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In this paper, we consider a class of structured fractional minimization problems 
where the numerator part of the objective is the sum of a convex function and 
a Lipschitz differentiable (possibly) nonconvex function, while the denominator 
part is a convex function. By exploiting the structure of the problem, we propose 
a first-order algorithm, namely, a proximal-gradient-subgradient algorithm with 
backtracked extrapolation (PGSA_BE) for solving this type of optimization 
problem. It is worth pointing out that there are a few differences between our 
backtracked extrapolation and other popular extrapolations used in convex and 
nonconvex optimization. One of such differences is as follows: if the new iterate 
obtained from the extrapolated iteration satisfies a backtracking condition, then 
this new iterate will be replaced by the one generated from the non-extrapolated 
iteration. We show that any accumulation point of the sequence generated by 
PGSA_BE is a critical point of the problem regarded. In addition, by assuming 
that some auxiliary functions satisfy the Kurdyka-Łojasiewicz property, we are 
able to establish global convergence of the entire sequence, in the case where the 
denominator is locally Lipschitz differentiable, or its conjugate satisfies the calmness 
condition. Finally, we present some preliminary numerical results to illustrate the 
efficiency of PGSA_BE.

© 2021 Elsevier Inc. All rights reserved.

✩ Qia Li’s work was supported in part by the Natural Science Foundation of China under grant 11971499 and the Guangdong 
Province Key Laboratory of Computational Science at the Sun Yat-sen University (2020B1212060032). Na Zhang’s work was 
supported in part by the Natural Science Foundation of China under grant 11701189 and the Opening Project of Guangdong 
Province Key Laboratory of Computational Science at the Sun Yat-sen University under grant 2021001. The work of Lixin Shen 
was supported in part by the National Science Foundation under grant DMS-1913039.
* Corresponding author.

E-mail address: nzhsysu@gmail.com (N. Zhang).
https://doi.org/10.1016/j.acha.2021.08.004
1063-5203/© 2021 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.acha.2021.08.004
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/acha
http://crossmark.crossref.org/dialog/?doi=10.1016/j.acha.2021.08.004&domain=pdf
mailto:nzhsysu@gmail.com
https://doi.org/10.1016/j.acha.2021.08.004


Q. Li et al. / Appl. Comput. Harmon. Anal. 56 (2022) 98–122 99
1. Introduction

Fractional optimization, which refers to the problem of minimizing or maximizing an objective involving 
one or several rations of functions, has been investigated for several decades. It encompasses a large class 
of nonconvex optimization problems. In this paper, we consider a class of fractional minimization problems 
which takes the form of

min
{

f(x) + h(x)
g(x) : x ∈ Ω

}
, (1.1)

where f, g, h : Rn → R := (−∞, +∞] are proper lower semicontinuous functions and the set Ω := {x ∈ Rn :
g(x) �= 0} is nonempty. Through this paper, we adopt the following blanket assumptions on problem (1.1).

Assumption 1.

(a) f is convex and continuous on dom(f).
(b) g is convex, real-valued and positive on Ω ∩ dom(f).
(c) h is Lipschitz differentiable with a Lipschitz constant L > 0.
(d) f + h is non-negative on dom(f) and f(x) + h(x) �= 0 for x ∈ Rn\Ω.

Many optimization problems arising in applications, such as sparse recovery and machine learning, can 
be cast into problem (1.1). Roughly speaking, the task of sparse signal recovery is to find a sparse solution 
to the linear system Ax = b where A ∈ Rm×n and b ∈ Rm are given (e.g., see [9,10,14,15,29,31]). Next, we 
provide two concrete examples of problem (1.1) in sparse signal recovery.

Example 1 (L1/L2 sparse signal recovery [25]). The model has received considerable attention very recently. 
Let ‖ · ‖2 and ‖ · ‖1 denote the Euclidean norm and �1-norm respectively. It is in the form of

min
{

‖x‖1

‖x‖2
: Ax = b, x ≤ x ≤ x, x ∈ Rn

}
, (1.2)

where x, x ∈ Rn denote lower and upper bounds of the underlying signal. To deal with the equality constraint 
Ax = b, a penalty problem of (1.2) is considered in [32] as follows,

min
{

λ‖x‖1 + 1
2‖Ax − b‖2

2
‖x‖2

: x ≤ x ≤ x, x ∈ Rn

}
, (1.3)

where λ > 0 is a penalty parameter. Clearly, problem (1.1) reduces to (1.2) when f is the sum of λ‖ · ‖1
and the indicator function on {x ∈ Rn : x ≤ x ≤ x}, g = ‖ · ‖2, h = 1

2‖A · −b‖2
2 and Ω = {x ∈ Rn : x �= 0}.

Example 2 (L1/SK sparse signal recovery). For x ∈ Rn and a positive integer K, we use ‖x‖(K), the 
largest-K norm of x, to denote the sum of the K largest absolute values of entries in x. Motivated by the 
truncated �1 function ‖ · ‖1 − ‖ · ‖(K) (see, for example, [16]) and the scale invariant property of ‖ · ‖1/‖ · ‖2, 
we introduce a scale invariant function ‖ · ‖1/‖ · ‖(K), i.e., the ratio of �1-norm and the largest-K norm, 
which we name L1/SK function. The L1/SK function can serve as a sparsity-promoting function due to 
its nondifferentiability at a vector with at least one zero element. We refer interested readers to [28] for 
a rigorous definition of the sparsity promoting function. By applying the L1/SK function, we obtain the 
following two models for sparse signal recovery

min
{

‖x‖1 : Ax = b, x ≤ x ≤ x, x ∈ Rn

}
, (1.4)
‖x‖(K)
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and

min
{

λ‖x‖1 + 1
2‖Ax − b‖2

2
‖x‖(K)

: x ≤ x ≤ x, x ∈ Rn

}
. (1.5)

It is clear that problem (1.1) reduces to problem (1.5) when f is the sum of λ‖ ·‖1 and the indicator function 
on {x ∈ Rn : x ≤ x ≤ x}, g = ‖ · ‖(K), h = 1

2‖A · −b‖2
2 and Ω = {x ∈ Rn : x �= 0}.

The parametric approach, that relates a fractional optimization problem to its associated parametric 
problem [13,18], is one of the classical approaches for the fractional programming. By the parametric ap-
proach, problem (1.1) has an optimal solution x� ∈ Rn if and only if x� is an optimal solution to the 
following optimization problem:

min {f(x) + h(x) − c�g(x) : x ∈ Ω}, (1.6)

where c� = f(x�)+h(x�)
g(x�) . It is worth noting that the optimal objective value c� is unknown in general. 

Therefore, iterative algorithms, which may date back to the Dinkelbach’s method [12], were proposed to 
remedy this issue (e.g., see [17,24,27]). More precisely, beginning with x0, an initial estimate of x, the xk+1

in the k-th iteration is the solution of the following subproblem:

xk+1 ∈ arg min{f(x) + h(x) − ckg(x) : x ∈ Ω}. (1.7)

Here, ck is renewed via ck := f(xk)+h(xk)
g(xk) . However, problem (1.7) is in fact a nonconvex programming, and 

it is very difficult to obtain its optimal solutions generally.
A proximal-gradient algorithm has been proposed for a class of fractional optimization problems in [7], 

where the numerator is convex and the denominator is a smooth convex function. It can be suitably applied 
to problem (1.1) in the case of smooth g and convex h. The resulting algorithm computes the new iterate 
by

xk+1 ∈ arg min
{

f(x) + h(x) − ck〈�g(xk), x〉 + 1
2ηk

‖x − xk‖2
2 : x ∈ Ω

}
, (1.8)

where ηk > 0 and ck is the objective value of problem (1.1) at xk. Very recently, it was proposed that a 
proximity-gradient-subgradient algorithm (PGSA) in [32] for solving problem (1.1), where f is allowed to 
be nonconvex. Given an iterate xk, PGSA generates the new iterate by

xk+1 ∈ arg min
{

f(x) + 〈�h(xk) − ckyk, x − xk〉 + 1
2αk

‖x − xk‖2
2 : x ∈ Ω

}
(1.9)

for some yk ∈ ∂g(xk), 0 < αk < 1/L and ck = (f(xk) + h(xk))/g(xk). Additionally, PGSA with line search 
(PGSA_L) is also developed in [32] for possible acceleration, which solves almost the same subproblems as 
(1.9) except that the line search technique is applied to seeking for a potentially larger step size αk. Almost 
as early as PGSA_L was proposed, an extrapolated proximal subgradient algorithm (ePSG) was presented 
in [8] for solving a similar class of fractional programs to (1.1), which allows g to be weekly convex but 
requires h to be convex. It is worth noting that when the infimum of g over Ω ∩ dom(f) is zero, then all 
the extrapolation parameters of ePSG are required to be zero too, which actually makes the iterations of 
ePSG coincide with (1.9), i.e., no extrapolations are performed in the method. It has been shown that any 
accumulation point of the sequence generated by the aforementioned algorithms is a critical point of problem 
(1.1). Convergence of the entire sequence generated by these algorithms is further established by assuming 
that a certain potential function satisfies the Kurdyka-Łojasiewicz property and g is differentiable with a 
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locally Lipschitz continuous gradient. However, this requirement on g is not fulfilled in some applications 
such as Example 2. Thus, the analysis of sequential convergence can not be applied to the above algorithms 
for these applications.

Inspired by extrapolation techniques in accelerating the proximal-gradient type algorithms for convex 
and nonconvex optimization (see, for example, [5,22,30]), we introduce in this paper so-called backtracked 
extrapolation to possibly accelerate PGSA for solving problem (1.1). The proposed algorithm is called PGSA 
with backtracked extrapolation (PGSA_BE). In each iteration of PGSA_BE, the new iterate is obtained 
by (1.9) with an extrapolation step when the backtracked condition evaluated at this new iterate is violated. 
Otherwise, the next iterate is simply computed by (1.9). We prove that, for a general choice of extrapolation 
parameters which is independent of the function g, any accumulation point of the sequence generated by 
PGSA_BE is a critical point of problem (1.1). Furthermore, we establish global sequential convergence 
of the sequence generated by PGSA_BE in two cases: (i) g is locally Lipschitz differentiable and (ii) the 
conjugate of g satisfies the calmness condition. It is easy to check that Example 1 falls in both cases while 
Example 2 only falls in the second case. In fact, there are many convex functions whose conjugates satisfy 
the calmness condition, e.g., positively homogeneous functions, whose conjugate functions are indicator 
functions of some closed convex sets [3, Proposition 14.11]. Finally, we conduct numerical experiments on 
sparse signal recovery problems to demonstrate the efficiency of PGSA_BE.

The rest of this paper is organized as follows. In Section 2, we present some preliminary materials. 
In Section 3, we propose our algorithm PGSA_BE and show subsequential convergence of the sequence 
generated by PGSA_BE. The convergence of the entire sequence generated by PGSA_BE is established in 
Section 4. Numerical results are presented in Section 5. Finally, we conclude this paper in Section 6.

2. Notation and preliminaries

We begin with our notation. Let N be the set of nonnegative integers. For n ∈ N, we denote the n-
dimensional Euclidean space by Rn and the standard inner product by 〈·, ·〉. The Euclidean norm and 
�1-norm are denoted by ‖ · ‖2 and ‖ · ‖1 respectively. For a nonempty closed set S ⊆ Rn, the indicator 
function on S is defined by

ιS(x) :=
{

0, if x ∈ S,

+∞, otherwise.

Also, the distance from a point x ∈ Rn to S is denoted by dist(x, S) := inf{‖x − y‖2 : y ∈ S}.
In the remaining part of this section, we introduce some technical preliminaries on subdifferential of 

nonconvex functions [20,26] and the Kurdyka-Łojasiewicz property [1].

