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Abstract—In this work, we consider a distributed online convex
optimization problem, with time-varying (potentially adversarial)
constraints. A set of nodes, jointly aim to minimize a global
objective function, which is the sum of local convex functions.
The objective and constraint functions are revealed locally to
the nodes, at each time, after taking an action. Naturally,
the constraints cannot be instantaneously satisfied. Therefore,
we reformulate the problem to satisfy these constraints in the
long term. To this end, we propose a distributed primal-dual
mirror descent-based algorithm, in which the primal and dual
updates are carried out locally at all the nodes. This is followed
by sharing and mixing of the primal variables by the local
nodes via communication with the immediate neighbors. To
quantify the performance of the proposed algorithm, we utilize
the challenging, but more realistic metrics of dynamic regret
and fit. Dynamic regret measures the cumulative loss incurred
by the algorithm compared to the best dynamic strategy, while fit
measures the long term cumulative constraint violations. Without
assuming the restrictive Slater’s conditions, we show that the
proposed algorithm achieves sublinear regret and fit under mild,
commonly used assumptions.

I. INTRODUCTION

Many problems of practical interest, including network
resource allocation [1], target tracking [2], network routing [3],
and spam filtering [4] can be framed in an Online Convex Op-
timization (OCO) framework. First introduced in [3], the OCO
framework aims to minimize a time varying convex objective
function which is revealed to the observer in a sequential
manner. In this work, we consider a constrained OCO problem,
with time-varying (potentially adversarial) constraints.

Recently, distributed OCO frameworks have gained popu-
larity as they distribute the computations across multiple nodes
rather than having a central node perform all the operations
[2], [5]-[7]. We consider the constrained OCO problem in a
distributed framework, where the convex objective is assumed
to be decomposed and distributed across multiple commu-
nicating agents. Each agent takes its own action with the
goal of minimizing the dynamically varying global function
while satisfying its individual constraints. Next, we discuss
the related work along with the performance metrics we use
to evaluate the performance of the proposed algorithm.

P. Sharma, and P. K. Varshney are partially supported by the National
Science Foundation (NSF) under grant ENG-1609916. This work was done
when P. Khanduri was at Syracuse University. The research of L. Shen is
partially supported by NSF under grant DMS-1913039.

A. Related Work

Regret: The performance in OCO problems is quantified
in terms of how well the agent does over time, compared
to an offline system. In other words, how much the agent
“regrets” not having the information, which was revealed to it
post-hoc, to begin with. Since regret is cumulative over time,
an algorithm that achieves sub-linear increase in regret with
time, asymptotically achieves zero average loss. It is naturally
desirable to compare against an offline system, the action(s)
of which are “optimal” in some sense.

Static Regret: The initial work on OCO, starting with [3],
almost exclusively focused on static regret Reg?., which uses
an optimal static solution, as the benchmark. In other words,
the fictitious offline adversary w.r.t. which the online system
measures its performance, chooses the best fixed strategy,
assuming it had access to all the information that is revealed
to the online system over time horizon 7.

Reg’ £ ZtT:l fe(xe) — In)zn Zthl fi(x).

Under standard regularity conditions, for general OCO prob-
lems, a tight upper bound of O(v/T) has been shown for
static regret [3], [8]. However, for applications such as online
parameter estimation or tracking moving targets, where the
quantity of interest also evolves over time, comparison with a
static benchmark is not sufficient. This deficiency led to the
development of dynamic regret Regs [9], [10].

Dynamic Regret: Rather than comparing the performance
relative to a fixed optimal strategy, at each time instant, our
fictitious adversary utilizes one-step look-ahead information to
adopt the optimal strategy at the current time instant.

Reg% 2 Z;l fe(xe) — Zthl m}in Je(x).

In this work, we adopt the notion of dynamic regret as the
performance metric. It must, however, be noted that, in the
worst case, it is impossible to achieve sublinear dynamic
regret [3]. For such problems, the growth of dynamic regret is
captured by the regularity measure which measures variations
of the minimizer sequence over time (see C7. in Theorem V.6).

