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Abstract

We prove a series of intimately related results tied to the regularity and geometry
of solutions to the 3D compressible Euler equations. The results concern “gen-
eral” solutions, which can have nontrivial vorticity and entropy. Our geo-analytic
framework exploits and reveals additional virtues of a recent new formulation of the
equations, which decomposed the flow into a geometric “(sound) wave-part” cou-
pled to a “transport-div-curl-part” (transport-part for short), with both parts exhibiting
remarkable properties. Our main result is that the time of existence can be controlled
in terms of the H2" (R3)-norm of the wave-part of the initial data and various Sobolev
and Holder norms of the transport-part of the initial data, the latter comprising the
initial vorticity and entropy. The wave-part regularity assumptions are optimal in the
scale of Sobolev spaces: Lindblad (Math Res Lett 5(5):605-622, 1998) showed that
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shock singularities can instantly form if one only assumes a bound for the H2(R?)-
norm of the wave-part of the initial data. Our proof relies on the assumption that the
transport-part of the initial data is more regular than the wave-part, and we show that
the additional regularity is propagated by the flow, even though the transport-part of
the flow is deeply coupled to the rougher wave-part. To implement our approach,
we derive several results of independent interest: (i) sharp estimates for the acoustic
geometry, which in particular capture how the vorticity and entropy affect the Ricci
curvature of the acoustical metric and therefore, via Raychaudhuri’s equation, influ-
ence the evolution of the geometry of acoustic null hypersurfaces, i.e., sound cones; (ii)
Strichartz estimates for quasilinear sound waves coupled to vorticity and entropy; and
(iii) Schauder estimates for the transport-div-curl-part. Compared to previous works
on low regularity, the main new features of the paper are that the quasilinear PDE
systems under study exhibit multiple speeds of propagation and that elliptic estimates
for various components of the fluid are needed, both to avoid loss of regularity and to
gain space-time integrability.

Keywords Eikonal equation - Eikonal function - Low regularity - Null geometry -
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1 Introduction and overview of the main results

In this paper, we study the compressible Euler equations in three spatial dimensions:

Bo = —o divw, (1a)
Buvi — _Q—léiaaap’ i=1,2,3), (1b)
Bs =0, (Io)

where 0 : R — [0,00), v : R"? — R3, and s : R — R are the fluid’s
density, velocity, and entropy, respectively; p is the fluid’s pressure, which is a given
smooth function of ¢ and s known as the equation of state—whose choice reflects
one’s assumptions about the properties of the fluid—;

B =9, + vd, 2)

is the material derivative vectorfield; X f := X%0, f denotes the derivative of the
scalar function f in the direction of the vectorfield X 5% is the standard Kronecker
delta; and divv := 9,0 is the standard (three-dimensional) Euclidean divergence of
v. Equations (1) are expressed relative to Cartesian coordinates {x*},=0,1,2,3 on R!*3,
where here and throughout, {0y }¢—=0,1,2,3 denotes the corresponding partial derivative
vectorfields, xY := ¢ denotes time, dp := 9, {x“}4=1,2,3 are the spatial coordinates, and
repeated indices are summed over their relevant ranges, with lowercase Greek indices
ranging from O to 3 and lowercase Latin indices from from 1 to 3. We assume that
inf;—p 0 > 0, which allows us to avoid the well-known difficulty that the hyperbolicity
of the equations can degenerate along fluid-vacuum boundaries.

Our main goal in this paper is to prove a series of intimately related results tied to
the regularity and geometry of solutions. We study “general’ solutions,” which can
have non-vanishing vorticity (i.e., curlv # 0) and non-constant entropy. We allow

for any? equation of state> p = p(p, s) with positive sound speed ¢ := ./ %g’s).
The central theme of the paper is that under low regularity assumptions on the initial
data, it is possible to avoid, at least for short times, the formation of shocks, which
are singularities caused by sound wave compression. These issues are fundamental
for the Cauchy problem: for sufficiently rough initial data, ill-posedness occurs [16,
25] due to instantaneous shock formation, which is precipitated by the degeneration
of the acoustic geometry, including the intersection of the acoustic characteristics.
Shocks are of particular interest because they are the only singularities that have
been shown, through constructive methods [3-5,8,26,28], to develop for open sets* of
regular initial data. This motivates our main result: controlling the time of existence

1" As we mentioned above, the solutions that we study have strictly positive density, i.e., we avoid studying
fluid-vacuum boundaries.

2 We assume that the equation of state is sufficiently smooth.
3 practice, instead of the density o, we work with the logarithmic density, defined in Sect. 1.1.

4 We also mention here the spectacular work [30] on the existence of implosion singularities in spherical
symmetry under an adiabatic equation of state p = @Y with y > 1. These are singularities in which the
density and velocity blow up at the center of symmetry in finite time. The methods of [30] suggest that the
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under optimal Sobolev regularity assumptions on the data of “the part of the flow that
blows up” in [5,8,26,28]. See Theorem 1.1 for a heuristic statement of the main result
and Theorem 1.2 for the precise version. The proof relies on a deep analysis of the
geometry of solutions that exploits hidden structures in the equations. We remark that,
in the language of the present paper, the formation of a shock would correspond to the
vanishing of the null lapse b defined in (178), more precisely to the following singular
behavior: |5~} LlLe = 00 To avoid this singular scenario for short times, we prove
the estimates stated in (289).

Theorem 1.1 (Control of the time of classical existence (heuristic version)) The time
of classical existence of a solution to the 3D compressible Euler equations can be
controlled in terms of the H2+(Zo)-norm of the “wave-part” of the data (which is
tied to sound waves, i.e., the part of the solution that is prone to shock formation) and
additional Sobolev and Holder norms of the “transport-part” of the data (which is
tied to the transporting of vorticity and entropy), where $o = {0} x R? is the initial
Cauchy hypersurface.

We now highlight three features of our work:

e Our results are optimal in that H 2" (Z0) cannot be replaced with H 2(Eo). More
precisely, even in the irrotational and isentropic case (i.e., curlv = 0 and s = const,
and thus the transport-part of the solution is trivial), the works [16,25] imply that
ill-posedness occurs’ if one assumes only an H 2(2¢)-bound on v and 0, due to
the instantaneous formation of shocks.

e Our results appear to be the first of their kind for a quasilinear system featuring
multiple characteristic speeds, i.e., sound waves coupled to the transporting of
vorticity and entropy.

e In the irrotational and isentropic case, where the Euler equations reduce to a
quasilinear wave equation for a potential, Theorem 1.1 recovers the low regu-
larity well-posedness results for quasilinear wave equations proved in [41,54].
However, much like in the works [26,28] on shocks, the following theme per-
meates our paper: (especially) at low regularity levels, general compressible
Euler solutions are not “perturbations of waves;” the presence of even the tiniest
amount of vorticity or non-trivial entropy is a “game changer” requiring substantial
new insights, particularly for controlling the acoustic geometry. This is because
the vorticity and entropy are deeply and subtly coupled to the sound waves.

In proving Theorem 1.1, we derive several companion results of independent inter-
est, including:

e Control of the acoustic geometry in the presence of vorticity and entropy. By
“acoustic geometry,” we mean an acoustical eikonal function u, that is, a solution

Footnote 4 continous

implosion singularities might enjoy co-dimension stability without symmetry assumptions, though perhaps
not full stability for an open set of data.

5 The Cartesian coordinate partial derivatives of the solution blow up, but in principle, it could remain
smooth in different coordinates; e.g., Einstein’s equations are well-posed in H 2 [24], even though they are
Hz—ill—posed in wave coordinates [13].
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to the acoustical eikonal equation (g 1eh deudgu = 0, where the acoustical
metric® g = g(o, v, 5) is a Lorentzian metric (see Definition 1.5) depending on the
fluid solution. Acoustical eikonal functions are adapted to the characteristics of
the “(sound) wave-part” of the solution and are fundamentally connected to shock
waves. The regularity properties of u are highly (and tensorially) tied to those of
the fluid, and the intersection of the level sets of # would signify the formation of
a shock.

o Strichartz estimates for (quasilinear) sound waves coupled to vorticity and entropy.

e Schauder estimates for the vorticity and entropy, which solve transport-div-curl
equations.

All aspects of our paper are fundamentally based on a new formulation of the
compressible Euler equations as a system of wave and transport-div-curl equations,
derived in [44] and stated in condensed form in Proposition 1.1. This new formulation
exhibits remarkable geo-analytic properties that are crucial for our results. See also
[27] for the case of a barotropic equation of state and [12] for a similar formulation of
the relativistic Euler equations.

Standard proofs of local well-posedness for the compressible Euler flow are based
on applying only energy estimates and Sobolev embedding to a first-order formulation
of the equations, such as (1). Such proofs require (¢ — 0, v, s) € HE/DT (o), where
0 > 0 is a fixed constant background density. Compared to such standard proofs,
Theorem 1.1 reduces the required Sobolev regularity of the wave-part of the data (i.e.,
the data of ¢ and divv) by’ half of a derivative, but requires additional smoothness on
the transport-part of the data (i.e., of curlv and s); see Theorem 1.2. It is important to
point out that one should not think that this additional smoothness of the transport-part
of the data leads to an oversimplification of the problem. This is because, to the best of
our knowledge, one cannot propagate the extra smoothness using solely equations (1)
(or other equivalent first-order formulation), i.e., without appealing to a non-standard
formulation of the equations such as the one given in Proposition 1.1 and employed
here (see also [10] for another type of propagation of extra smoothness for the Euler
equations that also involves reformulating the equations). Moreover, such propagation
of extra regularity does not hold for general first-order symmetric hyperbolic systems,
which is one of the standard frameworks used in the study of the compressible Euler
equations. Furthermore, even when employing the formulation of Proposition 1.1, the
propagation of extra smoothness for the transport part of the system is very delicate in
that the transport- and wave-parts are coupled in a highly non-trivial way (in particular
through the acoustic geometry). In this regard, a remarkable aspect of our work is:

We propagate the regularity of the “smoother” transport-part of the compressible
Euler flow, even though it is deeply coupled to the rougher wave-part.

To propagate the extra smoothness, we exploit the full nonlinear structure of the
aforementioned new formulation of the equations and carry out a delicate analysis of

6 In practice, when constructing u, we work with a rescaled version of the acoustical metric; see Sect.9.4.

7 Here, when discussing the regularity of v, divv, and curlv, we are implicitly referring to the Hodge
estimate (55).
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the interaction of the wave- and transport- parts of the system as well as the acoustic
geometry.

1.1 New formulation of the Euler equations

In Sect. 1.1.3, we provide the new formulation of the equations that we use in our
analysis. We first introduce some notation and define some additional quantities that
play a role in the new formulation.

Recall that we assume that the pressure p is a given smooth function of ¢ and s,

0 d
and that the speed of sound c is defined by ¢ := 8—p | s, where 8_p | ¢ is the partial
o o

derivative of p with respect to ¢ at fixed s. From now on, we view p and c as smooth
functions of the logarithmic density

0:=1In (g) R SR, 3)

(as opposed to the standard density) and s, where we recall that o > 0Ois a fixed constant
background density. That is, we view p = p(p, s) and ¢ = c(p, s). If f = f(p,s) is
a scalar function, then we use the following notation to denote partial differentiation

0 0
with respect to p and s: f. = % and f.; = E)_f
s

1.1.1 Additional fluid variables

We first recall that the fluid vorticity is the X,-tangent vectorfield w : RT3 & R3,
where ¥, := {(t,x!, x%,x3) € R!*3 | T = t}, with the following Cartesian spatial
components:

' = (curlv) := €*’9,vp, 4)

where throughout, €/? denotes the fully antisymmetric symbol normalized by €!?? =
1.

We will derive estimates for the specific vorticity and entropy gradient, which are
vectorfields featured in the next definition. These variables solve equations with a
favorable structure and thus play a key role in our analysis.

Definition 1.1 (Specific vorticity and entropy gradient) We define the specific vorticity
Q : R — R3 and the entropy gradient S : R'"> — R3 to be the ,-tangent
vectorfields with the following Cartesian components:

i @

_ _ (curlv)
"~ (0/0)  expp

St = 5"9,s. (5)

8 Readers less familiar with Strichartz and acoustic geometry estimates can consult the arXiv version of
this paper [11], wherein we provide a longer introduction with further background.
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The “modified” fluid variables featured in the next definition solve equations with
remarkable structures. In total, such structures allow us to prove that these variables
exhibit a gain in regularity compared to standard estimates. We stress that this gain
of regularity is crucial for showing that the different solution variables have enough
regularity to be compatible with our approach.

Definition 1.2 (Modified fluid variables) We define the Cartesian components of the
3;-tangent vectorfield C and the scalar function D as follows:

= exp(—p)(curlQ)’ + exp(—3p)c 222 §99,01 — exp(—3p)c 22 (3,08,
0 0
(6a)
D := exp(—2p)divS — exp(—2p)S*9,p. (6b)

The following definitions are primarily for notational convenience.

Definition 1.3 (The wave Kariables). We define the wave variables W,, (1t =
0, 1,2, 3, 4), and the array W of wave variables, as follows:

Wy = p, V=0, (i=1,2,3), U, :=s, (7a)
= (Wo, V1, W2, W3, Wy). (7b)

Definition 1.4 (Arrays of Cartesian component functions). We define the following
arrays:

7= oY), Q=@ Q% 0%, S:=S' 82 8%, C:=C, .
®)

Throughout, we use the following notation for Cartesian partial derivative operators:

e 0 denotes a spatial derivative with respect to the Cartesian coordinates.
e 0 = (J;, ) denotes a spacetime derivative with respect to the Cartesian coordi-
nates.

Moreover, dW denotes the array of scalar functions W := (0 ¥1)a=0,1.2.3,1=0, 1,234
(recall that d9 = 9,), and 90 denotes the array of scalar functions IV =
(04%))a=1.2.3.1=0.1,2.3.4. Arrays such as v, v, A, 0%, 32\11 etc., are defined analo-
gously. Moreover, 8<1\IJ denotes the array whose entries are those of o together with
those of dW, and arrays such as 9=! 2, 9=!S, etc., are defined analogously.

1.1.2 Acoustical metric and wave operators

Our analysis of the wave-part of the system is fundamentally tied to the acoustical
metric g and related geometric tensors.
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Definition 1.5 (The acoustical metric and first fundamental form). We define the
acoustical metric g = g(p, v, s) relative to the Cartesian coordinates as follows:

3
gi=—dt ®dt +c Y (dx" —v'dt) ® (dx* — v d1). )

a=1

We define® the first fundamental form g = g(p, v, s) of ¥; and the corresponding
inverse first fundamental form g~ = g~ (p, v, s) relative to the Cartesian coordinates
as follows:

3 3
g = C_Zdea ® dx*, g = 6223,1 ® 04. (10)
a=1 a=1
It is straightforward to check that relative to the Cartesian coordinates, we have

3
g'=-BoB+c*) 9, ® detg = —c°. (11)

a=1

It is also straightforward to verify the following facts, which we will use throughout:
B is g-orthogonal to ¥; and normalized by

g(B,B) = —1. (12)

Remark 1.1 Note that g,5 = galg(\ff) and BY = B"‘(\f/). Note also that (g~1)% = —1.
We will sometimes silently use this basic fact.

The following wave operators arise in our analysis of solutions.

Definition 1.6 (Covariant and reduced wave operators) g denotes the covariant wave
operator of g, which acts on scalar functions ¢ by the coordinate invariant formula

Ugp = ﬁaa («/|detg|(g_1)“ﬁ8ﬂ<p). ﬁg denotes the reduced wave operator of

g, and it acts on scalar functions ¢ by the following formula (relative to Cartesian
coordinates): Ly := (g_l)“ﬁZ}aaﬂ(p.

1.1.3 Statement of the geometric wave-transport formulation of the compressible
Euler equations

We now provide the geometric formulation of the compressible Euler equations that
we use to study the regularity of solutions. Detailed versions of the equations were

9 As we describe in Sect.9.6.2, g can be extended to a ¥;-tangent spacetime tensor. By definition, the
extended version of g agrees with the original version when acting on X;-tangent vectors and vanishes upon
any contraction with B. The extended g satisfies the identity g = ¢ 2 ZZ:I (dx? —vdt) @ (dx® —v4dt).
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derived in [44, Theorem 1], but for our purposes here, it suffices to work with the
schematic version stated in Proposition 1.1.

We will use the following schematic notation, which captures the essential structures
that are relevant for our analysis. Later in the article, we will introduce additional
schematic notation.

e Z(A)[B] denotes any scalar-valued function that is linear in B with coefficients
that are a (possibly nonlinear) function of A, i.e., a term of the form f(A) - B,
where f denotes a generic smooth function that is free to vary from line to line.

e 2(A)[B, C] denotes any scalar-valued function that is quadratic in B and C with
coefficients that are a (possibly nonlinear) function of A, i.e., a term of the form
f(A)-B-C.

Proposition 1.1 [44, The geometric wave-transport formulation of the compress-
ible Euler equations] Smooth solutions to the compressible Euler equations (1a)—(1c)
also verify the following system of equations, where all terms on the RHSs are dis-
played schematically:'°

Wave equations: For ¥ € {p, vl v2, 03, s}, we have

Oy ¥ = Sy =L (W)[C, DI + 2(9)[3¥, V], (13)

Moreover, replacing ljg(@) on LHS (13) with the covariant wave operator Dg(\f,) leads
to a wave equation whose RHS has the same schematic form as RHS (13).

Transport equations: The Cartesian component functions Q2 }i=12,3 and {s }i=12.3
verify the following equations:

BQ! = (U, Q, S)[0V], BS' = .Z(¥, S)[dV]. (14)

Transport div-curl system for the specific vorticity: The scalar function div<2 and the

Cartesian component functions {C' }i=1,2,3 verify the following equations:

divQ = F (i) = L(Q[V], (152)
BC =F i) = 2(0)[8V, 92) + 2(1)[8 %, 351 + 2(F, $)[8V, 8 ¥]
+ LU, Q, S)[0V]. (15b)

Transport div-curl system for the entropy gradient: The scalar function D and the

Cartesian component functions {S'};—1 2.3 verify the following equations:

BD = F(p) := 203V, 35] + 2(F, $)[aV, V] + L (¥, $)[02], (16a)
(curlS)" = 0. (16b)

10 The precise form of the schematic terms in Eq. (13) depends on W, but the details are not important for
our analysis. Similar remarks apply to the remaining equations.
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Remark 1.2 We emphasize that for our main results, it is crucial that generic first
glerivatives of Q and S do not appear on RHS (13); rather, only the special combinations
C and D appear.

Remark 1.3 In obtaining the form of the equations of Proposition 1.1 as a consequence
of the g:quatjons presented in [44], we have used the simple relations Q= Z(W)[ov]
and §' = 8'°9.s = ZL[oV].

Remark 1.4 In the equations of [44], all derivative-quadratic inhomogeneous terms
are null forms. However, using Remark 1.3, we have rewritten, for example, terms of
type S - S, as Q[B\fl, 3\_1'1], where Q[B\_I), alfl] is not necessarily a null form. That is,
the quadratic terms 2(-)[-, -] in Proposition 1.1 are not necessarily null forms. While
the presence of null form structures is crucial for the study of the formation of shocks,
such null form structures are not important for the results of this article.

Proposition 1.1 justifies our use of the terminology “wave-parts” and “transport-
parts” to refer to different parts of the system. In particular, it shows that the Cartesian
velocity components v’ and p satisfy covariant wave equations of the form Ug ', p) =
- -+, and we therefore refer to o and v' as the “wave-part” of the compressible Euler
flow. In contrast, s, ds, and the specific vorticity €2 satisfy transport equations along the
integral curves of the material derivative vectorfield B := 9, 4+ v“d,, and we therefore
refer to these as the “transport-part” of the compressible Euler flow. Moreover, the
variables C and D satisfy transport-div-curl subsystems and, therefore, we also consider
these to be part of the “transport-part” of the flow.

1.2 Statement of the main result concerning control of the time of classical
existence

We now precisely state the theorem on the time of classical existence. We recall that
0 > 0is a fixed constant background density.

