset of R"*!, that is, there exist a finite number of real polynomial functions P;;,
Qij : R" — R such that

P q
Graph(yp) = U ﬂ {y e R" . Pii(y) =0, Qi;(y) < 0}.
j=1i=1

We also need the following result regrading the uniformed KL property in [1, Lemma 6].

Lemma 2.5 (Uniformized KL property). Let ¢ : R® — R be a proper lower semi-continuous function and
' CR"™ be a compact set. Assume that ¢ is constant on I' and satisfies the KL property at each point of T'.
Then, there exist 6 > 0, n > 0 and a continuous concave function ¢ : [0,n) — Ry satisfying Definition 2./
(i) - (ii) such that

¢'(p(z) — ¢(2)) dist(0, dp(x)) > 1

holds for any 2 € T and xz € {x € R™ : dist(z,T") < 9, ¢(2) < p(z) < ¢(&) +n}.
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An abstract framework is provided in [2] for proving global sequential convergence based on the KL
property. We review this result in the following proposition.

Proposition 2.6. Let o : R™ — R be a proper lower semicontinuous function. Consider a sequence {x* : k €

N} satisfying the following three conditions:
(i) (Sufficient decrease condition.) There exists a > 0 such that
p(@ ) +af|2" = 2F| < ()

holds for any k € N;
(ii) (Relative error condition.) There exist b > 0 and w**1 € dp(x**+1) such that

L P

holds for any k € N;
(iii) (Continuity condition.) There exist a subsequence {z*/ : j € N} and x* such that

zFi = 2% and p(z%) — o(x*), as j — oo.

If ¢ satisfies the KL property at x*, then Y, [|[2* — ¥ 712 < +o0, klim ok = a* and 0 € dp(z*).
—o0

Following a similar line of arguments to Proposition 2.6, we generalize this framework in the next propo-

sition.

Proposition 2.7. Let H : R” x R™ — R be proper lower semicontinuous. Consider a bounded sequence
{(uF,v*) € R® x R™ : k € N} satisfying the following three conditions:

(i) (Sufficient decrease condition.) There exist a > 0 and K; > 0 such that
B o) a3 < H (b )

holds for any k > K;;
(ii) (Relative error condition.) There exist b > 0, Ko > 0 and w*™t € OH (uF Tt v 1) such that

|2 < bflut* — 2

holds for any k > K.
(iiif) (Continuity condition.) & = klim H(uF,v*) exists and H = € on Y, where Y denotes the set of
— 00

accumulation points of {(uF,v*) : k € N}.

If H satisfies the KL property at each point of Y, then Y ;o [u® — vty < +oc, klim ub = u* and
c— 00
0 € O0H (u*,v*) for any (u*,v*) € T.

The proof is given in Appendix B.
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3. The proximity-gradient-subgradient algorithm with backtracked extrapolation

In this section, we present our proximity-gradient-subgradient algorithm with backtracked extrapolation
(PGSA_BE) for problem (1.1) and show its subsequential convergence.

Motivated by the success of extrapolation techniques used in convex and nonconvex optimization, we
incorporate extrapolation to PGSA in (1.9) for possible acceleration. Moreover, the extrapolation used here is
backtracked in each iteration, in the sense that an iteration without extrapolation (8 = 0) will be performed

instead if the backtracking condition is satisfied for the iterate 21

generated via a extrapolation step. We
call the above extrapolation technique backtracked extrapolation. In particular, we present PGSA_ BE for

solving problem (1.1) in Algorithm 1.

Algorithm 1 PGSA with backtracked extrapolation (PGSA_BE) for solving (1.1).

Step 0. Input z~' =2° € QNndom(f), 0 < a < 1/L,
I =0if his convex and I = L else, 0 < B < m,
{Br:keN}C[0,3],0<e<1—p%(1+al). Set k + 0.
Step 1. Compute
uF Tt = 2P 4 B (zF — 2P, // Extrapolation
y* 1l e ag(a"),
_ f(@®) + h(z")
BT
= 1:>r0xou.n(uk'Jrl — avh(utY) 4+ acry
g™ BR(1l+al)
g(z*) 1—e¢
k1l — proxaf(x’c — avh(z®) + acpy®th). // Backtracking
Step 3. Set k < k + 1 and go to Step 1.

k+1

T k+1).

Step 2. If

)

set x

2
Before conducting the convergence analysis, we make some remarks on PGSA_BE. Since w <

B2(1+al)
1—e

is not preferred in the algorithm. In the very special case of ¢ = 1, the backtracked condition is never
satisfied and PGSA_BE coincides with the extrapolated proximal gradient algorithm in [30].
Besides the backtracked extrapolation, PGSA_ BE differs in several aspects from ePSG developed very

< 1, the backtracking condition intuitively means that g(x**1)/g(z*) is unexpectedly small, which

recently in [8], which also uses some extrapolation technique for fractional optimization. For convenience,
we denote the supremum and infimum of g over Q N dom(f) by M; and M. First, the extrapolation
parameter {8, : k € N} in PGSA_BE is required to be in [0, 3] with 0 < 3 < \/L/(L +1), where [ = 0
if h is convex and ! = L otherwise. Specially, if h is convex, the requirement of {8 : k¥ € N} reduces to
{Br : k € N} C [0,1) and sup{f; : k¥ € N} < 1, which is general enough to cover the popular choice
of the extrapolation parameters used in restart FISTA (see, for example, [4,23]). However, the choice of
extrapolation parameters in ePSG relies on M; and Ms, and thus one has to estimate them before applying
the algorithm. Second, in the case of My = 0, ePSG reduces to PGSA which generates the new iterate
by (1.9), i.e., no extrapolation is involved in the algorithm. In contrast to ePSG, after computing the
new iterate by extrapolation, PGSA_BE incorporates a backtracked procedure that determines whether
or not this new iterate will be used. Finally, when h is convex, to make the extrapolation parameters
general enough, the step size for Vh in ePSG should be in (0, (Mlﬂ\fiﬁb)L) and thus may render a slow
convergence if JAV/[—E is small. Nevertheless, the step size @ of PGSA_BE can be chosen in (0,1/L], which is
independent of g and much larger than that of ePSG. Hence, PGSA_ BE generally has a faster convergence
than ePSG.

In what follows, we study the subsequential convergence of PGSA_BE. For convenience, we define F' :
R® - R at x € R" as
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glz) 7
00, else.