Constraints: The conventional approaches for OCO are
based on projection-based gradient descent-like algorithms.
However, when working with functional inequality constraints



(say, g:+(x) < 0), the projection step in itself can be compu-
tationally intensive. This led to the development of primal-
dual algorithms [11]-[13]. Instead of attempting to satisfy the
constraints at each time instant, the constraints are satisfied
in the long run. In other words, the cumulative accumulation
of instantaneous constraint violations (often simply called
fit) \\[Elegt(xt)]+|| is shown to be sublinear in 7. This
formulation allows constraint violations at some instants to
be taken-care-of by strictly feasible actions at other times.!
Initially the constraints were assumed static across time [11],
[12]. However, subsequent literature [1], [14] generalized the
analysis to handle time-varying inequality constraints.

Distributed OCO Problems: So far we have only discussed
centralized problems. Suppose the OCO system has a network
of agents, and local cost (and constraint) functions are revealed
to each agent over time. The global objective is to minimize
the total cost function, while also satisfying all the constraints.
And each agent can only communicate with agents that are in
its immediate neighborhood. This distributed OCO problem is
more challenging and much less studied in the literature than
the centralized problem.

Distributed OCO problems with static constraints have been
studied in recent years [2], [6], [7]. Again, the literature on
distributed OCO with dynamic regret is much sparser than
for static regret. The authors in [2] have proposed a dynamic
mirror descent based algorithm, where primal update steps
are alternated with local consensus steps. The authors in [6]
have proposed a distributed primal-dual algorithm for the OCO
problem with coupled inequality constraints. The constraint
functions are static over time. This has been generalized for
time-varying coupled constraints in [7], where the authors
have shown sublinearity of regret and fit, both w.r.t. dynamic
and static benchmarks. The authors in [5] have studied time-
varying non-coupled constraints, in a continuous-time setting.
However, the performance is measured using static regret. To
the best of our knowledge, the distributed OCO problem with
a dynamic benchmark, even with static non-coupled inequality
constraints has so far not been considered in the literature.

B. Our Contributions

In this work, we consider a distributed online convex
optimization problem, where both the cost functions and
the time-varying inequality constraints are revealed locally
to the individual nodes. We propose a primal-dual mirror-
descent based algorithm, which alternates between the local
primal and dual update steps and the consensus steps to
mix the local primal variables with the immediate neighbors.
Importantly, we show that the proposed algorithm achieves
sublinear dynamic regret and fit.

Paper Organization: The problem formulation is dis-
cussed in Section II. Section III provides some background
results and the assumptions required for providing theoretical
guarantees. We propose our primal-dual mirror descent based
algorithm in Section 1V, followed by the theoretical results in
Section V.

'Some more recent works [13] have considered the more stringent con-
. . . . T 2
straint violation metric thl ([gt(xt)]+) .

Notations: Vectors are denoted with lowercase bold let-
ters, e.g., X, while matrices are denoted using uppercase bold
letters, e.g., X. The set of positive integers is represented by
Ni. We use R’} to denote the n-dimensional non-negative
orthant. For n € N4, the set {1,...,n} is denoted by [n].
We denote by || - || the Euclidean norm for vectors, and the
induced 2-norm for matrices. O denotes a zero vector, where
the dimension is clear from the context. [x]; denotes the
projection onto R} .

II. PROBLEM FORMULATION

We consider a network of n agents. At each time instant ¢,
each agent ¢ takes an action x; ; € X C R¢, where the set X’ is
fixed across time, across all the nodes. Then, a set of local loss
functions {f; ()}, with f;; : X — R are revealed to the
individual nodes, resulting in individual loss f; +(x; ;) at node
i. Additionally, another set of local functions {g; +(-)}?_, with
git : X — R™ are revealed, corresponding to local constraints
gi.t(xi+) < 0. The network objective is to minimize the global
average of the local cost functions f;(x) = =Y | f; (%),
while also satisfying all the local constraints {g; ;(-)}}_;.

min fu(a) £ fialx) st gie(x) < 0,V € ] (1)

Since the objective is to minimize the global function f;(-),
the nodes need to communicate among themselves. We next
define the metrics used to measure the performance of the
proposed approach.