Theorem 1.2 (Control of the time of classical existence under low regularity assump-
tions on the wave-part of the data) Consider a smooth'! solution to the compressible
Euler equations in 3D whose initial data obey the following three assumptions'? for
some real numbers'3 2 < N < 5/2,0<a<1,0<Dy.q <00,0< ¢y <, and
0 <cs:

L. llte — o, v, curlv)llgn sy + sl gyv+i(sy) < DN:«, where 0 > 0 is a constant
background density.

1" For convenience, in this paper, we will assume that the solutions are as many times differentiable as
necessary. Thus, “smooth” means “as smooth as necessary for the gualitative arguments (such as integration
by parts) to go through.” However, all of our quantitative estimates depend only on the Sobolev and Holder
norms mentioned in Theorem 1.2.

12 We note that since assumption 3 implies that o[y, is strictly positive, we have [lo — oll N(5) ~
llell gy (o) where p is the logarithmic density defined in (3); this standard estimate can be proved using
the product estimates of Lemma 5.3.

13 Similar results can be proved for N > 5/2 using only energy estimates and Sobolev embedding.
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2. The modified fluid variables C and D from Definition 1.2 (which vanish for irrota-
tional and isentropic solutions), verify the Holder-norm bound ||(C, D) || co.«(x,) <
Dy. .

3. Along %, the data functions are contained in the interior of a compact subset &
of state-space in which 0 > c3 and the speed of sound is bounded from below by
¢y and above by c;.

Then the solution’s time of classical existence T depends only on Dy. and R, i.e.,
T =T(Dy.«, 8) > 0. Moreover, the Sobolev regularity of the data is propagated by
the solution for t € [0, T, as is Holder regularity.'

Remark 1.5 (Regularity needed for Strichartz estimates and differences from the irro-
tational and isentropic case) In Theorem 1.2, we have assumed additional Sobolev
regularity on the transport-part of the flow (specifically curlv and s) compared to the
classical local well-posedness regime (¢ — 0, v, §) € HG/DT (Zp). This is because our
approach to controlling fOT 19(0, v, $)|lL>(x,) dT (Which, as we mention below (17),
is crucial for the proof of Theorem 1.2) relies on deriving Strichartz estimates for the
nonlinear wave equations of Proposition 1.1, which in turn requires the transport-part
of the system to be more regular than the wave part. That is, at the classical local well-
posedness regularity level (which is such that the transport-part does not generically
enjoy any relative gain in regularity), the approach of treating the compressible Euler
equations as a coupled wave-div-curl-transport system fails,"> except in the irrota-
tional and isentropic case [41,54] (where the compressible Euler equations reduce to a
quasilinear wave equation for a potential function). The failure comes from the wave
equation source terms!® C and D on RHS (13), which are the modified fluid variables
from Definition 1.2. For general solutions (i.e., solutions with vorticity and non-trivial
entropy), from the point of view of regularity, C and D scale, in a naive sense, like
92v and 8%s. Therefore, at the classical local well-posedness threshold, C and D are
elements of H(/2" (X). This level of source-term regularity is insufficient for using
a Duhamel argument to justify the desired Strichartz estimate for the nonlinear wave
equation (13); see the proof of Theorem 7.1 for details on how the source terms
enter into the proof of Strichartz estimates. This is one key reason why, throughout
the paper, we assume the transport-part data regularity [|curlv|| g~ (5, < Dn;« and
s Il g v+1 =) = DN« (these inequalities are automatically satisfied in the irrotational
and isentropic!’ case).

14 Proposition 5.1 allows us to propagate all of the Sobolev regularity of the initial data, while (120) allows
us to propagate some Holder regularity for (C, D); the Holder norm that we can control has an exponent
that is controllable in terms of N — 2, but the exponent is possibly smaller than «c. Moreover, the norms
that we can control are uniformly bounded by functions of (D N:oo R) fort € [0, T].

15" At the classical local well-posedness level, one can treat the compressible Euler equations as a first-
order symmetric hyperbolic system and obtain control over fOT 19(0, v, )l oo (x,) dT as a consequence
of Sobolev embedding and symmetric hyperbolic energy estimates. However, symmetric hyperbolic for-
mulations of the equations do not exhibit the intricate structures that we exploit in proving Theorem 1.2.

16 See Definition 1.4 regarding the notation “Cc

17 Technically, s could be a non-zero constant in the isentropic case, leading to ||s|| 2(5) = o0o. However,
this infinite norm would be irrelevant in that s would be constant throughout the evolution and thus trivial
to control.
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Given the estimates we derive in Sects. 2—8, it is known that Theorem 1.2 essentially
follows from the following a priori estimate, where @ f := (9, f, 31 f, 2 f, 93 f), Xt
is the standard flat hypersurface of constant time, and 7 is as in the statement of the
theorem:

T
/0 90, v, L=z dT S 1. (17)

That is, we will not provide the details on how Theorem 1.2 follows from (17) via a
continuity argument and persistence of regularity (see, e.g., [29, Section 2.2, Corol-
lary 2] or [35, Lemma 9.14] for the main ideas behind the proof), but will instead focus
our efforts on justifying the a priori estimate!® (17) for T > 0 sufficiently small (where
the required smallness depends only the norms of the data and the set & mentioned
in Theorem 1.2). More precisely, our approach requires us to prove a stronger result,
namely Theorem 7.1, whose proof in turn is coupled to all of the other ingredients
mentioned above. We also remark that, as we explain in Sects. 7-11, most of the argu-
ments needed for the proof of Theorem 7.1, including a series of technical-but-known
reductions, are supplied by other papers cited in Sects. 7-11. In this paper, our main
focus will be showing how to control the vorticity and entropy in norms that allow to
use the machinery from these other papers. Our proof relies on norms of the vorticity
and entropy on constant-time hypersurfaces and sound cones, and the main novel-
ties of our work are: (i) we can propagate substantial smoothness for the vorticity,
entropy, and modified fluid variables C and D from Definition 1.2, even though these
variables are intimately coupled to the rougher wave part of the solution; (ii) we can
obtain suitable estimates for the acoustic geometry by exploiting the precise struc-
ture of the new formulation of compressible Euler flow provided by Proposition 1.1,
which allows us to show that the main top-order vorticity/entropy-dependent terms
driving the evolution of the acoustic geometry are'® C and D—as opposed to generic
first-order derivatives of €2 and S.

Remark 1.6 (Remarks onlocal well-posedness). Theorem 1.2 provides the main ingre-
dient, namely a priori estimates for smooth solutions, needed for a full proof of local
well-posedness, including existence in the regularity spaces featured in the theorem
and uniqueness in related spaces.

We anticipate that the remaining aspects of a full proof of local well-posedness
could be shown by deriving, using the ideas that we use to prove Theorem 1.2, uniform
estimates for sequences of smooth solutions and their differences. For ideas on how
to proceed, readers can consult [41], in which existence and uniqueness were proved
at low regularity levels for quasilinear wave equations.

We now further describe some ingredients of independent interest that we use in
the proof of Theorem 1.2.

18 Actually, under our framework, the bound fOT 85l Loo (2 dT S 1 will be trivial to justify since we
will prove the stronger result s € L™ ([0, T], HN+! (R3)>.
19 See, for example, the first terms on RHSs (228a) and (228b).
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(I) Control of the acoustic geometry. For quasilinear wave systems with a single
wave operator, there has been remarkable progress on obtaining control of the
acoustic geometry and applications to low regularity local well-posedness, see
[18-24,41,54]. A fundamental new aspect of the present work is that the vorticity
and entropy appear as source terms in the acoustic geometry estimates, signifying
a coupling between the geometry of sound cones and transport phenomena. The
coupling enters in particular through the Ricci curvature of the acoustical met-
ric g (see Definition 1.5), which, by virtue of the compressible Euler equations,
can be expressed in terms of quantities involving the vorticity and entropy; see
Lemma 9.6. We also exploit some remarkable consequences of the compressible
Euler formulation provided by Proposition 1.1, namely, through careful geometric
decompositions we show that high order derivatives of vorticity and entropy occur
only the special combinations C and D; see Proposition9.7. The point is that the
modified fluid variables C and D—as opposed to generic first-order derivatives of
Q and S—enjoy good estimates up to top-order along sound cones, and such esti-
mates turn out to be crucial for obtaining control of the acoustic geometry. This
unexpected-but-critical structure should not be taken for granted since generic
high order derivatives of the vorticity and entropy can be controlled only along
constant-time hypersurfaces.

(ID) Strichartz estimates for the wave-part of solutions. As in the works cited in
I, our derivation of Strichartz estimates is fundamentally based on having suitable
quantitative control of the acoustic geometry; see Sect. 11. Therefore, in view of
the discussion in I, we see that the Strichartz estimates are tied to the delicate
regularity properties of the vorticity and entropy along sound cones.

(IIT) New Schauder estimates for the transport-div-curl equations appearing
in the compressible Euler formulation; see Sect. 8. These provide us with mixed
spacetime estimates for the transport-part that complement the Strichartz esti-
mates, allowing us to control the new (compared to the previously treated case of
irrotational and isentropic solutions) kinds of derivative-quadratic terms that we
encounter in the energy and elliptic estimates.

1.3 Some general remarks and connections with prior work

Much of the remarkable progress that has been obtained for quasilinear hyperbolic
PDEs over the last two decades stems from studying specific systems of geometric
or physical interest (as opposed to “general systems”), where very delicate structural
features of the equations can be exploited in combination with a precise understand-
ing of the regularity of the system’s characteristics. Moreover, a common theme in
these developments is that the special structural and/or regularity features of the sys-
tem become visible only after one rewrites the equations in some novel way, which
might involve a coordinate system adapted to the problem in question and/or a new
formulation of the equations of motion in the spirit of the equations of Proposition 1.1.

A primary example is Einstein’s equations, where the following notable results
were obtained in recent years: the formation of trapped surfaces [6], the stability of
the Kerr Cauchy horizon [9], stable curvature blowup [36,37,43], instability of anti de
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Sitter space [31,32], and the proof [24] of the bounded L? curvature conjecture. For
the compressible Euler equations, we can cite Christodoulou’s breakthrough works
[5,8] on the formation of shocks in the irrotational and isentropic case, and, more
recently, the works [3,4,26,28] on the formation of shocks for solutions with vorticity
and entropy.

Regarding the problem of low regularity, in the case of an irrotational and isentropic
flow, where the compressible Euler equations can be written as a system of quasilinear
wave equations with a single wave speed, our result follows directly from the optimal
low regularity local well-posedness by Smith and Tataru [41] or also from the more
recent physical-space approach to the problem by Wang [54]. This highlights, once
more, that the main novelty of our work is to obtain control of the fluid flow under
optimal regularity assumptions on the wave-part of the system in the presence of
vorticity and entropy.

In order to highlight the difference between our result and what can be obtained
using solely techniques from quasilinear wave equations, we now discuss an approach
that one could take for controlling the wave-part of the system at sub-H ¢/ 2)+(Zo)
regularity levels,2’ one that is simpler than the approach that we use here, but less
powerful in that it would not allow one to reach the H 2Jr(Eo) regularity threshold
for the wave-part. Specifically, one could control the wave-part of the system at a
regularity level below H/2" (3) by invoking the technology of Strichartz estimates
for linear wave equations with rough coefficients, based on Fourier integral parametrix
representations, developed in a series of works by Tataru [45-47], which improved
the foundational work [1] of Bahouri-Chemin; see also the related work [39]. By
“linear,” we mean in particular that the proofs do not exploit any information about
the principal coefficients of the wave operator besides their pre-specified regularity. In
particular, when combined with the bootstrap-type arguments given in Sects. 3-8, the
methods of [45,47] (see in particular [45, Theorem 6] and [47, Theorem 5.1]) would
allow one to prove local well-posedness assuming that (0 — o, v) € H 13/ o (20) and
that the transport-part of the data enjoys the same relative gain in regularity that we
assume for our results (e.g., s € H(19/6)+(EO) and 3%s € CO'0+(20)); see Sect.2.1.3
for further discussion. The work [40] shows that without further information about
the principal coefficients of the wave equation, Tataru’s linear Strichartz estimates
are optimal. Thus, since our results further lower the Sobolev regularity threshold by
1/6, our analysis necessarily exploits the specific nonlinear structure of the equations
of Proposition 1.1. We also refer to the works (some of which we mentioned earlier)
[18,21,24,41,54] for further low regularity results in which the nonlinear structure of
the PDE plays a fundamental role.

1.4 Paper outline

The remainder of the paper is organized as follows:

20 Recall that H5/2F (X) is what is required for standard local well-posedness based on energy estimates
and Sobolev embedding.



Rough sound waves in 3D compressible Euler flow with vorticity Page 17 of 153 41

e In Sect.2, we outline the main ideas of our analysis through the study of a model
problem.

e In Sect.3, we recall some standard constructions from Littlewood—Paley theory,
define the norms that we use until Sect. 9, define the parameters that play a role in
our analysis, state our assumptions on the data, and formulate bootstrap assump-
tions. The two key bootstrap assumptions are Strichartz estimates for the wave-part
of the solution and complementary mixed spacetime estimates for the transport-
part.

e In Sect. 4, we use the bootstrap assumptions to derive preliminary below-top-order
energy and elliptic estimates, which are useful for controlling simple error terms.

e In Sect.5, we use the bootstrap assumptions and the results of Sect.4 to derive
top-order energy and elliptic estimates along constant-time hypersurfaces.

e In Sect.6, we derive energy estimates along acoustic null hypersurfaces, which
complement the estimates from Sect. 5. We need these estimates along null hyper-
surfaces in Sect. 10, when we control the acoustic geometry. Compared to prior
works, the main Contributionﬁof Sect. 6 is the estimate (102), which shows that
the modified fluid variables (C, D) can be controlled in L up to top-order along
acoustic null hypersurfaces, i.e., sound cones; as we described in Sect. 1.2, such
control along sound cones is not available for generic top-order derivatives of the
vorticity and entropy.

e In Sect.7, we prove Theorem 7.1, which yields Strichartz estimates for the wave-
part of the solution, thereby improving the first key bootstrap assumption and
justifying the estimate (17). The proof of Theorem 7.1 is conditional on Theo-
rem 7.2, whose proof in turn relies on the estimates for the acoustic geometry that
we derive in Sect. 10.

e In Sect.8, we use Schauder estimates to derive mixed spacetime estimates for
the transport-part of the solution, thereby improving the second key bootstrap
assumption. At this point in the paper, to close the bootstrap argument and complete
the proof of Theorem 1.2, it only remains for us to prove Theorem 7.2.

e In Sect.9, in service of proving Theorem 7.2, we construct the acoustic geometry
on spacetime slabs corresponding to a partition of the bootstrap time interval; see
Sect.7.2 for the construction of the partition. The acoustic geometry is centered
around an acoustical eikonal function. We also define corresponding geometric
norms.

e In Sect. 10, we derive estimates for the acoustic geometry. The main result is
Proposition 10.1.

e In Sect. 11, we review some results derived in [54], which in total show that the
results of Sect. 10 imply Theorem 7.2. This closes the bootstrap argument, justifies
the estimate (17), and completes the proof of Theorem 1.2.

Note added. After the completion of this manuscript, the work [55] became available,
in which the author considers the compressible Euler equations under a barotropic
equation of state p = p(p) (and thus the variable s is absent from the analysis). In
this case, the author was able to lower the regularity of curlv|x,, compared to Theorem
1.2 by eliminating the Holder-norm bound assumption and showing that it suffices to

assume curlv € HN,(ZO), where 2 < N’ < (NT*Z)2 Moreover, in the wake of [55],
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there also appeared [56], where a 2D local well-posedness result is established in the
barotropic case such that the density, velocity, and specific vorticity are in A2, and
[57], which provides an alternative proof of the results of [55].

2 A model problem
In this section, we discuss a model problem that serves as a blueprint for the rest of the
paper. The purpose of this section is to provide insight into the analysis and is entirely

independent of the rest of the paper. Readers not interested in a schematic guide to the
main ideas of the paper can skip this section.

2.1 Overview of the analysis via a model problem

In this subsection, we exhibit some of the main ideas behind our analysis by discussing
a model problem.

2.1.1 Statement of the model system

We will study the following schematically depicted model system in the scalar
unknown W and the ¥;-tangent unknown vectorfield W on R!*3:

CguyW = curl W +8W - 3, (18a)
divi = 9, (18b)
(8 + W curl W = dW - 9W. (18¢)

We intend for the system (18a)—(18c) to be a caricature of the equations of Proposi-
tion1.1. Above, g.g (W) are given Cartesian component functions (assumed to depend
smoothly on W) of the Lorentzian metric g, and |jg(\y) = (g Hep 0y 0g. W may be
thought of as a model for the wave-part of the compressible Euler equations, while
W may be thought of as a model for the transport-part (e.g., the vorticity and entropy
gradient), with d; + W d; a model quasilinear transport operator (the fact that it involves
only d; and 9; is not important). That is, from the point of view of regularity, we can
think that W ~ (p, v) and W ~ (curlv, ds). We intend for the reader to interpret the
inhomogeneous terms schematically (especially, since, for example, LHS (18a) is a
scalar while the first term on RHS (18a) appears to be a vector).

We will outline how to control the time of existence for solutions to the model
system (18a)—(18c) assuming the data-bound

”(\IJ, 8I\IJ)||HN(20)><HN71(20) + ||8W||HN—1(20) < 00,

where 2 < N < 5/2 is a fixed real number. In Sect.2.1.4, we will find that we need
to make the further Holder regularity assumption |[curl W||co.« (5, < oo for some
o« > 0, much like we did in Theorem 1.2. In the rest of Sect.2.1, “data” schematically
denotes any quantity depending on ||(W, d; W) ||HN(20)XHN71():O) + ||8W||HN71(EO).
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2.1.2 A priori energy and elliptic estimates along 2; for the model system

The most fundamental step in controlling the time of existence is to derive a pri-
ori energy and elliptic estimates along ;. In the context of the compressible Euler
equations, we provide the analog of this step in Proposition5.1 below. To obtain the
desired a priori estimate for the model system, we first note that equation (18b) and
the standard elliptic Hodge estimate

[OWll gnv-1(5,y S NdivW Il ga-i s,y + llcutl Wil gv-i (5, (19)
together imply the following bound:
NOW Il gnv—1(x,y S OV grn-1(x,) + lcutl W[ gr-1 (). (20)
Next, by combining standard estimates for the wave equation (18a), based on energy
estimates and the Littlewood—Paley calculus, we deduce (where we ignore all numer-
ical constants “C”) that
(W, 3

2
lIJ)”HN():,)XHN_I(Z,)

t
< data+ /0 {1+ 109 o {109, 09 vy + et Wy
2D

Similarly, with the help of the Littlewood—Paley calculus, we can derive energy esti-
mates for the transport equation (18c) and use (20) to control the top-order derivatives
of the factor dW on RHS (18c¢), thereby obtaining the following bound:
2
”Curl W || HN-1 (2[)
t
< data—i-/ {1+ 10V Lo + 10W Loz }
0
X { ” (\Ila atqj) ||2HN(ZT)><HN_I (Z0) + ”Cuer”ilN—l (Z+) } dT' (22)

Adding (21) and (22), applying Gronwall’s inequality, and finally again using (20),
we obtain (again ignoring all numerical constants “C”’) the following estimate:

||(\I/, al\y)||HN(2;)XHN71(Et) + ”8W”HN’1(E;)
< data x exp (14 109l 1o puss + 10W oz ) - @3)
Thus, (23) would immediately imply the desired a priori estimate if we were able to
simultaneously show that for 7 > 0 sufficiently small, we have the following key
bounds for some & > 0 and 61 > O with0 < 6] < «:

10Vl 20,7720 1OW 20,1y S T°data + T5||cur1W||Co,sl(20). (24)

The rest of the discussion in Sect.2.1 concerns the proof of (24).
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2.1.3 Strichartz estimates and acoustic geometry for the model system

We now discuss how to establish (24) for the term (||| 120,77 L using Strichartz
estimates. In practice, this can be accomplished by first making a bootstrap assumption
that is weaker than (24), then combining it with (23) to deduce the energy bound

|| (\IJ, a[q/) ”HN(Et)XHN*l (Z0) =+ ”aW”HN—l (Z0) < data,
and then finally proving Strichartz estimates that imply the “improved” estimate

o o
”an ||L2([0)T])L§()C + ”aW”LZ([O,T])LgO S T°data+ T ||cuer||C0,zs, (Z0)"
Thus, to illustrate the main ideas, we will assume the energy bound and sketch how to
prove [0Vl 120,77 L < 1, where, for convenience, we will ignore the small power

of T® (which in reality is important for gaining smallness in various estimates) and
also ignore term “data” by considering it to be < 1. At this point in our discussion
of the model system, we will also ignore the following important technical point: to
close some estimates, one must achieve control of not only [[W|| 120,77 L but also

26
Sy VPOV, (g e and 13D 5 o
Littlewood—Paley projections and §; > Oisa small Holder exponent; see Theorem 7.1
and Corollary 7.1 for the details. We will elaborate on the importance of controlling
||3\IJ||L2( 0.7 in Sect.2.1.4, when we explain how to control |0 W{| 2. THL®-

As we describe starting two paragraphs below, our approach to deriving the Strichartz
estimates is fundamentally connected to the geometry of g-null hypersurfaces, i.e.,
hypersurfaces whose normals V' verify g(V, V) = 0, and in order to control the
geometry of null hypersurfaces, we use arguments that rely on having a bound for
S a VNPT 7y

The basic idea behmd obtaining the desired bound for [[dW|[ (0,77 L is to estab-
lish an appropriate Strichartz estimate for the wave equation (18a). The analog estimate
in the context of the standard flat linear wave equation _3t2€0 + Ap =0 on R!*3 is
the well-known Strichartz estimate ”a(p”L%([O,l])Lﬁo < 8¢l gi+e(x,)» valid for any
& > 0. As we mentioned in Sect. 1.3, the important work of Tataru [45,47] (see in
particular [45, Theorem 6] and [47, Theorem 5.1]), which provided Strichartz esti-
mates for linear wave equations with rough coefficients, would in fact yield the desired
bound 18|l 20, 7)) 5 < 1 under the stronger assumption N > 13/6, provided one
can simultaneously bound RHS (18a) in || - ||Loo([0YTDH){V—1, i.e, provided one can
control |curl W + oW - 3\If||Loo([O’T])H)N71. For the model system, there is no diffi-
culty in extending the estimate (23) to the case N > 13/6. Thus, assuming that one
can also control the term |I8W|IL2([0,,])L30 on RHS (23), we obtain (using Tataru’s
framework) the desired bound [|dW || ;20,77 L < 1 under this stronger assumption
N > 13/6. We stress that in the case of the compressible Euler equations, controlling
the analog of the term ||CUer||LOO([0’T])H)£V—l is possible (see Proposition5.1), but
only by exploiting the special structures of the equations of Proposition 1.1. More-
over, it is not possible to achieve such control at the classical local well-posedness
level (0 — 0, v, ) € H(5/2)+(20); see Remark 1.5.

