A Survey of Non-Archimedean

Dynamics

Robert L. Benedetto

1. Introduction

In complex dynamics, one considers a rational function
f € C(z) as a map from the Riemann sphere P!(C) :=
C U {oo} to itself. One then studies the iterates of f, given
by
f n+— fo...o f
n times

as they act on the sphere. A rich theory follows — see, for
example, the expositions in [CG93,Mil06] — with famous
fractal pictures that exemplify beautiful theorems.

In the past few decades, a younger, parallel theory has
developed for the case that we replace C with p-adic and,
more generally, non-archimedean fields. Three princi-
pal motivations have driven the non-archimedean theory:
seeking dynamical phenomena for comparison and con-
trast with the complex theory, as in [HY83, RL0O3]; apply-
ing local field results to number-theoretic questions, as
in [BR10, Sil07]; and analyzing families of complex dy-
namical systems, especially at degeneration points, as in
[DMF14, Kiw15].

Some of these motivations involve the Laurent series,
Puiseux series, and Levi-Civita fields we will discuss in Ex-
amples 1.2 and 1.5, while others focus more on the p-adic
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fields we will discuss in Examples 1.3 and 1.6. The unify-
ing theme is to work over non-archimedean fields, which
we now describe.

1.1. Absolute values. A field is a set equipped with two
binary operations + and - satisfying all the usual algebraic
axioms; the prototypical example is the field Q of rational
numbers. In analysis, one works with the real line R, a
completion of Q, formed by adjoining limits of all Cauchy
sequences. To do so, however, one first needs the abso-
lute value function | - |, since the definitions of limits and
Cauchy-ness of sequences both use the absolute value. But
the familiar absolute value is only one example of a real-
valued function that satisfies many properties important
in analysis proofs, as follows.

Definition 1.1. Let K be a field. An absolute value on K is
afunction | - | : K = R such that forall x,y € K,

« |x| > 0, with equality if and only if x = 0,

* |xyl = [x[- |yl

* x4yl < fx]+ 1yl

We say that | - | is non-archimedean if in fact

[x + y| < max{|x|,|y|} forall x,y€K. (1.1)

The trivial absolute value on X is given by |x| = 1 for all
x € K* := K~{0} (and |0| : = 0 by the first axiom above).
‘We will restrict our attention to nontrivial absolute values,
i.e, those for which there is some x € K with |x| # 0, 1.

The familiar absolute value on R is an archimedean abso-
lute value, because it does not satisfy the non-archimedean
triangle inequality (1.1). Our focus in this article will
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concern fields equipped with a non-archimedean (and
nontrivial) absolute value.

Example 1.2. Let C(T) be the field of rational functions
with complex coefficients. Let ordy(f) denote the order of
vanishing of f € C(T)* at T = 0. (If f(0) # 0, co, we set
ordg(f) = 0; if f has a pole at T = 0, we set ordy(f) =
—ordg(1/f).) Define | - |y : C(T) —» R by

flo = &P T #0,
°"o if f = 0.

It is an exercise to check that | - |o is a non-archimedean
absolute value on C(T) according to Definition 1.1. If f
has a zero at T = 0, it is “small” — and the greater the
order of the zero, the smaller |f|, is — and if f has a pole
there, it is “big.”

Example 1.3. Fix a prime number p > 2. The p-adic abso-
lute value on Q is defined by

n

:=p™™ forr,s € Z not divisible by p,

P

with |0], := 0. Thus, a rational number whose numerator
is divisible by p is p-adically small — the higher the power,
the smaller the p-adic absolute value — and one whose
denominator is divisible by p is p-adically big. Thus, 13
and 389/5 are very close together 3-adically, because:

389 324 1 1

e TS

S

= ’i . 34
3 5
As foreign as | - |, may seem at first, it is again an exercise
to show that it is a non-archimedean absolute value on Q.

3

3

1.2. Non-archimedean fields. Given a field K equipped
with an absolute value |- |, we can mimic basic definitions
from real analysis. We say that a sequence {a,},>o C K:

« is Cauchy if for every real € > 0, there exists N > 0
such that for all m,n > N, we have |a,, — a,|, <&,

« converges to a € K if for every real € > 0, there
exists N > 0 such that for all n > N, we have |a,, —
al, <e.

We say that K is complete if every Cauchy sequence con-
verges. If K is complete with respect to a non-archimedean
absolute value, we say K is a non-archimedean field. Tt is
another exercise to prove the following series convergence
test that many calculus students wish were true for R.