A. Performance Metrics - Dynamic Regret and Fit

We use the notion of dynamic regret [9], [10] to measure
the performance relative to a time-varying benchmark.

Regh 2 237" 3™ i)=Y filxi), @

where x; ; is the local action of agent ¢ at time ¢, while xj is
the solution of the following problem

X; € argmin {ft(x)|gi,t(x) <o0,Vie[n]}. 3)
XEX

As pointed out earlier, it is impossible to satisfy the time-
varying constraints instantaneously, since they are revealed
post-hoc. As a surrogate, to ensure the local constraints are
satisfied in the long run, we use the distributed extension of
fit as the performance metric. Fit has been used in the context
of both time-invariant [11], as well as time-varying constraints
[1], [15], for single node problems. Our definition is motivated
by the one given in [5] for continuous time problems. It
measures the average accumulation of constraint violations
over time.

N 1 n 1 n T . ]
Fitg £ =377 23" H [thl gq,,t(x],t)]+ H @)

Here, 37, gi.+(x;,¢) is the constraint violation at agent i, if it
adopts the actions of agent j.

Next, we discuss the assumptions and some background re-
quired for the analysis of the proposed OCO framework. Note
that the following assumptions are standard for decentralized
OCO problems [2], [7].



III. BACKGROUND AND ASSUMPTIONS

A. Network

We assume the n agents are connected together via an
undirected graph G = (V,£). V = {1,...,n} denotes the set of
nodes of the graph, each of which represents an agent. £ is the
set of edges between the nodes. (i,j) € £ implies that nodes
1 and j are connected in the graph. The set of edges has an
associated weight matrix W, such that [W];; > 0 if (i,5) € &,
and [W];; = 0 otherwise. The set of neighbors of node ¢ is
defined as \V; 2 {j : [W]i; > 0}. Note that j € \; & i € Nj.

Assumption A: The network is connected. The weight matrix
W is symmetric and doubly stochastic.

B. Local Objective Functions and Constraints

Assumption B: We assume the following conditions on the
set X, the objective and constraint functions.

(B1) The set X C R? is convex and compact. Therefore, there
exists a positive constant d(X’) such that

Ix —y|]| <d(X), Vx,y € X. 5)

(B2) The local node objective and constraint functions
fir(-),0i4(:), Vi € [n],V t € Ny satisfy the following
conditions:

1) fit(-),g:i+(-) are L-Lipschitz continuous on X

2) fi+, gi,+ are convex and uniformly bounded on the set X',
i.e., there exists a constant F' > 0 such that || f; ,(x)|| <
Elgie(x)]| < F.

3) The gradients Vf;;,Vg;; exist and are uniformly
bounded on X, i.e., there exists a constant G' > 0 such
that [V £, (x)]| < G, [Vgoo(x)]| < G.

Next, we briefly discuss Bregman Divergence, which is
crucial to the proposed mirror descent based approach.

C. Bregman Divergence

Suppose we are given a ji- strongly convex function R : X —

R, ie. R(x) > R(y)+(VR(y),x Lllx—yl% Vxy € X.
The Bregman Divergence w.r.t. R 1s de%ined as
Dr(x,y) £ R(x) = R(y) - (x =y, VR(y)) - ©)

We assume the following conditions on Dx(-, ).
Assumption C: (C1) Separate Convexity property [16]: Given
x, {y:}™, € R? and scalars {a;}, on the m-dimensional
probability simplex, the Bregman Divergence satisfies

DR (X7 Z::l aiyi) S ZZI Oé{DR (X, yi) . (7)
(C2) Lipschitz continuity condition [17]: For any x,y,z € X
Dr (x,y) = Dr (2,y)] < K |x — 2. ®

This condition is satisfied if R(-) is Lipschitz continuous on
X. Consequently,

Dr (x,y) < Kd((X
where d((X)) is defined in (5).

