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ABSTRACT

Machine learning has become successful in solving wireless
interference management problems. Different kinds of deep
neural networks (DNNs) have been trained to accomplish
key tasks such as power control, beamforming and admission
control. There are two state-of-the-art approaches to train
such DNNs based interference management models: super-
vised learning (i.e., fits labels generated by an optimization
algorithm) and unsupervised learning (i.e., directly optimizes
some system performance measure). However, it is by no
means clear which approach is more effective in practice. In
this paper, we conduct some theory and experiment study
about these two training approaches. First, we show a some-
what surprising result, that for some special power control
problem, the unsupervised learning can perform much worse
than its counterpart, because it is more likely to get stuck at
some low-quality local solutions. We then provide a series of
theoretical results to further understand the properties of the
two approaches. To our knowledge, these are the first set of
theoretical results trying to understand different training ap-
proaches in learning-based wireless communication system
design.

I. INTRODUCTION

Motivation. Recently, machine learning techniques have
become very successful in solving wireless interference
management problems. Different kinds of deep neural net-
work (DNN), such as fully connected network (FCN) [1],
recurrent neural network (RNN) [2], graph neural network
(GNN) [3] have been designed to accomplish key tasks such
as power control [4], beamforming [1], admission control
[5], MIMO detection [6], among others. These DNN based
models are capable of achieving competitive and sometimes
even superior performance compared to the state-of-the-art
optimization based algorithms [4].

However, despite its success, there is still a fundamental
lack of understanding about why DNN based approaches
work so well for this class of wireless communication prob-
lems — after all, the majority of interference management
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problems (e.g., beamforming) are arguably more complex
than a typical machine learning problem such as image clas-
sification. It is widely believed that, exploiting task-specific
properties in designing network architectures, as well as
training objectives can help reduce the network complexity
and input feature dimension [4], boost the training efficiency
[4], and improve the expressiveness [1].

The overarching goal of this research is to understand
how problem-specific properties can be effectively utilized
in the DNN design. More concretely, we attempt to provide
an in-depth understanding about how to effectively utilize
problem structures in designing efficient training procedures.
Throughout the paper, we will utilize the classical weighted
sum rate (WSR) maximization problem in single-input single
output (SISO) interference channel as a working example,
but we believe that our approaches and the phenomenon we
observed can be extended to many other related problems.
Problem Statement and Contributions. Consider training
DNNs for power control, or more generally for beamform-
ing. There are two state-of-the-art approaches for training:
1) supervised learning (SL), in which “labels” of optimal
power allocations are generated by an optimization algo-
rithm, then the training step minimizes the mean square error
(MSE) between the the DNN outputs and the labels [1];

2) unsupervised learning (UL), which optimizes some sys-
tem performance measure such as WSR [4].

It is clear that the above unsupervised approach is unique
to the interference management problem, because the spe-
cific task of WSR maximization offers a natural training ob-
jective to work with. Further, it does not require any existing
algorithms to help generate high-quality labels (which could
be fairly expensive). On the other hand, such an objective
is difficult to optimize since the WSR is a highly non-linear
function with respect to (w.r.t.) the transmit power, which is
again a highly non-linear function of the DNN parameters.

Which training method shall we use in practice? Can we
rigorously characterize the behavior of these methods? Is it
possible to properly integrate these two approaches to yield a
more efficient training procedure? Towards addressing these
questions, this work makes the following key contributions:
©® We focus on the SISO power control problem in inter-
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ference channel (IC), and identify a simple 2-user setting,
in which UL approach has non-zero probability of getting
stuck at low-quality solutions (i.e., the local minima), while
the SL approach always finds the global optimal solution;
® We provide rigorous analysis to understand properties
of UL and SL for DNN-based SISO-IC problem. Roughly
speaking, we show that when high-quality labels are pro-
vided, SL should outperform UL in terms of solution quality.
Further, the SL approach converges faster when the labels
have better solution quality.

To the best of our knowledge, this work provides the first
in-depth understanding about the two popular approaches for
training DNNs for wireless communication.