0.5, , where P, are standard dyadic
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It is known [40] that without further information about the principal coefficients
(g~")*P of the wave operator @g, Tataru’s linear Strichartz estimates are optimal. Thus,
to achieve the goal of lowering the Sobolev regularity threshold to N > 2, we must
exploit the specific structure of the system (18a)—(18c). Over the last two decades, a
robust framework for achieving this goal for quasilinear wave systems with a single
wave speed®' has emerged, starting with [18], progressing through the results [19—
23,41,54], and, in the case of the Einstein-vacuum equations, culminating in the proof
[24] of the bounded L? curvature conjecture. As we will further explain below, the
most significant difference between the case of single-speed quasilinear wave systems
and the model system (18a)—(18c) is the presence of the terms on RHSs (18a)—(18c)
that depend on one derivative of W. Despite the presence of these terms, our approach
here allows us to initiate the derivation of Strichartz estimates for the model system
starting from the same crucial ingredient found in the works cited above on single-
speed quasilinear wave systems: an outgoing acoustical eikonal function u, which is
a solution to the following eikonal equation (Footnote 6 also applies here, i.e., as we
describe in Sect.9.4, when constructing u#, we work with a rescaled version of the
acoustical metric):

(g P ogudgu =0 (25)

such that d;u > 0.

A glaring point s that the regularity properties of u are tied to those of the solution of
(182)—(18c) through the dependence of the coefficients (g~ )% of the eikonal equation
(25) on W. Thus, if one studies solutions of (18a)—(18c) using arguments that rely on
estimates for # and its derivatives, one must carefully confirm that the regularity of u
needed for the arguments is compatible with that of W. This serious technical issue,
which we further discuss below, was first handled by Christodoulou—Klainerman [7]
in their proof of the stability of Minkowski spacetime as a solution to the Einstein—
vacuum equations. In our study of compressible Euler flow, we dedicate the entirety
of Sect.9 towards the construction of an appropriate u (where the role of g is played
by the acoustical metric of Definition 1.5) and related geometric quantities, while in
Sect. 10, we derive the difficult, tensorial regularity properties of these quantities.

The level sets of u, denoted by C,,, are g-null hypersurfaces, and in this paper, we will
construct  so that the C,, are outgoing sound cones; see Fig. 2. Through a long series of
reductions, originating in [46,47] and with further insights provided by [17,18,41,54],
it is known that the desired Strichartz estimate |0 W || 20,77z < 1 for solutions to
equation (18a) can be proved for N > 2, thanks in part to the availability of the bound
(23), provided one can derive complementary, highly tensorial, Sobolev estimates for
the derivatives of u up to top-order, both along ¥, and along null hypersurfaces C,,.
We refer to this task as “controlling the acoustic geometry,” and our above remarks
make clear that the regularity of the acoustic geometry depends on that of W and W,
see the discussion surrounding equation (26) for further clarification of this point.
In Sect. 11, we review the main ideas behind deriving the Strichartz estimate as a

21 By this, we mean wave equation systems featuring only one Lorentzian metric.
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Fig.1 The null frame

consequence of control of the acoustic geometry. The basic chain of logic?? is: control
over the acoustic geometry == an estimate for an L?-type (weighted) conformal
energy for solutions to Lgp = 0 == dispersive decay estimates for ¢ = (viaa
TT* argument) linear Strichartz estimates = (by Duhamel’s principle, the energy
estimates, and the Schauder estimates for the transport-part of the system discussed
in Sect. 2.1.4) Strichartz estimates for the quasilinear wave equation (13).

The task of controlling the acoustic geometry is quite involved and occupies the
second half of the paper; see Proposition 10.1 for a lengthy list of estimates that we
use to control the acoustic geometry. In the case of quasilinear wave equations, many
of the ideas for how to control u originated in [7,18-23,54]. For the model system,
the main new difficulty is the presence of the term curl W on the right-hand side of the
wave equation (18a), whose regularity properties strongly influence those of u; below
we will elaborate on this issue. In this subsubsection, we cannot hope to discuss all
of the technical difficulties that arise when controlling u, so we will mainly highlight
a few key points that are new compared to earlier works. Readers can consult the
introduction to [54] for an overview of many of the technical difficulties that arise in
the case of quasilinear wave equations and for how they can be overcome. At the end
of this subsubsection, we will mention some of these difficulties since they occur in
the present work as well.

As is standard in the theory of wave equations, our analysis relies on a g-null
frame {L, L, e1, e2} adapted to u, where the vectorfield L is rescaled version of the
gradient vectorfield of u, normalized by Lt = 1; see (184). Thus, by (25), L is null
(ie., g(L, L) = 0), tangent to C,, and orthogonal to the spheres S; , := C, N ;.
Moreover, L is null, transversal to C,, orthogonal to S; ,,, and normalized by Lt = 1,
and {es}a=12 are a g-orthonormal frame tangent to S; ,; see Fig.1, and see Sect.9
for details on the construction of the objects depicted in the figure.

Controlling the acoustic geometry means, essentially, deriving estimates for vari-
ous connection coefficients>® of the null frame and their derivatives. There are many

22 In our detailed proof, we partition [0, 7] into appropriate subintervals and derive estimates on each
subinterval; see Sect.7.2. This strategy is part of the series of reductions mentioned above. Here we are
ignoring this technical aspect of the proof.

23 These are, roughly, first g-covariant derivatives of the frame in the directions of the frame.
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quantities that we need to estimate, but for brevity, in our discussion of the model
problem, we will discuss only one of them. Specifically, of primary importance for
applications to Strichartz estimates is the null mean curvature of the level sets of u
(i.e., of sound cones in the context of compressible Euler flow), denoted by tryx and
defined by tryx = 2124:1 g(D., L, es), with D the Levi-Civita connection of g. Ana-
lytically, trgx corresponds to a special combination of up-to-second-order derivatives
of u with coefficients that depend, relative to Cartesian coordinates, on the up-to-
first-order derivatives of g. To bound tryx, one exploits that it verifies Raychaudhuri’s
equation (see (212c) and (228a)), which is an evolution equation with source terms
depending on the Ricci curvature of g. A careful decomposition of the Ricci curvature
(see Lemma 9.6) allows one to express Raychaudhuri’s equation in the form?>*

1 .
L(trgx +Tp) = EL“LﬂDg(gaﬂ(\I')) +oen, (26)

whereI'; := LTy, andT"® ~ (g~1)2.8g s a contracted Cartesian Christoffel symbol
of g. Here we emphasize that the regularity properties of tryx + I', are tied to those
of the source terms in the wave equation (18a), since the first term on RHS (26) can
be expressed via (18a) and the chain rule. It turns out that in order to obtain enough
control of the acoustic geometry to prove the Strichartz estimates, one needs to control,
among other terms, the C,-tangential derivatives, namely L and ¥, of tryx in various
norms along C,, where ¥ is the Levi-Civita connection of the Riemannian metric g
induced on the spheres S; , by g; see, for example, the estimate (288d). This suggests,
in view of Eq. (18a) and the presence of the product %L"‘ LA ﬁg (gap(¥)) on RHS (26),
that we in particular have to control |[¥eurl W2, . In fact, one needs control of a
slightly higher Lebesgue exponent than 2 in the angular variables to close the proof,
though we will downplay this technical issue in our simplified discussion here. For
the compressible Euler equations, see Proposition 6.1 for the precise estimates that we
need for the fluid variables along null hypersurfaces. We emphasize that in reality, the
needed control of ¥curl W is at the top-order level (i.e., it relies on the assumption
[OW || gv—1 (o) < 00). To achieve the desired control, we use two crucial structural
features of the equations.

1. curl W satisfies the transport equation (18c). Therefore, using standard energy
estimates for transport equations and the energy estimate (23) along X, (which can
be used to obtain spacetime control of the source terms in the transport equation),
one can control, roughly,” curl W in || - | HN-1(1) along any hypersurface H that is
transversal to the transport operator d; + Wa; on LHS (18c). Note that the needed
estimate along 'H would not be available if, instead of curl W on RHS (18a), we
had a generic spatial derivative dW; we can control generic top-order spatial
derivatives of W in L? only along the hypersurfaces ¥, since elliptic Hodge
estimates of type (19) hold only along such hypersurfaces. In the compressible

24 Some of the terms denoted by “--” on RHS (26) are important from the point of view of their L*°-size;
we are ignoring those terms in the present discussion because we are focusing on issues tied to regularity.

25 The precise norm that we need to control along null hypersurfaces is the one on LHS (102), which
involves Littlewood—Paley projections adapted to X;.
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Euler equations, this miraculous structural feature is manifested by the fact that
the principal transport terms on RHS (13) are precisely C and D, which satisfy
the transport equations (15b) and (1 §a). We again refer to Proposition 6.1 for the
precise estimates that we derive for C and D along null hypersurfaces.

To control the acoustic geometry, one must consider the case H := C,, and thus
one needs to know that 9, + W d; is transversal to the sound cones C,,. For the model
system, the transversality could be guaranteed only by making assumptions on the
structure of the component functions (g_1 2B (W), However, for the compressible
Euler equations, the needed transversality is guaranteed by a crucial geometric
fact: the relevant transport vectorfield operator is B, and it enjoys the timelike
property g(B, B) = —1 (see (12)), thus ensuring that B is transversal to any g-null
hypersurface.

We close this subsubsection by highlighting a few key technical issues that were

also present in [54] and related works.

e To close our bootstrap argument, we find it convenient to partition the bootstrap

interval and to work with a rescaled version of the solution adapted to the partition.
We define the partitioning in Sect.7.2 and the rescaling in Sect.9.1. Moreover,
for each partition and corresponding rescaled solution, we construct an eikonal
function adapted to that specific partition; we will ignore this technical issue for
the rest of this subsubsection.

It turns out that the connection coefficients of the null frame do not satisfy PDEs
that allow us to derive the desired estimates. Thus, one must instead work with
a collection of “modified” connection coefficients that satisfy better PDEs, for
which we can derive the desired estimates. This is already apparent from equation
(26), which suggests that tryx + I' is the “correct” quantity to study from the
point of view of PDE analysis. We define these modified quantities in Sect.9.7.
To close the proof, we need to control [[tryX +T' 1 || 9o via the transport equation

(26); see, for example, the estimate?® (288a). However, given the low regularity,
it is not automatic that we have quantitative control of the “data-term” |[|trgx +
I 1|15 (x,), as such control depends on the initial condition for u (which we are
free to choose). In Proposition9.8, we recall a result of [54], which shows that
there exists a foliation of X that can be used to define an initial condition for u
with many good properties, leading in particular to the desired quantitative control
of [[trgX + T LllLoo(5y)-

In the proof of the conformal energy estimate from [54] (the results of which
we quote in our proof of the Strichartz estimate), there is a technical part of the
argument in which one needs to work with a conformally rescaled metric ¢2°g,
constructed such that its null second fundamental form has a trace equal to the
quantity trgx + I’y highlighted above; we refer readers to [54, Section 1.4.1]
for further discussion on this issue. In Sect.9.7.1, we construct the conformally
rescaled metric. To close the conformal energy estimate, we must derive estimates
for various geometric derivatives of o up to second order; see Proposition 10.1.

26 The actual estimates that we need involve 7 weights, where 7 is defined in (176). We also note that in
the bulk of the article, we denote trgx + 'y by trg)N(; see (204b).
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2.1.4 Mixed spacetime estimates for the transport variable

We now discuss how to establish (24) for the term [0W || 210,77 Lo On the left-hand
side. As in Sect.2.1.3, we will assume the energy bound

1OV, 0 W) | g sy v -1z T IOW gv-1 (5, S 1

we will ignore the small power of 7%, and, imagining that we are carrying out a boot-
strap argument, we will assume the results of that subsubsection, i.e., we assume the
bound ||3\I/ ”Lz([O,T])LfO < 1 The main idea Of Controlling ||aW||L2([0’T])L$o iS to in

~

fact control, for some small constant 6; > 0, the stronger norm?’ oW 220,77

by combining estimates for the transport-div-curl system (18b)—(18c) with the follow-
ing standard elliptic Schauder-type estimate (see Lemma 8.2):

||8W||C(),51(R3) S ||diVW||C()51(R3) + ||Cur1W||CO,51(R3) + ||8W”L2(R3)' (27)

It is well-known that (27) is false when the space C%®1(R3) is replaced (on both
sides) with L (R3); this explains our reliance on Holder norms. To control RHS (27),
we will use the following important fact, mentioned already in the first paragraph of
Sect.2.1.3: the Strichartz estimate |3V || 120,77y < 1 can be slightly strengthened,

~

under the scope of our approach, to |0V || 0.5, < 1; see Corollary7.1. To

L2([0,T)Cy
proceed, we take the norm || - || 0.5, (5, of the transport equation (18¢) and integrate
in time, use (27) to bound the source term factor 9W on RHS (18c), use (18b) to
substitute for the ﬁrst term on RHS (27), and use the strengthened Strichartz estimate

oW 2aorpctt S < 1 (which in particular, as the arguments of Lemma 8.3 show,

yields control of the integral curves of the transport operator d; + Wd; on LHS (18c))
to obtain the following estimate (see Sect. 8.5 for the details):

t
||Cuer||C0»5l(E,) < ||cur1W||Co,5l(20) —I—data—l—/o ||3\IJ||C0,51(ZT) ||Cuer”C°~51(2T) dr.
(28)

To control the first term on RHS (28), we need to assume that [[dW || co.a(5,) < 00,
for some « > 0 (and then 81 > 0 is chosen to be < «). There seems to be no way to
avoid this assumption by the method we are using since transport equation solutions
do not gain regularity or satisfy Strichartz estimates (which are tied to dispersion).

From (28), Gronwall’s inequality, and the bound [|d W || L2q0.7pc’ S < 1, we find that

lcurl Wil cos (5, < curl W cos, (5, + data.

27 One might be tempted to avoid using the Holder-based norms ||- HL2([0 T])CO 5, andtoinstead use elliptic

theory to obtain control of ”3W”L2([0 THBMO, . The difficulty is that control of ||3W\|L2([0 THBMO, is

insufficient for controlling the nonlinear term dW - 9W on RHS (18c) in the norm || - || L2 which

(0, 7THHY"
in turn would obstruct closure of the energy estimates.
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From this bound, (27), Eq. (18b) (which we again use to substitute for the first term
on RHS (27)), and the assumed energy bound, we find that

||3W||CO-51(21) < ||Cur1W||C0~51(zo) + data + ||3\II||C0,51(21).

Finally, squaring this estimate, integrating in time, and again using the bound

< i i <

||¢')\IJ||L2([07T])C<X),z31 < 1, we obtain the desired bound ||8W||L2([0’T])C8.51 S
lcurl Wl o.s, =) T data.

We have therefore sketched how to establish (24) which, in view of (23), justi-

fies (for ¢ sufficiently small) the fundamental estimate || (\W, 0;¥)|| HN(z)xHV-1(z,) T

||8W||HN—I(21) < data.

3 Littlewood-Paley projections, standard norms, parameters,
assumptions on the initial data, bootstrap assumptions, and
notation regarding constants

In this section, we define the standard Littlewood—Paley projections, define various
norms and parameters that we use in our analysis, state our assumption on the initial
data, formulate the bootstrap assumptions that we use in proving Theorem 1.2, and
state our conventions for constants C.

3.1 Littlewood-Paley projections

We fix a smooth function 11 : R? — [0, 1] supported on the frequency-space annulus
(£ eR?| 1/2 < |&€| < 2} such that for & # 0, we have Zkezn(Zké) = 1. For dyadic
frequencies A = 2% with k € Z, we define the standard Littlewood—Paley projection
P>, which acts on scalar functions F : R3 — C, as follows:

PAF(x) :=

/ FENNT ) F(E) de. 29)

2n)? Jps

where I:"(é) = fR3 e~ F(x) dx (with dx := dx'dx%dx?) is the Fourier transform
of F.If F is an array-valued function, then P) F denotes the array of projections of its
components. If I C 27 is an interval of dyadic frequencies, then P; F := " _, Py F,
and P<p F := P_oo A\ .

If F is a function on X;, then Py F (¢, x) := P»G(x), where G (x) := F (¢, x), and
similarly for P; F(t, x) and P<) F (¢, x).

vel

3.2 Norms and seminorms

In this subsection, we define some standard norms and seminorms that we will use
in the first part of the paper, before we control the acoustic geometry. To control the
acoustic geometry, we will use additional norms, defined in Sect.9.10.
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For scalar- or array-valued functions F and 1 < ¢ < oo, [|[Fllres,) =

{fEt |F(t,x)|? dx]l/q and || F|| Lo (x,) := ess sup, .p3| F (7, x)| are standard Lebesgue
norms of F, where we recall that ¥; is the standard constant-time slice. Lebesgue
norms on subsets D C X, are defined in an analogous fashion, e.g., if D = {¢t} x D/,
then || Fllza(py := { [y |F (1, x)|4 dx}'". Similarly, if {Ax}ycon is a dyadic-indexed
sequence of real numbers and 1 < ¢ < oo, then [|Av ||, = {XV= Aﬁ’,}l/q.

We will rely on the following family of seminorms, parameterized by real numbers
M (where we will have M > 0 in our applications below):

IAMFll 25, —\/szMuP VF 225 (30)

v>2

where on RHS (30) and throughout, sums involving Littlewood—Paley projections are
understood to be dyadic sums.

