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ABSTRACT
Machine learning techniques have become successful in
solving wireless interference management problems. Dif-
ferent kinds of deep neural networks (DNNs) have been
trained to accomplish key tasks such as power control,
beamforming and admission control. There are two state-
of-the-art approaches to train such DNNs based interference
management models: supervised learning (i.e., fits labels
generated by an optimization algorithm) and unsupervised
learning (i.e., directly optimizes some system performance
measure). However, it is by no means clear which approach
is more effective in practice. In this paper, we conduct some
theory - and experiment - guided study about these two
training approaches. First, we show a somewhat surprising
result, that for some special power control problem, the
unsupervised learning can perform much worse than its
counterpart, because it is more likely to stuck at some
low-quality local solutions. We then provide a series of
theoretical results to further understand the properties of
the two approaches, as well as a semi-supervised training
algorithm that bridges them. To our knowledge, these are the
first set of theoretical results trying to understand different
training approaches in learning-based wireless communica-
tion system design.

I. INTRODUCTION
Motivation. Recently, machine learning techniques have
become very successful in solving wireless interference
management problems. Different kinds of deep neural net-
work (DNN), such as fully connected network (FCN) [1],
recurrent neural network (RNN) [2], graph neural network
(GNN) [3], [4] have been designed to accomplish key tasks
such as power control, beamforming [5], admission control
[6], MIMO detection [7], among others. These DNN based
models are capable of achieving competitive and sometimes
even superior performance compared to the state-of-the-art
optimization based algorithms [8].

However, despite its success, there is still a fundamental
lack of understanding about why DNN based approaches
work so well for this class of wireless communication prob-
lems – after all, the majority of interference management

problems (e.g., beamforming) are arguably more complex
than a typical machine learning problem such as image
classification. It is widely believed that, exploiting task-
specific properties in designing network architectures, as
well as training objectives can help significantly reduce the
network complexity and input feature dimension [8], boost
the training efficiency [8], and improve the expressiveness
of the DNN [1].

The overarching goal of this research is to understand
how problem-specific properties can be effectively utilized
in the DNN design. More concretely, we attempt to provide
an in-depth understanding about how to effectively utilize
problem structures in designing efficient training procedures.
Throughout the paper, we will utilize the classical weighted
sum rate (WSR) maximization problem in single-input single
output (SISO) interference channel as a working example,
but we believe that our approaches and the phenomenon we
observed can be extended to many other related problems.
Problem Statement and Contributions. Consider training
DNNs for power control, or more generally for beamform-
ing. There are two state-of-the-art approaches to train such
DNNs:
1) supervised learning (SL), in which lots of “labels” of
optimal power allocation are generated by an optimization
algorithm, then the training step minimizes the mean square
error (MSE) between the the DNN outputs and the labels
[1];
2) unsupervised learning (UL), which optimizes some sys-
tem performance measure such as WSR [8].

It is clear that the above unsupervised approach is unique
to the interference management problem, because the spe-
cific task of WSR maximization offers a natural training ob-
jective to work with. Further, it does not require any existing
algorithms to help generate high-quality labels (which could
be fairly expensive). On the other hand, such an objective
is difficult to optimize since the WSR is a highly non-linear
function with respect to (w.r.t.) the transmit power, which is
again a highly non-linear function of the DNN parameters.

Which training method shall we use in practice? Can we
rigorously characterize the behavior of these methods? Is it
possible to properly integrate these two approaches to yield a



more efficient training procedure? Towards addressing these
questions, this work makes the following key contributions:
¶ We focus on the SISO power control problem in inter-
ference channel (IC), and identify a simple 2-user setting,
in which UL approach has non-zero probability of getting
stuck at low-quality solutions (i.e., the local minima), while
the SL approach always finds the global optimal solution;
· We provide rigorously analysis to understand properties
of UL and SL for DNN-based SISO-IC problem. Roughly
speaking, we show that when high-quality labels are pro-
vided, SL should outperform UL in terms of solution quality.
Further, the SL approach converges faster when the labels
have better solution quality;
¸ In an effort to leverage the advantage of both approaches,
we develop a semi-supervised training objective, which reg-
ularizes the unsupervised objective by using a few labeled
data points. Surprisingly, by only using a small fraction
(≈ 1%) of samples of the supervised approach, the proposed
method is able to avoid bad local solutions and attain similar
performance as supervised learning.