Fle) = {M if x € QN dom(f),
Then problem (1.1) can be equivalently rewritten as

min{F(z) : z € R"}.

We recall the following definition of critical points in [32, Definition 3.4], where it is shown that any local
minimizer of F' is a critical point of F.

Definition 3.1. Let 2* € dom(F') and ¢, = F(z*). We say that z* is a critical point of F if
0 € df(x*) 4+ Vh(z*) — c0g(x™).

The definition of critical points (Definition 3.1) differs from the standard one 0 € oF (z*). By Proposition
2.2 and Assumption 1, we have that

Sy Q9@ ) = (@) + a)g ) o)
= )2
1 * * *
C oy (09 + h(a®) - e.dg(a))

where the last relation follows from the difference rule of Fréchet subdifferential [21, Theorem 3.1 (i)]. In view
of Definition 3.1, 0 € OF (z*) indicates that z* is a critical point of F'. However, the converse implication
is generally not true. Specially, as pointed out in [32], in the special case that g is differentiable, Definition
3.1 coincides with 0 € 9F(z*). Below we present a lemma, which will be used later in establishing the
subsequential convergence.

Lemma 3.2. PGSA_BE generates a sequence {z* : k € N} C dom(F) that satisfies

1 21 !
FER) 4 ) 4 o ok < gl B D e g )
Proof. We prove this lemma by induction. First, the initial points 27! = 2% € dom(F). Suppose
x71,2% ... 2% € dom(F) for some k € N. By the definition of proximity operator and the convexity

of f, we derive from PGSA_ BE that

1
o (uk“ — 2h T —avh(uFth) + ackka) c af (z"1), (3.2)
which implies
1
fah ) + &<uk+1 — 2F L — aVh(uPY) + eyt b — 2P < f(ah). (3.3)

Due to uft! = 2% + (2% — 2¥~1) and the fact that (a,b) = 1(||al|3 + ||| — [la — b||3) for a,b € R™, it
follows from (3.3) that

1 1
FE) 4 @ = ah V) — eyt ) + o ut T = 2P 4 o[l — 23 (3-4)

<f(e*) + B 2,
- 20
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Since Vh is Lipschitz continuous with constant L, there hold
h(zP+Y) < h(uFFL) 4 (Vh(uR L), bt bty %Hukﬂ 2F 12, (3.5)
h(uF ) + (VR(uFHY), 2% — ub+l) < h(ak) + é”xk —uh 2, (3.6)
From the convexity of g and ¢ > 0, we get

crg (@) + (exy" M — k) < g, (3.7)

By summing (3.4)-(3.7), we obtain (3.1) from a < 1/L and cig(z*) = f(z*) + h(zF).

Finally, we prove z¢*1 € dom(F) = dom(f) N It is obvious that z**! € dom(f) and it suffices to show
oFtl € Q) ie., g(z¥T1) # 0. If the extrapolation step produces an iterate z%+1 such that g(z**!) = 0, then
the backtracking condition is surely satisfied and thus a non-extrapolation step (8x = 0) is applied instead.
Next, we shall show that g(z**1) # 0 in the case of 8; = 0 by contradiction. Assume that g(x**1) = 0 and
Br = 0. Then we obtain from (3.1) that

1
Sollz™ = at3 <o

f(ﬂfk+1)+h(l’k+l) + o

Hence, we deduce that zF*! = 2* since f + h > 0. This contradicts to ¥ € Q and we conclude that
{z¥: k € N} Cdom(F). O

Proposition 3.3. Let {z* : k € N} be generated by PGSA__BE. Then, the following statements hold:

k+1 k||2 ka_xk 1”

F k+1 ||'T — T2 < F k 1— 2 k c N
0 Ferety + 12 pen ool gy
T i |

1 =0y
) ’
(iii) lim ¢ = lim F(a*) = ¢, ewists;

k—o0 k—00

(iv) Let z* be any accumulation point of {x* : k € N}. Then x* € dom(F) and F(x*) = c,.

Proof. We first prove Item (i). From Lemma 3.2, we know g(z*) # 0 for k¥ € N. By dividing g(z**1) on
both sides of (3.1), we have
[+t — *|13 ko BR(/atl)
= =2 - p PR\ 0k
2ag(zFtl) = (%) + 2g(zF 1) 2
Bi(l + al)g(z*)/g(=z"+1) -
— F(F k ko k—1)2
(a#) + BCL IO — oo
o

F(a**h) + 12

I

< Fh)+ (1- 05 s,

where the last inequality follows from the backtracking step.
We next prove Item (ii). Summing the both sides of Item (i) from k =0 to K € N, we obtain that

HLL‘K+1 KHQ k— 1”2

F($K+1) + W Z ||$ - < F(IEO) (38)

Then, Item (ii) follows immediately.
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k k—12
We next prove Item (iii). Item (i) implies that the sequence { F(z*)+ o —= 2 . g € N} is nonincreasing.

2ag(zk)
Additionally, this sequence is also bounded below by 0. In view of Item (ii) and the aforementioned fact, we
deduce that lim F(z*) = ¢, exists.
k—o0
Finally, we prove Item (iv). Let * be an accumulation point of {z* : k € N} and {z% : j € N} be a

subsequence such that lim 2% = 2*. According to Lemma 3.2, it holds that
j—oo

n /Bl%jf1(1/04 +1)

1
F@M) 4 h@h) + oflat = 2B < e ag(2") 5 lzh =25 72E (3.9)

a

By Proposition 3.3 (ii) and the continuity of g, we have
kj _ k1|2

li kj _ pki=1)2 — k; = z 12 _ 3.10
Jin [|l2% — 2% 75 = lim g(2™) @) 0, (3.10)
which implies that lim z*/~! = lim z* = 2*. Using this and the boundedness of {3 : k € N}, we see

J—00 J—00

that

kst — a* 23

1 kj—202 _ 1 2 kj—1
—R R = i () =0 (3.11)

li 2 kj—
Jim Bie,—1llx
From Item (iii), (3.10) and (3.11), we have upon passing to the limit in (3.9) that f(z*) + h(z*) < cog(x*).
This together with the fact that f + A > 0 on R™\ indicates that * € dom(F'). Since F is continuous on
dom(F'), we conclude that F(z*) =¢,. O

Now we are ready to show a subsequential convergence result of PGSA_ BE for problem (1.1).