For real numbers M > 0, we define the following standard Sobolev norm for
functions F on X;:

2 M 2 172
1Pz, = {IP< F Iy + 1AM FIa g ] (31)

Throughout, we will rely on the standard fact that when M is an integer, the norm
defined in (31) is equivalent to ZI Tl<M 197 Fll12(x,), where I are spatial derivative
multi-indices.

If F is a function defined on a subset D C R3 and [3 > 0, then we define the Holder
norm || - [[co.p py of F as follows:

[F(x) — F(y)]
I Fllco.epy == I1F L) + sup L AT £

(32)
x,yeD,0<|x—y]| |)C - y|(3

Similarly, if F is a function defined on a subset D C X; of the form D = {r} x D/,
then || Fllco.epy := G llco.spy, where G(x) := F(z, x).

We will also use the following mixed norms for functions F defined on R! +3, where
1 <gq) <00,1 <gp <o00,and I is an interval of time:
@ 1/q1
IEN oy (pyp 2 = {./1 1F 9 (50 dT} o Ml oy 02 = ess suprer I FllLo (52,
(33a)

1/q1
IF1 4 (P = {/ ||F||Co B(sq) } ) ”F”LOO(I)CS’ﬁ i=ess supre | Fllcop s,y
(33b)
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Similarly, if {Fa},con is a dyadic-indexed sequence of functions F on %, then

1/2
IFvlle ey =3 2 I1Fv T, - (34)

v>1

3.3 Choice of parameters

In this subsection, we introduce the parameters that will play a role in our analysis. We
recall that2 < N < 5/2 and 0 < « < 1 denote given real numbers corresponding,
respectively, to the assumed Sobolev regularity of the data and the assumed Holder
regularity of the transport part of the data; see (38a)—(38b). We then choose positive
numbers ¢, €g, 8¢, 8, and 8 that satisfy the following conditions:

2 <q < o0, (35a)
0cep=N—2_1 (35b)
< €p = < —
0 10 10
108
6 = i { 27 _} ) 35
0 = min | €; 10 (35¢)
1 1
0<di==-—— < e, (35d)
2 q
1 :=min{N — 2 —4eg — (1 — 8¢p), o} > 859 > 0. (35¢)

More precisely, we consider N, «, €g, and ¢ to be fixed throughout the paper, while
in some of our arguments below, we will treat ¢, 0, and 6 as parameters, where g > 2
will need to be chosen to be sufficiently close to 2 (i.e., 8 > 0 will need to be chosen
to be sufficiently small).

3.4 Assumptions on the initial data

The following definition captures the subset of solution space in which the compress-
ible Euler equations are hyperbolic in a non-degenerate sense.

Definition 3.1 (Regime of hyperbolicity). We define K as follows, where c(p, s) is the
speed of sound:

lC;:{(p,s,ﬁ,Ez,E)eRxRxR3xR3xR3|0<c(p,s)<oo]. (36)
We set

o 3 S, > - -
(f)a*%yl_}aQ’SaCaD) = (p’s9679755C7ID)|20' (37)
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With N and « as in Sect. 3.3, we assume that
181l v gy + 101 v () < 00, (38a)
120 g gy + 1811 gn+1(5y) + (€00 (5g) + 1Dl 0.5 < 0©- (38b)
(38a) corresponds to “rough” regularity assumptions on the wave-part of the data,
while (38b) corresponds to regularity assumptions on the transport-part of the data.

Let intU denote the interior of the set U. We assume that there are compact subsets
R and K of intXC such that

(5. 8.5.Q. S[R3 Cintk C & C intk C & C intK. (39)

3.5 Bootstrap assumptions
For the rest of the article, 0 < T, < 1 denotes a “bootstrap time” that we will choose
to be sufficiently small in a manner that depends only on the quantities introduced in

Sect. 3.4. We assume that (p, s, v, 52 3’) is a smooth (see Footnote 11) solution to the
equations of Proposition 1.1 on the “bootstrap slab” [0, T}.] x R3.

3.5.1 Bootstrap assumptions tied to /C.

Let K be the subset from Sect. 3.4. We assume that
(p. 5. 7.2, $)([0, T] x R?) C & (40)

In Corollary 8.1, we derive a strict improvement of (40).
Remark 3.1 (Uniform L*°(X;) bounds). Note that the bootstrap assumptior} (40)
iInplies, in particular, uniform L°(X,) bounds, depending on £, for p, s, v, §2, and

S ~ 9s. Throughout the article, we will often use these simple L°°(X;) bounds without
explicitly mentioning that we are doing so.

3.5.2 Mixed spacetime norm bootstrap assumptions

We assume that the following estimates hold:

1112 280 1112
189122 0.7 pree + 2 VNPT 07 o <1, (4la)
v>2
S o2 280 S o2
182 1720 7 proe + 2 VNPYIQ D20 e <1 (@1D)

v>2

In Theorem 7.1, we derive a strict improvement of (41a). In Theorem 8.1, we derive
a strict improvement of (41b).
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Remark 3.2 When deriving the energy estimates, we will only use the bounds for
||8\IJ||L2 (10,7, L and ||8(Q S)||L2([0 L)L We use the bounds for the two sums in
(41a)- (41b) to obtain control over the acoustic geometry, that is, for proving Propo-
sition 10.1. In turn, such control over the acoustic geometry will allow us to prove
a frequency-localized Strichartz estimate (Theorem 7.2), and then to improve the
Strichartz-type assumption for the wave variables (i.e., to prove Theorem 7.1). For
more details about this strategy, we refer to Sect.2.1.3.

3.6 Notation regarding constants

In the rest of the paper, C > 0 denotes a constant that is free to vary from line to line.
C is allowed to depend on N, «, the parameters from Sect. 3.3, the norms of the data
from Sect. 3.4, and the set K from Sect. 3.4. We often bound explicit functions of # by
< Csince t < T, < 1. For given quantities A, B > 0, write A < B to mean that
there exists a C > 0 such that A < CB. We write A & B to mean that A < B and
B < A.

4 Preliminary energy and elliptic estimates

Our main goal in this section is to prove preliminary energy and elliptic esti-
mates that yield H2(X;)-control of the velocity, density, and specific vorticity, and
H?3(X;)-control of the entropy. The main result is provided by Proposition4.1. These
preliminary below-top-order estimates are useful, in the context of controlling the
solution’s top-order derivatives, for handling all but the most difficult error terms. The
proof of Proposition4.1 is located in Sect. 4.4. Before proving the proposition, we first
provide two standard ingredients: the geometric energy method for wave equations
and transport equations, and estimates in L?(X;)-based spaces for div-curl systems.

Proposition 4.1 (Preliminary energy and elliptic estimates) There exists a continuous
strictly increasing function F : [0, 00) — [0, 00) such that under the initial data and
bootstrap assumptions of Sect. 3, smooth solutions to the compressible Euler equations
satisfy the following estimates fort € [0, T,]:

2 2 1
D 10 . B Dl gty + YN0k, + Y NFC. D)l gioses,)
k=0 k=0 k=0

< F (16, 3. Dll sy + Isllissy ) “2)

Moreover, for any a and b with 0 < a < b < T, solutions ¢ to the inhomogeneous
wave equation

Oy =3 43)



Rough sound waves in 3D compressible Euler flow with vorticity Page310f153 41

satisfy the following estimate:
109l 25, S 190ll2(x,) + I8N L1 app22- (44)

4.1 The geometric energy method for wave equations

To derive energy estimates for solutions to the wave equations in (13), we will use the
well-known vectorfield multiplier method. In this subsection, we set up this geometric
energy method. Throughout this subsection, we lower and raise Greek indices with the
acoustical metric g = g(W) from Definition 1.5 and its inverse. Moreover, we recall

that D denotes the Levi-Civita connection of g and Ug := (g~ "eh D, Dg denotes the
corresponding covariant wave operator.

4.1.1 Energy-momentum tensor, energy current, and deformation tensor

We define the energy-momentum tensor associated to a scalar function ¢ to be the
following symmetric type ((2)) tensorfield:

1
Quple] := Du Dy — 5 8ap & 0,000 (45)

Given ¢ and any “multiplier” vectorfield X, we define the corresponding energy current
Xye [¢] vectorfield:

X3 [p] == Q*P[p]Xs. (46)

We define the deformation tensor of X to be the following symmetric type (g) tensor-
field:

X yp = DX + DXy (47)

A straightforward computation yields the following identity, which will form the
starting point for our energy estimates for the wave equations:

1
D, ®J[¢] = (D)X + EQ““’QM. (48)

4.1.2 The basic energy along 2;
To derive energy estimates for solutions ¢ to wave equations Lge = §, we will rely

on the following energy E[¢](t), where B = 9; + v%0, is the material derivative
vectorfield:

Blol0) = [ P00, + ) do, = [ QP11+ 9] do. @9
X %
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In (49) and throughout, dw, is the volume form induced on %, by the first fundamen-
tal form g of g. A straightforward computation yields that relative to the Cartesian
coordinates, we have

dwg = ,/detgdxldxzdx3 = ¢ 3dx'dx*dx’. (50)

Also, (12) implies that B is timelike with respect to g. This leads to the coercivity of
E[¢](?), as we show in the next lemma.

Lemma 4.2 (Coerciveness of E[@](¢)). Under the bootstrap assumptions of Sect. 3,
the following estimate holds for t € [0, T,]:

E[‘P]([) ~ ||((P, at¢)||2Hl(E[)XL2(E{) (51)

Proof Since the bootstrap assumption (40) guarantees that the solution is contained
in &, we have ¢ ~ 1 and thus, by (50), dw, = ¢ 3dx'dx?dx’® ~ dx'dx?dx>.
Next, using (11), (12), (45), and (46), we compute that BJ<[¢]B, = 1(Byp)> +
%czé‘”’ 9,00p¢. Using that By = 9,¢ + v99,¢, that |v| is uniformly bounded for
solutions contained in &, and that ¢ &~ 1, and applying Young’s inequality to the cross
term 2(3;¢) (v?9,¢) in (Bp)?, we deduce BJ<[¢]B, ~ |d¢|?. From these estimates
and definition (49), the desired estimate (51) easily follows. O

In the next lemma, we provide the basic energy inequality that we will use when
deriving energy estimates for solutions to the wave equations.

Lemma 4.3 (Basic energy inequality for the wave equations). Let ¢ be smooth on
[0, Ti] x R>. Under the bootstrap assumptions of Sect.3, the following inequality
holds fort € [0, Ty]:

1. 31 (5 205 S 1@ AO 31 (50w 12050)

t
+ /0 1091150 10, 3021 5 1205, AT

t
4 /0 1590200 190l 25 . (52)

Proof Let BJ%[p] := ®Jo[p] — p2B*, where B)J¥[¢] is defined by (46). Note
that (12) implies (Bﬁ” [¢]B, = By« [0]B, + (p2 and thus (Bﬁk [¢]B, is equal to the
integrand in the middle term in (49). Next, taking into account definition (47), we
compute that D, ®J*[¢] = D, BJ¥[p] — 20Byp — (g~ y*®x ;. Applying the
divergence theorem on the spacetime region [0, 1] x R? relative to the volume form
dwg = /[detgldx'dx*dx3dt = dw,d (where the last equality follows from (10)—
(11) and (50)), recalling that B is the future-directed g-unit normal to X;, appealing
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to definition (49), and using Eq.Q(48) with X := B, we deduce

' 1
Ele]l(t) = E[¢](0) — /0 /E (gp)By dwy dt + 2/0 /E By dw, dt

t

1 [ B 1
+= / & B, 0 dwgdt — = / QM pl®m ) dw, d.
2 Jo Js. 2Jo Js.
(53)

Next, we note that since the bootstrap assumption (40) guarantees that the compressible
Euler solution is contained in K, we have the following estimates for o, 8 = 0, 1, 2, 3:
BY < 1, lgesl < 1, 1@ H*P| < 1, and [9ges| < [8W]. It follows that (gp =
Clgp + 03913l IBe| < 19¢], Qle] < 1391, and | Bx ;| < [9W]. From these
estimates, the identity (53), the coercivity estimate (51), and the Cauchy—Schwarz
inequality along X, we conclude (52). O

4.2 The energy method for transport equations

In this subsection, we provide a simple lemma that yields a basic energy inequality
for solutions to transport equations.

Lemma 4.4 (Energy estimates for transport equations). Let ¢ be smooth on [0, T] x

R>. Under the bootstrap assumptions of Sect.3, the following inequality holds for
t €0, Ty]:

t t
2 < o2 T 2
101225 ) S 101225, + /O 10 Lo (s 191225, dT+ /O lell 25 IBel 2., dT.
(54)

Proof Let J”‘ = @”B%. Then 8,J% = 2¢By + (9,v%)¢>. Thus, we have [0 <

lo||Bp|+ |0 o |?. From this estimate, a routine application of the divergence theorem
on the spacetime region [0, ¢] X IR3 relative to the Cartesian coordinates that exploits
the positivity of J° = ¢, and the Cauchy—Schwarz inequality along ¥, we conclude
the desired estimate (54). O

4.3 The standard elliptic div-curl identity in L? spaces

To control the top-order spatial derivatives of the specific vorticity and entropy, we
will rely on the following standard elliptic identity.

Lemma 4.5 (Elliptic div-curlidentity in L spaces). Forvectorfields V € H' R3; RY),
the following identity holds:

3
D 18V, = NdiVV I s + lleurl VI s, (55)
b=

a,b=1
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Proof 1t suffices to prove the desired identity for smooth, compactly supported vec-
torfields, since these are dense in H'(R?; R?). For smooth, compactly supported
vectorfields, the desired identity follows from integrating the divergence identity

3 51 B0 V)2 = (divV)? + [eurlV |2 + 8, { VP8, V) — 8, {VdivV} over R® with
respect to volume form of the standard Euclidean metric on R>. O

4.4 Proof of Proposition 4.1

We first note that the estimates for the terms

2 2
120 D)l 205ye Y MR g2ty D N3F sl ga—sz,). and 118:C. D)l 125,
k=1 k=1

on LHS (42) follow once we have obtained the desired estimates for the remaining
terms on LHS (42). The reason is that these time-derivative-involving terms can be
bounded by < the sum of products of the other terms on LHS (42) by using the
equations of Proposition 1.1 to solve for the relevant time derivatives in terms of
spatial derivatives and then using standard product estimates as well as our bootstrap
assumption that the compressible Euler solution is contained in R (i.e., (40)); we omit
these straightforward details. Thus, it suffices for us to bound the remaining terms on
LHS (42).

To proceed, we commute the equations of Proposition 1.1 with up to one spa-
tial derivative, appeal to Definition 1.2, consider Remark 1.3, and use the bootstrap
assumption (40), thereby deducing that for ¥ € {p, vl v2, 03, s}, we have the follow-
ing pointwise estimates:

3
0= w1 5 (0@ D)l + {19%] + 1]} 108 | + Y 1297, (56)
P=I1

Ba='(Q, $)| < 190¥| + {|(a\if, 3%, 85)| + 1} EXTR (57)
13(dive2, curlS)| < 190F| + 02|80, (58)

13 (curl®, divS)| < 13(C. D)| + |@¥, 3%, 85)| + {|(a\if, 3%, 35)| + 1} 19,
(59

IBA(C, D)| < {|aif| 4 1} 192(©, §)| + {|(a\fz, 38, 85)| + 1} 1000
3

+ 10917102, 05| + Y 19" (60)

P=1

We clarify that in deriving (59), we used Definition 1.2 to algebraically solve for curl2
and divS.
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Using the estimates (56)—(60), we will derive estimates for the “controlling quan-
tity” Q2 (t) defined by

02(t) = 109, 3915y 111 (5, + 10 D)y + 12 Iy (61

We will prove the following two estimates:

02(1) < 0200

t
+ / {1091 (s, + 10 Dllimsy + 1] Q20 dr, ©62)

0
10%(2, )iz, S Q2 + Q3(). (63)
Then from the bootstrap assumptions (41a)—(41b), (62), and Gronwall’s inequality,
we deduce that for ¢ € [0, T,], we have Q2(¢) < Q2(0). From this estimate, (63), and

the remarks made at the beginning the proof, we arrive at the desired estimate (42).

It remains for us to prove (62) and (63). We start with the elliptic estimates needed

to control 32 and 82S in || - | 12(x,)- From (55) with 92 and 9 in the role of V, (58),
and (59), we find that

2/ 2 e 2 1112
”a (Q’ S)”LZ(Z[) 5 ”a(c$ D)”LZ(EI) + ”83\I’”LZ(E[)

+ {18913 s, + 1} {1062 9125, + 109125, ] 64

which, in view of definition (61), implies that

12 DI g,y < {18913, +1} 0200, (65)

Moreover, through an argument similar to the one we used to derive (65), based on (55),
(58), and (59), but modified in that we now use the interpolation-product estimate?®

1/2 1/2
1G1 - G2l S NG5y, G s 1G2 s,

to derive the bound
@Y. 32, 9B [1725,) S 102 25 192 a5, 19911515, + 199131 5,
we deduce that

10%(S2, )22, S 1022 D2z, 032 (0) + Q2(1) + Q3 (1)

1 5 o
< 102 )25, + CO2() + COM),

28 This standard estimate can be obtained by using Holder’s inequality, Sobolev embedding, and interpo-
lation estimates. For a more detailed proof, we refer to the proof of (79b).
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from which the desired bound (63) readily follows.

We now derive energy estimates for the evolution equations. From (52) with §=! 7
in the role of ¢, (56), the Cauchy—Schwarz inequality along X, Young’s inequality,
and definition (61), we deduce (occasionally using the non-optimal bound |3\il| <
|0W|2 + 1) that

t
”("Ils 8\IJ)||%12(E’)XH1(20 S QZ(O) +A {”a\y”%“(ET) + l] QZ(T) dT (66)

Using a similar argument based on (54) with 3=!Q and 9='S in the role of ¢ and
Eq. (57), we deduce

t
1@ )31 5, S 02000 + /0 (19913, +1} 2mar. (67)

Using a similar argument based on (54) with 3C and 3D in the role of ¢ and Eq. (60),
and using the elliptic estimate (65) to control the norm || - || L2(2) of the (linear) factor

of 92(22, S) on RHS (60), we deduce

t
19C. D25, S Q2(0) + fo {||awuimm +10(2, Sz, + 1} 0>(1) dr.
(68)

Adding (66), (67), and (68), we conclude, in view of definition (61), the desired bound
(62). O

5 Energy and elliptic estimates along constant-time hypersurfaces up
to top-order

Our main goal in this section is to use the bootstrap assumptions to prove energy and
elliptic estimates along 3; up to top-order. The main result is Proposition 5.1, which
we prove in Sect. 5.3 after providing some preliminary technical estimates.

Proposition 5.1 (Energy and elliptic estimates up to top-order). There exists a contin-
uous strictly increasing function F : [0, 0co) — [0, 00) such that under the initial data
and bootstrap assumptions of Sect. 3, the following estimate holds for t € [0, T,]:

2 2 1
D 113F (o, U, Dl gn-kcs,y + D I0fslgvaikcz,) + Y 195 C Dl -1k s,
k=0 k=0 k=0

< F (160 5. Dl sy + sl sy ) - (69
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5.1 Equations satisfied by the frequency-projected solution variables

In proving Proposition 5.1, we will derive energy and elliptic estimates for projections
of the solution variables onto dyadic frequencies v € 2. In the next lemma, as a
preliminary step in deriving these estimates, we derive the equations satisfied by the
frequency-projected solution variables.