), Vx,y €, )

Algorithm 1 Distributed Primal-Dual Mirror Descent

1: Input: Non-increasing sequences {a: > 0}, {8 >
0}, {7 > 0}; Differentiable and strongly-convex R
2: Initialize: X0 =04 € X, fi,O(‘) = 0,gi’0(-) = 0m, Qi0 =
0., Vi€ [n].
3: fort=1to T do
for i =1 ton do
5: Observe Vi i—1(xit—1), Vi, t—1(Xi,t—1)
gz:,z—l(Xz',z—l)
a;,t =Vfit—1(Xit—1) +

N

[Vgit—1 (Xi,tfl)]T Qit—1

7: Vit = argmin,c y {o (x,ait) + Dr(X,Xi,e-1)}

8: bit = [Vgit—1(Xit—1)] (Yi,e — Xi,e—1)
+9gi,t—1(Xie—1)

9: Qi,t = [Qie—1 + Ye(bie — ,BtQi,t—l)]+

10: Broadcast y; ; to out-neighbors j € N;

11: Obtain y;, from in-neighbors j € N;

12: Xit = 251 [Wlijyie

13: end for

14: end for

IV. DISTRIBUTED PRIMAL-DUAL MIRROR DESCENT
BASED ALGORITHM

We next discuss the proposed distributed primal-dual mirror
descent based algorithm for online convex optimization with
time-varying constraints. The pseudo-code is outlined in Al-
gorithm 1. The algorithm runs in parallel at all the nodes. At
the end of time ¢ — 1, x;;_ is the action (primal variable)
at node 7. Following this, the local functions f; ;—1, g;+—1 are
revealed to the agent. The corresponding function values and
gradients are utilized to carry-out the updates in the next time
step t. First, each agent performs the primal update locally
(Step 7). This is followed by the dual update (Step 9). Note
that the projection []; ensures that the dual variable lies in
the non-negative orthant R’". At the end of each time step, an
average consensus step is taken across the nodes, where the
local updated primal variables y; ;1 are received from the
neighbors, to compute the action x; ;.

Remark 1. Note that the primal and dual update steps employ
different step-sizes, oy and -y, respectively. This idea origi-
nated in [12] and leads to flexibility in terms of the trade-off
between the bounds on dynamic regret and fit.

In the next section, we bound the dynamic regret and fit
which result from Algorithm 1, and show them to be sublinear
in the time-horizon 7'

V. DYNAMIC REGRET AND FIT BOUNDS

First, we discuss some intermediate results required to show
the sublinearity of dynamic regret and fit. We have omitted the
proofs due to space limitations. Our analysis is inspired by the
work in [2], [5], [7].



A. Intermediate Results

Lemma V.1. Suppose Assumption B holds. Vi € [n], Vt € Ny,
qi,+ generated by Algorithm 1 satisfy

llqs,c |l < 5 (10)
A B
2 — > z qz t ng t(Xi t)](Yi,t+1 - X’L,t)
Yt+1

G?
+ ( Qt+1 BH—l) Zqu ‘ +Z Cht_qz gz i(xl t)

1)

lyit+1 — Xi,t”

n
T O
dagi i=1

where B, = 2F + Gd(X),

A n
Appr = E .
i=1

and {q;}: are arbitrary vectors in RT.

llaier1 — aill® = (1= ye1Besn)laie — aill’]

Remark 2. The penalty term —pj:q;:—1 in the dual update
(step 9, Algorithm 1) helps in upper bounding the local dual
variables in (10). This idea was initially used in [11] and helps
get rid of the requirement of Slater’s condition. A, ; measures
the regularized drift of the local dual variables. See [9] and [7]
for similar results, respectively in centralized and distributed
(with coupled constraints) contexts.