Theorem 3.4. Let {x* : k € N} be generated by PGSA__BE. Then any accumulation point of {z* : k € N}
is a critical point of F.

Proof. Let z* be an accumulation point of {z* : k € N} and {2% : j € N} be a subsequence such that

lim 2% = z*. Since g is a real-valued convex function and {z*/~! : j € N} is bounded, we know that {y*’ :
j—oo
j € N} is bounded. Without loss of generality, we may assume ]Il)n’olo yFi exists and jhﬁrglo Yk = y* € dg(a*)

due to the closedness of operator dg. From the iteration of PGSA_ BE, we have
ahi ¢ Prox, s (uki — avh(ufi) + ack].,lykj). (3.12)

As Vh and F' is continuous on dom(F'), we obtain by Proposition 3.3 (iv) and passing to the limit in (3.12)
that

x* € prox,; (x* —avh(z*) + aF(x*)y*).

By the definition of the proximity operator and the generalized Fermat’s Rule, we deduce that z* is a critical
point of F. O

4. Global sequence convergence of PGSA_BE
We investigate in this subsection the global convergence of the entire sequence {z* : k € N} generated

by PGSA_BE. We shall show {z* : k € N} converges to a critical point of F' under suitable assumptions.
To this end, we need to make two assumptions throughout this subsection as follows:
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Assumption 2. Function F' is level-bounded, i.e., for any v € R, the level set {x € R™ : F(z) < v} is
bounded.

Assumption 3. Function f is locally Lipschitz continuous on dom(f), i.e., for all € dom(f), there exist
L, > 0 and a neighborhood O of x, such that |f(2) — f(Z)| < Lg||& — Z||2 holds for all £, € O N dom(f).

Under Assumption 2, we have the following results regarding the sequence generated by PGSA_ BE.

Proposition 4.1. Let {(z*,y*) : k € N} be generated by PGSA_BE. Suppose Assumption 2 holds. Then the
following statements hold:

(i) {(z*,y*) : k € N} is bounded;
(ii) There exist 0 < dy < dg such that dy < g(z*) < dy for all k € N;
(i) Jim [l — ot = 0;
—00

e gl
(iv) Hm =romy =

Proof. We first prove Item (i). Proposition 3.3 (i) indicates that F(z%) < F(2°) for all k € N. This
together with Assumption 2 leads to the boundedness of {z* : k € N}. Since g is real-valued convex and
y**l € 9g(z*), we deduce that {y* : k € N} is also bounded.

Next we show Items (ii) and (iii). According to Item (i) and the continuity of g, there exists dy > 0 such
that g(x*) < d, for all k € N. In addition, by Lemma 3.2 and Proposition 3.3 (iv), we note that g(z*) > 0
for all k € N and any accumulation point x* of {z* : k € N} satisfies g(z*) > 0. Hence, we claim that
g(2*) > d; for some d; > 0, thanks to Item (i) and the continuity of g. Ttem (iii) follows from g(z*) < dy
and Proposition 3.3 (ii).

Finally we prove Item (iv). Let S C R™ be a bounded closed set satisfying {z* : k € N} C S C dom(F).
Then it is easy to verify that g is globally Lipschitz continuous on S since g is real-valued and convex.
Hence, we have
Al o) gt

g(xk+1) k—o0 dy ’

‘ g(z*)
k—oo | g(xk+1)

— 1‘ = lim
k—o0

where the second inequality follows from Item (ii) and the last equality follows from Item (iii). O

Next, we assume either g is continuously differentiable on 2 with a locally Lipschitz continuous gradient
or g* satisfies the calmness condition on dom(g*). It is worth noting that each of the two assumptions can
not be deduced from the other one. The two examples below illustrate this point. Let g(x) := > | /2?7 + 1
for x € R™. Then we have that

() = {—Z?_l VI=9Z lyle <1,

+00, else,

where || - || denotes the £y,-norm.

In this case, g is continuously differentiable on R™ with a locally Lipschitz continuous gradient but g*
does not satisfy the calmness condition at any y with ||y|lcc = 1. On the other hand, we let g(x) := ||z||s
for z € R™. Then we get that

400, else.

. 0, [ylloe <1,
g (y) = {
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In this example, g is not differentiable at any x with a zero entry, but ¢g* satisfies the calmness condition
on dom(g*).

The sequential convergence of {z* : k € N} generated by PGSA_BE under each of these two assumptions
will be analyzed in the next two subsections.

4.1. g is continuously differentiable on Q with a locally Lipschitz continuous gradient

In this subsection, we derive the global sequential convergence result of the case where g is continuously
differentiable on 2 with a locally Lipschitz continuous gradient. To this end, we first introduce an auxiliary
function G : R” x R® — R, defined at (z,2) € R® x R™ as

F@)+h(z)+ 52 |z —2)3
Gla,2) = ) , = € QnNdom(f),

400, else.

(4.1)

The next lemma concerns the lower semicontinuity of G.
Lemma 4.2. The function G is lower semicontinuous.

Proof. If x € Q, there holds 0 < g(x) = lim g(y). Then we obtain G(z, z) < li?r!n_jnf G(y, u) since f is lower
= ad
semicontinuous and h is continuous. If x ¢ €, we have 0 = g(x) = lim ¢g(y) and G(x,2) = +oo. Then,
Yy—x

invoking Assumption 1 (d), it holds that

1—¢/2

1—¢/2
|2 5o

0 < fx) +hi@) + —

lly — ull3.

2 .
—z[l2 < liminf f(y) + h(y) +

uU—z

Thus, lign_}glglf G(y,u) = 400 follows from g > 0. Therefore, we have G(z, z) = liym_}glclf G(y, u). This completes
u—z u—z

the proof. O

According to Proposition 2.6, if G satisfies the KL property, then global convergence of the whole sequence
{2 : k € N} generated by PGSA_BE can be established by showing that Items (i)-(iii) of the proposition
hold for G along the sequence {(x**1 2*) : k € N}. In particular, we now prove that G' and {(x**+1 z*) :
k € N} satisfy Item (ii) of Proposition 2.6.

Lemma 4.3. Let {2* : k € N} be generated by PGSA_BE and suppose Assumptions 2-3 hold. If g is
continuously differentiable on Q0 with a locally Lipschitz continuous gradient, then there exist b >0, K € N
and Wt € OG(aF+1 %) such that for any k > K,

Iz < b(llz™ = 2Pl + [la® — 2T l2).