Lemma 5.2 (Equations satisfied by the frequency-projected solution variables). Let
v e 2N, For solutions to the equations of Proposition 1.1, the following equations
hold, where g = g(\fl), v e {p, vl v?, v3,s}, and the terms Fwy, -, S (D) on
RHSs (73a)—(75) are defined in Proposition1.1:

Cg Py = Ry, (70a)
Og Py ¥ = Ry, (70b)
divPyQ = R gjya.v (71a)
BPyC' =Ry (71b)
BP,D = Ry, (72a)
(curlPy S)" =0, (72b)

where the inhomogeneous terms take the following form:

Rupy = P+ Y. @7 = Pey@ )] Praudyw

(. )#(0.0)
+ 3 {(Pv@ ) Prudpy — Py [@ P auipv]} L 730
(. B)#(0,0)
Ry = 5%(\1/);v —T*Pyo, W, (73b)

re = g )P )"0, 8p — 5@ H @ ) pg,s = LWNBV] are the con-
tracted Cartesian Christoffel symbols of g(\i/), and

Rdivay~y = PvSdive): (74a)
Ry = Py + {1 = Pevt®} PydaCl + [ (Perv®) Pyl = Py[v04C'1}
(74b)

Ry = PyI o) + {v* = P<vv®} Pyv0aD + {(P<yv?) Py 3, D — Py[v?3,D]} .
(75)
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Moreover,
DgPya‘If = ER(N)W, (763.)
BPy3C =R y0i).» (76b)
BP,0D = Rppy.v, (76¢)
where

Rowy;v = PvOT(w) — Z Py {(3(g_l)aﬁ> 311313“1’} — TPy 3,0W
(2. )#(0.0)

+ Y @ - P @) Puauogaw
(a,)#(0,0)

+ Y | (Pev@™?) P - Py [@ P a,0p00 ]}
(a, 8)#(0,0)
(77a)

Rciyy = PV i) — Py[@v")3aC']
{07 = Py} Py3,0C + | Py Py8,0CT — Py113,0C11}
(77b)
Rep):v = PvoS(p) — Pv[(8v)9,D]
+ {04 = Payv?} Py 3D + {(P<y0") Py 3,0D — Py[v°8,8D1} . (77c)

Proof The lemma follows from straightforward computations and the fact that g =

~

Ugp — I'* 94 ¢ for scalar functions ¢. We therefore omit the details. O

5.2 Product and commutator estimates

Ip this subsection, we derive estimates for various norms of the inhomogeneous terms
Rwyv, -+, R@ap):v on RHSs (73a)—(75). We provide the main result in Lemma 5.4.

5.2.1 Preliminary product and commutator estimates

In the next lemma, we provide some standard product and commutator estimates that
are based on the Littlewood—Paley calculus.

Lemma 5.3 (Preliminary product and commutator estimates). The following estimates
hold, where we assume that F, G;, and ¢ are (possibly array-valued) functions on
%y, that { is a smooth function of its arguments, and that f' denotes the derivative of
f with respect to its arguments.

Product estimates: For any ¢ such that 0 < ¢ < 1 (in our forthcoming applications,
we will set ¢ := N — 2), the following product estimates hold, where the implicit
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constants are allowed to depend on ¢, ||f o ¢|L=(x,), and |f’ o ¢||L(x,), and the
projection operators P, on the RHSs of the estimates are allowed to correspond to a
slightly different projection operator, localized at the same frequency, than the ones
on the LHSs:

1A Fliags,) ~ 1A%OF |l 2 (s, ), (78)
1G1 - G2ll2s,) S NG ) 1G2M g1, (79a)
1/2 1/2
“Gl . G2||L2(2,) ,S ”Gl HL/Z(Z;)”GI ”H/I(Et) ”GZ“H](E,)’ (79b)
IG1- G2 Gsll2s,) S IGillg )Gy s)1G3 1 g1 (5, (79¢)

In addition, for dyadic frequencies v > 1, we have:
IPv(Eog- Gy SV 21092 IGlgics,) + IPVGllrecs,).  (80)
Moreover,

[A*(fog -G, S NA G2, + 1100 g (z) 1GllHe (5, (81a)

||A€(F . G)||L2(2,) f, ||F||H1/2+S(z,)||G||Hl(2t) + ||G||H1/2+€(2;,)||F||H1():,)7
(81b)

IAS(F -0G) 125,y S N F L) 10G | He sy + 1G Loz ) 19 F [ me sy
(81c)

IA®(G1 - G- G)llpacsy S D NG lgieesy [ [ 16k s,)- (81d)
j=1 ki

Commutator estimates: The following commutator estimates hold for dyadic frequen-
ciesv > 1:

Iif o ¢ = P<v(fo @)l PyvGliras,y SV 100lls) I1PvGlias,),

(82a)
IPVIf 0@ - 9G] — P<y(f o) - PvdGli 25, S 189l I PvGll s,
+ Gl I PvIE 0 @ - 30l 125,
+ Y AT 0gl o) IPAIG | 125, )-

A>vV

(82b)
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Convolution-type estimate for dyadic-indexed sums: If {A )} oo~ is a dyadic-indexed
sequence of real numbers, then

1+SZ)\ IA)\

A>v

S av]y - (83)

2

Proof (78) is a basic result in harmonic analysis; see, e.g., [2, Chapter 2]. (81b)
is proved in [53, Lemma 17]. (81c) follows from the proof of [53, Lemma 19],
which yielded a similar estimate, differing only in the following minor fashion: the
terms [|0G| pe(x,) and |0 F | ge(x,) on the right-hand side were replaced, respec-
tively, with |G| g1+ 5,y and || F || g1+e(5,). (81d) is proved as [53, Lemma 18]. (80)
follows from the proof of [54, Equation (8.2)] and the standard Sobolev embed-
ding estimate ||G|lp6(x,) < |G| Hi(x,)- (79¢) follows from the Holder estimate
Gt - Go - G3”L2(E,) < |G ||L6(2t)||G2||L6(Et)”G3”L6(2t) and the Sobolev embed-
ding estimate ||Gill 6(z,) < IGillyi(s,). while (79a) follows from the Holder

estimate |Gy - G2||L2();) < [IG1lizacs,)IG2lla(x,) and the Sobolev embedding
estimate ||G; || L4E) S < 1G; | HI(Z)- Similarly (79b), follows from the Holder esti-
mate |Gy - Gallp2s,y < 1GillLss)1G2llLscs,)» the Sobolev embedding estimate

G2l Lo,y < G2l g1 (x,), and the Sobolev interpolation estimate [|G1|l;3(x,)

1/2 1/2
IG5 s, IG1l /: 5.+ With the help of the Sobolev embedding result [[3¢ |l s s, ) <
19l g1 (x,), the estlmate (81a) follows from a straightforward adaptation of the proof
of [54, Equation (8.1)], which provided a similar estimate in the case 0 < ¢ < 1/2. The

estimates (82a) and (82b) follow from the proof of [54, Lemma 2.4]. To obtain (83),
—(1+e) ~
we first observe that v!*¢ 3", A7lAy = 3, (%) AN A\ = (A * B)y,
where A denotes the dyadic sequence Ay = A* Ay, B denotes the dyadic sequence
By = 1[1,00) MA™ (1+e) » 1[1,00)(A) denotes the characteristic function of the dyadic
interval [1 00), and (A * B)~ denotes the convolution of A and B, viewed as a func-
tion of v. Thus, from Young’s 52 x« L1 — Li convolution inequality and the bound
|| Bx ||l;\ < 1, we deduce that ||A Bl <Ay llez » which is the desired bound. O

~

5.2.2 Product and commutator estimates estimates for the compressible Euler
equations

In the next lemma, we derive bounds that are sufficient for controlling the error terms
in the top-order energy-elliptic estimates of Proposition 5.1 and the top-order energy
estimates along null hypersurfaces of Proposition 6.1.

Lemma 5.4 (Product and commutator estimates estimates for the compressible Euler
equations) Under the bootstrap assumptions of Sect.3 and the H 2(%) energy
estimates of Proposition4.1, for solutions to the equations of Proposition 1.1, the
inhomogeneous terms from the equations of Lemma 5.2 verify the following estimates
fort € [0, ], where the implicit constants are allowed to depend in a continuous
increasing fashion on the data norms ||(p, v, D v sy + ISl av+1 sy
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Frequency-summed control of the inhomogeneous terms: The following estimates

hold, where in || - || G LA(E,) the E%, -seminorm is taken over dyadic frequencies v > 1:

VY Ryl 120y VYT Ry e 2
VY 20Rwyvllez 1200 VY 20Rwyvlle2 12030 VY Rawyv e 205,

S10@ Dl -2z, + {18815,y + 1} 108 s 5,y + 1% 1wz, + 1,
(84)

IV R el 2y VYT R Ile 25,

||VN7239%(@')W||z3,L2(E,)7 ||VN728%(D)W”Z%,L2(E¢)’
VYR el 2y VY 2 Repyvle s,
< 109 lmcs) + 1} 10 $)llgnor s,
+ {”a\f,”m@,) 19, s, + 1} 1B 1 yv-1x,)
+ 18| ooz, + 1, (85)

N—1 N-2 7
v m(dl'VQ);VHZ%,LZ(Z;)’ v am(divsz);vHZ%LZ(Zt) S ”a‘l’”HN—l(Ez) + 1.
(86)

Control of curl2 and divS in terms of the modified fluid variables: The following
estimates hold, where the modified fluid variables C and D are as in Definition1.2:

IIAN_ICWZQIILz(z,) S NCHgv-2(s,y + ”a\i’“HN—'(Z,) +1, (87a)
IAN = divS | 25,y S 10Dl g2, + 10911 gv-1(5,) + 1. (87b)

Proof All of these estimates are standard consequences of Lemma 5.3 and we therefore
prove only one representative estimate; we refer to [54, Lemmas 2.2, 2.3, 2.4, and 2.7]
for the proof of very similar estimates. Specifically, we will prove (84). Throughout the
proof, we use the convention for implicit constants stated in the lemma. We will silently
use our bootstrap assumption that the compressible Euler solution is contained in &
(i.e., (40)). We will also silently use the estimate (78), the estimatesﬁof Proposition4.1,
and simple estimates of the type V| v (s, S IVIlg2s,) + 10V gyv-1(5,) S 1+
||21\_P l zv-1(x,), the point being that by Propositjon 4'll we have already shown that
W1 g2 s,y < 1 (and similarly for the variables €2 and S).

In proving (84), we will show only how to obtain the desired bound for the term
||VN_19%(\IJ);V||53,L2(>:,)§ the remaining terms on LHS (84) can be bounded using
nearly identical arguments. To proceed, we start by bounding the first term P~y
on RHS (73a). That is, we must bound |[vV~! P, RHS (13)ll¢2 12(x,)- We begin by

bounding the first product on RHS (13), which is of the form f (\ff)(é, D). Repeatedly
using the product estimates of Lemma 5.3 and appealing to Definition 1.2, we deduce
(where throughout, we allow f to vary from line to line, in particular denoting the
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derivatives of f also by f), with &7 a polynomial with bounded coefficients that is
allowed to vary from line to line, that

N-—1 T\ (7

IANTE (P (C D) 2,

S IANTZE D) €, Dl 2 s,

SIAN2EC DIl 2cx,) + AN 2E@)Y - €, DIl 2(x,)

S {10@ Dy +1} 2 (1091415 1€ Dl )

S10C. D)l gn—2(x,) + 1 (88)

as desired. The second product on RHS (13) is of the fgrm f(\_fJ) QU -9, Thus, using
the product estimates of Lemma 5.3 and the bound [|W| ;2 (5, < 1, we deduce that

IANTHEC) - 9 - 9]l 2,

SIANTZAE (D) - 3 - 3 W]l 2,

S IAN 2R - 03] | 125,y + IAN ()OI - W - 3W]|| 125,

SIEIW | (s 10 1 yv-1 (5, + 109 oo IDIECLID D] 2,
+IECDI ] -1, 11151 5,
F 10 | -1 () I | 1155, 1B [ 115,

<1815, {199 1mcsy + 2 (109 115,) |
10y + 1] 2 (109105,

S 18 gtz {189 s + 1] + 10 oo, + 1 (39)

as desired. It remains for us to bound the two sums on RHS (73a) in the norm ||v1\: e
I 2L, To handle the first sum, we use (82a) with W in the role of ¢ and 99V in
the role of G to deduce

S IV @ - Py @D Pyt Wl o,

(e, B)#(0,0)
SN0W ooz AN 200W | 25,
S 0¥ Ly llOW gy-1(x,) (90)
as desired. To bound the last sum on RHS (73a) in the norm ||’VN_1 . ||£%,L2(2,)»

we use (Sgb) with U in the ro}e of ¢ and 3V in the role of G, the bound
IAN=If(D) - 0Vl2s, < W] yn-1(x,) + 1 (which follows from the product
estimates of Lemma 5.3 and the bound ||V || H2()) < 1), and the convolution estimate
(83) with [| PA0dW || 2(x,) in the role of Aj to deduce
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> IV (Pev@™ ) Pty - Py [ @D 059 | 2 12cxy
(a,8)#(0,0)
S8 ooz IAN T EW) - 9W] 125,

18V (s, H\/N_l va A PAOBY | 125, 2

SNBD ooz 10V gv-1(x,) + 18|00 (x,) 1)

as desired.

The remaining estimates in the lemma can be proved using similar arguments, and
we omit the details. We clarify that i) to derive some of the estimates in their stated form,
one must use Definition 1.2 to express C and D in terms of the other solution variables
and ii) in order to bound the term ||‘VN_2£R(3\1/)W ”Z%,Lz(it) on LHS (84) and the terms
IIVN_ZER((-,C;)WlugVLz(Et) and ||VN_29%(3D);1,||53/L2(20 on LHS (85) using arguments
of the type given above, one must derive Sobolev estimates for products featuring the
time-derivative-involving terms 8,2@, 0,C, 9, D, 9,2, and 9,S. These time-derivative-
involving terms can be handled by first using the equations of Proposition 1.1 to solve
for the relevant time derivatives in terms of spatial derivatives and then using the
estimates of Lemma 5.3, as we did above. O

5.3 Proof of Proposition 5.1

Throughout the proof, we rely on the remarks made in the first paragraph of the
proof of Lemma 5.4. In particular, we silently use the already proven below-top-order
estimates (42). Moreover, we use the convention that our implicit constants are allowed
to depend on functions F of the norms of the data of the type stated on RHS (69); in
particular, we consider such functions of the norms of the data to be bounded by < 1.
Finally, whenever convenient, we consider factors of ¢ to be bounded by < 1.

We first note that, for the same reasons stated at the beginning of the proof of Propo-
sition4.1, the estimates for the terms || af(p, D) lav—2(5,), Z,%Zl ||8f‘§2|| HN-k(3,)s
Zl%:l I Btks ||HN+1—k(Et), and || o, ((?, D) ||HN_2(2[) on LHS (69) follow from straight-
forward arguments once we have obtained the desired estimates for the remaining
terms on LHS (69); we therefore omit the details for bounding these terms.

To prove the desired estimates for the remaining terms on LHS (69), we will derive
energy and elliptic estimates for the solution variables at fixed frequency, which satisty
the equations of Lemma 5.2. After summing over dyadic frequencies, this will allow
us to obtain estimates for the “controlling quantity” Q y (¢) defined by

ON () = 1% n -1 (5, + 19C D) In 2, (92)

Our assumptions on the initial data imply that Qx5 (0) < 1, and we will use this fact
throughout the proof.
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The main steps in deriving a bound for Q y (¢) are proving the following two bounds:

oOn@ S 1

t
+/0 {||3‘I’||L°°(>:T) + 110(2, )|l (=) + 1} On(T)drT,
(93)
102, ) Gv-1(x,) S ON () + 1. (94)

Then from the bootstrap assumptions (41a)—(41b), (93), and Gronwall’s inequality,
we deduce that for ¢t € [0, T], we have Qn(¢) < 1. From this estimate, (94), and
the below-top-order energy estimates (42), we conclude, in view of the remarks made
above, the desired bound (69).

It remains for us to prove (93) and (94). To prove (94), we first use the elliptic
identity (55) with PVQ and PVS in the role of V and equations (71a) and (72b) to
deduce, after multiplying by v2V =1 and summing over v > 1, that

IANTI, DTz s,y = IV Rdivayv 172 205, + 147 curlQ, divS) (175 -
95)

Using (86), (87a), and (87b), and appealing to definition (92), we find that RHS (95)
< RHS (94). Also using Proposition4.1 to deduce that || P<18(§2 S)||L2(E) <1, we
conclude the desired estimate (94).

We now derive energy estimates for the evolution equations. To proceed, we first
use equation (70a) and (52) with P, U in the role of @ to deduce that

1Py &, Py 9) |17, U, Py, 0|3,

(Z;)XLZ(Z;) S ”(P’V

t - - -
+ A ||3‘~I’||L’>0(ZT) 1Py, P’Vat‘y)”%_II(ET)XLZ(ET) dt

(Z0)x L2 (Z0)

t
3 [l 0Pyl . 96
=0

Multiplying (96) by v2(V—1 summing over dyadic frequencies v > 1, using the
Cauchy—Schwarz inequality for 02 %, using (84), and using Young’s inequality, we
deduce, in view of definition (92), that

t
18512, x_ I(E)N1+f ||a\v||Loo<zT>dT+f {10915z + 1} Qv dr,
97)
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Similarly, using Eqgs. (71b), (72a), and (54) with Pvé and P, D in the role of ¢, we
deduce that

I(PvC, PyD) 255, S I(PVC. PYD) |2,

(Z) ~ (20)

+ / 1% [l (50 l(PVC, PyD)| 35 dT
0
3 t )

+ 3 [ 1P R e e, T
X 0
i=1

t
+/ I PvDll 2z ) IRD)v L2 (5, dT. (98)
0

Multiplying (98) by v2 =D summing over dyadic frequencies v > 1, using
the Cauchy—Schwarz inequality for E%,, using (85), using (94) to bound the factor
||8(§, 5’) l zv-1(x,) on RHS (85), and using Young’s inequality, we deduce, in view
of definition (92), that

10C. D) 13- 2z S 1 +/ 189 | oo, dT

+/0 {Ila‘I’llLooo:T) + 1182, S)ll oo (2 + 1] On(T)dT.
(99)

Finally, adding (97) and (99), and controlling the second term on RHS (99) by using
the bootstrap assumption (41a) to infer that fo ||8\IJ|| Loz dT S 1, we conclude
(93). We have therefore proved the proposition. O

6 Energy estimates along acoustic null hypersurfaces

Our main goal in this section is to derive energy estimates for the fluid variables along
acoustic null hypersurfaces (which we sometimes refer to as “g-null hypersurfaces”
to clarify their tie to the acoustical metric, or simply “null hypersurfaces” for short).
We will use these estimates in Sect. 10, when we derive quantitative control of the
acoustic geometry (for example, in the proof of Proposition 10.4). Compared to prior
works, the main contribution of the present section is the estimate (102), which shows
that the modified fluid variables (C D) can be controlled in L up to top-order along
acoustic null hypersurfaces; as we described in point I of Sect. 1.2, such control along
acoustic null hypersurfaces is not available for generic top-order derivatives of the
vorticity and entropy.
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6.1 Geometric ingredients

We assume that in some subset of [0, T%] x R3 equal to the closure of an open set, U is
an acoustical eikonal function. More precisely, we assume that U is a solution to the
eikonal equation (g~")*# 9, U 0pU = 0 such that 9,U > 0 and such that U is smooth
and non-degenerate (i.e. |0U| # 0) away from the integral curve of B emanating from
apointz € X7 for some T € [0, T,]; see Sects. 9.4 and 9.4.1 for discussion of our
choice of z and the integral curve.

In Sect.9, we will construct a related eikonal function, one that is equivalent to
the eikonal functions considered here, differing only in that we work with rescaled
solution variables starting in Sect.9 (see Sect.9.1 for their definition). We let [ :=
m > 0 denote the null lapse,29 and we define V% := —l(g_l)“ﬁaﬂU.
Thus, g(V,V) = 0 and Vt = 1. We assume that the hypersurface N is equal to
some portion of a level set of U. Note that V is normal to A/ and thus A is a g-null
hypersurface. We define the two-dimensional spacelike surfaces S; := X, N N. We let
¢ denote the Riemannian metric induced by g on S;, we let ¥ denote the corresponding
Levi-Civita connection, and we let dwy denote the volume form on S; induced by ¢.

We now define acoustic null fluxes along N.