2.1. Fréchet subdifferential

For an extended-real-valued function ϕ : Rn → R, its domain is defined by dom(ϕ) := {x ∈ Rn : ϕ(x) <
+∞}. The Fréchet subdifferential of ϕ at x ∈ dom(ϕ), written as ∂̂ϕ(x), is defined as follows:

∂̂ϕ(x) :=
{

y ∈ Rn : lim inf
z→x
z �=x

ϕ(z) − ϕ(x) − 〈y, z − x〉
‖z − x‖2

≥ 0
}

.

The limiting (Fréchet) subdifferential, or simply the subdifferential for short, of ϕ at x ∈ dom(ϕ), is defined 
by

∂ϕ(x) := {y ∈ Rn : ∃xk → x, ϕ(xk) → ϕ(x), yk ∈ ∂̂ϕ(xk) → y}.
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It is obvious that ∂̂ϕ(x) ⊆ ∂ϕ(x) for all x ∈ Rn, where ∂̂ϕ(x) is closed and convex, and ∂ϕ(x) is closed. If ϕ
is differentiable at x, then ∂̂ϕ(x) = {�ϕ(x)} with �ϕ(x) being the gradient of ϕ at x. If ϕ is continuously 
differentiable at x, then ∂ϕ(x) = {�ϕ(x)}. For a convex function ϕ, the above subdifferentials reduce to 
the classical subdifferential [26, Proposition 8.12].

∂̂ϕ(x) = ∂ϕ(x) = {y ∈ Rn : ϕ(z) − ϕ(x) − 〈y, z − x〉 ≥ 0, ∀z ∈ Rn}.

Moreover, for ϕ : Rn → R, we use ϕ∗ to denote the Fenchel conjugate function of ϕ, that is, for y ∈ Rn

ϕ∗(y) := sup{〈y, x〉 − ϕ(x) : x ∈ Rn}.

If ϕ is a proper lower semicontinuous convex function, then y ∈ ∂ϕ(x) if and only if x ∈ ∂ϕ∗(y). We 
also need the notion of partial subdifferential. Let the variable x be decomposed into p + 1 separated 
blocks x0, x1, . . . , xp for p ∈ N. For each xi and fixing the other p blocks x0, x1, . . . , xi−1, xi+1, . . . , xp, 
we denote the Fréchet subdifferential of the function ϕ(x0, x1, . . . , xi−1, · , xi+1, . . . , xp) at u by 
∂̂xi

ϕ(x0, x1, . . . , xi−1, u, xi+1, . . . , xp).
Next we recall some useful calculus results on Fréchet subdifferential. For any α > 0 and x ∈ Rn, 

∂̂(αϕ)(x) = α∂̂ϕ(x). Let ϕ1, ϕ2 : Rn → (−∞, +∞] be proper lower semicontinuous. Then we have ∂̂(ϕ1 +
ϕ2)(x) ⊇ ∂̂ϕ1(x) +∂̂ϕ2(x) for x ∈ dom(ϕ1+ϕ2). Furthermore, if ϕ2 is differentiable at x, then ∂̂(ϕ1+ϕ2)(x) =
∂̂ϕ1(x) + �ϕ2(x). It was presented in [20, Corollary 1.111 and Proposition 3.45] some quotient rules for 
limiting subdifferential of ϕ1/ϕ2 at x̄ with ϕ2(x̄) �= 0 when ϕ1 and ϕ2 are assumed to be locally Lipschitz 
continuous around x̄. Unfortunately, these quotient rules are not available at the border of dom(ϕ1) if 
dom(ϕ1) �= Rn, since in this case the local Lipschitz continuity is not satisfied. Hence, we shall derive some 
rules for the Fréchet subdifferential ∂̂(ϕ1/ϕ2) which can be used for x̄ at the border of dom(ϕ1). To this 
end, we first assume that dom(ϕ2) = Rn and introduce two functions defined by the quotient of ϕ1 and ϕ2.

We define ψ : Rn → (−∞, +∞] at x ∈ Rn as

ψ(x) :=
{

ϕ1(x)
ϕ2(x) , if x ∈ dom(ϕ1) and ϕ2(x) �= 0,

+∞, else.

Given d > 0, let ρ : Rn × Rn → (−∞, +∞] be defined at (x, y) ∈ Rn × Rn as

ρ(x, y) =
{

ϕ1(x)
〈x,y〉−ϕ∗

2(y) , (x, y) ∈ dom(ϕ1) × dom(ϕ∗
2) and 〈x, y〉 − ϕ∗

2(y) ≥ d,

+∞, else.

We also need the concept of calmness condition.

Definition 2.1 (Calmness condition [26]). The function ϕ : Rn → R is said to satisfy the calmness condition 
at x ∈ dom(ϕ) (resp., relative to S ⊆ Rn), if there exist κ > 0 and a neighborhood O of x, such that

|ϕ(u) − ϕ(x)| ≤ κ‖u − x‖2

for all u ∈ O (resp., u ∈ O ∩ S). We say ϕ satisfies the calmness condition on S if ϕ satisfies the calmness 
condition at any point in S relative to S.

The following two propositions concern the Fréchet subdifferentials of ψ and ρ respectively.

Proposition 2.2 ([32]). Let x ∈ dom(ψ) with a1 = ϕ1(x) and a2 = ϕ2(x) > 0. Suppose that ϕ1 is continuous 
at x relative to dom(ϕ1) and ϕ2 satisfies the calmness condition at x. Then



Q. Li et al. / Appl. Comput. Harmon. Anal. 56 (2022) 98–122 103
∂̂ψ(x) = ∂̂(a2ϕ1 − a1ϕ2)(x)
a2

2
.

Furthermore, if ϕ2 is Fréchet differential at x, then

∂̂ψ(x) = a2∂̂ϕ1(x) − a1�ϕ2(x)
a2

2
.

Proposition 2.3. Let (x, y) ∈ dom(ρ) with a1 = ϕ1(x) > 0 and a2 = 〈x, y〉 − ϕ∗
2(y) > d. Suppose that ϕ1 is 

continuous at x relative to dom(ϕ1) and ϕ∗
2 satisfies the calmness condition at y relative to dom(ϕ∗

2). Then

∂̂ρ(x, y) = ∂̂xρ(x, y) × ∂̂yρ(x, y),

where

∂̂xρ(x, y) = a2∂̂ϕ1(x) − a1y

a2
2

, ∂̂yρ(x, y) = ∂̂(a1ϕ∗
2)(y) − a1x

a2
2

.

The proof is given in Appendix A.

2.2. Kurdyka-Łojasiewicz (KL) property

Definition 2.4 (KL property [1]). A proper function ϕ : Rn → R is said to satisfy the KL property at 
x̂ ∈ dom(∂ϕ) if there exist η ∈ (0, +∞], a neighborhood O of x̂ and a continuous concave function φ :
[0, η) → R+ := [0, +∞), such that:

(i) φ(0) = 0,
(ii) φ is continuously differentiable on (0, η) with φ′ > 0,
(iii) For any x ∈ O ∩ {x ∈ Rn : ϕ(x̂) < ϕ(x) < ϕ(x̂) + η}, there holds φ′(ϕ(x) − ϕ(x̂)) dist(0, ∂ϕ(x)) ≥ 1.

A proper lower semicontinuous function ϕ : Rn → R is called a KL function if ϕ satisfies the KL property 
at all points in dom(∂ϕ). A wide range of functions is KL functions. Among those functions, the proper lower 
semicontinuous semialgebraic functions (see [2]) cover most frequently appeared functions in applications. 
Recall that a function ϕ : Rn → R̄ is semialgebraic if its graph Graph(ϕ) := {(x, s) ∈ Rn × R : s = ϕ(x)}
is a semialgebraic subset of Rn+1, that is, there exist a finite number of real polynomial functions Pij , 
Qij : Rn+1 → R such that

Graph(ϕ) =
p⋃

j=1

q⋂
i=1

{y ∈ Rn+1 : Pij(y) = 0, Qij(y) < 0}.

We also need the following result regrading the uniformed KL property in [1, Lemma 6].

Lemma 2.5 (Uniformized KL property). Let ϕ : Rn → R be a proper lower semi-continuous function and 
Γ ⊆ Rn be a compact set. Assume that ϕ is constant on Γ and satisfies the KL property at each point of Γ. 
Then, there exist δ > 0, η > 0 and a continuous concave function φ : [0, η) → R+ satisfying Definition 2.4
(i) - (ii) such that

φ′(ϕ(x) − ϕ(x̂)) dist(0, ∂ϕ(x)) ≥ 1

holds for any x̂ ∈ Γ and x ∈ {x ∈ Rn : dist(x, Γ) < δ, ϕ(x̂) < ϕ(x) < ϕ(x̂) + η}.
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An abstract framework is provided in [2] for proving global sequential convergence based on the KL 
property. We review this result in the following proposition.

Proposition 2.6. Let ϕ : Rn → R be a proper lower semicontinuous function. Consider a sequence {xk : k ∈
N} satisfying the following three conditions:

(i) (Sufficient decrease condition.) There exists a > 0 such that

ϕ(xk+1) + a‖xk+1 − xk‖2
2 ≤ ϕ(xk)

holds for any k ∈ N;
(ii) (Relative error condition.) There exist b > 0 and ωk+1 ∈ ∂ϕ(xk+1) such that

‖ωk+1‖2 ≤ b‖xk+1 − xk‖2

holds for any k ∈ N;
(iii) (Continuity condition.) There exist a subsequence {xkj : j ∈ N} and x� such that

xkj → x� and ϕ(xkj ) → ϕ(x�), as j → ∞.

If ϕ satisfies the KL property at x�, then 
∑∞

k=1 ‖xk − xk−1‖2 < +∞, lim
k→∞

xk = x� and 0 ∈ ∂ϕ(x�).

Following a similar line of arguments to Proposition 2.6, we generalize this framework in the next propo-
sition.

Proposition 2.7. Let H : Rn × Rm → R be proper lower semicontinuous. Consider a bounded sequence 
{(uk, vk) ∈ Rn × Rm : k ∈ N} satisfying the following three conditions:

(i) (Sufficient decrease condition.) There exist a > 0 and K1 > 0 such that

H(uk+1, vk+1) + a‖uk+1 − uk‖2
2 ≤ H(uk, vk)

holds for any k ≥ K1;
(ii) (Relative error condition.) There exist b > 0, K2 > 0 and ωk+1 ∈ ∂H(uk+1, vk+1) such that

‖ωk+1‖2 ≤ b‖uk+1 − uk‖2

holds for any k ≥ K2.
(iii) (Continuity condition.) ξ := lim

k→∞
H(uk, vk) exists and H ≡ ξ on Υ, where Υ denotes the set of 

accumulation points of {(uk, vk) : k ∈ N}.

If H satisfies the KL property at each point of Υ, then 
∑∞

k=1 ‖uk − uk−1‖2 < +∞, lim
k→∞

uk = u� and 

0 ∈ ∂H(u�, v�) for any (u�, v�) ∈ Υ.

The proof is given in Appendix B.
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3. The proximity-gradient-subgradient algorithm with backtracked extrapolation

In this section, we present our proximity-gradient-subgradient algorithm with backtracked extrapolation 
(PGSA_BE) for problem (1.1) and show its subsequential convergence.

Motivated by the success of extrapolation techniques used in convex and nonconvex optimization, we 
incorporate extrapolation to PGSA in (1.9) for possible acceleration. Moreover, the extrapolation used here is 
backtracked in each iteration, in the sense that an iteration without extrapolation (βk = 0) will be performed 
instead if the backtracking condition is satisfied for the iterate xk+1 generated via a extrapolation step. We 
call the above extrapolation technique backtracked extrapolation. In particular, we present PGSA_BE for 
solving problem (1.1) in Algorithm 1.