Proposition 1.4. Let K be a (complete) non-archimedean
field with absolute value |- |,,. Then for any sequence {ap},>o €
K, we have

oo
Z ay, converges if and only if lim a, =0,
n=o0 n—0oo

where in both cases, convergence is with respect to | - |,.

716 NoTICES OF THE AMERICAN MATHEMATICAL SOCIETY

Even if K is not complete, we can construct a completion
K, 2 K by adjoining limits of all Cauchy sequences.

In archimedean analysis, one proceeds from Q to R by
completion, and then to C by algebraic closure. Curiously,
the algebraic closure K, of K, often fails to be complete,
but fortunately we may complete once more, and the re-
sulting field C,, is, like C, both complete and algebraically
closed.

Example 1.5. The completion of C(T) with respect to |- |,
is the field

c«:r)):{ > a,T" and a, ec}

n>hng

of formal Laurent series with complex coefficients. (That
is, we do not worry about convergence issues, and we allow
at worst a pole at T = 0, not an essential singularity.) The
completion L of the algebraic closure C((T)) is the Levi-
Civita field. (Elements of C((T)) are called Puiseux series,
and sometimes elements of L are informally also called
Puiseux series.)
The field L consists of all formal sums

Z a;T‘“

i=0

with aq; € C and q; € Q for which the sequence q, < q; <
.-+ is an unbounded, strictly increasing sequence of ratio-
nal numbers. We say that L is infinitely ramified over C((T))
because of the introduction of arbitrarily large denomina-
tors in the rational powers T™/" that appear.

Example 1.6. The completion of Q with respect to | - |,
is the field Q, of p-adic rationals. Since lim,,_,, p" = 0
with respect to | - |, any power series in p with integer
coefficients will converge in Q,. Combining this idea with
base-p expansion of positive integers, it is not difficult to
characterize @, as the set of all formal Laurent series in p
with coefficients in the set {0,1,...,p — 1}, i.e,,

Q= { Z a,p" and a, €{0,1,..,p— 1}]
n>ng

In contrast to the Laurent series of Example 1.5, addition
and multiplication in @, involve carrying digits as in base-
p arithmetic.

When we pass to the completion C,, of the algebraic clo-

sure 6,,, then besides increasing ramification by allowing

rational powers p™" as in Example 1.5, we also see an
infinite extension of the residue field. Roughly speaking,
this means that we go from the original set of coefficients
{0, 1, ..., p—1}, which may be identified with the p-element
field Fp, to an infinite set corresponding to the algebraic

closure E. Unfortunately, there is no explicit description
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of the elements of Cp as there was for L, because the exis-

tence of the algebraic closure 6,, relies on the use of non-
constructive tools such as the Axiom of Choice.

Throughout this paper, we declare that

C, denotes an algebraically closed and
complete non-archimedean field
with absolute value | - |,

We remark that the set |CY|, of absolute values attained
by nonzero elements of C,, is a dense subgroup of the pos-
itive real line (0, o) under multiplication, but it is usually
not the whole of (0, o). Indeed, in Example 1.5, we have
IL*|o = €%, and in Example 1.6, we have |C;|, = p“.

1.3. Non-archimedean disks. For any point a € C, and
any positive real number r > 0, we define the open and

closed disks of radius r centered at a by
D(a,r) :={x€Cy : |x—al|,<Tr},
l_)(a,r) ={xecC, : |x—a|, <1},

respectively. That is, we define disks according to the met-
ric given by d(x,y) = |x — y|,, which induces a topology
on C,. Observe that if r € |C}|,, then D(a,r) & D(a,r),
in which case we call these two disks rational open and ra-
tional closed, respectively. On the other hand, if r ¢ |CY|,,
then D(a,r) = I_)(a, r), and we call this disk irrational. Non-
archimedean disks, and the topology on C,, have several
properties not shared by their archimedean cousins, but
which are easy to prove:

a. Any point of a disk is its center. That is, if b € D(a,r),
then D(b,r) = D(a,r); and if b € D(a, r), then D(b,r) =
D(a,r).

However, the radius of a disk D is well-defined, as r =
sup{|x — y|y : x,y € D}.

b. If two disks have nonempty intersection, then one con-
tains the other.

c. All disks are both open and closed topologically. But
any disk is exactly one of the three types: rational open,
rational closed, or irrational.

d. C, isnot locally compact.

e. C, istotally disconnected. That is, the only nonempty
connected subsets of C, are singletons.