Proof. Let S be the closure set of {z* : k € N}. By Proposition 4.1 (i) and Proposition 3.3 (iv), S is
bounded and S C dom(F). In view of our assumptions, Vg and F' are locally Lipschitz continuous on
dom(F'). Invoking Exercise 7.5(c) of [11], this together with the compactness of S implies that Vg and F
are globally Lipschitz continuous on S. In addition, by Proposition 4.1 (ii) and the boundedness of S, there
exist dy, da,ds > 0 such that d; < g(z) < dz and ||Vg(z)|2 < d3 for all x € S.

Invoking Proposition 2.2 and the smoothness of g, we have

5G(xk+1,xk) = 5xG(mk+1,xk) X 5ZG(xk+1,xk),
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where
R k+1 Bkl 1-€/2/ k+1 _ .k k+1 .k k+1
8$G(xk+l’xk) _ af(l’ )+ \ (:L' )+ Y (:L' T ) _ G(LI) s T )Vg(l‘ )7 (42>
g(zhtt) g(zh 1)
) k+1 kY _ (1- 6/2)(5U]C —$k+1)
8ZG(IB )y L )* ag(az’”‘l)

From the iteration of PGSA_ BE, we obtain that

k+1 k+1

4 — VR + e, vg(zh) € af(FT).

— T
«

Substituting this into (4.2), we see that w**! € 9,G (2%, 2*), where

e ubtt — 2kl (1 —¢/2) (2 — 2%)  Vh(uF*t?) — vh(zh )

= — 4.3
ag( ) o) 43
xVg(2") — cpaVg(@* ) (1 - e/2)vg(atth)[laF T — a*|3
g(zF 1) 2ag2(zF 1) :
Using that uF*! = 2% + By (2% — 2F~1) and
ckVg(zh) — cpr1Vg(a*th) _ ckVg(x*) — exvg () i ckVg(a"th) — 1 Vg ()
g(zh+) g(ah+) g(ah+) ’
we deduce from (4.3) that
k41 (La+L)Br x k1
w2 SWH:C — 2" 2 (4.4)
€/2 L crL Lp||vg(akt?
( /k+1 + oy T kkfl 2 g(k+1 )|2) kaH - $k||2
ag(zk+l) = g(ah*h) = g(ahth) g(z++1)
(L= DT Dl i1
20,02 (xk+1) 2

where L, and L are the Lipschitz constants of Vg and F' on S respectively. Additionally, there exists
K € N such that ||zFt — 2%||3 < ||#¥*+1 — 2¥||; for k > K, thanks to Proposition 4.1 (iii). Using this and
the facts that 0 < B < 1, g(2%) > dy, ||Vg(2*)||2 < d3 and ¢;, < ¢; for k € N, we obtain further from (4.4)
that

1/a+L -
leog 12 S lz* — 212 (4.5)
€ (2 —€)ds\ [|z**! — 2F|2
—+L L,+dsL .
+(2a+ ey +dsLp + = T

On the other hand, a direct computation yields

~ 1—¢/2 1—¢/2
||82G(£L'k+17$k)||2 _ ( / ) ”xk—&-l _ kaQ < T/ka-ﬁ-l o

-~ 7 l'k 2. .
P < H (4.6)

Combining (4.5) and (4.6), we finally obtain the desired result with

1 2 €)ds 1—¢€/2
b:= — max —+L,i+L+c1L9+d3LF+( 6)3+ /21 O
o 2« 4ady «
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We are now ready to prove global convergence of the entire sequence {z* : k € N} generated by
PGSA_BE.

Theorem 4.4. Let {z* : k € N} be generated by PGSA_BE. Suppose that Assumptions 2-3 hold and G is
a KL function. If g is continuously differentiable on Q with a locally Lipschitz continuous gradient, then
S |2k — 25| < 400 and {z* : k € N} converges to a critical point of F.

Proof. In view of the definition of G, we have upon rearranging terms in Proposition 3.3 (i) that for k € N

G+ k) 4+ &
(2", 2%) +

€ (It et R ey
g T) g@h) ) ST

which together with Proposition 4.1 (ii) leads to

G(xk+17xk) + _€

dad, (kaJrl - xk”% + ka - xk71‘|§) < G(xk,xk’l).

Using this and invoking Proposition 2.6, Theorem 3.4, Lemmas 4.2 and 4.3, we immediately obtain the
desired result. 0O

We remark that in Theorem 4.4, the function G is required to satisfy the KL property. Since the sum or
quotient of two semi-algebraic functions is also a semi-algebraic function and any semi-algebraic function is
a KL function [1], this requirement is satisfied when f, h and g are all semi-algebraic functions. In particular,
the associated G of problem (1.3) is a semi-algebraic function. Hence, we immediately obtain the global
convergence of the sequence {z* : k € N} generated by PGSA_BE for problem (1.3).

4.2. g* satisfies the calmness condition on dom(g*)

In this subsection, we establish the global sequential convergence of PGSA_BE when ¢*, the Fenchel
conjugate function of g, satisfies the calmness condition on dom(g*). Our convergence analysis is motivated
by [19], where the authors established the global sequential convergence of a proximal algorithm with extrap-
olation for a class of structure difference-of-convex optimization problems without assuming the smoothness
of the second convex function involved. We begin with introducing an auxiliary function, which plays a
crucial role in our analysis. Given d > 0, let @ : R™ x R” x R” — (—o0, +00] at (z,y,z) € R” X R" x R" as

) +h(z)+ 122 e — 2|2 "
f(z) &L)_ng(y)ﬂ ”2, (z,y) € dom(f) x dom(g*) and
d

Q(%y,z) — (x,y) - g*(y) = 4, (4'7)
400, else.

One can easily check by similar analysis in Lemma 4.2 that @ is proper and lower semicontinuous. Also,
by the calculus for Fréchet subdifferential and Proposition 2.3, we have the following proposition concerning
the Fréchet subdifferential of Q.