To the best of our knowledge, this work provides the first
in-depth understanding about the two popular approaches for
training DNNs for wireless communication.

II. PRELIMINARIES
Consider a wireless network consisting of K pairs of

transmitters and receivers. Suppose each pair of transmitter
and receiver equips with a single antenna, denote hkj ∈ C as
the channel between the kth transmitter and the jth receiver,
pk as the power allocated to the kth transmitter, Pmax as the
budget of transmitted power, and σ2 as the variance of zero-
mean Gaussian noise in the background. Further, we use wk
to represent the prior importance of the kth receiver, then
the classical WSR maximization problem can be formulated
as

max
p1,...,pK

K∑
k=1

wk log

(
1 +

|hkk|2 pk∑
j 6=k |hkj |

2
pj + σ2

k

)
:= R(p; |h|)

s.t. 0 ≤ pk ≤ Pmax, ∀k = 1, 2, . . . ,K (1)

where h := {hkj} collects all the channels; | · | is
the componentwise absolute value operation; and p :=
(p1, p2, . . . , pK) denotes the transmitted power of K trans-
mitters. The above problem is well-known in wireless com-
munication, and it is known to be NP-hard [9] in general. For
problem (1) and its generalizations such as the beamforming
problems in MIMO channels, many iterative optimization
based algorithms have been proposed, such as waterfilling
algorithm [10], interference pricing [11] , WMMSE [12],
SCALE [13].

Recently, there has been a surge of works that apply DNN
based approach to identify good solutions for problem (1)
and its extensions [1], [7], [8], [14]. Although these works
differ from their problem settings and/or DNN architectures,
they all use either the SL, UL, or some combination of

the two to train the respective networks. Below let us take
problem (1) as an example and briefly compare the SL and
UL approaches.
• Data Samples: Both approaches require a collection of
the channel information over N different snapshots, denoted
as h(n), n = 1, 2, . . . , N . SL requires an additional N
labels p̄(n), n = 1, 2, . . . , N , which are usually obtained
by solving N independent problems (1) using some opti-
mization algorithm, such as the WMMSE [12]. Notice that
the quality of such labels may depend on the accuracy of
the optimization algorithm being selected.
• DNN Structure: We will assume that the power allocation
p is parameterized by some DNN. More precisely, the inputs
of the DNN are absolute values of channel samples h(n), and
let Θ be the parameters of the DNN (of appropriate size),
then the output of DNN can be expressed as p(Θ; |h(n)|) ∈
RK . To simplify notation, we write the output of the DNN
and its kth component as:

p(n) = p
(
Θ;
∣∣∣h(n)

∣∣∣) , p
(n)
k := pk

(
Θ;
∣∣∣h(n)

∣∣∣) . (2)

Unless otherwise noted, we will assume that different train-
ing approaches will use the same DNN architecture, so we
can better focus on the training approaches itself.

For the SL approach, it is common to minimize the MSE
loss, and the resulting training problem is given by:

min
Θ

N∑
n=1

‖p(Θ; |h(n)|)− p̄(n)‖2 := fsup(Θ) (3)

s.t. 0 ≤ p(Θ; |h(n)|) ≤ Pmax, ∀ n.

On the other hand, UL does not need the labels p̄(n), and it
directly optimizes the sum of the samples’ WSR as follows:

min
Θ

N∑
n=1

−R
(
p(Θ; |h(n)|), |h(n)|

)
:= funsup(Θ) (4)

s.t. 0 ≤ p(Θ; |h(n)|) ≤ Pmax, ∀ n.

Remark 1. Problem (4) provides a reasonable formu-
lation as it directly stems from the WSR maximization
(1). However, this problem can be much harder to opti-
mize compared with (1) because of the following: i) Each
R
(
p(Θ; |h(n)|), |h(n)|

)
is a composition of two non-trivial

nonlinear functions, R(·; |h|) and p(·; |h|); ii) It finds a
single parameter Θ that maximizes the sum of the WSR
across all snapshots, so it couples N difficult problems. �

III. A STUDY OF SL AND UL APPROACHES
Are there any fundamental differences between these two

popular training approaches? This section provides a number
of different ways to address this question. Please note that
due to space limitation, all proofs in this section will be
relegated to the online version [15].
Comparing SL and UL Approaches. Before we start, we
use a simple example to illustrate the potential performance



Fig. 1. Comparison between SL, UL and WMMSE in
testing time, when SL, UL are trained using data where the
interference channel power is equal to direct channel power
(weak interference), or 10 times of the direct channel power
(strong interference) when there are 10 users. In strong
interference case, SL can achieve 92% of the WMMSE sum-
rate, while UL achieves relatively lower sum-rate.