Next, we sum (11) over ¢ and define g.(-) such that
n T
gelar, - van) 2" @l (30 giilxin)
1 T G2O¢t+1 Bet1 n 2
B [E +Zt—1 ( w + ?)] Z._ fla |

< 72%4—1 +quzt[vglt Xi,t)|(Yi,e41 —

t=1 i=1

+quzt92t Xit +Z4m+l Z||yzz+1 — x|

t=1 i=1 i=1

- Zt ) (% ot 5t+1) Zi:l i — ail®.

Remark 3. The function g.(qi,...,q,) Will be used later in
Lemma V.5 to upper bound both the dynamic regret and fit,
by appropriately choosing {q;};.

Xi,t)

12)

Next, we bound the dynamic regret defined in (2).

Lemma V.2. Suppose Assumption (B2) holds ¥V i € [n], V't €
Ny. For primal iterates {x; .} generated by Algorithm 1

1 n T %
Reg7 < Zizl thl {fin(xin) = fie(xe)}
2L n T -
+- Zizl thl lIxi,e — |-

Remark 4. Compared to (2), the bound in (13) is decomposed
in summation of local errors (first term), which can be bounded
using the convexity of functions, and the consensus error.

13)

First, we upper bound the first term in (13).

Lemma V.3. Suppose Assumptions A-C hold. ¥V i € [n], Vt €

Ny, if {x:,:} is the sequence generated by Algorithm 1. Then,

S — Fia(x)]
nG?

= H Zt 1at+1 Zt 1Zz14a

_Zt 12 qzt[gzt X t)+Vg”(x”)(yiﬁt+l —Xi,t)]

+ Zz 1 [042 Dr( Xl,X, )= arya DR(XT+1’ Xi,TJrl)]

nk T nKd((X))
+ ar42 Zt:l ’

ar42
Next, we upper bound the second term in (13). This is the
consensus error of the primal variables.

f’Lt xzt

lyit+1 — t||

lIxt41 — x¢ || + (14)

Lemma V4. (Network Error): Suppose Assumptions A-C
hold. Then, the local estimates {x;.} generated by Algorithm
1 satisfy

W= (57)

1
i (15)

t—1
lIxi,e — %¢|| < Z Vnoy~
7=0

Vi€ [n], where %, = L 37" | xi 4. 02(W) is the second largest
eigenvalue of W in magnitude.

Remark 5. The network error bound is (15) is independent of
the node index . The dependence on o2(W) captures the
speed with which mixing of iterates happens. The smaller
the value of oo(W), the faster the network error diminishes.
Moreover, the choice of the primal update step sizes {c;} and
the dual update regularization parameters {3;} has a crucial
role to play in bounding the network error. As we shall see
in Theorem V.6, carefully choosing these leads to sublinear
regret and fit.

Next, we combine (12) and Lemma V.3 resulting in two
intermediate bounds, which shall be needed to subsequently
bound the dynamic regret and fit respectively.

Lemma V.5. Suppose Assumptions A-C hold. Then, the se-
quences {x;.,qi} generated by Algorithm 1 satisfy

« nB? T
Zt L Z fi,t(xt)) < 3 L thl Ye+1
nG? nK T . x nKd((X))
+ 12 Zt: Qb1 + ar42 Zt:l th+1 X H T ar42

1
+ g [ Dr(x71,%i,1) —
i=1 Loz QT 42

" 2
2 Zt 1 (’n Yet1 + fBH'l) Zi:l llai,ell”,

and

n T 2

Zi:l [thl git (Xl,t)] N
1 T G2at+1 Bt+1

<4|— Z Xttt
=4 |:2’Yl + Zt:l ( n + = {QTLFT

an r nG? T
T3 Zt L Tl + thl Qi1

1 *

+Zz 1 [a Dr (x1,xi, 1) aris DR(XT+1:Xi,T+1)]