II. PRELIMINARIES

Consider a wireless network consisting of K pairs of
transmitters and receivers. Suppose each pair equipped with
a single antenna, denote hy; € C as the channel between the
kth transmitter and the jth receiver, py as the power allocated
to the kth transmitter, Py.x as the budget of transmitted
power, and o2 as the variance of zero-mean Gaussian noise
in the background. Further, we use wy to represent the
prior importance of the kth receiver, then the classical WSR
maximization problem can be formulated as

K 2
Pk |” P
max wilog [ 1+ 5 := R(p; |h))
PLoes ; < ik heil Dy + o
st 0<pp < PowsVk=1,2,... K (1)
where h := {hy;} collects all the channels; | - | is

the componentwise absolute value operation; and p :=
(p1,p2,---,pK) denotes the transmitted power of K trans-
mitters. The above problem is well-known in wireless com-
munication, and it is known to be NP-hard [7] in general. For
problem (1) and its generalizations such as the beamforming
problems in MIMO channels, many iterative optimization
based algorithms have been proposed [8].

Recently, there has been a surge of works that apply DNN
based approach to identify good solutions for problem (1)
and its extensions [1], [4]. Although these works differ from
their problem settings and/or DNN architectures, they all use
either the SL, UL, or some combination of the two to train
the respective networks. Below let us take problem (1) as an
example and briefly compare the SL and UL approaches.

e Data Samples: Both approaches require a collection of the
channel information over NN different snapshots, denoted as
h(™, n=1,2,...,N.SL requires an additional N labels
p = {f)(")}ne[N] (where [N] := {1,---,N}), which are
usually obtained by solving N independent problems (1)
using some optimization algorithm, such as the WMMSE
[8]. Notice that the quality of such labels may depend on
the accuracy of the optimization algorithm being selected.

e DNN Structure: We will assume that the power allocation
p is parameterized by some DNN. More precisely, the inputs
of the DNN are absolute values of channel samples h(™ and
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WSR in Weak and Strong Gaussian Interference Case

= Supervised

N Unsupervised
- WMMSE
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Fig. 1. Comparison between SL, UL and WMMSE in testing time,
when SL, UL are trained using data where the interference channel
power is equal to direct channel power (weak interference), or 10
times of the direct channel power (strong interference) when there
are 10 users. In strong interference case, SL can achieve 92% of the
WMMSE sum-rate, while UL achieves relatively lower sum-rate.
let ® be the parameters of the DNN (of appropriate size),
then the output of DNN can be expressed as p(®;|h(™|) €
RX. To simplify notation, we write the output of the DNN
and its kth component as:

p™ =p (6; ’h(") ) oo = (6; ’h(") ) )

Unless otherwise noted, we will assume that different train-
ing approaches will use the same DNN architecture, so we
can better focus on the training approaches itself.

For the SL approach, it is common to minimize the MSE
loss, and the resulting training problem is given by:

N
Hg)n 221 ||p(®; |h(n)|) - f’(n)”2 = fsup(e)

st. 0<p(0;h™]) < Pua,V n. (3)

On the other hand, UL does not need the labels f)(”), and it
directly optimizes the sum of the samples’ WSR as follows:

N
min 3" =R (p(©; "))}, [0} = funeup(©)

n=1

st. 0<p(0;h™]) <P,V n. 4)

Remark 1. Problem (4) provides a reasonable formu-
lation as it directly stems from the WSR maximization
(1). However, this problem can be much harder to opti-
mize compared with (1) because of the following: i) Each
R (p(©; ™)), ™)) is a composition of two non-trivial
nonlinear functions, R(-;|h|) and p(-;|h|); ii) It finds a
single parameter © that maximizes the sum of the WSR
across all snapshots, so it couples N difficult problems. B

III. A STUDY OF SL AND UL APPROACHES

Are there any fundamental differences between these two
popular training approaches? This section provides a number
of different ways to address this question. Please note that
due to space limitation, all proofs in this section will be
relegated to the online version [9].
Comparing SL and UL Approaches. Before we start, we
use a simple example to illustrate the potential performance
difference of the two training approaches. Specifically, Fig.
1 shows that for a 2-user network with different interference
situation, the DNN generated by SL and UL can have
significantly different test-time performance.
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Fig. 2. For two-user IC with 2 snapshots, the true labels pV) =
(0,1), p = (1,0). Keep the sum of label of each snapshot to be
the 1: pV = (p1,1 —p1), P® = (p2,1 — p2). Plot the sum-rate
of the two snapshots. The upper right and lower left corners are
local maxima while the upper left is the the global maximum.