Proposition 4.5. Let ) : R” x R” x R" — (—o0,400] be defined by (4.7) and (z,y,z) € dom(Q) with
(x,y) — g*(y) > d. Suppose that g* satisfies the calmness condition on dom(g*). Then it holds that

~ ~

9Q(x,y,2) = 0.Q(x,y, 2) x ,Q(x,y,2) x 0.Q(x,y, 2),

where
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~ (@) — g W)Of (@) + Vh(z) + =L (x - 2))
0:Q(m9,7) = (09) — 5 )
(@) + h@) + 5L - 2By
((x,y) — g*(y))? ’
A (@) + @) + 5L - 23) (99" (y) — )
Q2= (1)~ @) /
T myy) — g (y)

We also need to make extensive use of a sequence {n : k € N} defined by ny, := (z*, y*) — g*(y*), where
{z¥ : k € N} and {y* : k € N} are generated by PGSA_BE. With the help of d; and ds, introduced in
Proposition 4.1 (ii), we give some useful properties of 7 in the next lemma.

Lemma 4.6. Let {(z*,y*) : k € N} be generated by PGSA_BE. Suppose that Assumption 2 holds, then the
following statements hold:

(i) e = g(@®) + (@ — 2%, y* ) and gy, < g(a*) < dy for k € N;
(ii) there exists K1 € N such that ni, > d1/2 for k > Ky;
(iii) Hm 9y /mers = 1.

Proof. First we prove Item (i). By y**! € dg(2*) and Frechel- Young Inequality, we immediately see that

gL Rty RHLY (kD gk Ry ok kL)

.y .y !

M1 = ( Yy g*(y g*(y

_ <xlc+1 _ $k,yk+1> _’_g(xk)
Moreover, invoking the definition of g* and Proposition 4.1 (ii), we have

me = (¥, y*) — sup{(z,y*) — g(z) : x € R"}
< (aF,yF) = (¥, yF) + g(aF) = g(a*) < da.

Next we show Item (ii). Item (i) yields npy1 — g(a¥) = (¥t — 2% ¢*+1). In view of Proposition 4.1 (i)
(iii), we have by passing to the limit that kll)n;o Ni+1 — g(z¥) = 0. This together with Proposition 4.1 (ii)
indicates Item (ii).

Finally, we prove Item (iii). A direct computation leads to

ne  g(@® ) (@b — 2 yP)g(ah) — (P — 2 yF ) g(aF)

M1 ga®) Mer19(xF)

Invoking Item (ii) and Proposition 4.1 (i)-(iii), we have upon passing to the limit in the above relation that
Ne G —
b oo Mh+1 g(z*)
O

0. Combining this with Proposition 4.1 (iv), we immediately obtain klim /M1 =
—00

By Lemma 4.6 (i), we note that {(zFT1 ¢*+1 2%) : k > K;} C dom(Q) with 0 < d < d;/2, where
{z¥ : k € N} and {y* : k € N} are generated by PGSA_BE. In the rest of this subsection, we always
assume that 0 < d < d;/2 in the definition of Q. In view of Proposition 2.7, if @ satisfies the KL property,
we can establish global convergence of the entire sequence generated by PGSA_BE by proving @ along
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{(zF+1 y*+1 o) . k > K} satisfies Items (i)-(iii) in the proposition. We shall show these results in the
next two lemmas.

Lemma 4.7. Let {(z*,y*) : k € N} be generated by PGSA__BE. Suppose that Assumption 2 holds. Then
there exist a > 0 and Ko € N such that for any k > Ko,

QU g ) (la — ¥ 3+ 2 — 5 3) < QU o ah ).
Proof. By summing (3.4), (3.5), (3.6) and using the fact that o < 1/L, we obtain that
PR 4 B et a4 ot ok - b (1.8
< 7@h) + hiat) + ZOLOED e gy
Lemma 4.6 (i) yields that
(eny™ b — M) = e(g(a®) = mpr) = f(@®) + ha®) = crmprr

Combining this with (4.8) and Lemma 4.6 (ii), we further obtain

1—e/2
G R Gl R il Gl S WAPRT (49)
Mt 1 Ak 2
Bl a+1), 4
- Bell/ja+l), %
<cp+ Mot |2 2

for k Z Kl.
In addition, from Lemma 4.6 (iii), there exists K € N such that for k > K,

Be(l+alne _ B2 +alms 3 (4.10)

Mk+1 - Mk+1 - 4

Therefore, by the definition of Q and Lemma 4.6 (i), we have for k > K := max{K;, K} that

Ly FER) 4 hEb) + 5L ek — 23 1—¢/2 .
QUa*, o, 41 = P e L
Mk 2amy,

> k+1  k+1 k k1 _ k2 1—¢€/2 Br(L/a+Dne\ 2% — "3
> Q" y T a) + |z 12 +

4ank 2a 20k41 Mk
Z Q karl7 k+1,f£k zk+1 o Ik 2

( ) —40477k+1 | 2+ ¢ a 12
€ _

> QM Yy by + m”iﬂkﬂ — 2|3 8ads (B

where the second and the third inequalities follow from (4.9) and (4.10) respectively. Let a = ¢/(8ads), then
we get the desired result. O

Lemma 4.8. Let {(z¥,4*) : k € N} be generated by PGSA__BE and suppose Assumptions 2-3 hold. If g*
satisfies the calmness condition on dom(g*), then there exist b > 0, K3 € N, and w*t1 € 9Q(z*+1, yF+1, zF)
such that ||wFtt|e < b(||z**t — 2F||5 + ||2% — 2871||2) holds for k > K.
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Proof. With the help of Proposition 4.5 and using the fact that x* € dg*(y**!), one can verify that
W= (WEHL WE L WEH) € Q(2F T, yM T 1), where

ubtl — gkl 4 (1 — ¢/2) (2P — 2F) 3 Vh(uFtt) — vh(xkt1)

k+1 _

Yo'l T ank+l s
_ FEED FREE) kg1
+ (Ck MNk+1 )y _ 1-— 6/2 ||xk}+1 _ ﬁrk‘|§yk+l
Mk+1 20m
1—¢/2

St = ) R 4 S — gt )@k — 2t

! 771%+1

et (1= ¢/2)(@" —ab )
(JJZ = i

ATk4-1

Next we shall bound ||w**!||2 by bl|z*+1 — 2F||5 for some b > 0. To this end, we first present some
properties on {(z*,y*) : k € N} which will be used in the estimation of ||w**!||s. Proposition 3.3 (i)
indicates that F(2*) < F(2°) for all k € N, which together with Proposition 4.1 (ii) yields that

f(@*) 4+ h(a*) < F(2)dy. (4.11)

In addition, by Proposition 4.1 (iii), there exists K € N such that for k > IN(,

d
2"+t — 2P 3 < [l =2t < 51 (4.12)
Furthermore, a direct computation yields

o FEH) + h(M)  f(@h) + h(a®) — fa®th) — h(at)
g Mk+1 B g(xk)
(o — My (f(@*) + b))

g(xk)nk-ﬁ-l

+

Also, we deduce that f + h is Lipschitz continuous on the closure of {z* : k € N} from the boundedness of
{z* : k € N} and Assumption 3. Let L;; denote the Lipschitz constant of f + h on S.