Algorithm 1 PGSA with backtracked extrapolation (PGSA_BE) for solving (1.1).
Step 0. Input x−1 = x0 ∈ Ω ∩ dom(f), 0 < α ≤ 1/L,

l = 0 if h is convex and l = L else, 0 < β̄ <
√

L/(L + l),
{βk : k ∈ N} ⊆ [0, β̄], 0 < ε < 1 − β̄2(1 + αl). Set k ← 0.

Step 1. Compute
uk+1 = xk + βk(xk − xk−1), // Extrapolation
yk+1 ∈ ∂g(xk),

ck =
f(xk) + h(xk)

g(xk)
,

xk+1 = proxαf (uk+1 − α�h(uk+1) + αckyk+1).

Step 2. If
g(xk+1)

g(xk)
<

β2
k(1 + αl)

1 − ε
,

set xk+1 = proxαf (xk − α�h(xk) + αckyk+1). // Backtracking
Step 3. Set k ← k + 1 and go to Step 1.

Before conducting the convergence analysis, we make some remarks on PGSA_BE. Since β2
k(1+αl)

1−ε ≤
β̄2(1+αl)

1−ε < 1, the backtracking condition intuitively means that g(xk+1)/g(xk) is unexpectedly small, which 
is not preferred in the algorithm. In the very special case of g ≡ 1, the backtracked condition is never 
satisfied and PGSA_BE coincides with the extrapolated proximal gradient algorithm in [30].

Besides the backtracked extrapolation, PGSA_BE differs in several aspects from ePSG developed very 
recently in [8], which also uses some extrapolation technique for fractional optimization. For convenience, 
we denote the supremum and infimum of g over Ω ∩ dom(f) by M1 and M2. First, the extrapolation 
parameter {βk : k ∈ N} in PGSA_BE is required to be in [0, β̄] with 0 < β̄ <

√
L/(L + l), where l = 0

if h is convex and l = L otherwise. Specially, if h is convex, the requirement of {βk : k ∈ N} reduces to 
{βk : k ∈ N} ⊆ [0, 1) and sup{βk : k ∈ N} < 1, which is general enough to cover the popular choice 
of the extrapolation parameters used in restart FISTA (see, for example, [4,23]). However, the choice of 
extrapolation parameters in ePSG relies on M1 and M2, and thus one has to estimate them before applying 
the algorithm. Second, in the case of M2 = 0, ePSG reduces to PGSA which generates the new iterate 
by (1.9), i.e., no extrapolation is involved in the algorithm. In contrast to ePSG, after computing the 
new iterate by extrapolation, PGSA_BE incorporates a backtracked procedure that determines whether 
or not this new iterate will be used. Finally, when h is convex, to make the extrapolation parameters 
general enough, the step size for �h in ePSG should be in (0, M2

(M1+M2)L ) and thus may render a slow 

convergence if M2
M1

is small. Nevertheless, the step size α of PGSA_BE can be chosen in (0, 1/L], which is 
independent of g and much larger than that of ePSG. Hence, PGSA_BE generally has a faster convergence 
than ePSG.

In what follows, we study the subsequential convergence of PGSA_BE. For convenience, we define F :
Rn → R at x ∈ Rn as
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F (x) :=
{

f(x)+h(x)
g(x) , if x ∈ Ω ∩ dom(f),

+∞, else.

Then problem (1.1) can be equivalently rewritten as

min{F (x) : x ∈ Rn}.

We recall the following definition of critical points in [32, Definition 3.4], where it is shown that any local 
minimizer of F is a critical point of F .

Definition 3.1. Let x� ∈ dom(F ) and c� = F (x�). We say that x� is a critical point of F if

0 ∈ ∂f(x�) + �h(x�) − c�∂g(x�).

The definition of critical points (Definition 3.1) differs from the standard one 0 ∈ ∂̂F (x�). By Proposition 
2.2 and Assumption 1, we have that

∂̂F (x�) =
∂̂

(
g(x�)(f + h) − (f(x�) + h(x�))g

)
(x�)

(g(x�))2

⊆ 1
g(x�)

(
∂f(x�) + �h(x�) − c�∂g(x�)

)
where the last relation follows from the difference rule of Fréchet subdifferential [21, Theorem 3.1 (i)]. In view 
of Definition 3.1, 0 ∈ ∂̂F (x�) indicates that x� is a critical point of F . However, the converse implication 
is generally not true. Specially, as pointed out in [32], in the special case that g is differentiable, Definition 
3.1 coincides with 0 ∈ ∂̂F (x�). Below we present a lemma, which will be used later in establishing the 
subsequential convergence.

Lemma 3.2. PGSA_BE generates a sequence {xk : k ∈ N} ⊆ dom(F ) that satisfies

f(xk+1) + h(xk+1) + 1
2α

‖xk+1 − xk‖2
2 ≤ ckg(xk+1) + β2

k(1/α + l)
2 ‖xk − xk−1‖2

2. (3.1)

Proof. We prove this lemma by induction. First, the initial points x−1 = x0 ∈ dom(F ). Suppose 
x−1, x0, . . . , xk ∈ dom(F ) for some k ∈ N. By the definition of proximity operator and the convexity 
of f , we derive from PGSA_BE that

1
α

(
uk+1 − xk+1 − α�h(uk+1) + αckyk+1

)
∈ ∂f(xk+1), (3.2)

which implies

f(xk+1) + 1
α

〈uk+1 − xk+1 − α�h(uk+1) + αckyk+1, xk − xk+1〉 ≤ f(xk). (3.3)

Due to uk+1 = xk + βk(xk − xk−1) and the fact that 〈a, b〉 = 1
2 (‖a‖2

2 + ‖b‖2
2 − ‖a − b‖2

2) for a, b ∈ Rn, it 
follows from (3.3) that

f(xk+1) + 〈xk+1 − xk,�h(uk+1) − ckyk+1〉 + 1
2α

‖uk+1 − xk+1‖2
2 + 1

2α
‖xk+1 − xk‖2

2 (3.4)

≤f(xk) + β2
k

2α
‖xk − xk−1‖2

2.
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Since �h is Lipschitz continuous with constant L, there hold

h(xk+1) ≤ h(uk+1) + 〈�h(uk+1), xk+1 − uk+1〉 + L

2
‖uk+1 − xk+1‖2

2, (3.5)

h(uk+1) + 〈�h(uk+1), xk − uk+1〉 ≤ h(xk) + l

2‖xk − uk+1‖2
2. (3.6)

From the convexity of g and ck ≥ 0, we get

ckg(xk) + 〈ckyk+1, xk+1 − xk〉 ≤ ckg(xk+1). (3.7)

By summing (3.4)-(3.7), we obtain (3.1) from α ≤ 1/L and ckg(xk) = f(xk) + h(xk).
Finally, we prove xk+1 ∈ dom(F ) = dom(f) ∩ Ω. It is obvious that xk+1 ∈ dom(f) and it suffices to show 

xk+1 ∈ Ω, i.e., g(xk+1) �= 0. If the extrapolation step produces an iterate xk+1 such that g(xk+1) = 0, then 
the backtracking condition is surely satisfied and thus a non-extrapolation step (βk = 0) is applied instead. 
Next, we shall show that g(xk+1) �= 0 in the case of βk = 0 by contradiction. Assume that g(xk+1) = 0 and 
βk = 0. Then we obtain from (3.1) that

f(xk+1) + h(xk+1) + 1
2α

‖xk+1 − xk‖2
2 ≤ 0.

Hence, we deduce that xk+1 = xk since f + h ≥ 0. This contradicts to xk ∈ Ω and we conclude that 
{xk : k ∈ N} ⊆ dom(F ). �
Proposition 3.3. Let {xk : k ∈ N} be generated by PGSA_BE. Then, the following statements hold:

(i) F (xk+1) + ‖xk+1 − xk‖2
2

2αg(xk+1) ≤ F (xk) + (1 − ε)‖xk − xk−1‖2
2

2αg(xk) for k ∈ N;

(ii) lim
k→∞

‖xk − xk−1‖2
2

g(xk) = 0;

(iii) lim
k→∞

ck = lim
k→∞

F (xk) = c� exists;
(iv) Let x� be any accumulation point of {xk : k ∈ N}. Then x� ∈ dom(F ) and F (x�) = c�.

Proof. We first prove Item (i). From Lemma 3.2, we know g(xk) �= 0 for k ∈ N. By dividing g(xk+1) on 
both sides of (3.1), we have

F (xk+1) + ‖xk+1 − xk‖2
2

2αg(xk+1) ≤ F (xk) + β2
k(1/α + l)
2g(xk+1) ‖xk − xk−1‖2

2

= F (xk) + β2
k(1 + αl)g(xk)/g(xk+1)

2αg(xk) ‖xk − xk−1‖2
2

≤ F (xk) + (1 − ε)‖xk − xk−1‖2
2

2αg(xk) ,

where the last inequality follows from the backtracking step.
We next prove Item (ii). Summing the both sides of Item (i) from k = 0 to K ∈ N, we obtain that

F (xK+1) + ‖xK+1 − xK‖2
2

2αg(xK+1) + ε

2α

K∑
k=1

‖xk − xk−1‖2
2

g(xk) ≤ F (x0). (3.8)

Then, Item (ii) follows immediately.
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We next prove Item (iii). Item (i) implies that the sequence {F (xk) + ‖xk−xk−1‖2
2

2αg(xk) : k ∈ N} is nonincreasing. 
Additionally, this sequence is also bounded below by 0. In view of Item (ii) and the aforementioned fact, we 
deduce that lim

k→∞
F (xk) = c� exists.

Finally, we prove Item (iv). Let x� be an accumulation point of {xk : k ∈ N} and {xkj : j ∈ N} be a 
subsequence such that lim

j→∞
xkj = x�. According to Lemma 3.2, it holds that

f(xkj ) + h(xkj ) + 1
2α

‖xkj − xkj−1‖2
2 ≤ ckj−1g(xkj ) +

β2
kj−1(1/α + l)

2 ‖xkj−1 − xkj−2‖2
2. (3.9)

By Proposition 3.3 (ii) and the continuity of g, we have

lim
j→∞

‖xkj − xkj−1‖2
2 = lim

j→∞
g(xkj )‖xkj − xkj−1‖2

2
g(xkj ) = 0, (3.10)

which implies that lim
j→∞

xkj−1 = lim
j→∞

xkj = x�. Using this and the boundedness of {βk : k ∈ N}, we see 

that

lim
j→∞

β2
kj−1‖xkj−1 − xkj−2‖2

2 = lim
j→∞

β2
kj−1g(xkj−1)‖xkj−1 − xkj−2‖2

2
g(xkj−1) = 0. (3.11)

From Item (iii), (3.10) and (3.11), we have upon passing to the limit in (3.9) that f(x�) + h(x�) ≤ c�g(x�). 
This together with the fact that f + h > 0 on Rn\Ω indicates that x� ∈ dom(F ). Since F is continuous on 
dom(F ), we conclude that F (x�) = c�. �

Now we are ready to show a subsequential convergence result of PGSA_BE for problem (1.1).

Theorem 3.4. Let {xk : k ∈ N} be generated by PGSA_BE. Then any accumulation point of {xk : k ∈ N}
is a critical point of F .

Proof. Let x� be an accumulation point of {xk : k ∈ N} and {xkj : j ∈ N} be a subsequence such that 
lim

j→∞
xkj = x�. Since g is a real-valued convex function and {xkj−1 : j ∈ N} is bounded, we know that {ykj :

j ∈ N} is bounded. Without loss of generality, we may assume lim
j→∞

ykj exists and lim
j→∞

ykj = y� ∈ ∂g(x�)
due to the closedness of operator ∂g. From the iteration of PGSA_BE, we have

xkj ∈ proxαf

(
ukj − α�h(ukj ) + αckj−1ykj

)
. (3.12)

As �h and F is continuous on dom(F ), we obtain by Proposition 3.3 (iv) and passing to the limit in (3.12)
that

x� ∈ proxαf

(
x� − α�h(x�) + αF (x�)y�

)
.