To understand such a phenomenon, let us examine the two
optimization problems (3) and (4). From Remark 1, we know
that problem (4) can be challenging because the compli-
cated relationship between R and ©, and because there are
multiple components in the objective. For now, let us focus
on cases where one factor is dominating. Suppose K = 2
(two user), wx = 1,V k (equal weights), and use a linear
network to parameterize p: p = ©|h|, where ® € RE*XK ’
and © = [@1; <o §®KL with @y, := {@k’(uv)}(uv)ew S
R>E* where W = {(i,j) : i,j € {1,---,K} is a
set of index tuples. In this case, from the classical results
for 2-user IC [10], [11], we know that for each sample n,
the sum rate maximization problem (3) is easy to solve,
and the solution will be binary. Further, the linear network
significantly simplifies the relation between p and ®. Under
this setting, we have the following observation.

Claim 1. Consider the simple SISO-IC case with two users
and two samples (i.e., K =2, N = 2); let Pyaxy =1, 0 =1,
and suppose a linear network is used: p(©;|h|) = ©|h]|.
If we use the UL loss (4), then there exist some channel
realizations (") € C?*2 and h® € C?*2 whose true labels
are pY) = (0,1), p® = (1,0), for which problem (4) has at
least two stationary solutions ®goha1 and O\gcal. However,
these two solutions generate different predictions:

P(Ogiobar, [hV]) = (0,1), P(Ogionar, hP]) = (1,0), (5
P(Orocat, W) = p(Orocar, W |) = (1,0). (6)

On the other hand, if the SL loss (3) is used, then fq,,(©)
is a convex function w.rt. ©, and the problem only has a
single optimal solution satisfying (5).

This result illustrates that when multiple channel realiza-
tions are directly and jointly optimized using UL, it is more
likely to possess bad local minima; see Fig 2.

Next, we analyze more general cases. Towards this end,
we first investigate the relationship between stationary solu-
tions of the SL problem (3) and the UL problem (4).

Claim 2. Consider an SISO-IC training problem with K
users and N training samples. Suppose the following hold:
i). For each data sample n € {1,--- | N}, we can generate
a stationary solution p"™) of (1) as the training label .

ii). Let ©*(p) denote the optimal solution for the SL problem
(3) with label P, and it achieves zero loss: fsu,(@*(P)) = 0.
iii) The solution ©®*(p) can be computed for all p.
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Let B denote the set of stationary points of (4). Then the

following holds:
{©*(p) | p™ is a stationary solution of (1), V n} C B. (7)

Intuitively, this result shows that if we impose some
additional assumptions to the SL approach (i.e., good labels,
zero training loss, and good training algorithm), then it is less
likely for SL to be trapped by local minima. Additionally,
if each label f)(”) exactly maximizes (1), then SL can
find a neural network that simultaneously optimizes all
training instances. On the other hand, it is difficult to impose
favorable assumptions for the UL approach to induce better
solution quality. This result is a generalization of Claim 1.

It certainly appears that assumptions ii) and iii) are
stringent. However, recent advances in deep learning suggest
that they can be both achieved for certain special neural
networks. In particular, the assumption that fq,,(©*) = 0
has been verified when the neural network is “overparameter-
ized”; see. e.g., [12]. Further, it has been shown that gradient
descent (GD) can indeed find such a global optimal solution
[13]. However, the work [13] cannot be applied to analyze
our training problem because they require the normalized
inputs, and that the outputs are scalars instead of vectors.

In the following, we show that it is possible to construct
a special neural network and a training algorithm, such that
condition ii) and iii) in Claim 2 can be satisfied, so that (7)
holds true. Our result extends the recent work [14].

To proceed, consider an L-layer fully connected network
with activation function denoted by f : R — R. The weights
of each layer are (Wl)le. Let || - || denote the Frobenius
norm and || - ||2 denote the Lo norm. The input and output
of the network (across all samples) are h € RV*K * and
p € RVXK respectively. Let the output of the [-th layer
(across all samples) be F; € RV*™ which can be expressed
as:

h =0
F = O'(F171W1) le [1 L — 1] ®)
Fr 1 Wg =1L

where ¢ is some activation function. In our problem setting,
the output of the neural network is the power allocation
vector, therefore n; = K. Let us vectorize the output of
each layer by concatenating each of its column, and denote
it as f; = vec (F}) € RV™. Similarly, denote the vectorized
label as y = vec(p) € RVE. At m-th iteration of training,
we use O = (V[/lm)lL:1 to denote all the parameters.