Fig. 2. For two user IC with 2 snapshots, the true label
p̄(1) = (0, 1), p̄(2) = (1, 0). Keep the sum of label of the
two snapshots to be the 1, i.e., p̄(1) = (p1, 1− p1), p̄(2) =
(p2, 1− p2) and plot the sum-rate of the two snapshots. The
upper right and lower left corners are local maximums while
the upper left is the the global maximum.

difference of the two training approaches. Specifically, Fig.
1 shows that for a 2-user network with different interference
situation, the DNN generated by SL and UL can have
significantly different test-time performance.

To understand such a phenomenon, let us examine the two
optimization problems (3) and (4). From Remark 1, we know
that problem (4) can be challenging because the compli-
cated relationship between R and Θ, and because there are
multiple components in the objective. For now, let us focus
on cases where one factor is dominating. Suppose K = 2
(two user), wk = 1, ∀ k (equal weights), and use a linear
network to parameterize p: p = Θ|h|, where Θ ∈ RK×K2

,
and Θ := [Θ1; · · · ; ΘK ], with Θk := {Θk,(uv)}(uv)∈W ∈
R1×K2

, where W := {(i, j) : i, j ∈ {1, · · · ,K} is a
set of index tuples. In this case, from the classical results
for 2-user IC [16], [17], we know that for each sample n,
the sum rate maximization problem (3) is easy to solve,
and the solution will be binary. Further, the linear network
significantly simplifies the relation between p and Θ. Under
this setting, we have the following observation.

Claim 1. Consider the simple SISO-IC case with two users
and two samples (i.e., K = 2, N = 2); let Pmax = 1, σ = 1,
and suppose a linear network is used: p(Θ; |h|) = Θ|h|.
If we use the UL loss (4), then there exist some channel
realizations h(1) ∈ C2×2 and h(2) ∈ C2×2 whose true labels

are p̄(1) = (0, 1), p̄(2) = (1, 0), for which problem (4) has at
least two stationary solutions Θglobal and Θlocal. However,
these two solutions generate different labels:

p(Θglobal, |h(1)|) = (0, 1), p(Θglobal, |h(2)|) = (1, 0),
(5)

p(Θlocal, |h(1)|) = p(Θlocal, |h(2)|) = (1, 0). (6)

On the other hand, if the SL loss (3) is used, then fsup(Θ)
is a convex function w.r.t. Θ, and the problem only has a
single optimal solution satisfying (5).

This result illustrates that when multiple channel realiza-
tions are directly and jointly optimized using UL, it is more
likely to possess bad local minima; see Fig 2.

Next, we analyze more general cases. Towards this end,
we first investigate the relationship between stationary solu-
tions of the SL problem (3) and the UL problem (4).

Claim 2. Consider an SISO-IC training problem with K
users and N training samples. Suppose the following hold:
i). For each data sample n ∈ {1, · · · , N}, we can generate
a stationary solution p̄(n) of (1)as the training label .
ii). Let Θ∗(p̄) denote the optimal solution for the SL problem
(3) with label p̄, and it achieves zero loss: fsup(Θ∗(p̄)) = 0.
iii) The solution Θ∗(p̄) can be computed for all p̄.
Let B denote the set of stationary points of (4). Then the
following holds:

{Θ∗(p̄) | p̄n is a stationary solution of (1), ∀ n} ⊆ B. (7)

Intuitively, this result shows that if we impose some
additional assumptions to the SL approach (i.e., good labels,
zero training loss, and good training algorithm), then it is less
likely for SL to be trapped by local minima. Additionally,
if each label p̄(n) exactly maximizes (1), then SL can
find a neural network that simultaneously optimizes all
training instances. On the other hand, it is difficult to impose
favorable assumptions for the UL approach to induce better
solution quality. This result is a generalization of Claim 1.

It certainly appears that assumptions ii) and iii) are
stringent. However, recent advances in deep learning suggest
that they can be both achieved for certain special neural
networks. In particular, the assumption that fsup(Θ∗) = 0
has been verified when the neural network is “overparameter-
ized”; see. e.g., [18]. Further, it has been shown in [19], [20]
that, gradient descent (GD) can indeed find such a global
optimal solution. However, these works cannot be applied
to analyze our training problem because they require that
the inputs are normalized, and that the outputs are scalars
instead of vectors.