By the definition of the proximity operator and the generalized Fermat’s Rule, we deduce that x� is a critical 
point of F . �
4. Global sequence convergence of PGSA_BE

We investigate in this subsection the global convergence of the entire sequence {xk : k ∈ N} generated 
by PGSA_BE. We shall show {xk : k ∈ N} converges to a critical point of F under suitable assumptions. 
To this end, we need to make two assumptions throughout this subsection as follows:
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Assumption 2. Function F is level-bounded, i.e., for any γ ∈ R, the level set {x ∈ Rn : F (x) ≤ γ} is 
bounded.

Assumption 3. Function f is locally Lipschitz continuous on dom(f), i.e., for all x ∈ dom(f), there exist 
Lx > 0 and a neighborhood O of x, such that |f(x̂) − f(x̃)| ≤ Lx‖x̂ − x̃‖2 holds for all x̂, ̃x ∈ O ∩ dom(f).

Under Assumption 2, we have the following results regarding the sequence generated by PGSA_BE.

Proposition 4.1. Let {(xk, yk) : k ∈ N} be generated by PGSA_BE. Suppose Assumption 2 holds. Then the 
following statements hold:

(i) {(xk, yk) : k ∈ N} is bounded;
(ii) There exist 0 < d1 < d2 such that d1 ≤ g(xk) ≤ d2 for all k ∈ N;
(iii) lim

k→∞
‖xk+1 − xk‖2 = 0;

(iv) lim
k→∞

g(xk−1)
g(xk) = 1.

Proof. We first prove Item (i). Proposition 3.3 (i) indicates that F (xk) ≤ F (x0) for all k ∈ N. This 
together with Assumption 2 leads to the boundedness of {xk : k ∈ N}. Since g is real-valued convex and 
yk+1 ∈ ∂g(xk), we deduce that {yk : k ∈ N} is also bounded.

Next we show Items (ii) and (iii). According to Item (i) and the continuity of g, there exists d2 > 0 such 
that g(xk) ≤ d2 for all k ∈ N. In addition, by Lemma 3.2 and Proposition 3.3 (iv), we note that g(xk) > 0
for all k ∈ N and any accumulation point x� of {xk : k ∈ N} satisfies g(x�) > 0. Hence, we claim that 
g(xk) ≥ d1 for some d1 > 0, thanks to Item (i) and the continuity of g. Item (iii) follows from g(xk) ≤ d2
and Proposition 3.3 (ii).

Finally we prove Item (iv). Let S ⊆ Rn be a bounded closed set satisfying {xk : k ∈ N} ⊆ S ⊆ dom(F ). 
Then it is easy to verify that g is globally Lipschitz continuous on S since g is real-valued and convex. 
Hence, we have

lim
k→∞

∣∣∣∣ g(xk)
g(xk+1) − 1

∣∣∣∣ = lim
k→∞

∣∣∣∣g(xk) − g(xk+1)
g(xk+1)

∣∣∣∣ ≤ lim
k→∞

|g(xk) − g(xk+1)|
d1

= 0,

where the second inequality follows from Item (ii) and the last equality follows from Item (iii). �
Next, we assume either g is continuously differentiable on Ω with a locally Lipschitz continuous gradient 

or g� satisfies the calmness condition on dom(g∗). It is worth noting that each of the two assumptions can 
not be deduced from the other one. The two examples below illustrate this point. Let g(x) :=

∑n
i=1

√
x2

i + 1
for x ∈ Rn. Then we have that

g∗(y) =
{

−
∑n

i=1
√

1 − y2
i , ‖y‖∞ ≤ 1,

+∞, else,

where ‖ · ‖∞ denotes the �∞-norm.
In this case, g is continuously differentiable on Rn with a locally Lipschitz continuous gradient but g∗

does not satisfy the calmness condition at any y with ‖y‖∞ = 1. On the other hand, we let g(x) := ‖x‖1
for x ∈ Rn. Then we get that

g∗(y) =
{

0, ‖y‖∞ ≤ 1,

+∞, else.
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In this example, g is not differentiable at any x with a zero entry, but g∗ satisfies the calmness condition 
on dom(g∗).

The sequential convergence of {xk : k ∈ N} generated by PGSA_BE under each of these two assumptions 
will be analyzed in the next two subsections.

4.1. g is continuously differentiable on Ω with a locally Lipschitz continuous gradient

In this subsection, we derive the global sequential convergence result of the case where g is continuously 
differentiable on Ω with a locally Lipschitz continuous gradient. To this end, we first introduce an auxiliary 
function G : Rn × Rn → R, defined at (x, z) ∈ Rn × Rn as

G(x, z) :=

⎧⎨⎩
f(x)+h(x)+ 1−ε/2

2α ‖x−z‖2
2

g(x) , x ∈ Ω ∩ dom(f),
+∞, else.

(4.1)

The next lemma concerns the lower semicontinuity of G.

Lemma 4.2. The function G is lower semicontinuous.

Proof. If x ∈ Ω, there holds 0 < g(x) = lim
y→x

g(y). Then we obtain G(x, z) ≤ lim inf
y→x
u→z

G(y, u) since f is lower 

semicontinuous and h is continuous. If x /∈ Ω, we have 0 = g(x) = lim
y→x

g(y) and G(x, z) = +∞. Then, 
invoking Assumption 1 (d), it holds that

0 < f(x) + h(x) + 1 − ε/2
2α

‖x − z‖2
2 ≤ lim inf

y→x
u→z

f(y) + h(y) + 1 − ε/2
2α

‖y − u‖2
2.

Thus, lim inf
y→x
u→z

G(y, u) = +∞ follows from g ≥ 0. Therefore, we have G(x, z) = lim inf
y→x
u→z

G(y, u). This completes 

the proof. �
According to Proposition 2.6, if G satisfies the KL property, then global convergence of the whole sequence 

{xk : k ∈ N} generated by PGSA_BE can be established by showing that Items (i)-(iii) of the proposition 
hold for G along the sequence {(xk+1, xk) : k ∈ N}. In particular, we now prove that G and {(xk+1, xk) :
k ∈ N} satisfy Item (ii) of Proposition 2.6.

Lemma 4.3. Let {xk : k ∈ N} be generated by PGSA_BE and suppose Assumptions 2-3 hold. If g is 
continuously differentiable on Ω with a locally Lipschitz continuous gradient, then there exist b > 0, K ∈ N

and ωk+1 ∈ ∂G(xk+1, xk) such that for any k ≥ K,

‖ωk+1‖2 ≤ b(‖xk+1 − xk‖2 + ‖xk − xk−1‖2).

Proof. Let S be the closure set of {xk : k ∈ N}. By Proposition 4.1 (i) and Proposition 3.3 (iv), S is 
bounded and S ⊆ dom(F ). In view of our assumptions, �g and F are locally Lipschitz continuous on 
dom(F ). Invoking Exercise 7.5(c) of [11], this together with the compactness of S implies that �g and F
are globally Lipschitz continuous on S. In addition, by Proposition 4.1 (ii) and the boundedness of S, there 
exist d1, d2, d3 > 0 such that d1 ≤ g(x) ≤ d2 and ‖�g(x)‖2 ≤ d3 for all x ∈ S.

Invoking Proposition 2.2 and the smoothness of g, we have

∂̂G(xk+1, xk) = ∂̂xG(xk+1, xk) × ∂̂zG(xk+1, xk),
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where

∂̂xG(xk+1, xk) =
∂f(xk+1) + �h(xk+1) + 1−ε/2

α (xk+1 − xk)
g(xk+1) − G(xk+1, xk)�g(xk+1)

g(xk+1) , (4.2)

∂̂zG(xk+1, xk) = (1 − ε/2)(xk − xk+1)
αg(xk+1) .

From the iteration of PGSA_BE, we obtain that

uk+1 − xk+1

α
− �h(uk+1) + ck�g(xk) ∈ ∂f(xk+1).

Substituting this into (4.2), we see that ωk+1
x ∈ ∂̂xG(xk+1, xk), where

ωk+1
x := uk+1 − xk+1 + (1 − ε/2)(xk+1 − xk)

αg(xk+1) − �h(uk+1) − �h(xk+1)
g(xk+1) (4.3)

+ ck�g(xk) − ck+1�g(xk+1)
g(xk+1) − (1 − ε/2)�g(xk+1)‖xk+1 − xk‖2

2
2αg2(xk+1) .

Using that uk+1 = xk + βk(xk − xk−1) and

ck�g(xk) − ck+1�g(xk+1)
g(xk+1) = ck�g(xk) − ck�g(xk+1)

g(xk+1) + ck�g(xk+1) − ck+1�g(xk+1)
g(xk+1) ,

we deduce from (4.3) that

‖ωk+1
x ‖2 ≤ (1/α + L)βk

g(xk+1) ‖xk − xk−1‖2 (4.4)

+
(

ε/2
αg(xk+1) + L

g(xk+1) + ckLg

g(xk+1) + LF ‖�g(xk+1)‖2

g(xk+1)

)
‖xk+1 − xk‖2

+ (1 − ε/2)‖�g(xk+1)‖2

2αg2(xk+1) ‖xk+1 − xk‖2
2,

where Lg and LF are the Lipschitz constants of �g and F on S respectively. Additionally, there exists 
K ∈ N such that ‖xk+1 − xk‖2

2 ≤ ‖xk+1 − xk‖2 for k ≥ K, thanks to Proposition 4.1 (iii). Using this and 
the facts that 0 < βk < 1, g(xk) ≥ d1, ‖�g(xk)‖2 ≤ d3 and ck ≤ c1 for k ∈ N, we obtain further from (4.4)
that

‖ωk+1
x ‖2 ≤1/α + L

d1
‖xk − xk−1‖2 (4.5)

+
(

ε

2α
+ L + c1Lg + d3LF + (2 − ε)d3

4αd1

)
‖xk+1 − xk‖2

d1
.

On the other hand, a direct computation yields

‖∂̂zG(xk+1, xk)‖2 = (1 − ε/2)
αg(xk+1)‖xk+1 − xk‖2 ≤ 1 − ε/2

αd1
‖xk+1 − xk‖2. (4.6)

Combining (4.5) and (4.6), we finally obtain the desired result with

b := 1 max
{

1 + L,
ε + L + c1Lg + d3LF + (2 − ε)d3 + 1 − ε/2

}
. �
d1 α 2α 4αd1 α
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We are now ready to prove global convergence of the entire sequence {xk : k ∈ N} generated by 
PGSA_BE.

Theorem 4.4. Let {xk : k ∈ N} be generated by PGSA_BE. Suppose that Assumptions 2-3 hold and G is 
a KL function. If g is continuously differentiable on Ω with a locally Lipschitz continuous gradient, then ∑+∞

k=1 ‖xk − xk−1‖2 < +∞ and {xk : k ∈ N} converges to a critical point of F .

Proof. In view of the definition of G, we have upon rearranging terms in Proposition 3.3 (i) that for k ∈ N

G(xk+1, xk) + ε

4α

(
‖xk+1 − xk‖2

2
g(xk+1) + ‖xk − xk−1‖2

2
g(xk)

)
≤ G(xk, xk−1),

which together with Proposition 4.1 (ii) leads to

G(xk+1, xk) + ε

4αd2

(
‖xk+1 − xk‖2

2 + ‖xk − xk−1‖2
2
)

≤ G(xk, xk−1).