Now we are ready to make an estimation of ||w**!||o. Let M > 0 denote the bound of {||y*||2 : k € N}.
Using the aforementioned facts and invoking u*+! = zF+1 4 g (2! — 2F) with $r < f together with
the Lipschitz continuity of Vh and 7, > di/2 for k > K; from Lemma 4.6 (ii), we can verify that for
k> Ky = max{K,, K}

2(1+aL)p _
ekt < X OBy,
Oéd,l
e+2al+ (1—¢/2)M  2MLyyy, | AdoM2?F(2°)\ |,
* ady TTa & A
1 1
2—¢  4dyF(2°)
ka1 2 k+1 k
ol < (2t + SR ) 1 = o,
2—¢€
Wil < =—=la"*" = 2",

Oédl
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Finally, we conclude that for k > K3, ||w*TY|o < b(||a*+ — 2F|]2 + [|2* — 2%~ 1||2) with

2—¢ N 24 2aLl+ (1 —¢/2)M N 2M Ly +4doF(2°)  4dyM?F(2P)

b:=
4o ady d? d3

Now we are ready to present the main result of this subsection.

Theorem 4.9. Let {z* : k € N} be generated by PGSA__BE. Suppose that Assumptions 2-3 hold and Q
is a KL function. If g* satisfies the calmness condition on dom(g*), then > p | ||z — 2%~z < +oo and
{z* : k € N} converges to a critical point of F.

Proof. In view of Proposition 2.7, Theorem 3.4, Proposition 4.1, Lemma 4.7 and Lemma 4.8, it suffices to
prove that lim Q(zF 1 Ykl 2F) = ¢ exists and Q(x*,y*,2*) = & for any accumulation point (z*,y*, 2*)
— 00

of {(z*+1, k“'l,xk) : k € N}. We see immediately from Lemma 4.7 that {Q(z**1,y**1 2%) : k € N} is
nondecreasmg In addition, this sequence is bounded below by 0 thanks to Lemma 4.6 (ii). Hence, we deduce
that hm Q(zF 1 y*+l 2F) = ¢ exists.

Let ( ,y*,2*) be an accumulation point of {(z**1,y**1 x¥) : k € N}. Then there exists a subse-

quence {(zFit1 yFitl gki) . j € N} such that _lim (xhatl ykstl gki) = (2% y*, 2*). Since Q is continuous
on dom(Q), we have that Q(z*,y*,2*) = hm Q( kil ykitl ki) = ¢ Since (x*,y*,2*) is an arbitrary

accumulation point, we complete the proof D

Before moving to the next section, we verify that the merit function @ for problem (1.5) satisfies the
KL assumption needed in Theorem 4.9 and thus we can establish global convergence of the entire sequence
{a* : k € N} generated by PGSA_BE for problem (1.5). Recall that f = Al - |l1, g = || - [|(x), and
h = 1||A-—b||3 in problem (1.5). It is shown in [6, Exercise IV 1.18 and Exercise IV 2.12] that ||- (k) = ¢Bx>
where By denotes the subset {y € R™ : ||ylleo < 1,]ly|l1 < K}. Hence, invoking (4.7), the merit function @

for problem (1.5) has the form of

2
Mzlls+3 Az —blI3+ 21522 ||o—=[I3

(z,y) ’

y € Bi and (z,y) > d,

Qz,y,2) =

400, else.

By the above formulation of @, it is clear that @ is a semi-algebraic function and thus satisfies the KL
property.

5. Numerical experiments

In this section, we perform some preliminary numerical experiments to test the efficiency of our proposed
PGSA_BE. All experiments are conducted in Matlab R2019b on a desktop with an Intel(R) Core(TM)
i5-9500 CPU (3.00 GHz) and 16 GB of RAM.

In our numerical test, we focus on the two ratio regularized sparse recovery problems mentioned in
Section 1. Specially, we consider sparse recovery with highly coherent matrices A, for which standard ¢;
regularization model usually fails. First, following [25], the matrix A is generated by oversampled discrete
cosine transform (DCT), i.e., A = [a1, a2, - ,a,] € R™*™ with

1 2wy 19
a; = —F—COS | —— = oo n.
] \/’I’H D 7] » < 9
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Here w € R™ is a random vector following the uniform distribution in [0,1]™ and D > 0 is a parameter
measuring how coherent the matrix is. Next we construct the ground truth z € R™ with sparsity K € N. We
randomly choose a support subset of size K which has a minimum separation of at least 2D and generate
a vector v € R™ supported on this set with i.i.d. standard normal entries. We set T = sgn(v), where sgn
denotes the standard signum function. Finally, we compute b € R™ by b = Az and let x = —2 x 1,, and
T =2 X 1,, where 1,, denotes the n-dimensional vector with all entries being 1.

Next we shall show that Z is a critical point of problem (1.3). First, it can be checked directly that
¢ = MWK is the objective value at 7 of problem (1.3). Since Z € 9|/ - ||1(Z) and V(|- ||2)(z) = #/VK, it holds
that 0 € O(A|| - 11)(@) =€ V(] - ||]2)(Z). Using this and the facts that £ < ¥ < T and AT = b, we deduce that

0 € Il [l1 + t{zermiw<acay) (@) + AT(AT = b) = EV(|| - 2)(@).

Hence, by Definition 3.1, we claim that ¥ is a critical point of problem (1.3). Following a similar argument,
we can also verify that Z is a critical point of problem (1.5).