In the following, we show that it is possible to construct
a special neural network and a training algorithm, such that
condition ii) and iii) in Claim 2 can be satisfied, so that (7)
holds true. Our result extends the recent work [21].

To proceed, consider an L-layer fully connected network
with activation function denoted by f : R→ R. The weights



of each layer are (Wl)
L
l=1. Let ‖ · ‖F denote the Frobenius

norm and ‖ · ‖2 denote the L2 norm. The input and output
of the network (across all samples) are h ∈ RN×K2

and
p ∈ RN×K , respectively. Let the output of the l-th layer
(across all samples) be Fl ∈ RN×nl , which can be expressed
as:

Fl =

 h l = 0
σ (Fl−1Wl) l ∈ [1 : L− 1]
FL−1WL l = L

(8)

where σ is some activation function. In our problem setting,
the output of the neural network is the power allocation
vector, therefore nL = K. Let us vectorize the output of
each layer by concatenating each of its column, and denote
it as fl = vec (Fl) ∈ RNnl . Similarly, denote the vectorized
label as y = vec(p) ∈ RNK . At m-th iteration of training,
we use Θm = (Wm

l )
L
l=1 to denote all the parameters.

Let us define the following quantities, which are related
to the singular values of weight matrices at initialization:

λ̄l =

{
2
3

(
1 +

∥∥W 0
l

∥∥
2

)
, for l ∈ {1, 2},∥∥W 0

l

∥∥
2
, for l ∈ {3, . . . , L}, (9)

and λl = σmin

(
W 0
l

)
, λi→j =

∏j
l=i λl, λ̄i→j =

∏j
l=i λ̄l and

λF = σmin

(
σ
(
XW 0

1

))
, where σmin(A) and ‖A‖2 are the

smallest and largest singular value of matrix A.
Let us make the following assumptions about the neural

network structure as well as the activation function.

Assumption 1. (Pyramidal Network Structure) Let n1 ≥
N and n2 ≥ n3 ≥ . . . ≥ nL.

This assumption defines the Pyramidal Network structure
[21], which consists of one wide layer(i.e the number of
neurons is at least the sample size) but no comparison
between n1 and n2 is needed.

Assumption 2. There exist constants γ ∈ (0, 1) and β > 0,
such that the activation function σ(·) satisfies:

σ′(x) ∈ [γ, 1], |σ(x)| ≤ |x|, ∀ x ∈ R, σ′ is β-Lipschitz.

In [21], a concrete example is shown that satisfies As-
sumption 2:

σ(x) = − (1− γ)2

2πβ
+

β

1− γ

∫ ∞
−∞

max(γu, u)e
− xβ

2(x−u)2

(1−γ)2 du

Next we discuss how to train such a network using the
SL and UL approaches. Towards this end, we need to fix
a training algorithm. Different than the conventional neural
network training, problems (3) – (4) has n constraints (one
for each sample), and it is difficult for conventional gradient-
based algorithms to enforce them. To overcome such a
difficulty, we adopt the following approaches.

For the SL training, we will directly consider the uncon-
strained version of (3) (by removing all power constraints).
This is acceptable because, if zero training loss can be
achieved, and if all the labels are feasible, then the output

for each sample will be automatically feasible. However,
for the UL training, we cannot simply drop the constraints
because we do not have labels. Therefore, we choose to add
a sigmoid function to the last layer of output to enforce fea-
sibility. Specifically, the modified network has the following
(vectorized) output:

FL = sig(FL−1WL) =
1× Pmax

1 + e−FL−1WL
. (10)

Now that both training problems become unconstrained,
we can use the conventional gradient-based algorithms. We
have the following convergence results.

Claim 3. Consider an SISO-IC training problem with K
users and N training samples. Let Pmax = 1. Construct a
fully connected neural network satisfying Assumption 1 - 2.
Initialize Θ0 so that it satisfies [21, Assumption 3.1]. Then
the following holds:
(a) Consider optimizing the unconstrained version of (3)
using the following gradient descent algorithm

Θm+1 = Θm − η∇fsup(Θm).

There exists constant stepsize η such that the training loss
converges to zero at a geometric rate, that is:

fsup (Θm) ≤ (1− ηα0)
m
fsup (Θ0) (11)

where α0 = 4
γ4

(
γ2

4

)L
λ2Fλ

2
3→L.