Properties (c), (d), and (e) above follow from the fact that
any rational closed disk may be written as a disjoint union
of open disks. For example, in the Levi-Civita field L, it is
easy to check that

D(0,1) = | J D(a, 1)

aeC

(1.2)

and that the union in (1.2) is a disjoint union, partitioning
the set of Levi-Civita series in D(0, 1) according to constant
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term. Thus, speaking in very loose terms, C, topologically
resembles an infinite disjoint union of Cantor sets.

Lest you think that C,, is all pathology, here is one lovely
property of non-archimedean disks. Let D C C,, be a disk,
and let f € C,[z] be a nonconstant polynomial. Then the
image f(D) is also a disk — not just homeomorphic to a
disk, but actually equal to a disk.

2. Basic Dynamics on C,

As in complex dynamics, a rational function f(z) € Cy(2)
maps the projective line P}(C,) := C, U {0} to itself, and
we wish to study the iterates f”. For any point x € P(C,),
the sets

Orbf(x) := {f"(x) : n >0},
Orb(x) :={y e P}(C,) :
f™(y) = x for some n > 0}
are called the forward orbit and the backward orbit of x, re-
spectively.

Writing f € C,(z) as f = g/h for relatively prime poly-
nomials g, h € C,[z], we define the degree of f to be

deg f := max{degg,degh}.

It is often convenient to change coordinates on P!(C,) via
a degree-one rational function, i.e., via a M8bius transfor-
mation 8 € PGL(2,C,), given by

az+b

0(2) = cz+d

a,b,c,d € Cy,, ad —bc #0.

If we change coordinates by 8 on both the domain and
range of the map f : P!(C,) —» PY(C,), then f becomes
the conjugated map 6o f o071,

Naturally, we are most interested in dynamical phenom-
ena thatare not specific to a particular choice of coordinate.
For instance, a point x € P}(C,) is

« fixed by f if f(x) = x.

« periodic under f if there is some n > 1 such that
f™(x) = x. In that case, we say x has period n; and
if n is the smallest such integer, we say x has exact
period n.

« preperiodic under f if there are integers n > m > 0
such that f"(x) = f™(x), i.e., ifsome f™(x) is peri-
odic, or equivalently, if the forward orbit Orb} (x)
is finite.

« exceptional if the backward orbit Orbf(x) is finite.

« a critical point, or ramification point, if f'(x) = 0.
(At least for x, f(x) # .)

All of these properties are coordinate-independent, in the
sense that x has the given property for f if and only if 6(x)
has the same property for 6o fo 671,

If x is periodic under f of exact period n, then the
multiplier of x, defined to be 1 := (f")'(x), is also
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coordinate-independent. Locally near x, we have
f(z) = x+ Az — x). (2.1)

If ||, < 1, we say x is attracting, because (2.1) implies that
nearby points in P}(C,) approach x under iteration of f™.
Similarly if |A], > 1, we say x is repelling. If |1|, = 1, we
say x is indifferent, in which case one can show that f" is
an isometry on a neighborhood of x. This last fact may
surprise readers familiar with complex dynamics, where
indifferent periodic points exhibit more intricate behavior;
but the isometry here is a simple consequence of (2.1) and
the non-archimedean triangle inequality (1.1).

3. The Berkovich Line

As observed by Rivera-Letelier in [RLO3], the appropriate
setting for non-archimedean dynamics is not the classical
projective line P1(C,), but rather the Berkovich projective
line PL,, which is a topological space that contains P!(C,)
as a dense subset, first described in [Ber90]. The Berkovich
line P}, is both compact and path-connected, in stark con-
trast with P!(C,).

The precise definition of PL, involves multiplicative
seminorms on the polynomial ring C,[z] — for details,
see Chapter 6 of [Ben19] or Chapters 1-2 of [BR10] — but
here we describe the space more intuitively. In particular,
there are four types of points in P2, :

« The points in the classical projective line P}(C,) =
C, U {oo} are of Type L.

+ Each closed disk D = D(a,r) C C, gives a point
of P}, which we denote ¢{(a,r). If D is a rational
closed disk, then {(a,r) is of Type IL; if D is irra-
tional, then {(a, r) is of Type IIL

« Type IV points correspond to decreasing chains
of disks D; 2 D, 2 --- with empty intersection,
a perhaps surprising phenomenon that occurs in
some complete non-archimedean fields, includ-
ing L and C,.