We shall compare the performance of PGSA_BE, PGSA_NL [32] for problem (1.3) and (1.5) as well
as alternating direction method of multipliers (ADMM) [25] and ePSG [8] for problem (1.3). We set the
parameter A = 1073 throughout the experiment. The implementation details for these algorithms are
discussed below.

o PGSA_BE. First we set ¢ = 10~% and o = 1/L with L = || A||3. Inspired by the choice of extrapolation
parameters used in FISTA [4], we calculate a recursive sequence 611 = (1 + /1 + 467)/2, where
-1 =0y =1. We set B = (0x—1 — 1)/0) and reset 0;_1 = 0, = 1 every 100 iterations (8100 &~ 0.97).
Hence, we have {81} C [0, 3] for some 0 < 3 < 1 and the requirements of the parameters in PGSA_BE
is satisfied.

o PGSA_NL. Weset L = ||A||3. Following the notation in [32, Algorithm 2], we set a = 1073, o = 1.99/L,
@ =10% and N = 4.

o ADMM. Following the way to using ADMM for problem (1.2) in [25], we first formulate problem (1.3)

into

{AIZIl + 5[ Az = 0|5
yll2

and introduce its augmented Lagrangian function

L{zGR"‘:gSZST}<Z) + )\”ZHI + l”Ax - bH%
‘Cﬂhug(xayuZ?an) = ||y\|2 2

1251 M2
(.2 —y) + e — g3+ o,z - 2) + B2 — 218,
Then the ADMM for solving problem (1.3) consists of the following 5 steps:

k+

R = argmin{L,,, ., (z,y*, 2*; 0% wh) 2 € R,

k1 ._ : k1 o o k.ok ok .
yFthi=argmin{L,, ., (z" 1, y, 2708, wh) y € R™},
= argmin{L,, ., (" y* T 20k wk) 1 2 € R},
oF L .= )k 4 ul(xk+1 _ yk+1)’

k41 L ke,

w = wk 4+ o (w

We set p1 = pe = 0.1 in our experiments.
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Table 1
Success rate (%).
D=1 D=5 D =10 D =15 D =20

K =12 L1/Ly-ADMM in [25] 100 100 87 60 48
L1/L3-ePSG in [8] 100 100 83 58 41
L1/L2-PGSA_NL in [32] 100 100 84 59 41
L1/L2-PGSA__BE proposed 100 100 85 57 44
L1/Sk-PGSA_NL in [32] 100 100 100 100 100
L, /Sk-PGSA__BE proposed 100 100 100 100 100

K =16 L1/Lo-ADMM in [25] 100 100 88 65 36
L1/L2-ePSG in [8] 100 100 85 61 29
L,/L>-PGSA_NL in [32] 100 100 85 63 32
L1/L2-PGSA__BE proposed 100 100 86 63 33
L1/Sk-PGSA_NL in [32] 100 100 100 100 100
L, /Sk-PGSA__BE proposed 100 100 100 100 100

K =20 L1/Lo-ADMM in [25] 95 98 81 60 41
L1/L2-ePSG in [8] 95 98 78 53 37
Ly/Ly-PGSA_NL in [32] 95 98 78 54 37
L1/L2-PGSA__BE proposed 95 99 78 58 37
L,/Sk-PGSA_NL in [32] 100 100 100 100 100
L,/Sk-PGSA__BE proposed 100 100 100 100 100

o ePSG. Since inf{||z]|2 : 2z <z <Z, z # 0} =0, ePSG for problem (1.3) reduces to a non-extrapolation
iterative algorithm (1.9). We set oy, = 1.99/||A||2 in our experiments.

We remark that PGSA_BE, PGSA_NL and ePSG, involve the proximity operator of f := Al - |1 +
L{zeRn:z<z<z} Which can be easily and explicitly computed. Let 2 € R™ and o > 0, one can check that for
j:1727"' , 1,

where Z; = max{0, |z;| — aA}sgn(z;).

Through the experiments, we fix (m, n) = (64, 1024) and test on various kinds of sparse recovery problems
with D € {1,5,10,15,20} and sparsity K € {12,16,20}. In each setting (D, K), we first generate 100
instances randomly as described above and then perform all the computing algorithms. For each instance,
we choose randomly the same initial point 2 = Z 4 0.4¢ for all the algorithms, where the entries of £ € R"
are drawn randomly from the uniform distribution on [—1,1]. Moreover, all the algorithms are terminated
when

[ 1P

1% <1078
max{1, [|z*[]2}

Finally, the maximum iteration number is set to be 100n = 102400 for ePSG and 20n = 20480 for all other
algorithms. The accuracy of the algorithms is evaluated in terms of success rate, defined as the number of
successful trials over the total number of trials. A success is declared when the relative error of the output
x* to the ground truth 7 is less than 1073, that is, ||2* — Z||2/||Z||2 < 1073. Tables 1 and 2 summarize the
success rate and averaged CPU time of all the algorithms over 100 instances, respectively. To distinguish
between algorithms for L;/Ls and L;/Sk sparse recovery, in the tables we add the prefix “Li/Ly” (resp.,
“L1/SKk”) to the algorithms for solving “L1/Ls” (resp., “L1/Sk”) sparse recovery problems. One can observe
from Table 1 that PGSA_NL and PGSA_BE for L, /S sparse recovery achieve 100% success rate in every
settings, while the success rates of all the algorithms for L; /Ly sparse recovery are comparable, and they
decay as K or D increases. Finally, Table 2 shows in terms of CPU time, PGSA_ BE slightly outperforms
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Table 2
CPU time (in seconds).
D=1 D=5 D =10 D =15 D =20
K =12 L,/L2-ADMM in [25] 0.719 0.738 0.981 1.122 1.230
L1/L3-ePSG in [8] 0.457 0.567 0.968 1.290 1.544
L1/L2-PGSA_NL in [32] 0.114 0.133 0.172 0.214 0.248
L1/L2-PGSA__BE proposed 0.071 0.089 0.146 0.195 0.242
L1/Sk-PGSA_NL in [32] 0.125 0.144 0.171 0.197 0.220
L, /Sk-PGSA__BE proposed 0.078 0.091 0.106 0.120 0.133
K =16 L1/Lo-ADMM in [25] 0.903 0.838 1.035 1.092 1.304
L1/L2-ePSG in [8] 0.532 0.615 0.958 1.282 1.608
Lq,/L>-PGSA_NL in [32] 0.121 0.136 0.173 0.215 0.255
L1/L2-PGSA__BE proposed 0.085 0.097 0.152 0.195 0.241
L1/Sk-PGSA_NL in [32] 0.136 0.156 0.180 0.209 0.234
L, /Sk-PGSA__BE proposed 0.088 0.099 0.110 0.120 0.131
K =20 L1/Lo-ADMM in [25] 1.259 1.112 1.163 1.254 1.354
L+1/L2-ePSG in [8] 0.733 0.817 1.038 1.293 1.623
L1/Ly-PGSA_NL in [32] 0.147 0.156 0.184 0.215 0.265
L1/L2-PGSA__BE proposed 0.121 0.127 0.162 0.194 0.258
L,1/Sk-PGSA_NL in [32] 0.143 0.163 0.188 0.213 0.242
L1/Sk-PGSA_BE proposed 0.092 0.104 0.111 0.120 0.129

PGSA__NL for the same ratio sparse recovery problem, while it substantially outperforms ADMM and ePSG

for L1/Ly sparse recovery. This demonstrates the efficiency of PGSA_BE.