Definition 6.1 (Acoustic null fluxes). For scalar functions ¢ defined on NV, we define the
acoustic null fluxes F(wape)[¢; N and F(rransporn|@; MN] as follows, where relative
to arbitrary coordinates on S, |X7g0|§ = (¢ HABY,0Vpe:

]F(Wave)[(/’;/\/] = /N{(VQO)Z + |X7§0|52{} dwgdf, IF(Transporl)[(p;J\/] = /Nf/)z dwgdl~
(100)

6.2 Energy estimates along acoustic null hypersurfaces

In this subsection, we establish the main energy estimate for the fluid solution vari-
ables along null hypersurfaces. As we mentioned at the start of Sect. 6, the main new
ingredient of interest is (102), whose proof relies on the special structure of the equa-
tions of Proposition 1.1. In Sect. 10, we will apply Proposition6.1 along a family of
null hypersurfaces that are equal to the level sets of an acoustical eikonal function that

we construct in Sect. 9.4 (we denote the acoustical eikonal function by “u” starting in
Sect.9).

Proposition 6.1 (Energy estimates along acoustic null hypersurfaces). Let N be any
of the null hypersurface portions from Sect.6.1. Assume that for some pair of times
0 <t; < tp < Ty, Nandsome subsets of X, and %;,. collectively form the boundary a
compact subset of [0, T] X R3. Then under the initial data and bootstrap assumptions
of Sect.3 and the conclusions of Proposition5.1, the following estimates hold for

29 We use the symbol “b” to denote the null lapse of the eikonal function constructed in Sect.9. Moreover,
starting in Sect.9, we use the symbol “L” to denote the analog of the vectorfield denoted by “V” in the
present subsection.
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v e {p, vl v2, 03, s}:

Fwave)[0W; M+ Y VN 2F (400 [Py 3W: N S 1. (101)

v>1

Moreover,

IE"(Transp()rt) [a (aa D); /\/] + Z v2(N_Z)IF(Transport)[P‘va(éa D); -/\/] /S L. (102)

v>1

Proof We first prove (102) for 8C'. We set JO = |¢")Ci I?B* and compute, relative to
the Cartesian coordinates, that D, J* = 2(3C") - BaC' + (9,v%)|dC' |2 —i—I‘a‘xﬁBﬂ 1C! |2,
where I‘ayﬂ = %(g_l)y‘I {8agg,3 + 08ao — 3Uga,3} are the Cartesian Christoffel
symbols of g. From the constructions carried out Sect.6.1, we find that g(B, V) =
—Vt = —1and thus g(J, V) = —|3C' |%. Note also that since g(B, B) = —1, we have

g(J,B) = —|dC'|%. We now apply the divergence theorem (where the Riemannian
volume forms are induced by g) using the vectorfield J* on the compact spacetime

region bounded by %;,, %,., and N. Considering also the fact that I‘a"‘ﬁ = f(\if)a‘Il,
we arrive at the following inequality for dC':

[;w@ﬁda%m==—j;gUJOda%m

§/ lg(J. B)|dwg+L lg(J, B)| dwg

F

‘/ /‘|ad|Bad|da%dT+1/ ./ 18W | oo (5 [8C | demg d,
t Xt P2
(103)

where dw, is the volume form induced on constant-time hypersurfaces by their
first fundamental form g. Here we clarify that the normalization condition V¢ = 1
has the following virtue: it guarantees that the volume element on N appearing in
the divergence theorem is precisely dwydt. From the energy estimates of Proposi-
tion5.1, we deduce that the two integrals th, -+ and fEtF -+~ on RHS (103) are

< 1. Next, commuting the evolution equation (15b) with 8, using the resulting expres-
sion to substitute for the factor BC' on RHS (103), using the bootstrap assumptions
and the energy estimates of Proposition5.1, and using the Cauchy—Schwarz and
Young’s inequalities, we deduce that the two integrals fZT --- on RHS (103) are
<1+ ||3lIJ ||L°°(E )y T ||8(S2 S) ||LOQ(E . Also using the bootstrap assumptions (41a)—
(4lb), we see that RHS (103) < <1, Wthh in view of definition (100), yields the desired
bound IE‘(Transport) [aC; -/\/] 5 1.

To obtain the desired bound for the sum on LHS (102) involving the terms P-dC,
we repeat the above argument with P,,dC’ in the role of 8C'. Considering also the
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evolution equation (76b), we obtain the following bound:

IE‘(Trz/mspurt) [P’vaci 5 -/\[]

5/ |PVBCi|2dwg+/ |PyaC | dov
z

1y ZIF

IF . 152 N .
+/ / |Pvact||m(ac,-)w|dwgdr+/ / 10D | Lo (5| PyAC' | daorg d.
ty po 1 P
(104)

Multiplying (104) by vV =2 summing over v > 1, using the estimate (85) and
the Cauchy—Schwarz inequality for L?(X.) and Z%,, and using the energy esti-
mates of Proposition5.1 and the bootstrap assumptions (41a)—(41b), we conclude
that RHS (104) < 1 as desired.

The estimate (102) for the terms involving D can be obtained in a similar fashion
with the help of the evolution equations (16a) and (76c), and we omit the details.

The estimate (101) can be obtained using similar arguments, with a few minor
adjustments that we now describe. To bound the first term on LHS (101), we apply
the divergence theorem with the vectorfield ®)J*[d W] defined by (46). The integrand
appearing on the analog of LHS (103) is g(‘®J, V), which through standard argu-
ments (for example, using a null frame as in Sect.9.6.2) can be shown to be equal
to % { [VaWw|? 4+ |X73\I/|§], that is, equal to the integrand in the definition (100) of
Fwave)[0W; N] (aside from the factor of 1/2). The spacetime error integrals appear-
ing on the analog of RHS (103) have integrands equal to RHS (48) (with B in the
role of X), where one commutes the wave equation (13) with 9 to obtain algebraic
expressions for [JydW. One can then argue as we did above to show that the error
integrals are < 1 as desired. To bound the sum on LHS (101), we can use a similar
argument based on the wave equation (76a) and the estimate (84). O

7 Strichartz estimates for the wave equation and control of Hoélder
norms of the wave variables

The main results of this section are Theorem 7.1, which yields a strict improvement
of the Strichartz-type bootstrap assumption (41a) for the wave variables, and Corol-
lary 7.1. Our proof of Theorem 7.1 relies on a frequency-localized Strichartz estimate
provided by Theorem 7.2. We outline the proof of Theorem 7.2 in Sect. 11; given
the estimates for the acoustic geometry that we derive in Sect. 10, the proof of The-
orem 7.2 is essentially the same as the proof of an analogous frequency-localized
Strichartz estimate featured in [54].

Remark 7.1 (Reminder concerning the various parameters). Our analysis in this sec-
tion extensively refers to the collection of parameters from Sect. 3.3.
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7.1 Statement of Theorem 7.1 and proof of Corollary 7.1

We now provide the main results of Sect. 7, starting with Theorem 7.1. The proof of
the theorem is located in Sect.7.4.

Theorem 7.1 (Improvement of the Strichartz-type bootstrap assumption for the wave
variables). If & > O is sufficiently small, then under the initial data and boot-
strap assumptions of Sect.3, the following estimate for the wave variables ¥V =
(p, v!, v2, V3, 5) holds, where 81 is defined by (35¢):

15112 25 1112 20
”8\1'[”]42([0’&])[‘30 + ZV 1||P‘valy||L2([o’T*])L§o S T* . (105)

v>2

The second main result of this section is the following corollary, which is a simple
consequence of Theorem 7.1. It plays a fundamental role in Sect. 8, when we derive
Schauder estimates for €2 and S.

Corollary 7.1 (Strichartz-type estimate with a Holder spatial norm for the wave vari-
ables). Under the assumptions and conclusions of Theorem 7.1, the following estimate
holds for the wave variable array U = (p, v', v%, v3, s):

av|? P3| < T2 106
19W17, oy cosn ijn B, s ST (106)
vz

Proof (Discussion of proof) Given Theorem 7.1, Corollary 7.1 follows from standard
results in harmonic analysis; see, for example, [48, Equation (A.1.5)] and the discus-
sion surrounding it. O

7.2 Partitioning of the bootstrap time interval

In proving Theorem 7.1, we will follow the strategy of [54] by constructing an appro-
priate partition of the bootstrap time interval [0, T ]. The partition refers to a parameter
Ao, where in the rest of the paper, Ao > 1 denotes a dyadic frequency that is chosen
to be sufficiently large (we adjust the largeness of A as needed throughout the course
of the analysis). In view of the bootstrap assumptions (41a)—(41b), it is straightfor-
ward to see that for A > A, we can partition [0, 7] into intervals [fx, fx+1] of length
ltkr1 — tx] < A~8€0T, such that the total number of intervals is &~ A3€0 and such that

15112 289 Ty 112 —8eo
”alIJ”Lz([tk,l‘k.;.l])L;O + ZV ||PVa\IJ||L2([tk,tk+|])L2° = A )

v>2

(107a)
O 12 28 O 2 —8e
IO Oy g prge + DV NPV Py pre <A

v>2

(107b)
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We refer readers to [18, Remark 1.3] for more details on the construction of a partition
of [0, Tx] such that (107a)—(107b) hold.

7.3 Frequency-localized Strichartz estimate

The main step in the proof of Theorem 7.1 is proving a frequency-localized version,
specifically Theorem 7.2; see Sect. 11 for an outline of its proof, which relies on
estimates for the acoustic geometry that we derive in Sect. 10.

Theorem 7.2 (Frequency-localized Strichartz estimate). Fix A > Ag, and let ¢ be a
solution to the following covariant linear wave equation on the slab [ty, ty+1] % R3,
where {[tx, tky11}k=1.... denotes the finite collection of time intervals constructed in
Sect.7.2:

Oy = 0. (108)

Under the initial data and bootstrap assumptions of Sect. 3, if Ao is sufficiently large,
then for any q > 2 sufficiently close to 2 and any T € [t, ty+1], we have the following
estimate:

31
1P Ol L .o apree S AT 7180125,y (109)
7.4 Proof of Theorem 7.1 given Theorem 7.2

In this proof, we often suppress the x-dependence of functions, and we use the remarks
made in the first paragraph of Sect.5.3. Let W(¢, T)[ f, fo] be the solution at time ¢
to the covariant linear wave equation Dg(@) (W, vlf, fol) = 0 whose data at time
tare W(t,D[f, fol := f and 9, W (T, T)[f, fol := fo. We assume that A > Ay, as

in Theorem 7.2. Let Py := } 7} 5« koo Py, s0 that in particular, Py = Py Py. Then

from Eq. (70b) and Duhamel’s principle, for ¥ € {p, vl 02, 3, syand ¢t € [, tet1],
we have

t
P)\‘I'(f):W(tafk)[P)\‘I’(fk),P)\at‘l’(tk)]+/ Wz, D0, Rawya (D)l dt. (110)
Ik

Differentiating (110) with @ and applying F)\, and letting 1y, ,)(-) denote the charac-
teristic function of the interval [f, ¢], we find that

PO (1) = P {dW (1, 1) [PAW (1), PA3, W (1)1}
Tkt 1 -
+ / 1 n (D PAOW (1, [0, Ry A(T)]dT
Tk
= () + I1)\(1). (111)

We now recall that 6 = % — % > 0 (see (35d)), where ¢ > 2 is any number for which
Theorem 7.2 holds. Then from (109) with ﬁy\ in the role of Py, Holder’s inequality,
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the covariant wave equation (70b) satisfied by Py W, and the energy estimate (44), we
find that

5
TN 22 o proe < Mkt = tel "IN o o s DL
3 1
5 = — =
Sl = aPA 0 PAY 2,

< It — N {18 P2z, + IR @al o, rpez )
(112)

Similarly, using (109) (again with FA in the role of P») and Minkowski’s inequality
for integrals, we find that

Te+1
””7\”L2([tk,tk+1])L$° < / Hl[tk,t](T)P)\aW(t» 7|0, SR(\I’):A(T)]||L,2([fr,tk+1])L°° dt
179 X
Te+1 5
S / [tk1 =TI IPAOW (2, DIO, ER(\I")?)\(T)]||L;1([T,tk+1])L°,° dt
179 x
S kg1 — [k|5)\1+6 1R w): A ||Ll([;k,,k+l])L)Zc~ (113)
Using (111), (112), and (113), and recalling that |t — #] < A—8€0T, . we find that

”P>\aly”L2([tk,tk+1])L§C g )\1+5(1—8€0)T*5 {”aP)\\p”LZ(EQ) =+ ”9:{(\1’)§>\||L1([0,T*])L§} .
(114)

Next, we square (114), sum over all intervals [#, fx+1], recall that there are < A8€o
such intervals, and multiply the resulting inequality by A2°1 (where &; > 0 is defined
in (35¢)), thereby obtaining:

20 2
)\ 1||P)\3‘IJ”L2([O!T*])L$0
SN CopITRATRITS {||3P;\\y||iz(20) + ”m(‘l’)?‘”il([o,T*])L%}

S T*25 H||}\N*13P)\\IJ||%2(EO) + ||}\N719{(\IJ);7\”il(lo’T*])L)%} . (115)

We now sum (115) over dyadic frequencies A > Ag and use the Holder-in-time
estimate

N—1 2 —1 2
”)\ m(w);)\”Ll([O,T*])L)% S T*”}\N m(\p);}\”LZ([O,T*])L%

to deduce that

20 2
Z v lIlPValIJ"Lz([O,T*])L)?O
v=Ag

/S T*26 {”(‘-IJ, at\p)”%‘IN():())XHN_I(Zo) + T*”’VN_lm(\I’);’V”iZ([O’T*])[%LE} . (116)
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Using the estimate (84), the Strichartz-type bootstrap assumption (41a) and the top-
order energy estimate (69), we deduce that || vV ! Rwy:v 1|2 < 1. Inserting
this estimate and the trivial bound ||(¥, 3, ¥)||2
we find that

L2([0,T, )@2 L2~

LN 5oy V-1 (5 < 1 into RHS (116),

D VIRV T2 o gy S T2 (117)

v>Ag

Next, we note that Sobolev embedding and the energy estimate (69) yield that
[P<po@¥lLe(s) S ||P5A03‘IJ||H2(E,) SR CASVERS 1 (where the implicit con-
stants are allowed to depend on Ag) and thus

1)N

”PSA()an”iZ([())T*])Lgo 5 T* S T*26 (118)
We are now ready to bound the term ||3lIl||L2 0.1.)Le On LHS (105). To pro-

ceed, we use the triangle inequality, the Cauchy—Schwarz mequality, and the fact that
D veho v=2%1 < 50 to deduce that

10w Loz, S IP<a@W i) + D v O IV PLOW L (x,)
v>Ag

S IP<n¢dW Loz +\/ D VPOV s, (119)

v>Ag

Squaring (119), integrating the resulting inequality over the interval [0, 7], and using
(117) and (118), we conclude the desired bound for the term ||3\IJ||L2 0.7,z On

LHS (105). From this bound, (117), and the basic inequality [|PvOW | 1oz, S

10| L= (s,), the desired bound for the sum on LHS (105) readily follows. This com-
pletes the proof of Theorem 7.1. O

8 Schauder-transport estimates in Holder spaces for the first
derivatives of the specific vorticity and the second derivatives of
the entropy

Our main goal in this section is to derive improvements of the mixed spacetime norm
bootstrap assumptions (41b) for 92 and 9S. The main result is Theorem 8.1. We
also derive a strict improvement of the bootstrap assumption (40). Before proving the
theorem, we first derive two fundamentally important precursor results: (i) Schauder
estimates for div-curl systems; (ii) Estimates that yield control of the characteristics of
the transport operator B (i.e., over the integral curves of B); and (ii)’ With the help of
(ii), we derive a priori estimates in Holder spaces for solutions ¢ to transport equations
By = § with § € Ltl Cg’{" (see Lemma 8.4). Thanks to these three preliminary
ingredients, Theorem 8.1 will follow from a Gronwall inequality estimate.
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8.1 Statement of Theorem 8.1 and proof of an improvement of the basic L°°-type
bootstrap assumption

We now state the main theorem of this section. Its proof is located in Sect. 8.5.

Theorem 8.1 (Lebesgue-Holder norm estimates for the specific vorticity and entropy
gradient and improvements of the bootstrap assumptions). Under the initial data and
bootstrap assumptions of Sect. 3, the following estimates hold:

<
1C DI g0 S 1 (120)
19 I, oo ST (121)
Moreover,
D VIRV D72 0 710 S T2 (122)

v>1

Before initiating the proof of Theorem 8.1, we first use it as an ingredient in deriving
a strict improvement of the bootstrap assumption (40).

Corollary 8.1 (Improvement of the basic L°°-type bootstrap assumption). Let & be
the compact set appearing in the bootstrap assumption (40). Under the initial data
and bootstrap assumptions of Sect. 3, the following containment holds whenever Ty is
sufficiently small:

(0, 5,0, 2, $)(0, T,.] x R?) C intA. (123)

Proof Let ¢ denote the following array of scalar functions: ¢ := (p, s, v, 52, S). Using
(14) and the bootstrap assumption (40), we deduce that |9;¢| < [dW|+]92|+]0S|+1.
Hence, from the fundamental theorem of calculus, the estimates (105) and (121), and
the Cauchy—Schwarz inequality with respect to 7, we deduce that the following estimate
holds for ¢t € [0, Ty]: |(/)(l Xx) — QD(O x| S < ||3\IJ||L1([0 (LY + ||89||L1([0 HLP +

||8S||L1 (DN EREES < Tl/2+6 It follows that we can guarantee that ¢ (¢, x) is arbitrarily
close to <p(0 x) by choosing T to be sufficiently small. From this fact and (39), we
conclude (123). ]

8.2 Schauder estimates for div-curl systems

In the next lemma, we provide a standard Schauder estimate for div-curl systems on
Euclidean space R>.

Lemma 8.2 (Schauder estimates for div-curl systems). Let V be a vectorfield on R3
such that V. C2(R®) N HX(R?), and let 1 > 0 be the parameter from (35e). Then
the following estimate holds:>°

30 Our proof of the estimate (124) goes through for 6; € (0, 1/2), but in practice, we need the estimate
only for the value of & specified in (35¢).
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10V llcos ) S IdivV llgos s, + lewrtVllcos o) + 1V gy (124)

Proof Let z € R? and let B> (z) be the ball of Euclidean radius 2 centered at z. As a
first step, we will show thatif W € C 2R3 N H2(R?) is a vectorfield on R? that is
supported in B2(z), then we have (with implicit constants that are independent of z):

||8W||C() 51(32(2)) ~ ”leW”C() 51(32(2)) + ”Cuer”C() 51(32(2)) (125)

To prove (125), welet @ (x) := Il denote the fundamental solution of the Euclidean

Laplacian on RR3. The standard Helmholtz decomposition yields the following identity,
where €/% is the fully antisymmetric symbol normalized by €'?* = 1:
W/ = divW 879, ® — €748, (curl W)“ * 9, . (126)

The desired estimate (125) now follows from standard estimates for the first derivatives
of the convolutions on RHS (126); see, for example, the proofs of [14, Lemma 4.2]
and [14, Lemma 4.4].