. nKd(X)
+ e > e

" _ 2

T2 Zt 1 (’Yt Yt+1 + ﬂt-H) Zi:1 qu,t - q1|| }

Remark 6. (16) follows by adding (12) and (14), and substi-
tuting q; = 0, V ¢ € [n]. The first, second and fourth terms

f’Lt xzt

DR (X741, Xi, 741 )}

(16)

||Xt+1 x|+

a7



in (16) depend only on the step-size sequences {c, B¢, V¢ }+-
The fifth term is a telescopic sum. The third term depends on
23:1 |Ixiy1 — xi]|, the accumulated dynamic variation of the
comparator sequence {x;}. This quantity is a property of the
system and not in control of the agents. Therefore, by carefully
choosing the step-sizes, and assuming well-behaved variation
of the comparator sequence, we can bound the dynamic regret
(see Theorem V.6).

Remark 7. Similarly, (17) is obtained by adding (12) and (14),
and substituting

{Ztll g'i,t(x'i.t)] N
i+ X G2 auia [+ Brt)
As in (16), the upper bound depends on the step-size sequences
{a, Be,vi }e, and Zthl lIxis1 — %zl

Before presenting out final result, we need to use the
following upper bound to bound the fit (4).

1 no1 n T 2

n Zi:l n Z3‘:1 [thl git (xj’t)] + H
2 n

<2 [ZL Z; lIxi0 — xt||] + % >

This follows from Lipschitz continuity of the constraint func-
tions (Assumption (B2)). Since, we have bounded both the
terms in (19) (the first term in Lemma V.4, and the second
term in Lemma V.5), we are now ready to present our final
result on the sublinearity of both dynamic regret and fit.

(18)

Qi = , Vien]

19)

B. Dynamic Regret and Fit Bounds

Theorem V.6. Suppose Assumptions A-C hold, and {x;.} be
the sequence of local estimates generated by Algorithm 1. We
choose the step sizes

=t B=t" y=t"" VieN, (20)
where, a,b € (0,1) and a > b. Then for any T € N;.
Reg? < RyT™{®1=atb} 4 ogoCs, 1)
2
1 n 1 n T
LAY | )]
S D1T2—b+D2T1+a—bC; +D3T2+2b_2a. (22)

_AFLG V703 (W) By o
Here, R p(l—a)(l—ag(w)le R + 2b + p(l—a) +

2
2[2(d((X)), D =2+ &5 + 1%, D1 = 2D(2F + 2Kd((X)) +
2
DLy S 1 9Kd((X))), D2 = 4KD and D3 = 16L*R* are

u(l—a)
constants independent of T, and

T
Cr 23" i — x|

is the accumulated dynamic variation of the comparator
sequence {x;}.

(23)

Remark 8. The dynamic regret Regg is sublinear as long as
the cumulative consecutive variations of the dynamic compara-
tors C5. is sublinear (o(7T~%) for a > 0). This is the standard
requirement for sublinearity of dynamic regret [2], [7], [9].

Remark 9. A similar argument as above holds for (22). As
long as C7 is sublinear, we have

T
% Z; % Z::l [thl gi,t(xy‘,t)] .

2

=o(T?). (24

DISEECRIN

Note that (22) has [|[3°7_, gi,+(x;,¢)]+ ||, while fit (4) is defined
with [[[327; gi,¢(xj.:)]+||. However, for large enough 7', each
of the constituent terms in (24) are o(T?). Consequently,
127, gie(x5,6)]4112 = o(T?), V 4, € [n]. Therefore, we get

rig =237 2 (S0, stm] [ = o @9

VI. CONCLUSION

In this work, we considered a distributed OCO problem,
with time-varying (potentially adversarial) constraints. We pro-
posed a distributed primal-dual mirror descent based approach,
in which the primal and dual updates are carried out locally at
all the nodes. We utilized the challenging, but more realistic
metric of dynamic regret and fit. Without assuming the more
restrictive Slater’s conditions, we achieved sublinear regret and
fit under mild, commonly used assumptions. To the best of our
knowledge, this is the first work to consider distributed OCO
problem with non-coupled local time-varying constraints, and
achieve sublinear dynamic regret and fit.
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