Let us make the following assumptions about the neural
network structure as well as the activation function.

Assumption 1. (Pyramidal Network Structure) Let ny >
N and no >ns > ... > ng.

Assumption 2. There exist constants v € (0,1) and 5 > 0,
such that the activation function o(-) satisfies:
o'(z) € [v,1], |o(x)| <|z|, Vx €R, o is B-Lipschitz.

The first assumption defines the so-called Pyramidal Net-
work structure [14], which consists of at least one wide layer
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(i.e., the number of neurons is at least the sample size).
The second assumption is shown to hold true for certain
activation functions [14] .

Next we discuss how to train such a network using the
SL and UL approaches. Towards this end, we need to fix
a training algorithm. Different than the conventional neural
network training, problems (3) — (4) has n constraints (one
for each sample), and it is difficult for conventional gradient-
based algorithms to enforce them. To overcome such a
difficulty, we adopt the following approaches.

For the SL training, we will directly consider the uncon-
strained version of (3) (by removing all power constraints).
This is acceptable because, if zero training loss can be
achieved, and if all the labels are feasible, then the output
for each sample will also be feasible. However, for the UL
training, we cannot simply drop the constraints, so a sigmoid
function should be added to the last layer of the output to
enforce feasibility. Specifically, the modified network has the
following (vectorized) output:

1 X Ppax

Fr =sig(FL1Wi) = 1 =5

€))

Now that both training problems become unconstrained, we
can use the conventional gradient-based algorithms. We have
the following convergence results.

Claim 3. Consider an SISO-IC training problem with K
users and N training samples. Let Py, = 1. Construct a
fully connected neural network satisfying Assumption 1 - 2.
Initialize ©° so that it satisfies [14, Assumption 3.1]. Then
the following holds:

(a) Consider optimizing the unconstrained version of (3)
using gradient descent @™l = @™ — nV fo.,(O™).

There exists constant stepsize 1 such that the training loss
converges to zero at a geometric rate, that is:

fsup (@m) S (1 - Uao)m fsup (G')O) (10)
where o is a constant.
(b) Consider minimizing the unconstrained version of (4)
using the last layer as (9) and use the gradient descent algo-
rithm (with step size ). Suppose all the weights are bounded
during training, then © will converge to a stationary point
of the training objective.

Claim 3-(a) indicates that when the neural network satis-
fied Assumptions 1 — 2, and with some special initialization,
then conditions (ii) — (iii) in Claim 2 can be satisfied, so the
conclusion in Claim 2 holds. On the other hand, for UL, the
best one can say is that a stationary solution for the training
problem is obtained. No global optimality can be claimed,
nor any convergence rate analysis can be done. Intuitively,
this result again says one can identify sufficient conditions
that SL can perform well, while the UL approach is much
more challenging to analyze. We note that the analysis of
Claim 3-(a) follows similar approaches as [14, Theorem 3.2].
However, Claim 3-(b) is different since we need to analyze
the special network with the sigmoid activation function.
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# samples

- 30,000 40,000 50,000
Quality

Low 138 (83.6%) | 1.38 (83.6%) | 1.39 (84.2%)
High 172 92.0%) | 1.76 (94.1%) | 1.78 (95.2%)

) # samples | 5, 600 100,000 200,000

Quality

Low T.11 (59.0%) | 1.32 (70.2%) | 1.39 (73.9%)
High 131 (65.6%) | 1.55 (77.5%) | 1.74 (87.0%)

Table I. Comparison between using high-quality labels and low-
quality labels in SL. The top (resp. bottom) table shows the K = 10
(resp. K = 20) case. The number in each entry shows the testing
performance (in bits/sec), where the model is trained using a fixed
number of training sample (shown at the first row), with either low
or high quality labels. The percentages mean the relative sum rate
achieved at testing time v.s. what is achieved by the given labels.