To prove (124), let B; (z) C R? be the Euclidean ball with radius 1 centered at z. Let
x > 0bea C* spherically symmetric cut-off function on R3 with x(x)=1for|x|] <1
and y(x) = 0 for x| > 2, and let x,(x) := x(x — z). It follows that x,(x) = 1 for
x € By (Z) and: thus [0V ||C0*5{ (Bi1() = 10(xz V)l co.s (B1(2) = ”a(XZ V.) ”0015.1 (B2(2))"
From this estimate, (125) with x,V in the role of W (this estimate is valid since
x;V is compactly supported in B>(z)), the standard estimate || F' - G|l -0.5, (Ba(z)) =
2|[F Nl co51(p, 2y ||G||C° 51(B, (Z)), and the simple estimates (which are uniform in z)

”Xz”co 51(31(2)) ||X||c0 SI(R3) N < land ||3Xz||c0~51(31(z)) = ||8X||c0v51(R3) S 1, we
obtain

||8V||C0’51(Bl(z)) < Ildiv(x; V)||c0-51(32(z)) + ||Cur1(XzV)||CO»51(BZ(Z))

Sj ||diVV||C061(BZ(Z)) + ||Cur1V||C0.51(BZ(Z)) + ”V”Co’él(Bz(Z))'
(127)

From (127) and the Sobolev embedding result H 2R3 — 0% (R?) (which is
valid since 61 < 1/2), we deduce that

[V (x) — V(I

sup S NdivVcosy w3y + llcurlVilco.s; 3y + 11V I 2 w3y -
x,y€B1(2),0<|x—y]| lx — y[®1 IR TR HY®)

(128)

Moreover, since |3V |12, (2)) =< ”V”HI(R*) and since Bj(z) has Euclidean volume

greater than 1, there must be a point p € By(z) suchthat |0V (p)| < || V”HI(R‘ From
this simple fact and (128), we conclude that

sup [0V ()| S vV | cosy g2y + leurlV | cosy @) + VI (129)
x€Bi(2)
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Since z is arbitrary in (129), we conclude that
||3V||LM(R3) < ||diVV||C0.51(R3) + lleurlV i co.sy 3y + 1V Il g2 w3)- (130)
From (130), it easily follows that

[0V (x) —aV(y)l
V) = 9V 2V e
f—yl=t X =yI*
5 ||diVV||CO,51(R3) + “Cuer”CO,Bl(R3) + ”V”HZ(R?)
(131)

Next, if 0 < |[x — y| < 1, then y € Bj(x), which, in view of (127) with x in the role
of z and the Sobolev embedding result H 2(R3) — CO01(RY), implies that

[0V (x) — 3V (y)l .
ST T v o gy + leurdV L os ) + 1V I g2ges)-
O<|x—y|<1 [x — yl°1

(132)

Finally, in view of definition (32), we see that the desired estimate (124) follows from
(130), (131), and (132). O

8.3 Estimates for the flow map of the material derivative vectorfield

Our proof of Theorem 8.1 is through a Gronwall inequality estimate that relies on
having sufficient control of the flow map of the material derivative vectorfield B. In
the next lemma, we derive the estimates for the flow map.

Lemma 8.3 (Estimates for the flow map of the material derivative vectorfield). Let
v o [0, Ti] x R} — [0, Ti] x R3 be the flow map of B, that is, the solution to
the following transport initial value problem for the Cartesian component functions
Yo (5 x):

d
EV“(“ x) =B% oy(t; x), (133a)
¥0(0; x) = 0,7 (0; x) = x". (133b)

Then under the bootstrap assumptions, for every fixed x € R>, there exists a unique
solution t — y(t; x) to the system (133a)—(133b). Moreover, 'y is a smooth function
of t and x. In addition, there exists a constant C > 0 such that for t € [0, Ty] and all
X,y € R3, we have
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Yt x) =1, (134a)
Y (t:x) —x'| < C, (134b)

3
YN @G =Y A -yl (134c)

i=1

In particular, for each fixed t € [0, Ty], the map x — (yl (t, x), yz(t, x), y3 (t, x)) is
a smooth global diffeomorphism from R3 10 R3.

Proof The identity (134a) follows easily from considering the O component of (133a)—
(133b).

Since the components B® are smooth on [0, 7,] x R® and satisfy?! SUPye(0,7,]
19=1BY|| Le(s,) < 00, the existence and uniqueness of solutions y(; x) to (133a)—
(133b) that depend smoothly on ¢ and x is a standard result from ODE theory, as is the
factthatthemapx — (y!'(z, x),¥2(t, x), ¥*(#, x)) is asmooth global diffeomorphism
from R3 to R for each fixed t € [0, Ty].

Next, we use the fundamental theorem of calculus and the fact that B = v’ (see
(2)) to deduce

t

v"(r;x>—vl'(r;y>=x"—y"+f [t ovmn —voymp)ar 133

0

Let y(t, x) := (y'(r,x),v*(t,x), ¥*(t, x)). Since dv and y are smooth, we deduce
from (135) and the mean value theorem that

t
(0~ )~ —pi=C /0 195 2o (50 [y (T3 ) — (s ) .
(136)

From (136) and Gronwall’s inequality (more precisely, a straightforward extension of
the standard Gronwall inequality to yield upper and lower bounds), we deduce that

Lol ly(z; x) —y(; y)| L oas
exp (—C‘/0 ||3v||Loo(ET) dT) < = < exp <C/(; ”aU”LOO(E-[) d’l.') .

[x =yl
(137)

From (137) and the bootstrap assumption (41a), we conclude the desired bounds
(134c).

The estimate (134b) follows from a similar argument based on the simple bound
||17||L1([0,T*])L)c?o < 1; we omit the details. O

31 Here, we are only using the qualitative finiteness property sup; (o, 7, [10B% [l oo (x,) < 00 to guarantee
the existence and uniqueness of the solution to (133a)—(133b). In contrast, the constants in (134a)—(134c)
are controlled by the bootstrap assumptions, such as (41a).
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8.4 Estimates for transport equations in Holder spaces

With the help of Lemma 8.3, we now derive estimates for transport equations with
Holder-class initial data and source terms.

Lemma 8.4 (Estimates for transport equations in Holder spaces). Let § be a smooth
function on [0, T,,] x R3 and let ¢ be a smooth function on R>. Let ¢ be a smooth
solution to the following inhomogeneous transport equation initial value problem:

Baaa¢ = g, (1388.)
¢z, = ¢ (138b)

Then the following estimate holds for t € [0, T,], where &1 > 0 is the parameter from
(35e):

t
||‘P||c0~51()jt) S ”¢”c0~51(20) +f0 ”S”covél(zT) drt. (139)

Proof Let y(t; x) be the flow map of B, as in Lemma 8.3. Then equation (138a) can
be rewritten as % (¢ oy(t; x)) = §. Integrating in time and using (133b), we find that

t
poy(t;x) —@oy(t;y) =¢(x) — @(y) +/0 {§(t,x) —=§(t, »} dr, (140

from which it easily follows that
3 3 !
lpov(t;0) =@ oy VI = gl os ¥ — Y17+ |x =y fo 81l co.e1 (5, dT-
(141)
From (134c¢) and (141), we deduce that
lp 0¥ (1 x) — @ oy (1 VI S NPl o 1Y (1 ) =y (13 9)I°"

t
Iy 0 — v P /O 1§l cos 5, dT.  (142)

Since Lemma 8.3 guarantees that the map x — (yl(t, x),yz(t, x),y3(t, x)) is a
smooth global diffeomorphism from R? to R3 for each fixed 7 € [0, T, ], we conclude
from (142) that

lp@, x) — o, y)]
O<|x—y| |x —ylél

= 1ol os + IS (143)

Liqo,mey®t
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Using a similar but simpler argument, based on the fundamental theorem of calculus,
we find that

lelles) S @l + IS0,
which, in view of definition (32) and (143), yields (139). O

8.5 Proof of Theorem 8.1

From Egs. (15a)—(16b), the bootstrap assumption (40), the energy-elliptic estimate
(69), the standard estimates

| F - G||C0’51():,) S ||F||c0,6|(zt)||G||c0~51(z,) and
I[f o 92;] : G||C0-51():,) 5 ||¢||C0-51(Et)”G”CO,{’I():,)

(where the latter estimate is valid for any fluid variable array ¢ comprised of elements
of {p,s, v, Q, S } and any function f that is smooth on the domain of ¢ values corre-
sponding to the set & from (40)), the standard embedding result H 2(x,) — CY 5y (%)
(which is valid since 81 < 1/2), and Young’s inequality, we deduce that

> ) ) - ) o -
”BCHCO,[&] (=) + ”BID”CO,M (=) S, ”a\p”CO.él (=) + ||3lIJ||C0,b| (2,)”8(9’ S)”C(),él ()

+ 192 cos (5, + 1. (144)

Idivell co.s, 5, + lleurlSllcosy (5, S ||3‘T/||C0_51(21). (145)

Using Definition 1.2 to algebraically solve for curl2 and divS and using a similar
argument, we deduce that

lleurlQll cos, (5, + IdivSllcosy s, S 1C Dllcosy (g, + 108 cos 5, (146)

Next, from (139) with (é, D) in the role of ¢, the Holder bounds (144)—(145), and the
data-bound

1€, D)l co.5, (Z0) S L

(which follows from (35¢) and (38b)), we deduce

t
IC. D)l oy g,y S 1+ /0 1B¥ 1205, 5, 47

t
+f0 {109 1c0si (5, + 1} 10@ Dllcos 5, dr. (147
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Next, using the elliptic estimate (124) with €2 and S in the role of V, (145)—(146), and
the energy estimate (69), we find that the following estimate holds for ¢ € [0, T,]:

192, )llcosi 5,y S NC Dllcosy (g, + 0¥l cosy (g, + 1. (148)

Using (148) to bound the factor || 0 (ﬁ, 3‘) Il co.5, (£,) 0N RHS (147), applying Gronwall’s
inequality in the term || (a D)l co.5 =) and using (106), we find that

IC. D)l cosi s,y S 1- (149)

We have therefore proved (120). Then, using (149) to bound the first term on
RHS (148), squaring the resulting inequality and integrating it in time, and using
(106), we arrive at the desired estimate (121).

(122) then follows from (121), the following well-known estimate (see, for example,
[48]*Equation (A.1.2) and the discussion surrounding it), valid for scalar func-
tions f: sup,, o1 I1Pvflleesy S IfIcos () and the fact that the dyadic sum

DoVl v~ is finite. This completes the proof of Theorem 8.1. O

9 The setup of the proof of Theorem 7.2: the rescaled solution and
construction of the eikonal function

To complete our bootstrap argument and finish the proof of Theorem 1.2, we have
one remaining arduous task: proving Theorem 7.2. We accomplish this in Sects. 9-11.
In this section, we set up the geometric and analytic framework that we use in the
rest of the paper. As in the works [18,21,54], the main ingredients are an appropriate
rescaling of the solution,” an eikonal function u with suitable initial conditions, and a
collection of geometric tensorfields constructed out of #. Compared to previous works,
the main new contribution of the present section is located in Sect.9.9.3, where we
derive various PDEs satisfied by the geometric tensorfields; there, one explicitly sees
how the source terms in these geometric PDEs depend on the vorticity and entropy,
and some of the precise structures in these PDEs are crucial for our analysis.

9.1 The rescaled quantities and the radius R

9.1.1 The rescaled quantities

Let {[t, tk+11}k=1,2.... be the (finite collection of) time intervals introduced in Sect. 7.2,
andlet Ap > 0 be the large parameter introduced there. For any fixed dyadic frequency

A > Ao, let

T 0y = A1 — ). (150)

32 n [54], instead of rescaling the solution, the author worked with rescaled coordinates. These two
approaches are equivalent.
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Note that since (by construction) |fxy1 — x| < A—8eoT, it follows that
0 < T < A 78¢07, (151)

We now define the “rescaled” solution variables that we will analyze in the rest of
the paper.

Definition 9.1 (Rescaled quantities) We define the array of scalar functions
\_I’l — ( U] U2 U3 s )
N P Vnys Vays Yay: SN

and the Cartesian components of the X;-tangent vectorfields €2y and S(») as follows,
(i=1,2,3)

oo, x) = U+ AL Ay, @ x) = Q@+ A LA,
S x) = 8"t + A", A ). (152)

Similarly, we define the Cartesian components of the X;-tangent vectorfield C(x)
and the scalar function Dy, as follows:

. . = ps(Tay) .
Cony = exp(—p)) (curlQn))" + exp(=3p())e 2(\1"()\));7()5?7\)8,11);)\)
e Ps(B) :
— exp(=3p())c Z(W(A))AT()(aav?;\))Sb\), (153a)
D()\) = eXp(—Zp()\))diVS()\) — eXp(—Zp(}\))Sf}\)aap()\). (153b)

Finally, we let g(p), g, and B be the “rescaled” tensorfields whose Cartesian
components are as follows, (o, 8 =0,1,2,3and i, j =1, 2, 3):

(B8n))ap(t, X) = gup ("f/(tk +A7 1, ?\71X)> s (it x) = gij ('I/(tk +A7 1, ?\71X)> ,
(154a)

BY, (1. x) := B (\if(zk A1, ?\—lx)) . (154b)

Remark 9.1 (Remarks on the rescaling). Note that the slab [0, T, (n)] X R3 for
\_IQ(;\) (t, x) corresponds to the slab [#x, #x41] x R3 for \i'(t, x). The same remark applies
for the other rescaled quantities.

Note also that when we are controlling the rescaled quantities such as ‘I'()\), the
hypersurface that we denote by “%,” in Sects.9—11 corresponds to the hypersurface
%, +a-1; for the non-rescaled quantities, which appear throughout Sects. 3-8.

Remark 9.2 Note that Sé)\) # 0;S(n), but rather Sb\) = A9;s). This is merely a
reflection of our choice of how to keep track of powers of A in the equations and
A (Cul‘lv(y\))l

estimates. Similarly, we have Qé)\) =
eXp P()

. We clarify that although we use
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(curlv(;\))i
. . . EXp PN | :
Proposition9.1, when we derive PDE estimates for solutions to these equations, we
generally do not need these relationships; that is, for estimates, we generally treat Sy,
s> 2, VA, and pep) as if they were independent quantities.

the relationships Sb\) = Ad;sn) and Q’b\) =A to derive the equations of

9.1.2 Theradius R

For any t € [0, Ty, ()], p € X4, and r > 0, let B,(p) denote the Euclidean ball
of radius r in %, centered at p and let B4, (.. (p) denote the metric ball, with
respect to the rescaled Riemannian metric g») (¢, -), of radius r in %, centered at p.
The statement of Theorem 11.3 refers to a Euclidean radius R, which we now define.
Specifically, in the rest of the article, R denotes a fixed number chosen such that

O0<R<, (155a)
Br(p) C Bl/z;g()\)(t,.)(p), vVt € [0, Ty.(n)l and Vp € ;. (155b)

The existence of such an R (one that is independent of A) is guaranteed by the formula
(10) (which in particular shows that g)(z, -) is equal to ¢~2 times the Euclidean
metric on X;, with ¢ the speed of sound) and the fact that, by virtue of the bootstrap
assumption (40), c is uniformly bounded from above and below by positive constants.

9.2 The rescaled compressible Euler equations

In the next proposition, we provide the equations verified by the rescaled quantities.
We omit the simple proof, which follows from scaling considerations.

Proposition 9.1 (The rescaled geometric wave-transport formulation of the compress-
ible Euler equations). For solutions to Proposition 1.1, the rescaled quantities defined
in Sect. 9.1 verify the following equations.

Wave equations: For rescaled wave variables W) € {pp), v<1)\), v(z?\), vf)\), S0} we
have:

Oy Yoo = A 2Wa)[Cony: Doyl + 2000 )00, 3V 1. (156)

Transport equations:

Bon R = Z (Voo Qov, Sa0¥ny]. BoySi, = L@y, Sa)@¥].
(157)
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Transport div-curl system for the specific vorticity:

divQ iy = 3(52()\))[3‘-—1}()\)], (158a)
B Ciy = A2(Wo )%, 9201+ A2(T ()[BT, 3So]
quad + 7\09(‘11(7\), 5()\))[3‘:1;(7\), 3&1()\)] + f(\_l;()\), S_é()\), g()\))[B\fJ()\)],
(158b)

Transport div-curl system for the entropy gradient:

BnDoy = A2(Wa )8, 33’(7\)] FA2(W 0, Sad¥ay, d¥n)]
+ 2@y, SolIo], (159a)
(curlSn))" = 0. (159b)

9.3 Key notational remark and the mixed spacetime norm bootstrap assumptions
for the rescaled quantities

For notational convenience, in the remainder of the article, we drop the sub- and
super-scripts “(A)” 1ntroduced in Sect.9.1, except for the rescaled time Ti ()).
That is, we write ¥ in place of \11(7\), g in place of g, 84p(f, x) in place of

gup (\Il(tk + Al A x)), etc. Nonetheless, our analysis will properly take into
account the explicit factors of A on the RHSs of the equations of Proposition9.1.

9.4 M, the point z, the eikonal function, and construction of the geometric
coordinates

Let M := [0, T, 0] X R?> ¢ R!'*3 denote the slab on which the rescaled quantities
of Sect.9.1.1 are defined. In the rest of the paper, we will construct various geometric
quantities and derive estimates on various subsets of M.

The proof of Theorem 11.3 fundamentally relies on the acoustic geometry, that is,
a solution u to the eikonal equation (where under the conventions of Sect.9.3, “g”
denotes the rescaled metric):

(g H*Pd,udgu = 0. (160)

Following the setup used in [54], we will construct u by patching an “interior solution”
with an “exterior solution.” More precisely, the results of Sects. 9.4.1-9.4.2 will yield
an eikonal function u defined in subsets M C M, which we will define to be the union
of an interior region and an exterior region: M= 2" g ;. Moreover, an
exercise in Taylor expansions, omitted here, yields that the solution u is smooth in M
away from the cone-tip axis (which is a curve in M(I"t) that we define in Sect.9.4.1).

Throughout Sects.9 and 10, z denotes a fixed (but arbitrary) point in Xy (wWhere
here, “X(” corresponds to the hypersurface that we denoted by “X;,” in Sects.3-9)
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Uses(N)

Fig.2 The interior and exterior regions and related geometric constructions in the case z := 0

that forms the bottom tip of /’\71“’"). The point z will vary when one carries out the
partition of unity argument that allows for a reduction of the proof of the desired
Strichartz estimate (more precisely, the frequency localized estimates provided by
Theorem 7.2) to that of Proposition 11.1. More precisely, the proof of Theorem 7.2
relies on partitioning the full slab M into various “localized” subsets of type M and
proving dispersive decay estimates on subsets of the M for solutions ¢ to the linear
wave equation Dg(@)(p = 0. The spatially localized dispersive decay estimates (which

correspond to a fixed M and thus a fixed z) are provided by Proposition11.1. We
refer readers to Sect. 11.3 for further discussion on the various standard reductions of
the proof of the Strichartz estimates to spatially localized dispersive estimates (and
ultimately to the proof of control over the growth rate of a conformal energy, provided
by Theorem 11.3). We also remark that the varying of z during the partition of unity
argument is a minor issue in the sense that estimates that we derive in Sects.9 and 10
are independent of z, and all of the constants and parameters in our analysis can be
chosen to be independent of z.

We provide a figure, Fig. 2, that exhibits many of the geometric objects that we will
construct in Sect.9.4. In the figure, for convenience, we have set z to be equal to the
origin in Xy.

. . . . . . .~ (nt)
9.4.1 The interior solution emanating from the cone-tip axis and the region M !

We let v, = V(1) denote the future-directed integral curve of the vectorfield®® B
emanating from the point z, i.e., y,(0) = z € Xp. We refer to {Yz(t)}te[O,T*;(;\)]
as the cone-tip axis. Let ¢ = q(t) := y,(t) be a point on the cone-tip axis. Let
£ € T, M be a null vector normalized by g|, (¢, Bl;) = —1. We denote the set of

33 we again stress that by the conventions of Sect.9.3, in the rest of the paper, we use the notation B¥ (7, x)
to denote B* (‘j/(tk +A~ 1y, )\_lx)> and g4 (t, x) to denote gyp (li'(tk +A~ 1y, ?\_lx)).
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all of these normalized null vectors £ € T, M by .4;. We now consider the case
q =z € X. It is straightforward to see that .4 is diffeomorphic to S?; we therefore
fix a diffeomorphism from S? onto .A;. For each w € S2, we let ¢, € A; denote
the corresponding (via the diffeomorphism) null vector. We will use parallel transport
to construct a diffeomorphism from .45 onto .44, ;). Ultimately, this diffeomorphism
will allow us, upon pre-composing it with the fixed diffeomorphism w — £, from
S? onto .4, and post-composing it with a null geodesic flow,>* to construct angular

coordinates w that are defined in M(Int); see just below Eq. (162b).