Figure 1 is a rough sketch of P1,. The line segments you
see are truly line segments, i.e,, homeomorphic copies of
the real interval [0, 1]. For example, the points on the line
segment running between the two type I points 0 and oo
are the points ¢(0,r) of types I and III, for 0 < r < oo.
These include the type IT point {(0, 1), corresponding to the
closed unit disk D(0, 1), which is called the Gauss point. Em-
anating from the Gauss point, or indeed from any type II
point, are infinitely many branches, corresponding to the
infinitely many elements of the residue field (plus one ex-
tending towards o0), or equivalently corresponding to the
infinitely many open disks in the disjoint union (1.2).

Thus, for example, we may proceed along the line seg-
ment from 0 to £(0,1), which consists of points of the
form ¢(0,r), by increasing r from 0 to 1. Then, because
1_)(0, 1)= 1_)(1, 1), we may proceed from ¢(0,1) = {(1,1) to
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e

0
Figure 1. The Berkovich projective line.

the type I point 1 via the line segment consisting of points
of the form {(1,r), with r decreasing from 1 back down to
0. Similarly, the type I points b,c € C, in Figure 1 satisfy
0 < |b| < |c| = 1, and we can travel from one to the other
as follows. First, proceed along the line segment from b to
& := (b, |b]) = (0, |b|) via points of the form ¢(b, r) with
0 < r < |b|; then from there to {(0,1) = {(c, 1) via points
of the form {(0,r) = {(b,r) with |b| < r < 1; and finally to
c via points of the form {(c, r), with r decreasing back to 0.
The tracing of such paths illustrates, at least conceptually,
that P, is path-connected.

Along any segment, there is a dense collection of type II
points, because as noted earlier, |C}| is dense in (0, o), and
each radius r € |C}j| gives a type II point. Moreover, as we
have just seen, there is infinite branching at each type II
point. Thus, P1, has the structure of an infinitely-branched
tree: along each segment, there are infinitely many points
of branching, each with an infinite number of branches.
The type I points, which may be viewed as lying around
the outer rim of the figure, sit at the ends of many of the
branches. (The type IV points, which we will mostly brush
under the rug here, lie at the ends of other branches.)

Figure 1 may appear to conflict with our earlier claim
that the set P1(C,) of Type I points is dense in P.,. How-
ever, the topology on P2 is weaker than the picture might
suggest. In particular, for any Type II point { and any open
set U containing ¢, all but finitely many of the branches
emanating from ¢ must be completely contained in U.

Any rational function f € C,(z) has a unique exten-
sion from P!(C,) to a continuous map f : P}, - PL If f
is nonconstant, this map is surjective, preserving types of
points. For example, if f € C,[z] is a nonconstant poly-
nomial and ¢ is a point of Type II or III corresponding to a
disk D, then f(¢) is the point of the same type correspond-
ing to the disk f(D). For a fully general description of f({)
for f € Cy(z) and { € P, see Chapter 7 of [Ben19].

Each open disk D(a,r) C C, has a Berkovich version
D,.(a,r) whose set of type I points is precisely D(a,r).
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Similarly, a closed disk D(a,r) has a Berkovich version
1_)an(a, r). Moreover, we define an open disk in P}, con-
taining oo to be the complement of a (Berkovich) closed
disk, and a closed disk in P, containing o to be the com-
plement of a (Berkovich) open disk. Through the rest of
this paper, a “disk” will refer to a Berkovich disk in this
sense, i.e,, a disk in P, possibly containing the point co.

4. Dynamics on P,

Throughout this section, let f € C,(z) be a rational func-
tion of degree d > 2, and consider its iterates f" as func-
tions from P, to itself.

4.1. Periodic points. Asin Section 2, points of P., may or
may not be fixed, periodic, or preperiodic under f. More-
over, Berkovich points of types II, III, or IV that are peri-
odic may be classified as indifferent or repelling, as follows.
Suppose { € PL,~P(C,) is periodic of period n. If { has a
small neighborhood U that maps into itself, then ¢ is indif-
ferent; otherwise ¢ is repelling, although the reader should
be cautioned that even in that case, { does not generally
“repel” individual nearby points. (On the other hand, pe-
riodic points of types II-IV cannot be considered attracting,
because it turns out that if [, f n(U) = {¢}, then ¢ must
be of type 1.) It would take us too far afield to define this
classification formally — although in practice it is straight-
forward — so we will settle for an example.