Using this and invoking Proposition 2.6, Theorem 3.4, Lemmas 4.2 and 4.3, we immediately obtain the 
desired result. �

We remark that in Theorem 4.4, the function G is required to satisfy the KL property. Since the sum or 
quotient of two semi-algebraic functions is also a semi-algebraic function and any semi-algebraic function is 
a KL function [1], this requirement is satisfied when f , h and g are all semi-algebraic functions. In particular, 
the associated G of problem (1.3) is a semi-algebraic function. Hence, we immediately obtain the global 
convergence of the sequence {xk : k ∈ N} generated by PGSA_BE for problem (1.3).

4.2. g∗ satisfies the calmness condition on dom(g∗)

In this subsection, we establish the global sequential convergence of PGSA_BE when g∗, the Fenchel 
conjugate function of g, satisfies the calmness condition on dom(g∗). Our convergence analysis is motivated 
by [19], where the authors established the global sequential convergence of a proximal algorithm with extrap-
olation for a class of structure difference-of-convex optimization problems without assuming the smoothness 
of the second convex function involved. We begin with introducing an auxiliary function, which plays a 
crucial role in our analysis. Given d > 0, let Q : Rn ×Rn ×Rn → (−∞, +∞] at (x, y, z) ∈ Rn ×Rn ×Rn as

Q(x, y, z) :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

f(x)+h(x)+ 1−ε/2
2α ‖x−z‖2

2
〈x,y〉−g∗(y) , (x, y) ∈ dom(f) × dom(g∗) and

〈x, y〉 − g∗(y) ≥ d,

+∞, else.

(4.7)

One can easily check by similar analysis in Lemma 4.2 that Q is proper and lower semicontinuous. Also, 
by the calculus for Fréchet subdifferential and Proposition 2.3, we have the following proposition concerning 
the Fréchet subdifferential of Q.

Proposition 4.5. Let Q : Rn × Rn × Rn → (−∞, +∞] be defined by (4.7) and (x, y, z) ∈ dom(Q) with 
〈x, y〉 − g∗(y) > d. Suppose that g∗ satisfies the calmness condition on dom(g∗). Then it holds that

∂̂Q(x, y, z) = ∂̂xQ(x, y, z) × ∂̂yQ(x, y, z) × ∂̂zQ(x, y, z),

where
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∂̂xQ(x, y, z) :=
(〈x, y〉 − g∗(y))(∂f(x) + �h(x) + 1−ε/2

α (x − z))
(〈x, y〉 − g∗(y))2

−
(f(x) + h(x) + 1−ε/2

2α ‖x − z‖2
2)y

(〈x, y〉 − g∗(y))2 ,

∂̂yQ(x, y, z) :=
(f(x) + h(x) + 1−ε/2

2α ‖x − z‖2
2)(∂g∗(y) − x)

(〈x, y〉 − g∗(y))2 ,

∂̂zQ(x, y, z) :=
1−ε/2

α (z − x)
〈x, y〉 − g∗(y) .

We also need to make extensive use of a sequence {ηk : k ∈ N} defined by ηk := 〈xk, yk〉 − g∗(yk), where 
{xk : k ∈ N} and {yk : k ∈ N} are generated by PGSA_BE. With the help of d1 and d2, introduced in 
Proposition 4.1 (ii), we give some useful properties of ηk in the next lemma.

Lemma 4.6. Let {(xk, yk) : k ∈ N} be generated by PGSA_BE. Suppose that Assumption 2 holds, then the 
following statements hold:

(i) ηk+1 = g(xk) + 〈xk+1 − xk, yk+1〉 and ηk ≤ g(xk) ≤ d2 for k ∈ N;
(ii) there exists K1 ∈ N such that ηk ≥ d1/2 for k ≥ K1;
(iii) lim

k→∞
ηk/ηk+1 = 1.

Proof. First we prove Item (i). By yk+1 ∈ ∂g(xk) and Frechel-Young Inequality, we immediately see that

ηk+1 = 〈xk+1, yk+1〉 − g∗(yk+1) = 〈xk+1 − xk, yk+1〉 + 〈xk, yk+1〉 − g∗(yk+1)

= 〈xk+1 − xk, yk+1〉 + g(xk).

Moreover, invoking the definition of g∗ and Proposition 4.1 (ii), we have

ηk = 〈xk, yk〉 − sup{〈x, yk〉 − g(x) : x ∈ Rn}

≤ 〈xk, yk〉 − 〈xk, yk〉 + g(xk) = g(xk) ≤ d2.

Next we show Item (ii). Item (i) yields ηk+1 − g(xk) = 〈xk+1 − xk, yk+1〉. In view of Proposition 4.1 (i)
(iii), we have by passing to the limit that lim

k→∞
ηk+1 − g(xk) = 0. This together with Proposition 4.1 (ii)

indicates Item (ii).
Finally, we prove Item (iii). A direct computation leads to

ηk

ηk+1
− g(xk−1)

g(xk) = 〈xk − xk−1, yk〉g(xk) − 〈xk+1 − xk, yk+1〉g(xk)
ηk+1g(xk) .

Invoking Item (ii) and Proposition 4.1 (i)-(iii), we have upon passing to the limit in the above relation that 
lim

k→∞
ηk

ηk+1
− g(xk−1)

g(xk) = 0. Combining this with Proposition 4.1 (iv), we immediately obtain lim
k→∞

ηk/ηk+1 =
1. �

By Lemma 4.6 (ii), we note that {(xk+1, yk+1, xk) : k ≥ K1} ⊆ dom(Q) with 0 < d ≤ d1/2, where 
{xk : k ∈ N} and {yk : k ∈ N} are generated by PGSA_BE. In the rest of this subsection, we always 
assume that 0 < d < d1/2 in the definition of Q. In view of Proposition 2.7, if Q satisfies the KL property, 
we can establish global convergence of the entire sequence generated by PGSA_BE by proving Q along 
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{(xk+1, yk+1, xk) : k ≥ K1} satisfies Items (i)-(iii) in the proposition. We shall show these results in the 
next two lemmas.

Lemma 4.7. Let {(xk, yk) : k ∈ N} be generated by PGSA_BE. Suppose that Assumption 2 holds. Then 
there exist a > 0 and K2 ∈ N such that for any k ≥ K2,

Q(xk+1, yk+1, xk) + a
(
‖xk+1 − xk‖2

2 + ‖xk − xk−1‖2
2
)

≤ Q(xk, yk, xk−1).

Proof. By summing (3.4), (3.5), (3.6) and using the fact that α ≤ 1/L, we obtain that

f(xk+1) + h(xk+1) + 1
2α

‖xk+1 − xk‖2
2 + 〈ckyk+1, xk − xk+1〉 (4.8)

≤ f(xk) + h(xk) + β2
k(1/α + l)

2 ‖xk − xk−1‖2
2.

Lemma 4.6 (i) yields that

〈ckyk+1, xk − xk+1〉 = ck(g(xk) − ηk+1) = f(xk) + h(xk) − ckηk+1.

Combining this with (4.8) and Lemma 4.6 (ii), we further obtain

f(xk+1) + h(xk+1) + 1−ε/2
2α ‖xk+1 − xk‖2

2
ηk+1

+ ε

4αηk+1
‖xk+1 − xk‖2

2 (4.9)

≤ ck + β2
k(1/α + l)

2ηk+1
‖xk − xk−1‖2

2

for k ≥ K1.
In addition, from Lemma 4.6 (iii), there exists K̃ ∈ N such that for k ≥ K̃,

β2
k(1 + αl)ηk

ηk+1
≤ β̄2(1 + αl)ηk

ηk+1
≤ 1 − 3

4ε. (4.10)

Therefore, by the definition of Q and Lemma 4.6 (i), we have for k ≥ K2 := max{K1, K̃} that

Q(xk, yk, xk−1) =
f(xk) + h(xk) + 1−ε/2

2α ‖xk − xk−1‖2
2

ηk
≥ ck + 1 − ε/2

2αηk
‖xk − xk−1‖2

2

≥ Q(xk+1, yk+1, xk) + ε

4αηk+1
‖xk+1 − xk‖2

2 +
(

1 − ε/2
2α

− β2
k(1/α + l)ηk

2ηk+1

)
‖xk − xk−1‖2

2
ηk

≥ Q(xk+1, yk+1, xk) + ε

4αηk+1
‖xk+1 − xk‖2

2 + ε

8αηk
‖xk − xk−1‖2

2

≥ Q(xk+1, yk+1, xk) + ε

4αd2
‖xk+1 − xk‖2

2 + ε

8αd2
‖xk − xk−1‖2

2,

where the second and the third inequalities follow from (4.9) and (4.10) respectively. Let a = ε/(8αd2), then 
we get the desired result. �
Lemma 4.8. Let {(xk, yk) : k ∈ N} be generated by PGSA_BE and suppose Assumptions 2-3 hold. If g∗

satisfies the calmness condition on dom(g∗), then there exist b > 0, K3 ∈ N, and ωk+1 ∈ ∂Q(xk+1, yk+1, xk)
such that ‖ωk+1‖2 ≤ b(‖xk+1 − xk‖2 + ‖xk − xk−1‖2) holds for k ≥ K3.
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Proof. With the help of Proposition 4.5 and using the fact that xk ∈ ∂g∗(yk+1), one can verify that 
ωk+1 := (ωk+1

x , ωk+1
y , ωk+1

z ) ∈ ∂̂Q(xk+1, yk+1, xk), where

ωk+1
x = uk+1 − xk+1 + (1 − ε/2)(xk+1 − xk)

αηk+1 − �h(uk+1) − �h(xk+1)
ηk+1

+
(ck − f(xk+1)+h(xk+1)

ηk+1
)yk+1

ηk+1
− 1 − ε/2

2αη2
k+1

‖xk+1 − xk‖2
2yk+1,

ωk+1
y =

(f(xk+1) + h(xk+1) + 1−ε/2
2α ‖xk+1 − xk‖2

2)(xk − xk+1)
η2

k+1
,

ωk+1
z = (1 − ε/2)(xk − xk+1)

αηk+1
.

Next we shall bound ‖ωk+1‖2 by b‖xk+1 − xk‖2 for some b > 0. To this end, we first present some 
properties on {(xk, yk) : k ∈ N} which will be used in the estimation of ‖ωk+1‖2. Proposition 3.3 (i)
indicates that F (xk) ≤ F (x0) for all k ∈ N, which together with Proposition 4.1 (ii) yields that

f(xk) + h(xk) ≤ F (x0)d2. (4.11)

In addition, by Proposition 4.1 (iii), there exists K̃ ∈ N such that for k ≥ K̃,

‖xk+1 − xk‖2
2 ≤ ‖xk+1 − xk‖2 ≤ d1

2 . (4.12)

Furthermore, a direct computation yields

ck − f(xk+1) + h(xk+1)
ηk+1

=f(xk) + h(xk) − f(xk+1) − h(xk+1)
g(xk)

+ 〈xk − xk+1, yk+1〉(f(xk) + h(xk))
g(xk)ηk+1

.

Also, we deduce that f + h is Lipschitz continuous on the closure of {xk : k ∈ N} from the boundedness of 
{xk : k ∈ N} and Assumption 3. Let Lf+h denote the Lipschitz constant of f + h on S.