(b) Consider minimizing the unconstrained version of (4)
using the last layer as (10) and use the following gradient
descent algorithm

Θm+1 = Θm − η∇funsup(Θm).

Suppose all the weights are bounded during training, then Θ
will converge to a stationary point of the training objective.

Claim 3-(a) indicates that when the neural network satis-
fied Assumptions 1 – 2, and with some special initialization,
then conditions (ii) – (iii) in Claim 2 can be satisfied, so the
conclusion in Claim 2 holds. On the other hand, for UL, the
best one can say is that a stationary solution for the training
problem is obtained. No global optimality can be claimed,
nor any convergence rate analysis can be done. Intuitively,
this result again says one can identify sufficient conditions
that SL can perform well, while the UL approach is much
more challenging to analyze. We note that the analysis of
Claim 3-(a) follows similar approaches as [21, Theorem 3.2].
However, Claim 3-(b) is different since we need to analyze
the special network with the sigmoid activation function.
Impact of Label Quality. The above results show different
objective functions can have different performance in max-
imizing the sum rate. Next, we show an additional property
about the SL approach – that the quality of labels can affect
training efficiency. Intuitively, it is reasonable to believe that
neural networks trained using high-quality labeled data can
achieve higher sum rate compared with those trained with



Quality
# samples 30,000 40,000 50,000

Low 1.38 (83.6%) 1.38 (83.6%) 1.39 (84.2%)
High 1.72 (92.0%) 1.76 (94.1%) 1.78 (95.2%)

Quality
# samples 50,000 100,000 200,000

Low 1.11 (59.0%) 1.32 (70.2%) 1.39 (73.9%)
High 1.31 (65.6%) 1.55 (77.5%) 1.74 (87.0%)

Table I. Comparison between using high-quality labels and low-
quality labels in SL. The top (resp. bottom) table shows the K = 10

(resp. K = 20) case. The number in each entry shows the testing
performance (in bits/sec), where the model is trained using a fixed
number of training sample (shown at the first row), with either
low or high quality labels. The percentages in the table means the
relative sum rate achieved at testing time v.s. what is achieved by
the training labels.

with low-quality labels. To see this, we conduct two simple
experiments. We generate two training sets, one with low-
quality labels and the other with high-quality labels. The
low-quality labels are the power allocations that achieve an
average of 1.65 bits/sec (resp. 1.88 bits/sec) for 10 users
(resp. for 20 users) case. The high-quality labels are the
power allocations that achieve an average of 1.87 bits/sec
(resp. 2.00 bits/sec) for 10 users (resp. for 20 users) case.
We use different number of samples to train the network,
derive the sum rate using test samples and compare the
result to the corresponding sum rate achieved by the given
labels; the results are shown in Table I. We see that for a
particular setting, using high-quality label not only achieves
higher absolute sum rate, but also higher relative sum rate
comparing with what can be achieved by the labels.

Below, we argue the benefit of high-quality label from a
slightly different perspective – the label quality can influence
the convergence speed of training algorithm.

Claim 4. Suppose (h,p) and (h
′
,p
′
) are two sets of data,

each consists of N samples, and h
′

= h. Suppose for each
n, p(n) is the unique globally optimal power allocation for
problem (1), given channel realization h(n). Suppose two
samples in h are identical, say, h(1) = h(2). Construct the
labels for h

′
in the following way{
p
′,(2) 6= p(2),

p
′,(n) = p(n), ∀ n, s.t. n 6= 2.

(12)

Under Assumption 1 and [22, Assumption 3.1], use the same
training algorithm as Claim 3(a) to optimize the uncon-
strained version of (3) using (h,p) and (h

′
,p
′
) respectively,

at each iteration m, there exist βm and β
′

m that satisfy:

fsup(Θm+1) ≤ βmfsup(Θm), (13)

fsup(Θ
′,m+1) ≤ β

′

mfsup(Θ
′,m). (14)

Further, we have βm < β
′

m, that is, the problem with the
correct label can be trained faster.

In our analysis, we combined the pyramid network analy-
sis with the decomposition technique from [23]. This result
uses a simple construction to reveal the importance of
consistency of labels among “similar” samples. Intuitively,
it somewhat explains why in Table I, the models trained
by high-quality labels can achieve higher percentage of the
rates. The reason may be that when the quality of the label
is better, the training speed is also faster.