Example 4.1. Let f(z) = ay + a,z + -+ + ayz% be a poly-
nomial with |a;|, < 1 for all i. Suppose that |a,,|, = 1
for some m > 1, with |a;|, < 1 fori > m. Then f fixes
the Gauss point (0, 1), which is indifferent if m = 1, but
repelling if m > 2.

Indeed, if m = 1, then there is some small enough r > 1
such that f maps the open disk D, (0, r) into itself. On the
other hand, if m > 2, then for any r > 1, we have

f(Dan(0,7)) 2 D;,(0,7™) 2 D,y (0.7),
and hence |J,,,, f"(Dan(0,7)) = Pl ~{o0}.

4.2. Fatou and Julia sets. The two qualitatively different
behaviors in Example 4.1 inspire the following definition.

Definition 4.2. Let f € C,(z). The Julia set of f is the set
Jan, s of points ¢ € P}, with the following property: for ev-
ery neighborhood U of {, the union of iterates | J,_ , f"(U)
omits only finitely many points of PL,. Its comf)lement
Fanf = Pin~Jan s is the Fatou set of f.

The properties of the Fatou and Julia sets of a rational
function f € C,(z) of degree d > 2 include the following:

of type Il may be in the Julia set; this can be determined
easily.)

c. All repelling periodic points of f lie in the Julia set.

d. Both sets are invariant under f, meaning that

f_l(gan,f) = f(gan,f) = 3an,f' and f_l(gran,f) =

f(g:an,f) = -'ran,f-

Both sets are nonempty.

f. For any Julia point { € J,, the backward orbit
Orbs(¢) is dense in J,, .

g. The repelling periodic points are dense in 7,y s.

m

(For proofs of these facts, see, for example, Chapter 8 and
Section 12.2 of [Ben19].) The easy determination for indif-
ferent points in property (b), as well as the nonemptiness
of the Fatou set in property (e), contrast with the situa-
tion in complex dynamics. In addition, the proofs of prop-
erty (g) and of the nonemptiness of the Julia set in prop-
erty (e) both require significantly more work than their
complex counterparts. Otherwise, however, the above
properties exactly match corresponding statements in com-
plex dynamics.

The invariance under f means that non-archimedean
Julia sets, like their complex analogues, have a self-similar
structure, and most are fractals. On the other hand, as
they are subsets of the inherently undrawable space P,
there is no known way to draw meaningful pictures of non-
archimedean Julia sets, outside of trivial cases.

4.3. Good reduction. In Example 1.6, we made refer-
ence to the residue field of C,. In general, every non-
archimedean field C, has a residue field k,, and our ratio-
nal function f(z) € C,(z) has a reduction f(z) € k,(z). This
is a simple construction; for example, for the Levi-Civita
field C, = L of Example 1.5, the residue field is k,, = C,
and the reduction f(z) € C(z) U{co} is obtained simply by
setting the parameter T to 0 in all the coefficients of f, after
clearing any negative powers of T. However, the reduced
map f may have smaller degree than d = deg f, either be-
cause coefficients of higher powers of z were reduced to
0, or because formerly coprime factors now cancel from
numerator and denominator. We say f € Cy(2)
« has explicit good reduction if deg f = deg f,
« has good reduction if after some coordinate change
@ € PGL(2,C,), the map 8o f o 671 has explicit
good reduction, or
« has bad reduction otherwise.

Tz’ +z _
Exa;mple 4.3. Let f(z) = A+Tz+1 € L(2). Then f(z) =
Z+1 € C(z) has deg f = 2 = degf, so f has explicit

good reduction.

a. The Fatou set ¥, r is open in Pl,. and the Julia set 224+ Tz—-1
. : Example 4.4. Let g(z) = =———— € 1(2). Then
Jan,f is closed. P &) Tz2+z+1 @)
b. All attracting and most indifferent periodic points of f . 221
lie in the Fatou set. (Certain indifferent periodic points 8(z) = z+1 z—1
Mav 2022 Norices OF THE AMERICAN MATHEMATICAL SOCIETY 719



hasdegg =1 < 2 = degg, so g does not have explicit good
reduction. In fact, g has bad reduction; see Example 4.7
below.

Example 4.5. Let h(z) = Tz3+z+1 € L(z). Then h(z) = z+
1 has smaller degree than h. However, with 8(z) = T'?z,
we have

H(z) :=00ho07Y(2) =23 +z + T2,

so that H(z) = z* + z, which satisfies degH = 3 = degH.
Thus, H has explicit good reduction, so h has good reduc-
tion.

Good reduction corresponds to having a one-point Julia
set, as the following result shows.