Now we are ready to make an estimation of ‖ωk+1‖2. Let M > 0 denote the bound of {‖yk‖2 : k ∈ N}. 
Using the aforementioned facts and invoking uk+1 = xk+1 + βk(xk+1 − xk) with βk ≤ β̄ together with 
the Lipschitz continuity of �h and ηk ≥ d1/2 for k ≥ K1 from Lemma 4.6 (ii), we can verify that for 
k ≥ K3 := max{K1, K̃}

‖ωk+1
x ‖2 ≤ 2(1 + αL)β̄

αd1
‖xk − xk−1‖2

+
(

ε + 2αL + (1 − ε/2)M
αd1

+ 2MLf+h

d2
1

+ 4d2M2F (x0)
d3

1

)
‖xk+1 − xk‖2,

‖ωk+1
y ‖2 ≤

(
2 − ε

4α
+ 4d2F (x0)

d2
1

)
‖xk+1 − xk‖2,

‖ωk+1
z ‖2 ≤ 2 − ε

αd1
‖xk+1 − xk‖2.
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Finally, we conclude that for k ≥ K3, ‖ωk+1‖2 ≤ b(‖xk+1 − xk‖2 + ‖xk − xk−1‖2) with

b := 2 − ε

4α
+ 2 + 2αL + (1 − ε/2)M

αd1
+ 2MLf+h + 4d2F (x0)

d2
1

+ 4d2M2F (x0)
d3

1
�

Now we are ready to present the main result of this subsection.

Theorem 4.9. Let {xk : k ∈ N} be generated by PGSA_BE. Suppose that Assumptions 2-3 hold and Q

is a KL function. If g∗ satisfies the calmness condition on dom(g∗), then 
∑∞

k=1 ‖xk − xk−1‖2 < +∞ and 
{xk : k ∈ N} converges to a critical point of F .

Proof. In view of Proposition 2.7, Theorem 3.4, Proposition 4.1, Lemma 4.7 and Lemma 4.8, it suffices to 
prove that lim

k→∞
Q(xk+1, yk+1, xk) = ξ exists and Q(x�, y�, z�) = ξ for any accumulation point (x�, y�, z�)

of {(xk+1, yk+1, xk) : k ∈ N}. We see immediately from Lemma 4.7 that {Q(xk+1, yk+1, xk) : k ∈ N} is 
nondecreasing. In addition, this sequence is bounded below by 0 thanks to Lemma 4.6 (ii). Hence, we deduce 
that lim

k→∞
Q(xk+1, yk+1, xk) = ξ exists.

Let (x�, y�, z�) be an accumulation point of {(xk+1, yk+1, xk) : k ∈ N}. Then there exists a subse-
quence {(xkj+1, ykj+1, xkj ) : j ∈ N} such that lim

j→∞
(xkj+1, ykj+1, xkj ) = (x�, y�, z�). Since Q is continuous 

on dom(Q), we have that Q(x�, y�, z�) = lim
j→∞

Q(xkj+1, ykj+1, xkj ) = ξ. Since (x�, y�, z�) is an arbitrary 

accumulation point, we complete the proof. �
Before moving to the next section, we verify that the merit function Q for problem (1.5) satisfies the 

KL assumption needed in Theorem 4.9 and thus we can establish global convergence of the entire sequence 
{xk : k ∈ N} generated by PGSA_BE for problem (1.5). Recall that f = λ‖ · ‖1, g = ‖ · ‖(K), and 
h = 1

2‖A ·−b‖2
2 in problem (1.5). It is shown in [6, Exercise IV 1.18 and Exercise IV 2.12] that ‖ ·‖∗

(K) = ιBK
, 

where BK denotes the subset {y ∈ Rn : ‖y‖∞ ≤ 1, ‖y‖1 ≤ K}. Hence, invoking (4.7), the merit function Q
for problem (1.5) has the form of

Q(x, y, z) =

⎧⎪⎪⎨⎪⎪⎩
λ‖x‖1+ 1

2 ‖Ax−b‖2
2+ 1−ε/2

2α ‖x−z‖2
2

〈x,y〉 , y ∈ BK and 〈x, y〉 ≥ d,

+∞, else.

By the above formulation of Q, it is clear that Q is a semi-algebraic function and thus satisfies the KL 
property.

5. Numerical experiments

In this section, we perform some preliminary numerical experiments to test the efficiency of our proposed 
PGSA_BE. All experiments are conducted in Matlab R2019b on a desktop with an Intel(R) Core(TM) 
i5-9500 CPU (3.00 GHz) and 16 GB of RAM.

In our numerical test, we focus on the two ratio regularized sparse recovery problems mentioned in 
Section 1. Specially, we consider sparse recovery with highly coherent matrices A, for which standard �1
regularization model usually fails. First, following [25], the matrix A is generated by oversampled discrete 
cosine transform (DCT), i.e., A = [a1, a2, · · · , an] ∈ Rm×n with

aj = 1√ cos
(

2πwj
)

, j = 1, 2, . . . , n.

m D
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Here w ∈ Rm is a random vector following the uniform distribution in [0, 1]m and D > 0 is a parameter 
measuring how coherent the matrix is. Next we construct the ground truth x̃ ∈ Rn with sparsity K ∈ N. We 
randomly choose a support subset of size K which has a minimum separation of at least 2D and generate 
a vector ṽ ∈ Rn supported on this set with i.i.d. standard normal entries. We set x̃ = sgn(ṽ), where sgn
denotes the standard signum function. Finally, we compute b ∈ Rm by b = Ax̃ and let x = −2 × 1n and 
x = 2 × 1n, where 1n denotes the n-dimensional vector with all entries being 1.

Next we shall show that x̃ is a critical point of problem (1.3). First, it can be checked directly that 
c̃ = λ

√
K is the objective value at x̃ of problem (1.3). Since x̃ ∈ ∂‖ · ‖1(x̃) and �(‖ · ‖2)(x̃) = x̃/

√
K, it holds 

that 0 ∈ ∂(λ‖ · ‖1)(x̃) − c̃�(‖ · ‖2)(x̃). Using this and the facts that x < x̃ < x and Ax̃ = b, we deduce that

0 ∈ ∂(λ‖ · ‖1 + ι{x∈Rn:x≤x≤x})(x̃) + AT (Ax̃ − b) − c̃�(‖ · ‖2)(x̃).

Hence, by Definition 3.1, we claim that x̃ is a critical point of problem (1.3). Following a similar argument, 
we can also verify that x̃ is a critical point of problem (1.5).

We shall compare the performance of PGSA_BE, PGSA_NL [32] for problem (1.3) and (1.5) as well 
as alternating direction method of multipliers (ADMM) [25] and ePSG [8] for problem (1.3). We set the 
parameter λ ≡ 10−3 throughout the experiment. The implementation details for these algorithms are 
discussed below.

• PGSA_BE. First we set ε = 10−4 and α = 1/L with L = ‖A‖2
2. Inspired by the choice of extrapolation 

parameters used in FISTA [4], we calculate a recursive sequence θk+1 = (1 +
√

1 + 4θ2
k)/2, where 

θ−1 = θ0 = 1. We set βk = (θk−1 − 1)/θk and reset θk−1 = θk = 1 every 100 iterations (β100 ≈ 0.97). 
Hence, we have {βk} ⊆ [0, β̄] for some 0 < β̄ < 1 and the requirements of the parameters in PGSA_BE 
is satisfied.

• PGSA_NL. We set L = ‖A‖2
2. Following the notation in [32, Algorithm 2], we set α = 10−3, α = 1.99/L, 

α = 108 and N = 4.
• ADMM. Following the way to using ADMM for problem (1.2) in [25], we first formulate problem (1.3)

into

min
{

λ‖z‖1 + 1
2‖Ax − b‖2

2
‖y‖2

: x = y, x = z, x ≤ z ≤ x

}
and introduce its augmented Lagrangian function

Lμ1,μ2(x, y, z; v, w) =
ι{x∈Rn:x≤z≤x}(z) + λ‖z‖1 + 1

2‖Ax − b‖2
2

‖y‖2

+ 〈v, x − y〉 + μ1

2 ‖x − y‖2
2 + 〈w, x − z〉 + μ2

2 ‖x − z‖2
2.

Then the ADMM for solving problem (1.3) consists of the following 5 steps:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

xk+1 := arg min{Lμ1,μ2(x, yk, zk; vk, wk) : x ∈ Rn},

yk+1 := arg min{Lμ1,μ2(xk+1, y, zk; vk, wk) : y ∈ Rn},

zk+1 := arg min{Lμ1,μ2(xk+1, yk+1, z; vk, wk) : z ∈ Rn},

vk+1 := vk + μ1(xk+1 − yk+1),
wk+1 := wk + μ2(xk+1 − zk+1).

We set μ1 = μ2 = 0.1 in our experiments.
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Table 1
Success rate (%).

D = 1 D = 5 D = 10 D = 15 D = 20
K = 12 L1/L2-ADMM in [25] 100 100 87 60 48

L1/L2-ePSG in [8] 100 100 83 58 41
L1/L2-PGSA_NL in [32] 100 100 84 59 41
L1/L2-PGSA_BE proposed 100 100 85 57 44
L1/Sk-PGSA_NL in [32] 100 100 100 100 100
L1/Sk-PGSA_BE proposed 100 100 100 100 100

K = 16 L1/L2-ADMM in [25] 100 100 88 65 36
L1/L2-ePSG in [8] 100 100 85 61 29
L1/L2-PGSA_NL in [32] 100 100 85 63 32
L1/L2-PGSA_BE proposed 100 100 86 63 33
L1/Sk-PGSA_NL in [32] 100 100 100 100 100
L1/Sk-PGSA_BE proposed 100 100 100 100 100

K = 20 L1/L2-ADMM in [25] 95 98 81 60 41
L1/L2-ePSG in [8] 95 98 78 53 37
L1/L2-PGSA_NL in [32] 95 98 78 54 37
L1/L2-PGSA_BE proposed 95 99 78 58 37
L1/Sk-PGSA_NL in [32] 100 100 100 100 100
L1/Sk-PGSA_BE proposed 100 100 100 100 100

• ePSG. Since inf{‖x‖2 : x ≤ x ≤ x, x �= 0} = 0, ePSG for problem (1.3) reduces to a non-extrapolation 
iterative algorithm (1.9). We set αk ≡ 1.99/‖A‖2

2 in our experiments.

We remark that PGSA_BE, PGSA_NL and ePSG, involve the proximity operator of f := λ‖ · ‖1 +
ι{x∈Rn:x≤x≤x} which can be easily and explicitly computed. Let z ∈ Rn and α > 0, one can check that for 
j = 1, 2, · · · , n,

(proxαf (z))j =

⎧⎪⎪⎨⎪⎪⎩
(x)j , ẑj < (x)j ,

ẑj , (x)j ≤ ẑj ≤ (x)j ,

(x)j , ẑj > (x)j ,

where ẑj = max{0, |zj | − αλ} sgn(zj).
Through the experiments, we fix (m, n) = (64, 1024) and test on various kinds of sparse recovery problems 

with D ∈ {1, 5, 10, 15, 20} and sparsity K ∈ {12, 16, 20}. In each setting (D, K), we first generate 100 
instances randomly as described above and then perform all the computing algorithms. For each instance, 
we choose randomly the same initial point x0 = x̃ + 0.4ξ for all the algorithms, where the entries of ξ ∈ Rn

are drawn randomly from the uniform distribution on [−1, 1]. Moreover, all the algorithms are terminated 
when

‖xk − xk−1‖2

max{1, ‖xk‖2} < 10−8.

Finally, the maximum iteration number is set to be 100n = 102400 for ePSG and 20n = 20480 for all other 
algorithms. The accuracy of the algorithms is evaluated in terms of success rate, defined as the number of 
successful trials over the total number of trials. A success is declared when the relative error of the output 
x� to the ground truth x̃ is less than 10−3, that is, ‖x� − x̃‖2/‖x̃‖2 < 10−3. Tables 1 and 2 summarize the 
success rate and averaged CPU time of all the algorithms over 100 instances, respectively. To distinguish 
between algorithms for L1/L2 and L1/SK sparse recovery, in the tables we add the prefix “L1/L2” (resp., 
“L1/SK”) to the algorithms for solving “L1/L2” (resp., “L1/SK”) sparse recovery problems. One can observe 
from Table 1 that PGSA_NL and PGSA_BE for L1/SK sparse recovery achieve 100% success rate in every 
settings, while the success rates of all the algorithms for L1/L2 sparse recovery are comparable, and they 
decay as K or D increases. Finally, Table 2 shows in terms of CPU time, PGSA_BE slightly outperforms 
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Table 2
CPU time (in seconds).