IV. A SEMI-SUPERVISED LEARNING REMEDY
FOR POWER ALLOCATION

From the previous section, we know that under a few
assumptions, especially when high-quality labels are avail-
able, SL could perform better than the UL. However,
one drawback of the SL approach is that finding high-
quality labels can be costly. Is there a way to design a
proper learning strategy that only requires a few labels,
while still achieving the state-of-the-art training and testing
performance? In this section, we address this by proposing a
semi-supervised learning strategy which combines both the
SL and UL approaches in (3) – (4).

As indicated by Claim 1, UL may get stuck at some local
solutions once parameters enter some “bad” regions. To alle-
viate such a “bad” local minimum issue, we propose to add
some regularization in the training objective, which in fact
changes the landscape of loss function. More specifically,
we propose to use some label-dependent regularizations that
utilizes the available high-quality labels. Suppose there are
N unlabeled samples denoted as {|h(n)|} and M labeled
samples denoted as {|h(m)|, p̄(m)}, and M � N (few
labeled samples). Then, the final objective function to be
maximized is:

max
Θ

N∑
n=1

R
(
p(Θ; |h(n)|), |h(n)|

)
−

λ
M∑
m=1

∥∥∥p(Θ; |h(m)|)− p̄(m)
∥∥∥2 , (15)

where λ > 0 specifies the trade-off between the sumrate loss
(unsupervised) and squared loss (supervised). In classical
semi-supervised learning, cluster assumption [24] is often
included, which means samples with same label belong to
the same class. The regularization term above, will serve as
a clustering classifier which clusters the same label p to one
class.

V. SIMULATION RESULTS
V-A. Data Generation

The Rayleigh fading channel model [25] is considered
in the simulation and the number of users is 5, 10 or 20.
Direct channels hkk and interfering channels hkj , k 6= j
are generated from zero-mean complex Gaussian distribution
CN (0, σ2), where σ denotes the standard deviation. To
evaluate the stability of different learning approaches, two



representative cases are considered. In the first case (re-
ferred as weak interference case), both direct and interfering
channels are generated from the same complex Gaussian
distribution with σ = 1. For the second case (referred as
strong interference case), direct channels have the same
setting as in the first case while the standard deviation of
interfering channels is 10 times of the the direct channels.

V-B. Neural Network Structure
A fully connected neural network with 3 hidden layers

is used in the simulation. The number of neurons in each
hidden layers are 200, 80, 80 for 5 and 10 user case and
600, 200, 200 for 20 user case, respectively. The activation
function of the hidden layers is ReLu function and Sigmoid
function is used at output layer. To stabilize the training
process, Batch Normalization [26] is used after each hidden
layer.

V-C. Benchmarks and Training Strategy
We compare UL (see (4)), semi-supervised learning with

pre-training and semi-supervised learning with squared loss
regularization and λ = 1 (see section IV), and select the
WMMSE [12] as the baseline. In order to get higher quality
label, we train the network with GNN [4] and fine tune the
label using WMMSE. Both labels are used in pre-training
and semi-supervised learning. All the three DNN-based
learning approaches use the same neural network structure
as specified in Section V-B. In the strong interference case,
the total number of unlabeled and labeled samples are
50, 000 and 400 for 10 user, while 10, 000 and 100 for
5 user, respectively. Unlabeled samples are used in UL
approach, which together with the labeled samples are used
in the two semi-supervised learning approaches. Also, we
change the number of labeled data and train the model
along with the unlabeled data. RMSprop [27] is used as the
optimizer, within each batch, the number of unlabeled data
is 200 addition with the fixed labeled samples. For weak
interference case, since UL can already work well with fewer
samples, the total number of unlabeled and labeled samples
used in training are 20, 000 and 100, respectively. The batch
size is 200 with 200 unlabeled samples and additional 100
labeled samples as regularization. Other setups are the same
as used in the strong interference case and we compare UL
and proposed semi-supervised learning. To evaluate the per-
formance, 1000 additional unlabeled samples are generated
and their averaged sumrate is used as performance metric.