6. Conclusion

In this paper, we develop a proximal-gradient-subgradient algorithm with backtracked extrapolation
(PGSA_BE) for solving problem (1.1). The proposed PGSA_BE allows a wide range of choices of extrap-
olation parameters. We prove that any accumulation point of the sequence {z* : k € N} generated by
PGSA_BE is a critical point of problem (1.1). Moreover, under mild conditions and by assuming some

merit functions are KL functions, we establish the global sequential convergence of {z* : k € N} in two

cases: (i) g is locally Lipschitz differentiable and (ii) the conjugate of g satisfies the calmness condition.

Finally, we conduct preliminary numerical experiments on sparse signal recovery problems to illustrate the
efficiency of PGSA_ BE.

Appendix A. Proof of Proposition 2.3

Proof. For (u,v) € dom(p) and (wz,w,) € R™ x R™, a direct computation yields that

where

plu,v) = ple,y) — (s — ) — {wy0 —

Tl(m7y7u7v7wx7wy) =

Ty(z,y,u,v) = a2((u, v) — @5 (0)][(w, v) — (@, )2

1w, 0) = (2, 9)]2

azp1(u) — ai{u,v) + a103(v) — <a§wz7 u—

=T (2, Yy, u, v, wy, wy) + To(z,y,u,v),

x) — (adwy, v — y)

a3|(u, v) = (z,)|2

(agp1(u) — a1 {u, v) + a195(v)) (a2 — (u,v) + 3(v))

Since ¢; is continuous at z relative to dom(y1) and @3 satisfies the calmness condition at y relative to

dom(p3), we get that

im
(u,v)=(z,y)
(u,v)€dom(p)

T2('T7y7u7 U) = 0

(A1)
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By the definition of Fréchet subdifferential, we have

~

Ip(z,y)

={ (We,wy) ER™ X R™: liminf pu,v) = p(a,y) — (W, u — ) — (Wy,v —y)

(w,0)—(2.9) [(u, ) = (2, )2
(u,v)€dom (p)

>0

(W, wy) € R" x R™: liminf Ti(z,y,u,v,ws,wy) >0
(u,0)—=(z,y)
(u,v)€dom(p)

(W w ) cR"™ x R" : lim inf 77(%”) 7 n(xay) 7 <a%w3¢7u 7 ‘T> 7 <a%‘”yvv - y>
Ty Wy .

(u,0)—>(2,y) a3l (u,v) = (x,9)]l2
(u,0)€dom(1)

>0

_ On(a,y)

2 b
az

where 77 : R” x R” — R defined at (u,v) € R" x R™ as n(u,v) = azp1(u) — a1 {u,v) + a;¢5(v). The second
equality follows from (A.1) and the third equality holds due to a; > 0 and az > 0. We then obtain the
desired result from

Iz, y) = Olazpr(x) + a195(y) — a1 (y, z) = a20¢1(x) x a1903(y) — ar(y,x). O
Appendix B. Proof of Proposition 2.7

Proof. From Item (i), we get that { H (u*,v*) : k € N} is non-increasing. This together with Item (iii) implies
that H(u*,vF) > ¢ for any k € N. If there exists kg > 0 such that H(u*o,v*0) = ¢, then H(u*, vF) = ¢ for
all k > ko due to the non-increasing of {H(u*,v*) : k € N}. Then, Item (i) yields u**! = u* for k > k.
Thus, we obtain this proposition from Item (ii). Therefore, we only need to consider the case that for k € N

H(u® v%) > ¢. (B.1)

We first prove that there exist K > max{K7, K2}, n > 0 and a continuous concave function ¢ : [0,7) —
R satisfying Item (i) - (ii) in Definition 2.4 such that there holds, for k > K,

¢ (H(uF,v*) — €) dist(0,0H (u,v*)) > 1 (B.2)

Denote by T the set of accumulation points of {(u*,v¥) : k € N}. Since {(u*,v*) : k € N} is bounded, we
have T is compact. From Item (iii) and (B.1), for any ¢ > 0 and 7 > 0 there exists K > 0 such that for
k> K,

(u®,v*) € {(u,v) € R® x R™ : dist((u,v),Y) <, £ < H(u,v) < &+n}.
Then, by Lemma 2.5, the fact that H satisfies the KL property at each point of T and Item (iii), we obtain

(B.2) holds for k > K.
We next show the following key inequality, for k£ > K|

20—z < flut —uF |2+ g (¢<H(u’2 vh) =€) = G(H (uh, ") — f))- (B.3)
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From the concavity of ¢ and ¢’ > 0, Item (i) implies
BUH (%) — &) — G(H W, 04 — ) > ¢/ (H (b, o) — )(H (¥, o¥) — H(ub ), o4))
> a¢!(H(u",0*) — &)l —u®||3. (B.4)
By Item (ii) and (B.2), it follows for k£ > K that

b (H(u¥, v*) — &) |luf — u* o > ¢/ (H(u¥, v*) — )]|w” |2
> ¢ (H(uF, v%) — &) dist(0,0H (u*, v*))
> 1. (B.5)

Direct combination of (B.4) and (B.5) yields for k > K
(U = = (T, 040) ) ) = b > ! =

We then obtain (B.3) for k > K, by utilizing 2/af < a+ § for o, 8 > 0.
By summing (B.3) from k= K to k = J > K, we have

J
Z Huk-i—l _ uk||2 + ||u.]+1 _ uJ||2
k=K

< =+ 2 (K 0%) — ) - (07 - 6))
< R Do(H R, %) — )

Let J — +00, we obtain Y% [uf — u*~'|2 < +oo and klirn u¥ = w*. Finally, we prove this proposition
— 00

by Item (ii) and the closeness of 0H. O
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