D = 1 D = 5 D = 10 D = 15 D = 20
K = 12 L1/L2-ADMM in [25] 0.719 0.738 0.981 1.122 1.230

L1/L2-ePSG in [8] 0.457 0.567 0.968 1.290 1.544
L1/L2-PGSA_NL in [32] 0.114 0.133 0.172 0.214 0.248
L1/L2-PGSA_BE proposed 0.071 0.089 0.146 0.195 0.242
L1/Sk-PGSA_NL in [32] 0.125 0.144 0.171 0.197 0.220
L1/Sk-PGSA_BE proposed 0.078 0.091 0.106 0.120 0.133

K = 16 L1/L2-ADMM in [25] 0.903 0.838 1.035 1.092 1.304
L1/L2-ePSG in [8] 0.532 0.615 0.958 1.282 1.608
L1/L2-PGSA_NL in [32] 0.121 0.136 0.173 0.215 0.255
L1/L2-PGSA_BE proposed 0.085 0.097 0.152 0.195 0.241
L1/Sk-PGSA_NL in [32] 0.136 0.156 0.180 0.209 0.234
L1/Sk-PGSA_BE proposed 0.088 0.099 0.110 0.120 0.131

K = 20 L1/L2-ADMM in [25] 1.259 1.112 1.163 1.254 1.354
L1/L2-ePSG in [8] 0.733 0.817 1.038 1.293 1.623
L1/L2-PGSA_NL in [32] 0.147 0.156 0.184 0.215 0.265
L1/L2-PGSA_BE proposed 0.121 0.127 0.162 0.194 0.258
L1/Sk-PGSA_NL in [32] 0.143 0.163 0.188 0.213 0.242
L1/Sk-PGSA_BE proposed 0.092 0.104 0.111 0.120 0.129

PGSA_NL for the same ratio sparse recovery problem, while it substantially outperforms ADMM and ePSG 
for L1/L2 sparse recovery. This demonstrates the efficiency of PGSA_BE.

6. Conclusion

In this paper, we develop a proximal-gradient-subgradient algorithm with backtracked extrapolation 
(PGSA_BE) for solving problem (1.1). The proposed PGSA_BE allows a wide range of choices of extrap-
olation parameters. We prove that any accumulation point of the sequence {xk : k ∈ N} generated by 
PGSA_BE is a critical point of problem (1.1). Moreover, under mild conditions and by assuming some 
merit functions are KL functions, we establish the global sequential convergence of {xk : k ∈ N} in two 
cases: (i) g is locally Lipschitz differentiable and (ii) the conjugate of g satisfies the calmness condition. 
Finally, we conduct preliminary numerical experiments on sparse signal recovery problems to illustrate the 
efficiency of PGSA_BE.

Appendix A. Proof of Proposition 2.3

Proof. For (u, v) ∈ dom(ρ) and (ωx, ωy) ∈ Rn × Rn, a direct computation yields that

ρ(u, v) − ρ(x, y) − 〈ωx, u − x〉 − 〈ωy, v − y〉
‖(u, v) − (x, y)‖2

= T1(x, y, u, v, ωx, ωy) + T2(x, y, u, v),

where

T1(x, y, u, v, ωx, ωy) = a2ϕ1(u) − a1〈u, v〉 + a1ϕ∗
2(v) − 〈a2

2ωx, u − x〉 − 〈a2
2ωy, v − y〉

a2
2‖(u, v) − (x, y)‖2

,

T2(x, y, u, v) = (a2ϕ1(u) − a1〈u, v〉 + a1ϕ∗
2(v))(a2 − 〈u, v〉 + ϕ∗

2(v))
a2

2(〈u, v〉 − ϕ∗
2(v))‖(u, v) − (x, y)‖2

.

Since ϕ1 is continuous at x relative to dom(ϕ1) and ϕ∗
2 satisfies the calmness condition at y relative to 

dom(ϕ∗
2), we get that

lim
(u,v)→(x,y)

T2(x, y, u, v) = 0. (A.1)

(u,v)∈dom(ρ)
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By the definition of Fréchet subdifferential, we have

∂̂ρ(x, y)

=

⎧⎪⎨⎪⎩(ωx, ωy) ∈ Rn × Rn : lim inf
(u,v)→(x,y)

(u,v)∈dom(ρ)

ρ(u, v) − ρ(x, y) − 〈ωx, u − x〉 − 〈ωy, v − y〉
‖(u, v) − (x, y)‖2

≥ 0

⎫⎪⎬⎪⎭
=

⎧⎪⎨⎪⎩(ωx, ωy) ∈ Rn × Rn : lim inf
(u,v)→(x,y)

(u,v)∈dom(ρ)

T1(x, y, u, v, ωx, ωy) ≥ 0

⎫⎪⎬⎪⎭
=

⎧⎪⎨⎪⎩(ωx, ωy) ∈ Rn × Rn : lim inf
(u,v)→(x,y)

(u,v)∈dom(η)

η(u, v) − η(x, y) − 〈a2
2ωx, u − x〉 − 〈a2

2ωy, v − y〉
a2

2‖(u, v) − (x, y)‖2
≥ 0

⎫⎪⎬⎪⎭
= ∂̂η(x, y)

a2
2

,

where η : Rn × Rn → R defined at (u, v) ∈ Rn × Rn as η(u, v) = a2ϕ1(u) − a1〈u, v〉 + a1ϕ∗
2(v). The second 

equality follows from (A.1) and the third equality holds due to a1 > 0 and a2 > 0. We then obtain the 
desired result from

∂̂η(x, y) = ∂̂(a2ϕ1(x) + a1ϕ∗
2(y)) − a1(y, x) = a2∂̂ϕ1(x) × a1∂̂ϕ∗

2(y) − a1(y, x). �
Appendix B. Proof of Proposition 2.7

Proof. From Item (i), we get that {H(uk, vk) : k ∈ N} is non-increasing. This together with Item (iii) implies 
that H(uk, vk) ≥ ξ for any k ∈ N. If there exists k0 > 0 such that H(uk0 , vk0) = ξ, then H(uk, vk) = ξ for 
all k ≥ k0 due to the non-increasing of {H(uk, vk) : k ∈ N}. Then, Item (i) yields uk+1 = uk for k ≥ k0. 
Thus, we obtain this proposition from Item (ii). Therefore, we only need to consider the case that for k ∈ N

H(uk, vk) > ξ. (B.1)

We first prove that there exist K > max{K1, K2}, η > 0 and a continuous concave function φ : [0, η) →
R+ satisfying Item (i) - (ii) in Definition 2.4 such that there holds, for k ≥ K,

φ′(H(uk, vk) − ξ) dist(0, ∂H(uk, vk)) ≥ 1. (B.2)

Denote by Υ the set of accumulation points of {(uk, vk) : k ∈ N}. Since {(uk, vk) : k ∈ N} is bounded, we 
have Υ is compact. From Item (iii) and (B.1), for any δ > 0 and η > 0 there exists K > 0 such that for 
k ≥ K,

(uk, vk) ∈ {(u, v) ∈ Rn × Rm : dist((u, v), Υ) < δ, ξ < H(u, v) < ξ + η}.

Then, by Lemma 2.5, the fact that H satisfies the KL property at each point of Υ and Item (iii), we obtain 
(B.2) holds for k ≥ K.

We next show the following key inequality, for k ≥ K,

2‖uk+1 − uk‖2 ≤ ‖uk − uk−1‖2 + b
(

φ(H(uk, vk) − ξ) − φ(H(uk+1, vk+1) − ξ)
)

. (B.3)

a
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From the concavity of φ and φ′ > 0, Item (i) implies

φ(H(uk, vk) − ξ) − φ(H(uk+1, vk+1) − ξ) ≥ φ′(H(uk, vk) − ξ)(H(uk, vk) − H(uk+1, vk+1))

≥ aφ′(H(uk, vk) − ξ)‖uk+1 − uk‖2
2. (B.4)

By Item (ii) and (B.2), it follows for k ≥ K that

b φ′(H(uk, vk) − ξ)‖uk − uk−1‖2 ≥ φ′(H(uk, vk) − ξ)‖ωk‖2

≥ φ′(H(uk, vk) − ξ) dist(0, ∂H(uk, vk))

≥ 1. (B.5)

Direct combination of (B.4) and (B.5) yields for k ≥ K

b

a

(
φ(H(uk, vk) − ξ) − φ(H(uk+1, vk+1) − ξ)

)
‖uk − uk−1‖2 ≥ ‖uk+1 − uk‖2

2.

We then obtain (B.3) for k ≥ K, by utilizing 2
√

αβ ≤ α + β for α, β > 0.
By summing (B.3) from k = K to k = J > K, we have

J∑
k=K

‖uk+1 − uk‖2 + ‖uJ+1 − uJ‖2

≤ ‖uK − uK−1‖2 + b

a

(
φ(H(uK , vK) − ξ) − φ(H(uJ+1, vJ+1) − ξ)

)
≤ ‖uK − uK−1‖2 + b

a
φ(H(uK , vK) − ξ).

Let J → +∞, we obtain 
∑+∞

k=1 ‖uk − uk−1‖2 < +∞ and lim
k→∞

uk = u�. Finally, we prove this proposition 

by Item (ii) and the closeness of ∂H. �
References

[1] Hedy Attouch, Jerome Bolte, Patrick Redont, Antoine Soubeyran, Proximal alternating minimization and projection 
methods for nonconvex problems: an approach based on the Kurdyka-Łojasiewicz inequality, Math. Oper. Res. 35 (2010) 
438–457.

[2] Hedy Attouch, Jerome Bolte, Benar Fux Svaiter, Convergence of descent methods for semi-algebraic and tame prob-
lems: proximal algorithms, forward-backward splitting, and regularized Gauss-Seidel methods, Math. Program. 137 (2013) 
91–129.

[3] Heinz H. Bauschke, Patrick L. Combettes, et al., Convex Analysis and Monotone Operator Theory in Hilbert Spaces, vol. 
408, Springer, 2011.

[4] Amir Beck, First-Order Methods in Optimization, SIAM, 2017.
[5] Amir Beck, Marc Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM J. Imaging 

Sci. 2 (2009) 183–202.
[6] Rajendra Bhatia, Matrix Analysis, Springer, 1997.
[7] Radu Ioan Boţ, Ernö Robert Csetnek, Proximal-gradient algorithms for fractional programming, Optimization 66 (2017) 

1383–1396.
[8] Radu Ioan Boţ, Minh N. Dao, Guoyin Li, Extrapolated proximal subgradient algorithms for nonconvex and nonsmooth 

fractional programs, arXiv preprint, arXiv :2003 .04124, 2020.
[9] Emmanuel J. Candes, Justin K. Romberg, Terence Tao, Stable signal recovery from incomplete and inaccurate measure-

ments, Commun. Pure Appl. Math. 59 (2006) 1207–1223.
[10] Rick Chartrand, Exact reconstruction of sparse signals via nonconvex minimization, IEEE Signal Process. Lett. 14 (2007) 

707–710.
[11] Francis H. Clarke, Yuri S. Ledyaev, Ronald J. Stern, Peter R. Wolenski, Nonsmooth Analysis and Control Theory, vol. 