Theorem 4.6. Let f € Cy(z) with deg f =d > 2. Let J, f
be the Julia set of f.

a. f has explicit good reduction if and only if Juny =
{0, N}

b.  f has good reduction if and only if J,, ; = {{} consists
of a single point. In that case, ¢ is of type II, and for any
© € PGL(2,C,), the map 6 o f o 8~ has explicit good
reduction if and only if 6({) = ¢(0,1).

. f has bad reduction if and only if J,, 5 is a perfect set.

(A perfect set is a nonempty closed set that has no iso-
lated points. Such a set is necessarily uncountable.) The
“trivial cases” referred to at the end of Section 4.2 are pre-
cisely the one-point Julia sets of maps of good reduction.
The undrawable fractals are the Julia sets of maps of bad
reduction.

2
Example 4.7. Let g(z) = % € L(z) as in Exam-
ple 4.4. Then g(—1) = —1, so the type I point —1 is a fixed
point of g. A simple computation shows

) -T-1

=e>1,
0

so that —1 is a repelling fixed point and hence lies in the
Julia set 7, , of g. Thus, 7,, , does not consist solely of a
type II point, so by Theorem 4.6.b, the map g cannot have
good reduction, as claimed in Example 4.4.

As suggested by equation (1.2) and Section 3, the in-
finitely many branches of P!, emanating from the Gauss
point ¢(0,1) — each of which is an open disk in PL, —
correspond to the infinitely many points of Pl(k,). If f
has explicit good reduction, then f maps these branches
to one another, and more precisely, it maps them in ex-
actly the way that the reduced map f € k,(z) maps the
corresponding points of P!(k,).

5. Fatou Components

Even when f € C,(z) has bad reduction, its Fatou set ¥, ¢
may be partitioned into connected components, although
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they may be arranged in a more complicated fashion than
in the good reduction case. These Fatou components map
onto one another; that is, if U is a connected component
of F, 7, then so is f(U). It therefore makes sense to talk
about fixed, periodic, or preperiodic Fatou components. If
a Fatou component is not preperiodic, we say it is a wan-
dering domain.

5.1. Rivera-Letelier's classification. Rivera-Letelier gave
a fundamental classification of dynamics on periodic Fa-
tou component in [RLO3]. (More precisely, [RL03]| con-
cerned only the p-adic field Cp, but his results could be
extended to other non-archimedean fields. For a fully gen-
eral exposition, see Chapter 9 of [Ben19].) To present his
classification, we define a rational open connected affinoid in
PL, to be a rational open disk with finitely many rational
closed disks removed. Such a region is indeed both open
and connected, and moreover its boundary is a finite set
of type II points.

Theorem 5.1. Let U be a periodic Fatou component of exact
period n > 1. Then exactly one of the following two possibilities
holds:

a. U is attracting, meaning that there is a type I point
a € U such that for all { € U, we have lim f"({) = a.
=0

In this case, f* : U — U is m-to-1 for some m > 2, and
either

(i) U is a rational open disk, or

(ii) U is a domain of Cantor type, as defined below.

b. U is indifferent, meaning that f* : U — U is a bjiec-
tive mapping, and in fact " is an isometry on the type I
points of U. In this case, U is a rational open connected
affinoid.

In part (a)(ii) above, a domain of Cantor type is a nested
union U = (J,,, V; of rational open connected affinoids
with V, € V; € ---, such that the boundary of U is homeo-
morphic to a Cantor set.

Example 5.2. Any quadratic polynomial is conjugate to
one of the form f(z) = z? + az. (Complex dynamicists
traditionally use z? + ¢, but for fields of characteristic 2,
that form does not cover all possibilities.)

If |a], < 1, then f has explicit good reduction, so that its
Fatou components are the open disks D, (x, 1) for |x|, <1,
as well as the disk D, := P! \D,,(0,1) containing co. This
disk D, is an attracting fixed component, as it maps 2-to-
1 to itself, and lim;_, , f'({) = o forall { € D,,. Some
of the other disks D, (x,1) are periodic, and such a disk
of period n is indifferent if |(f")'(x)|, = 1, or attracting if
|(f™)Y(x)|, < 1. Other disks are preperiodic but not peri-
odic, and depending on the residue field k,, others may
be wandering. (In particular, if C, = C,, then all of these
components are preperiodic, but if C, = L, then some of
them are wandering domains.)
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D(0,1) D(-a,1)

D(0, |al,)
Figure 2. V;, V}, and V; in Example 5.2.