V-D. Simulation Results and Analysis
The sumrate of the UL and the two semi-supervised

learning approaches in the strong interference case are
compared in Fig. 3. Compare with the UL, the proposed
semi-supervised learning with squared loss regularization
approach significantly improves the sum-rate in 10 user
case. However, the pre-training approach does not bring
significant improvement in sumrate. One possible reason is

that only a few labeled samples are not enough to pre-train
a ‘good’ initialization. The gradually increased labeled data
can improve the performance of semi-supervised learning
in high interference scenario, and higher-quality label can
produce better performance. In weak interference scenario,
the performance of semi-supervised learning is similar to
unsupervised learning. So in this case, regularization is
actually not needed. This is also a potential direction in
future work. In the scenario where UL can already work, is
there a way that labeled data can improve the performance?

(a) Strong interference with K=5 (b) Strong Interference with K=10

Fig. 3. Comparison between proposed semi-supervised
learning, pre-training, unsupervised learning and WMMSE
uner strong interference case in sum-rate maximization.

(a) Strong interference case K = 10. (b) Strong interference case K = 20.

Fig. 4. Comparison between using different number of (high-
quality) labeled data in proposed semi-supervised learning.

Method
User Number K=5 K=10

Semi-supervised 2.09 (bits/sec) 2.60 (bits/sec)
Unsupervised 2.09 (bits/sec) 2.64 (bits/sec)
WMMSE 2.06 (bits/sec) 2.74 (bits/sec)

Table II. For weak interference scenario, compare the perfor-
mance of unsupervised learning and proposed semi-supervised
learning both using 20, 000 samples, and semi-supervised learning
with 100 additional labeled data.
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VII. APPENDIX

VII-A. Proof for Theorems

Claim 5. Suppose K = 2, N = 2 (two user and two samples), and Pmax = 1. Consider the unsupervised training loss (4),
where the predicted power is expressed as

p(Θ; h) = σ(Θh), (16)

where σ(z) = max{0, z} ∈ RK is the ReLu activation function. Then there exists some channel realizations h(1) ∈ C2×2
and h(2) ∈ C2×2 whose true labels are p̄(1) = (0, 1), p̄(1) = (1, 0), for which problem (4) has at least two stationary
solutions Θglobal and Θlocal, and they satisfy the following

p(Θglobal,h
(1)) = (0, 1), p(Θglobal,h

(2)) = (1, 0) (17)

p(Θlocal,h
(1)) = p(Θlocal,h

(2)) = (1, 0). (18)

On the other hand, considering using the supervised loss (3), with p(θ; h) given as in (16), and p̄(n) computed as the
optimal solution of (1) (by using techniques in [16], [17]). Then the problem only has a single optimal solution satisfying
(17)

Proof. The objective value is

f = log

(
1 +

|h(1)
11 |

2p
(1)
1

|h(1)
12 |2p

(1)
2 +1

)
+ log

(
1 +

|h(1)
22 |

2p
(1)
2

|h(1)
21 |

2
p
(1)
1 +1

)
+ log

(
1 +

|h(2)
11 |

2p
(2)
1

|h(2)
12 |2p

(2)
2 +1

)
+ log

(
1 +

|h(2)
22 |

2p
(2)
2

|h(2)
21 |2p

(2)
1 +1

)
If take derivative over the any weight θkj related to the power of the first user, the derivative is If take the derivative over
Θkj , j = 1, 2, 3, 4, k = 1, 2
The gradient is derived as

∂funsup
∂Θkj

=
∂funsup

∂p
(1)
k

·
∂p

(1)
k

∂Θkj
+
∂funsup

∂p
(2)
k

·
∂p

(2)
k

∂Θkj

where 
∂funsup

∂p
(n)
1

=
|h(n)

11 |
2

|h(n)
11 |2p

(n)
1 +|h(n)

12 |2p
(n)
2 +1

− |h(n)
21 |

2|h(n)
22 |

2p
(n)
2(

|h(n)
21 |2p

(n)
1 +|h(n)

22 |2p
(n)
2 +1

)(
|h(n)

21 |2p
(n)
1 +1

)
∂funsup

∂p
(n)
2

=
h
(n)
22

2

h
(n)
21

2
p
(n)
1 +h

(n)
22

2
p
(n)
2 +1

− h
(n)
11

2
h
(n)
12

2
p
(n)
1(

h
(n)
12

2
p
(n)
2 +h

(n)
11

2
p
(n)
1 +1

)(
h
(n)
12

2
p
(n)
2 +1

) (19)

and

∂p
(1)
k

∂Θk,(uv)
= |h(1)uv |,

∂p
(2)
k

∂Θk,(uv)
= |h(2)uv |, ∀ (u, v) ∈W, ∀ k.