178, Springer Science & Business Media, 2008.

http://refhub.elsevier.com/S1063-5203(21)00079-8/bibB4E061DDC586F6D2FB1B905AF280929Es1
http://refhub.elsevier.com/S1063-5203(21)00079-8/bibB4E061DDC586F6D2FB1B905AF280929Es1
http://refhub.elsevier.com/S1063-5203(21)00079-8/bibB4E061DDC586F6D2FB1B905AF280929Es1
http://refhub.elsevier.com/S1063-5203(21)00079-8/bib88344C2D38D3471F886000661E7EFAD7s1
http://refhub.elsevier.com/S1063-5203(21)00079-8/bib88344C2D38D3471F886000661E7EFAD7s1
http://refhub.elsevier.com/S1063-5203(21)00079-8/bib88344C2D38D3471F886000661E7EFAD7s1
http://refhub.elsevier.com/S1063-5203(21)00079-8/bib79A6C4271621EE6B475543333D69F34Cs1
http://refhub.elsevier.com/S1063-5203(21)00079-8/bib79A6C4271621EE6B475543333D69F34Cs1
http://refhub.elsevier.com/S1063-5203(21)00079-8/bib10B95CF8EBA04E244D998278941A3B5Ds1
http://refhub.elsevier.com/S1063-5203(21)00079-8/bib7D780021A2BCD77D0DDD088CF88FD737s1
http://refhub.elsevier.com/S1063-5203(21)00079-8/bib7D780021A2BCD77D0DDD088CF88FD737s1
http://refhub.elsevier.com/S1063-5203(21)00079-8/bib67138691DA9D6916A823701C4537D9E5s1
http://refhub.elsevier.com/S1063-5203(21)00079-8/bibE718B3AB078EB7DD777ED841AA852243s1
http://refhub.elsevier.com/S1063-5203(21)00079-8/bibE718B3AB078EB7DD777ED841AA852243s1
http://refhub.elsevier.com/S1063-5203(21)00079-8/bibAFE6594BE2BB8F5873D174D7AFB765ECs1
http://refhub.elsevier.com/S1063-5203(21)00079-8/bibAFE6594BE2BB8F5873D174D7AFB765ECs1
http://refhub.elsevier.com/S1063-5203(21)00079-8/bibE61D4EEE731AFAA793285E6107E21711s1
http://refhub.elsevier.com/S1063-5203(21)00079-8/bibE61D4EEE731AFAA793285E6107E21711s1
http://refhub.elsevier.com/S1063-5203(21)00079-8/bibAA90EFE5CDA67C661D5981AB4E64AEC4s1
http://refhub.elsevier.com/S1063-5203(21)00079-8/bibAA90EFE5CDA67C661D5981AB4E64AEC4s1
http://refhub.elsevier.com/S1063-5203(21)00079-8/bibE5E3FB6302546F2F5A817AA4D753542As1
http://refhub.elsevier.com/S1063-5203(21)00079-8/bibE5E3FB6302546F2F5A817AA4D753542As1


122 Q. Li et al. / Appl. Comput. Harmon. Anal. 56 (2022) 98–122
[12] Line Clemmensen, Trevor Hastie, Daniela Witten, Bjarne Ersbøll, Sparse discriminant analysis, Technometrics 53 (2011) 
406–413.

[13] Werner Dinkelbach, On nonlinear fractional programming, Manag. Sci. 13 (1967) 492–498.
[14] David L. Donoho, Compressed sensing, IEEE Trans. Inf. Theory 52 (2006) 1289–1306.
[15] Simon Foucart, Ming Jun Lai, Sparsest solutions of underdetermined linear systems via �q -minimization for 0 < q ≤ 1, 

Appl. Comput. Harmon. Anal. 26 (2009) 395–407.
[16] Jun-ya Gotoh, Akiko Takeda, Katsuya Tono, DC formulations and algorithms for sparse optimization problems, Math. 

Program. 169 (2018) 141–176.
[17] Toshihide Ibaraki, Parametric approaches to fractional programs, Math. Program. 26 (1983) 345–362.
[18] Raj Jagannathan, On some properties of programming problems in parametric form pertaining to fractional programming, 

Manag. Sci. 12 (1966) 609–615.
[19] Tianxiang Liu, Ting Kei Pong, Akiko Takeda, A refined convergence analysis of pdcae with applications to simultaneous 

sparse recovery and outlier detection, Comput. Optim. Appl. 73 (2019) 69–100.
[20] Boris S. Mordukhovich, Variational Analysis and Generalized Differentiation I: Basic Theory, vol. 330, Springer Science & 

Business Media, 2006.
[21] Boris S. Mordukhovich, Nguyen Mau Nam, N.D. Yen, Fréchet subdifferential calculus and optimality conditions in non-

differentiable programming, Optimization 55 (2006) 685–708.
[22] Yu Nesterov, Gradient methods for minimizing composite functions, Math. Program. 140 (2013) 125–161.
[23] Brendan O’donoghue, Emmanuel Candes, Adaptive restart for accelerated gradient schemes, Found. Comput. Math. 15 

(2015) 715–732.
[24] Jong-Shi Pang, A parametric linear complementarity technique for optimal portfolio selection with a risk-free asset, Oper. 

Res. 28 (1980) 927–941.
[25] Yaghoub Rahimi, Chao Wang, Hongbo Dong, Yifei Lou, A scale-invariant approach for sparse signal recovery, SIAM J. 

Sci. Comput. 41 (2019) A3649–A3672.
[26] R. Tyrrell Rockafellar, Roger J-B. Wets, Variational Analysis, Springer, 2004.
[27] Siegfried Schaible, Fractional programming. II, on Dinkelbach’s algorithm, Manag. Sci. 22 (1976) 868–873.
[28] Lixin Shen, Bruce W. Suter, Erin E. Tripp, Structured sparsity promoting functions, J. Optim. Theory Appl. 183 (2019) 

386–421.
[29] Christoph Studer, Richard G. Baraniuk, Stable restoration and separation of approximately sparse signals, Appl. Comput. 

Harmon. Anal. 37 (2014) 12–35.
[30] Bo Wen, Xiaojun Chen, Ting Kei Pong, Linear convergence of proximal gradient algorithm with extrapolation for a class 

of nonconvex nonsmooth minimization problems, SIAM J. Optim. 27 (2017) 124–145.
[31] Penghang Yin, Yifei Lou, Qi He, Jack Xin, Minimization of �1−2 for compressed sensing, SIAM J. Sci. Comput. 37 (2015) 

A536–A563.
[32] Na Zhang, Qia Li, First-order algorithms for a class of fractional optimization problems, arXiv preprint, arXiv :2005 .06207, 

2020.

http://refhub.elsevier.com/S1063-5203(21)00079-8/bibE7B865FB2DBF042923CD8EC013C1642Fs1
http://refhub.elsevier.com/S1063-5203(21)00079-8/bibE7B865FB2DBF042923CD8EC013C1642Fs1
http://refhub.elsevier.com/S1063-5203(21)00079-8/bib4FABC8377768A6768E6AD759A5FB4CD2s1
http://refhub.elsevier.com/S1063-5203(21)00079-8/bib42E7462D2892009204458FE97F4E31BFs1
http://refhub.elsevier.com/S1063-5203(21)00079-8/bibA0CC541D38737E4B45308E05A6F258A6s1
http://refhub.elsevier.com/S1063-5203(21)00079-8/bibA0CC541D38737E4B45308E05A6F258A6s1
http://refhub.elsevier.com/S1063-5203(21)00079-8/bib0F377429F9175651ED0508351528F548s1
http://refhub.elsevier.com/S1063-5203(21)00079-8/bib0F377429F9175651ED0508351528F548s1
http://refhub.elsevier.com/S1063-5203(21)00079-8/bibECD7F408390F282EC0DF275DB1671A4Cs1
http://refhub.elsevier.com/S1063-5203(21)00079-8/bib58BAB81BAE43235478BEADFFA90AE6F5s1
http://refhub.elsevier.com/S1063-5203(21)00079-8/bib58BAB81BAE43235478BEADFFA90AE6F5s1
http://refhub.elsevier.com/S1063-5203(21)00079-8/bib9D3E9925E7CA89B57AD7A886125CB944s1
http://refhub.elsevier.com/S1063-5203(21)00079-8/bib9D3E9925E7CA89B57AD7A886125CB944s1
http://refhub.elsevier.com/S1063-5203(21)00079-8/bib4AD8A2DD304B316BCC033DFC09AB203Es1
http://refhub.elsevier.com/S1063-5203(21)00079-8/bib4AD8A2DD304B316BCC033DFC09AB203Es1
http://refhub.elsevier.com/S1063-5203(21)00079-8/bib6BED53FA80F6BCC77AAECD29C087601Ds1
http://refhub.elsevier.com/S1063-5203(21)00079-8/bib6BED53FA80F6BCC77AAECD29C087601Ds1
http://refhub.elsevier.com/S1063-5203(21)00079-8/bib87423D2C7BD55EFD76A4E0880AC95059s1
http://refhub.elsevier.com/S1063-5203(21)00079-8/bib320FC083462F53A2CC08CE183E019D96s1
http://refhub.elsevier.com/S1063-5203(21)00079-8/bib320FC083462F53A2CC08CE183E019D96s1
http://refhub.elsevier.com/S1063-5203(21)00079-8/bibC5E1F8CE363A4E6329FC9E746025CDCCs1
http://refhub.elsevier.com/S1063-5203(21)00079-8/bibC5E1F8CE363A4E6329FC9E746025CDCCs1
http://refhub.elsevier.com/S1063-5203(21)00079-8/bibE307104AF651E188751034550FB1CAD4s1
http://refhub.elsevier.com/S1063-5203(21)00079-8/bibE307104AF651E188751034550FB1CAD4s1
http://refhub.elsevier.com/S1063-5203(21)00079-8/bibA461792F0715179B51BC4A93B9A18EB9s1
http://refhub.elsevier.com/S1063-5203(21)00079-8/bib226EE8E406E0DBD9E17715E089BFEFE5s1
http://refhub.elsevier.com/S1063-5203(21)00079-8/bibA0A119A19D11D841CC26881C8D086A50s1
http://refhub.elsevier.com/S1063-5203(21)00079-8/bibA0A119A19D11D841CC26881C8D086A50s1
http://refhub.elsevier.com/S1063-5203(21)00079-8/bib80E4F071FF175DE24D58B501818BF0EAs1
http://refhub.elsevier.com/S1063-5203(21)00079-8/bib80E4F071FF175DE24D58B501818BF0EAs1
http://refhub.elsevier.com/S1063-5203(21)00079-8/bibCB7063943814124DE6D2DC04B1F20772s1
http://refhub.elsevier.com/S1063-5203(21)00079-8/bibCB7063943814124DE6D2DC04B1F20772s1
http://refhub.elsevier.com/S1063-5203(21)00079-8/bib10D3DC8C7D1A0C861C893DDA63841D4Es1
http://refhub.elsevier.com/S1063-5203(21)00079-8/bib10D3DC8C7D1A0C861C893DDA63841D4Es1
http://refhub.elsevier.com/S1063-5203(21)00079-8/bibBDBB2F1807E0C62668D8A7576ED09B2Es1
http://refhub.elsevier.com/S1063-5203(21)00079-8/bibBDBB2F1807E0C62668D8A7576ED09B2Es1

	A proximal algorithm with backtracked extrapolation for a class of structured fractional programming
	1 Introduction
	2 Notation and preliminaries
	2.1 Fréchet subdifferential
	2.2 Kurdyka-Łojasiewicz (KL) property

	3 The proximity-gradient-subgradient algorithm with backtracked extrapolation
	4 Global sequence convergence of PGSA_BE
	4.1 g is continuously differentiable on Ω with a locally Lipschitz continuous gradient
	4.2 g∗ satisfies the calmness condition on dom(g∗)

	5 Numerical experiments
	6 Conclusion
	Appendix A Proof of Proposition 2.3
	Appendix B Proof of Proposition 2.7
	References