On the other hand, if |a|, > 1, then f has bad reduc-

tion, and the Julia set is a Cantor set consisting entirely
of type I points. The Fatou set consists of a single attract-
ing fixed component U of Cantor type, and all points of
U = F,p,r are attracted to oo under iteration. More pre-
cisely, define V;, to be the rational open disk that is the
complement of the closed disk D,,(0, |a|,), and iteratively
define V., := f~1(V;) 2 V,. It can be shown that each
resulting rational open connected affinoid V; is the com-
plement of 2! closed disks, each of radius |a|; . Thus,
U :=J,,, Viis the entire Fatou set, and the Julia set 7,, s
is contained in two disks, then contained in four smaller
disks, then contained in eight still smaller disks, and so on.
See Figure 2, showing the (type I versions of) the disk that
is the complement of V,, the two disks forming the com-
plement of V;, and the four disks forming the complement
of V,. Since the radii of the disks decrease to 0, we are left
with a Cantor set for g,, s, and a domain of Cantor type
for its complement.
Example 5.3. Let g(z) = bz3 4 z2 with 0 < |b|, < 1. Sim-
ilar to the |a|, > 1 case of Example 5.2, we may define
V, to be the complement of D,, (0, |b|y1) and then itera-
tively define V., := f~1(V;) 2 V. The number of disks
in the complements of the rational open connected affi-
noids V; again increase, and their radii decrease, but in
more complicated fashion. This is because the comple-
ment of V; consists of two disks of different sizes, the larger
of which maps 2-to-1 onto D, (0, |b|51), and the smaller of
which maps 1-to-1 onto the same disk. (See Figure 3.) In
particular, not all of the radii approach zero, so although
U, := Ui:-o V; is again an attracting fixed Fatou compo-
nent of Cantor type, it is not the whole Fatou set.

Indeed, g maps the closed unit disk D,,(0,1) into itself,
and on this disk we have g(z) ~ z2, so that g behaves much
like the good reduction case of Example 5.2 on the disk. In
particular, the open unit disk U, := D,,(0,1) is an attract-
ing fixed Fatou component, with g"({) — 0 for all { € Uj.
Its boundary point is the Gauss point {(0, 1), which is a re-
pelling fixed point of g and hence lies in the Julia set 7,,, .
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D(0, |bl5")
Figure 3. V;, V4, and V;, in Example 5.3.

The other open disks of the form D, (x, 1) with |x|, = 1 are
also Fatou components, again mapping to one another as
they would for the good reduction case of Example 5.2.

5.2. Comparisons and contrasts with complex dynam-
ics. Much of the foregoing theory of the dynamics of non-
archimedean Fatou components is similar in outline to
that of complex dynamics. Indeed, Sullivan’s classifica-
tion [Sul83] shows periodic complex Fatou components
have one of a short list of possible behaviors and struc-
tures. Each may be described as either attracting (with ev-
ery point in the component approaching an attracting peri-
odic point under iteration) or indifferent. However, there
are crucial differences in the details, including the follow-
ing:

» Complex attracting components include para-
bolic domains, where the limit point of the at-
traction lies on the boundary of the compo-
nent. No such phenomenon occurs in the non-
archimedean setting.

« Complex indifferent domains are homeomorphic
either to a disk or an annulus, with dynamics con-
jugate to rotation by an irrational multiple of 27.
A non-archimedean indifferent domain can be a
disk with any finite number of subdisks removed;
and although there may be local conjugacies to a
simple normal form, such conjugacies do not ex-
tend to the whole Fatou component.

« Every periodic cycle of complex attracting com-
ponents contains a critical point. In the non-
archimedean case, this statement may fail if the
characteristic p of the residue field k,, satisfies 2 <
p < d, where d is the degree of the map.

« A complex rational function f € C(z) has only
finitely many periodic cycles of Fatou compo-
nents. But in non-archimedean dynamics, f €
C,(z) may have infinitely many such periodic
component cycles. On the other hand, there can
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only be finitely many cycles of periodic attracting
components that are not disks. The same appears
to be true about periodic indifferent components,
but there is still no complete proof that there can
only be finitely many cycles of periodic indfferent
components that are not disks.

« A complex indifferent component contains at
most one periodic point, necessarily of the
same period as the component itself. A non-
archimedean indifferent component usually con-
tains infinitely many periodic points of type I,
most of which are of much longer period than
the component. In fact, over some fields like the
p-adic field C,, any indifferent component neces-
sarily contains infinitely many periodic points of

type L.