We claim that if we find δ1, δ2, ε1, ε2 which satisfies the following two conditions, then the gradient descent method optimizing
the neural network weights will lead the predicted label to the above local maximum.
Condition 1:

∂funsup

∂p
(n)
1

< 0 n = 1, 2 (20)

Condition2:

∂f

∂θ2j
< 0 n = 1, 2 (21)

This is true because when Condition1 is satisfied, the gradient over every θkj is positive, so the power of the first user will
always converge to 1. Similarly, when Condition2 is satisfied, the weight θ2j relates to the power of the second user will
always decrease. Even when the power of the second user in data h(2) reaches 0 so the second term reaches minimum and
the gradient vanishes, it can still happen that for some channel realization h(1), the true label of which is (0, 1), will finally
converge to (1, 0) as long as the first term is always negative in this region. This is easier to happen when the interference
channel is strong.



Now we illustrate that the above two conditions is easy to satisfy.
For Condition1, there is

h
(2)
21

2
h
(2)
22

2
δ2

(h
(2)
21

2
(1− δ1) + h

(1)
22

2
δ2 + 1)(h

(1)
21

2
(1− δ1) + 1)

< h
(2)
21

2
h
(2)
22

2
δ2

and
h
(1)
11

2

h
(1)
11

2
(1− δ1) + h

(1)
12

2
δ2 + 1

>
h
(1)
11

2

h
(1)
11

2
+ h

(1)
12

2
+ 1

So it’s sufficient to satisfy
h
(1)
11

2

h
(1)
11

2
+ h

(1)
12

2
+ 1

> h
(1)
21

2
h
(1)
22

2
δ2

Thus we can derive

δ2 <
h
(1)
11

2(
h
(1)
11

2
+ h

(2)
12

2
+ 1
)
h
(1)
21

2
h
(1)
22

2

Similarly, we can derive

ε2 <
h
(2)
11

2(
h
(2)
11

2
+ h

(1)
12

2
+ 1
)
h
(2)
21

2
h
(2)
22

2
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Thus Condition2 can be satisfied.
For fixed δ1, δ2, there always exists h(1)12
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In this case, even if the power of the second user in the second data point reaches minimum, the gradient of power of the
second user in the data point H will always smaller than 0 and converge to 0.

Claim 6. Consider an SISO-IC training problem with K users and N training samples. Suppose Pmax = 1. Given a fully
connected neural network satisfies Assumption 1 - 2. Initialize Θ0 so that it satisfies [21, Assumption 3.1]. Then the following
holds:
(a) If we optimize (3) using Gradient Descent

f(Θm+1) = f(Θm)− η∇fsup(Θm)

Then there exists constant setpsize η such that it can be ensured the training loss converges to zero at a geometric rate as:

fsup (Θm) ≤ (1− ηα0)
m
fsup (Θ0) (22)

where α0 = 4
γ4

(
γ2

4

)L
λ2Fλ

2
3→L.

(b) minimize the unsupervised loss (4) with an extra sigmoid activation at the last output layer to constrain the power in
[0, Pmax], and suppose all the weights are bounded during training, performing Gradient Descent can only ensure that Θ
will converge to a stationary point.

Proof. Part (a) is a directly from [21], for Part (b) derive the proof as following: By Lemma 4.1 in [21],we have
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When all the weights are bounded, there is ||JfL(Θt
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Finally, consider
∥∥g(Θt

m)− g(Θm)
∥∥
2
. Notice that ‖g′(Θ)‖2 is bounded, so there is∥∥g(Θt

m − g(Θm))
∥∥
2
≤ C4

∥∥Θt
m −Θm

∥∥
2

Then it can be derived∥∥∇funsup
(
Θt
k

)
−∇funsup (Θm)

∥∥
2
≤ C1C4

∥∥Θt
m −Θm

∥∥
2

+ C2C3

∥∥Θt
m −Θm

∥∥ = (C1C4 + C2C3)
∥∥Θt

m −Θm

∥∥



By Lemma 4.3 in [21], let η < 1
C1C4+C2C3

There is
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Claim 7. Suppose two sets of channel realizations h = h
′

consist of N samples, the optimal labels are both p. Suppose
two samples in each datasets are the same, denote as h(1) = h(2) = h

′,(1) = h
′,(2),p(1) = p(2). If the given labels for h
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Proof. By pyramidal structure, we have
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