Impact of Label Quality. The above results show different
objective functions can have different performance in max-
imizing the sum rate. Next, we show an additional property
about the SL approach — that the quality of labels can affect
training efficiency. Intuitively, it is reasonable to believe that
neural networks trained using high-quality labeled data can
achieve higher sum rate compared with those trained with
with low-quality labels. To see this, we conduct two simple
experiments. We generate two training sets, one with low-
quality labels and the other with high-quality labels. The
low-quality labels are the power allocations that achieve an
average of 1.65 bits/sec (resp. 1.88 bits/sec) for 10 users
(resp. for 20 users) case. The high-quality labels are the
power allocations that achieve an average of 1.87 bits/sec
(resp. 2.00 bits/sec) for 10 users (resp. for 20 users) case.
We use different number of samples to train the network,
derive the sum rate using test samples and compare the
result to the corresponding sum rate achieved by the given
labels; the results are shown in Table I. We see that for a
particular setting, using high-quality labels not only achieves
higher absolute sum rate, but also higher relative sum rate
comparing with what can be achieved by the labels.

Below, we argue the benefit of high-quality label from a
slightly different perspective — the label quality can influence
the convergence speed of training algorithm.

Claim 4. Suppose (h,p) and (h',p') are two datasets
constructed below: Each dataset has N samples; h' = h;
Two samples in h are identical, say, h®W = h®), and all
the other samples are linearly independent; For the second
dataset, the labels are constructed as follows:

p@#£p®, p™W=p™vnL2 D
Further, since h) = h® and h = W, we also have
h®=n®,

Suppose that Assumption I and Assumption 2 hold true,
and use the same training algorithm as Claim 3-(a) to
optimize the unconstrained version of (3) using (h,p) and
(h',p) respectively. Let ©™ and ® '™ denote the sequences
of weights generated by the algorithm for the two data sets
respectively. Suppose that the initial solutions of the two
algorithms are the same: e =ae" Define
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Fig. 3. Comparison between SL using different labels. ‘Low’ and
‘High’ in the legend means the quality of labels are low or high.
We also draw the sum rate of the generated data and labels as
baseline, as well as the 80% of the sum rate in 10-user case and
75% of the sum rate in 20-user case.

L
A©) = (I, @ F) [[ Bo1 Wy @ In); Ag := A().

Suppose all the eiqgezvalues of AT Ay are within the
interval [0,1] . Then if we choose the stepsize 1 small
enough, there exist § > 0 and B' > 0 such that the following
holds true

frup () < B (€°) . foup (€71) <6 fiun ().

Further, we have 5 < 6/, that is, the objective function with
the correct label decreases faster.

In our analysis, we combined the pyramid network analy-
sis with the decomposition technique from [15]. This result
uses a simple construction to reveal the importance of
consistency of labels among “similar” samples. Intuitively,
it somewhat explains why in Table I, the models trained
by high-quality labels can achieve higher percentage of the
rates. The reason may be that when the quality of the label
is better, the training speed is also faster.

To empirically understand how the quality of labels affect
convergence speed, we conduct the following experiments.
Consider 10- and 20-user case under the strong interference
setting as illustrated in Fig. 1. We generate two sets of
labels for each case, the low-quality one directly obtained
by WMMSE while the high-quality one first passes a given
sample through a pretrained GNN model in [3] and then is
fine-tuned by WMMSE. We use a fully connected network
with 3 hidden layers, with the number of neurons being
200, 80, 80 for 10-user case and 600, 200, 200 for 20-user
case. From Fig. 3, we see that SL with higher-quality labels
achieves 80% of the baseline sum rate faster than with lower-
quality labels for 10-user case. Similar result can be derived
in matching 75% of the baseline for 20-user case.

IV. CONCLUSION
This work analyzes the SL and UL approaches for learning
communication systems. It is shown that under certain
conditions (such as having access to high-quality labels), SL
can exhibit better convergence properties than UL. To our
knowledge, this is the first work that rigorously analyzes the
relation between these two approaches. Of course, finding

high-quality labels is challenging. Is there a way to design a
proper learning strategy that only requires a few high-quality
labels, while still achieving the state-of-the-art performance?
In our full paper [9], we developed some semi-supervised
learning approach to address this question. Due to space
limitation, we do not include them here.
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