Another contrast is that (again by work of Sullivan
[Sul85]), complex rational functions have no wandering
domains. However, as noted in Examples 5.2 and 5.3,
wandering domains are actually quite common in non-
archimedean dynamics when working over the Levi-Civita
field L. In particular, for certain fields including L —
for which the residue field is not algebraic over a finite
field — there are always wandering domains attached to
any repelling periodic type II point, just like the wander-
ing domains attached to the Gauss point in Examples 5.2
and 5.3.

So the real question about non-archimedean wandering
domains is whether they can occur in other circumstances.
The answer is: it depends, but we don't yet know the full
details. That is, there are some known constructions for
some choices of the field C,, and there are also some No
Wandering Domains theorems assuming mild hypotheses.
For more details, see Chapter 11 of [Ben19].

6. The Equilibrium Measure

The results described in Section 5 concern dynamics on
non-archimedean Fatou sets; we now turn to the Julia
sets. In 2004, three different pairs of mathematicians an-
nounced the existence of an important measure on P.,
that is supported exactly on the Julia set 7,, s of a non-
archimedean rational function f € C,(z), as described
in [BR10, CLT09, FRL10]|. Analogous measures had been
constructed in complex dynamics [Bro65, FLM83, Lju83]
using classical (complex) potential theory, and the non-
archimedean constructions use potential theory on the
Berkovich line P, developed in [BR10, FJ04].

The central object of non-archimedean potential theory
is a Laplacian operator A that inputs certain real-valued func-
tions on P2, and outputs signed Borel measures on P%,. Al-
though we will not make any attempt to define A formally,
we can give two simple examples:

A(¢ = log|¢]y) = [0] - [co]
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and
A(¢ - logmax{L, [¢[,}) = [£(0,1)] - [o],

where [a] denotes the delta measure at the point a. With
the operator A in hand, one can construct a function Gy
that satisfies a certain invariance property under our map
f € C,(2), and then take the Laplacian of G;. After can-
celling a certain auxiliary factor, the result is a measure us
on P.,, called the equilibrium measure for f, which has the
following properties:

a. uy is a probability measure, i.e,, it takes real values in
[0,1], with pp(P3,) = 1.

b.  py is invariant under f, i.e., for any Borel measurable
set V C PL,, we have u(f~1(V)) = up (V).

c. The support of y is precisely 7, 5.

d. py is mixing for the map f : Ju 5 = Jan,f-

Property (d), proven in Section 3.3 of [FRL10], implies that
f is ergodic with respect to uy. (Mixing and ergodic are two
properties that formally describe the intuitive idea that f
acts chaotically on 7,y , the support of the measure.)

The first main application of the equilibrium measure
in [BR10, CLT09, FRL10| was to prove certain number-
theoretic results known as equidistribution theorems. Such
statements concern a rational function f that is defined
over a global field like @, or more generally over a “product
formula” field like C(T), for which there are many different
absolute values whose (infinite) product is the trivial ab-
solute value. A product formula field allows the construc-
tion of height functions in the sense of Weil, including the
canonical height ﬁf associated with the dynamics of f. (See
Section 3.4 of [Sil07] for a discussion of canonical heights
in this context.) In that setting, the dynamical equidistri-
bution results of [BR10, CLT09, FRL10] say that the Galois
conjugates of points of small canonical height must accu-
mulate on the associated Berkovich Julia sets. More pre-
cisely, they say that the appropriately weighted sums of
delta measures at those Galois conjugates converge, in the
weak-* sense, to the equilibrium measure ;.

Since 2004, when those equidistribution results were
firstannounced, the equilibrium measure has been used to
study other aspects of the dynamics of f € C,(z), mirror-
ing the use of such measures in complex dynamics. When
f has good reduction, its equilibrium measure is simply
a delta mass at the one point of the Julia set; but when f
has bad reduction, uy is far more intricate, like its complex
analogue.

Once equipped with the equilibrium measure yy, one
can define and study the entropy of f, its Lyapunov ex-
ponent, and more. Similar sorts of measures can also
be constructed on moduli spaces of rational maps, with
support on the bifurcation locus, where the dynamics of a
map in the family undergoes a qualitative change. Non-
archimedean dynamics today thus continues the themes
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that spawned the subject: exhibiting a broad class of dy-
namical systems for analysis, enabling the study of degen-
erations of complex dynamical systems, and providing es-
sential local tools for number-theoretic questions arising
in arithmetic dynamics.
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