To initiate the construction of the diffeomorphism from .47 onto .44, (), for each
w € S?%, we define the vector Ny € T, M as follows: N, := £, — BJ;. Considering
the relations g|; (£, B|z) = —1 and g|,(B|,, B|;) = —1, we find thatg|,(B|;, Nw) =
0. Considering also that g|,(£w, £w) = 0, we find that g|,(Nw, Nw) = 1. Thus,
Nw € UT, %y, where UT, X denotes the g-unit tangent bundle of X at z, and g is
the rescaled first fundamental form of Xy. It is straightforward to see that the map
Ly — Lo — BJg defines a diffeomorphism from .47 onto UT,X. To propagate
N, along the cone-tip axis, we solve the parallel transport equation’® DgN, = 0,
where D is the Levi-Civita connection of the rescaled spacetime metric g. In Cartesian
coordinates, for each N, |, € .47, the parallel transport equation takes the form of the
following transport equation system, which is linear in the scalar Cartesian component
functions Ng,:

d
EN&, +T,%,B“N: =0, (161)
where the initial conditions for (161) are N, T g = %(g—l)”

{8agg,3 + 088uo — 3Uga,3} are the Cartesian Christoffel symbols of the rescaled
metric g, and it is understood tllat all quantitigs are evaluated along v,(?), e.g.,
N§&, = N oy,(t) and B = B* oW oy,(¢), with W the rescaled solution. It is straight-
forward to show, based on the normalization condition g|, 1) (Bly, ), Bly,n) = —1,
(161), and the initial conditions g|,(B|;, Nwlz) = 0 and g|;(Nwlz, Nwlz) = 1, that
fort € [0, Ty (n)], the solution N |, (1) to equation (161) is an element of U Ty, 1) Zs,
where U Ty, ) Z; denotes the g-unit tangent bundle of X, aty,(t), and g is the rescaled
first fundamental form of X,. That is, we have g|,)Bly,)» Nwly,r)) = 0 and
glv,()(Nwlv,1)» Nwly,) = 1. In particular, N |, () is tangent to X, at y,(7).
From these relations and arguments similar to the ones given above, we find that
Loy, ) = Bly,0) + Nwly,t) € A4,«)- Similar arguments that take into account
standard ODE existence and uniqueness theory>’ for the equation (161) yield that the

34 The null curves, whose Cartesian components are solutions to the ODE system (162a), are not affine-
parameterized.

35 More precisely, the angular coordinate functions (!, w?) are uniquely defined away from the cone-tip
axis, while each point on the cone-tip axis is associated with an entire S? manifold worth of angles (i.e.,
the same degeneracy that occurs at the origin in IR3 under the standard Euclidean spherical coordinates).
36 This is in fact parallel transport along geodesics since DgB = 0; this latter identity is straightforward to
derive using that g(B, B) = —1 and the fact that [B, Z] is X;-tangent (hence g-orthogonal to B) whenever
Z is X;-tangent.

37 Here we are using our qualitative assumption that the fluid solution is smooth.
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map Nwlz = Nwly,) is a diffeomorphism from U7, onto UTy, ) Z;. Consid-
ering also that for each for t € [0, Ty, ()], the map N |y, ) — Bly,) + Nolv,0)
(where N |y, () is the solution to (161)) defines a diffeomorphism from U Ty, ) Z;
onto A4, (), we conclude that the map £.,|, — Bly,1) + Nwly,@) is the desired
diffeomorphism from .4; onto 44, ).

Next, for u € [0, Ti. (a1, we let ¢ = q(u) := v, (u) be the unique point38 on the
cone-tip axis with Cartesian component ¢° = u. Let w € S?, and let £, := Bly,u +
Nwly,w) € Ay, denote the corresponding null vector that we constructed in the
previous paragraph. We now let Y,. v = Y;; w (¢) be the null geodesic curve emanating
from g (u) with initial velocity £,,, parameterized by ¢ (see Footnote 34), that is,
TL([); o (1) = t. Introducing the notation T;‘ w = %Tﬁ‘; o and T,‘j‘ w = %Tﬁ‘; w: We
note that standard arguments39 yield that the four scalar functions {T,;’“ wO}e=0,1,2,3
are the solution to the following ODE system initial value problerﬁ (Footnote 37
also applies here) with data given at ¢+ = u, where on RHS (162a), Lp denotes Lie
differentiation with respect to B:

T @ = T &0, 0 Tl (o O T, (0

1 . . .
+ 5088l 0 (T ® =B 7,0 0) (Thw® =B, 0) T O
(162a)
Yoo = g% =viw), Ty, =g, (162b)

We are now able to extend the angular coordinates by declaring that w is constant

along the null geodesic curve t — Y., (¢). Next, given any fixed ¢ € [u, T (n)], we
define the truncated cone

= |J Muo. (163)

telu,t], weS?
We then define a function u by the requirement that its level sets are precisely the

. Ty .
cones (163), that is, along Cu, ’(M, the function u takes the value u’.
We then set

M= e (164)
uel0,Ty; (vl

At times, we will use the alternate notation

C, = Cr™ (165)

38 Itis unique since Bt = 1.
39 (162a) is equivalent to equation (199b) for D; L%, where Y'";‘, « can be identified with LY, 'Y;f_ w ™ B*
can be identified with N, and 1 [Lpglics (Yg; w—BY (Yﬁ; o B )Y;;; «, canbe identified with —ky v L*.
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As is described, for example, in [7], this construction provides a solution of (160) in
the region /A\/Jl(lm) depicted in Fig.2. Note that by construction, we have

u(yz(1)) =1, Blu(y.(1)] = 1. (166)

In total, we have constructed geometric coordinates (¢, u, w) in M(In[). More
precisely, standard ODE theory yields that the map (¢, u, w) — (TB‘ MOREINGE

T2 (0, Tj;w(t)) is smooth on {(, u, w) | u € [0, Ty.m], € [u, Trony], w € S}
and locally injective away from points with ¢ = u (which correspond to the cone-tip
axis); note that here we are identifying T;"; w (1) with the Cartesian coordinate x%.
Moreover, the continuity argument mentioned in Sect. 9.5 guarantees that in fact, this
map is a global diffeomorphism from {(¢, u, w) | u € [0, T\, ()], t € [u Ti.n], w €

S2}\{(u u,w) luel0, Tinl we S?} onto its image, i.e., onto /\/l )mlnus the
cone-tip axis {yz(1)}e[0,7,.,)1; see also Proposition 10.7 for a quantitative proof that
the null curves t — Y., (¢) corresponding to distinct values of # and w remain

separated.*?

—~ (Ext
9.4.2 The exterior solution and the region M( )

Let z be the point in Xy from Sect.9.4.1, i.e., the point y,(0), at which t = u = 0.
The same arguments leading to [54, Proposition 4.3] guarantee that for 7, sufficiently
small, there is a neighborhood & in X contained in the metric ball Bz, (2, g) (With
respect to the rescaled first fundamental form g of Xg) of radius 7. ) centered at
z such that & can be foliated with the level sets of a function w on X, defined for
0w wy ) = %T*;(A), where, away from z, w is smooth and has level sets Sy,
diffeomorphic to S?, while Sy = {z}. To obtain suitable control of the geometry, we
require w to have a variety of crucial properties, especially (280); see Proposition 9.8
for the existence of a function w with the desired properties.

Let w € S? be as in Sect.9.4.1, let £, € T, M be the corresponding null vector,
and let N, = €4, — BJ; be the corresponding element of UT,%¢. Let V denote the
Levi-Civita connection of g and let a := |Vw|§1 denote the lapse, where |[Vw|, =

V(g=H3,wa, w. In our forthcoming analysis, we will have a(z) = 1 and a ~ 1;
see Proposition9.8. Let N be the outward g-unit normal to S,, in Xg, i.e., N I.=
a(g’l)i"acw, NO = 0, and ngN"Nd = 1. Each fixed integral curve of N can be
extended*! to a smooth curve emanating from z. More precisely, for each vector
Nw € UT,Xy, there is a unique integral curve @, : [0, wy.(n)] — 2o of aN
parameterized by w (i.e., <i>"w (w) = [aN]o® , (w), with a the lapse, where CiD"w (w) =
%CD"UJ (w)) that emanates from z with ®,,(0) = z and wa(O) = Ny (here we
have used that a(z) = 1). This yields a diffeomorphism from S? to each S, for

« »o oy Unt - . :
40 By “separated,” in M( " ), we mean, of course, away from the cone-tip axis.

4 1 particular, in the proof of Lemma 10.6, we show that along X, fori = 1,2, 3, || %Ni ”L2L°° < 00,
u~w
where this norm is defined in Sect. 9.10; this implies the extendibility of each integral curve of N to z, where

z is the point at which u = 0.
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0 < w < wy;(p),defined such that w is constant along the integral curve w — @, (w).
In particular, if {w?} 4— 1,2 are local angular coordinates on S?, then for each fixed w
with 0 < w < wy;(n), the map w — @, (w) yields angular coordinates {wA}A=1,2
on Sy,. It is straightforward to see that on Uo<w=w,. Sw, we have the vectorfield

identity (where % denotes partial differentiation at fixed w)

— =aN, (167)

and that the rescaled first fundamental form of X, denoted by g, can be expressed
relative to the coordinates (w, w) as follows:

g=a2dw®dw+g< )de®de, (168)

dwA’ dwB

where ¢ is the Riemannian metric induced on Sy, by g.
In view of the constructions provided above, to each point g € Uo<w<w,.n Sw C
3o, we can associate the geometric coordinates (0, w, w) (where “0” is the time

coordinate). In particular, these points ¢ = ¢(w, w) are parameterized by the
coordinates (w, w) € [0, wy )] % S2. We then define the vector Lyw,w) =
Blyw,w) + Nlgw.w) € Tyw,w)M. Since glgw,w)Blgw,w), Blgw,w)) = —1,

g|q(w,w)(B|q(w,w)v N|q(w,w)) = 0, and g|q(w,w)(N|q(w,w)a N|q(w,w)) = 1, it fol-
lows that g|,w, w) (g w,w)» €gw,w)) = 0,1.e., €y (w,w) is null. Next, we construct the
null geodesic Yy (w,w) = Yg(w,w)(t) by solving the ODE (162a) with initial conditions
Y w0 = ¢%(w, w) and Tg(w’w)(O) = €% (. )+ FOr each fixed w € [0, wy; )],
the set {Yyw,w)(@) | (¢, w) € [0, Ty;(n)] x Sz} is a portion of a g-null cone. We
define the function u by declaring that along this null cone portion, it takes on the
value —w. Thus, with C}, denoting the level set portion contained in [0, 7] x R3, we
have C|, = {(Yy(—u, ) (O | (T, w) € [0, 1] x S?}. As we do in the interior region, we

. . T,.
sometimes use the alternate notation C, := C,, ‘™ We then set

ME = ar. (169)

UE[—wy;r),0]

This procedure yields a function u defined in the region M(EXI) depicted in Fig.2.
It is a standard result that u is a solution to the eikonal equation (160) in M(EXI).

. . ~(E . .
Finally, we extend the angular coordinates to /\/l( 0 by declaring that w is constant
along the null geodesic curve t — Yy (w, w)(t). In total, we have constructed geometric

) .~ (Ext
coordinates (f, u, w) in /\/l( * ).

9.4.3 Acoustical metric and first fundamental forms

We refer to Sect. 1.1.2 for discussion of the acoustical metric g and the first fundamental
form g of X;. We now define ¢ to be the first fundamental form of S; , := C, N %, that
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Fig.3 Depiction of various subsets of spacetime in the case z := 0

is, the Riemannian metric induced on S; , by g. We again clarify that we are working
under the conventions of Sect.9.3.

9.5 Geometric subsets of spacetime and the containment Br(y,(1)) C Inti1

In the rest of the paper, we denote M = .7\71(1”0 U M(EXI). From the constructions

in Sects.9.4.1-9.4.2, it follows that

M= U chm, (170)
uel=we; ), T, )]

where wy. (\) = %‘T*; - We also define a truncated version of M ,namely /A\/Jlilm) )

as follows:

/T/lﬁl"t) = A <[1, T on] R3) ' (171)

We also define
S, =%, NM, st s, M, Co=cnM. (172)

See Fig. 3 for a depiction of these sets.

For the same reasons given in [54, Section 4], if T is small#? (where the required
smallness is controlled by our bootstrap assumptions and our assumptions on the data),
then the results of Sects. 9.4.1-9.4.2 yield a complete system of geometric coordinates
(t, u, w), which are defined on M and non-degenerate away from the cone-tip axis;

42 Note that, as is explained on [54, pg. 24], it is only T, and not T, A)» that is required to be small; once
we have fixed T, we have T () — 00 as A — oo.
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the proof is based on a continuity argument involving the bootstrap assumptions and
the bounds (288a)—(297b) proved below; see also the proof of [50, Theorem 1.2]
and [19,23] for additional details. In particular, for u € [—ws. ), Ts:(n)] and ¢ €
[[u]y, Ty, (n)] such that*3 ¢ # u (where [u]4 := max{0, u}), the sets

Siu=C/NZ, (173)

are embedded submanifolds that are diffeomorphic to S?, equipped with the (local)
angular coordinates (w!, w?). We also note that

M= U Stus (174a)
u€l—wy;ny, sy L r€llul+, Te; (0]
~ ~(E
i _ U S, A _ U S,
u€l0, Ty, )11 €[, Th: (0] UE[—wy;(0),0],1€[0, T (0]
(174b)
5= S (174¢)
MG[O,T*;()\)]

For future use, we also note that for the same reasons given on [54, page 25], based
on (155b) and the estimate (297b) proved below, we have the following containments,
where B (yz(1)) denotes the Euclidean ball of radius R centered at y,(1) in il (with
R is as in~Sect. 9.1), and By/2;4(1,.(v2(1)) is the metric ball of radius 1/2 centered at
vz(1) in X1 corresponding to the rescaled first fundamental form g(1, -):

Br(v2(1)) C Bijpg(va(D) € | 81w € . (175)

1
3=<u<l

9.6 Geometric quantities constructed out of the eikonal function
We now define a collection of geometric quantities constructed out of u.
9.6.1 Geometric radial variable, null lapse, and the unit outward normal
We define the geometric radial variable 7 as follows:
F=r(t,u):=t—u. (176)

Since in M we have that ¢ € [0, Ti.n)] and u € [—wy.(n), t], and since wy.(n) =
%T*;(}\), it follows from (151) that

4
0 <7 < 2Ty =221 78¢0T, —EAI—SEOT* <u<A7Beor, 177)

43 Note that for ¢ € [0, T, (A1, St.¢ is a single point on the cone tip axis.
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Throughout the article, we will often silently use the inequalities in (177).
We define the null lapse b to be the following scalar function, where |Vu|, =

V(g Db 3, udpu:

1
" |Vulg’

(178)

From (178), (168), and the fact that u = —w along X, it follows that b = a along
Yo. Moreover, using (178), (10), (11), and (160), we see that

1

=& (179)

Considering also (166), we see that for ¢ € [0, T, (»)], we have
bly,a) =1, (180)
where the curve t — y,(¢) is the cone-tip axis introduced in Sect.9.4.1.
Let N denote the outward unit normal to S;, in X, i.e., N is X;-tangent, g-

orthogonal to S; ,, outward pointing, and normalized by g(N, N) = 1. From (178),
it follows that

N' = —b(g™H,u, Nu = —%. (181)
9.6.2 Null frame and basic geometric constructions
We now define the following vectorfields:
L:=B+N, L:=B—-N (182)
Since BY = 1 and N° = 0, it follows that
Lt=Lt=1. (183)
Moreover, from (10), (11), (178), (179), (181), and (182), we see that
L* = —b(g )P ogu. (184)
Since g(B,B) = —1,g(N, N) = 1, and g(B, N) = 0, it follows that
g(L,L)=g(L,L)=0, g(L,L)=-2 (185)

Inparticular, (183) and (185) imply that L and L are future-directed and g-null. Let now
{ea}a=12 be a (locally-defined) g-orthonormal frame on S; ,, i.e., g(es, ep) = daB,
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where d4p is the Kronecker delta. We note that since B and N are g-orthogonal to
St.u, it follows from (182) that g(L, ea) = g(L, ep) = 0. We refer to

{L,L, e, ez} (186)

as a null frame; see Fig. 1.

If & is a one-form, then &; = &, L%, & = &, L%, and &, = Eyef denote
contractions against the null frame elements. Similarly, 1f X is a vectorfield, then
Xy =Xy L% X := Xy L%, and X := Xy €. We use analogous notation to denote
the components of higher order tensorfields as well as contractions against N, e.g.,
Ean = E.otﬁeANﬁ'

It is straightforward to deduce from the above considerations that

_ 1 1 _
@=L LP — oL Py @) @)= Y ek a8
A=1,2

Next, we define the g-orthogonal projection JI onto S;, and the g-orthogonal
projection IT onto X, to be, respectively, the following type (i) tensorfields, where
6% is the Kronecker delta:

1 1
M = 8% + 5L Ly + 5 LLy. 0% = 8% + B*By. (188)

It is straightforward to check that 17[0a = ﬂo‘x = 0fora =0, 1, 2, 3; we will silently
use this simple fact throughout the article.

If & is a spacetime tensor, then J1I& denotes its g-orthogonal projection onto S; ,,
obtained by projecting every component of & onto S; , via Jl. For example, if X is a
vectorfield, then (MIX)¥ = VI“ﬁXﬁ, and if & is a type (g) tensorfield, then (J1&)qp =

mn, 8ﬂ£,y5. We say that a tensor &, is Sy ,-tangent if J1 = &. We often denote S; -
tangent tensorfields in non-bold font, i.e., as X or & We use the notation [E[4 to
denote the norm of the S; ,-tangent tensorfield & with respect to the rescaled first
fundamental form g¢. For example, if & is a type (g) S;.u-tangent tensorfield, then

1&g = \/(gfl)ay(gfl)ﬂ%aﬁay(g = VE&aB& ap, Where the last relation holds relative

to the S; ,-frame {ea}a=1 2. If & is a symmetric type (g) S;.u-tangent tensorfield, then
we defineits g-trace to be the scalar try &, := (g~ Hep &up = &, Where the last relation
holds relative to the S; ,-frame {es}a=1,2. We then define é = — %(trgﬁ)g to be
the trace-free part of &. Given a tensor whose components with respect to {ea}a=12
are known, we can extend & to an S; ,-tangent spacetime tensor § (i.e., one verifying
g = &) by declaring that all contractions of & against elements of {L, L} vanish;
throughout the paper, we will often implicitly assume such an extension. Similarly,
IIE denotes the g-orthogonal projection of € onto X,, we say that & is X;-tangent if
I = &, and we can extend tensors & whose 3; components are given to a X,-tangent
spacetime tensor by declaring that all contractions of & against B vanish. We also note
that IL = JIL = 0, and [IB = 0.
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Remark 9.3 We remark that we do not attribute a tensorial structure to U or 3V.
Therefore, whenever W or dW appears under the | - |4 norm, it should be interpreted
as the standard Euclidean norm of the array U or 9U. The only reason why we
occasionally have U or 8V under | - |¢ is because, in our schematic notation, we
sometimes group it with S; ,-tangent tensorfields for which pointwise norms are taken
with respect to | - |4, such as, for example, in (337a).

Throughout, if V is a spacetime vectorfield and & is a spacetime tensorfield, then
we define £y§ := JILyE and Ly§ := [ILyE, where Ly denotes Lie differentiation
with respect to V.

We use the following notation to denote the arrays of the Cartesian components of
L,L,N:

L:=(,L' 12 L%, L:=(1L""L> L% N:=(@ON' N N (189
From (182) and the fact that B* is a smooth function of \Il, it follows that there exist
smooth functions, denoted schematically by f, such that both L and N are of the
form L — f(W). In the rest of the paper, we will often use this fact without explicitly

mentioning it.

9.6.3 The metrics and volume forms relative to geometric coordinates, and the ratio
(]

From the above considerations, it is straightforward to deduce that there exists an
S;.u-tangent vectorfield Y such that g and g can be expressed as follows relative to the
geometric coordinates (see [42]*Lemma 3.45 for further details):

g = —bdt ® du — bdu ® dt + b*du ® du

3 3
+¢l—. —= ) @dw? + Y du) ® (dw? + YBdu), (190a)
dwA’ dwB

3 3
g=bdu®du+¢ (a_A a_B) (dw? + Y4du) @ (dw? + YBdu). (190b)
w w

The volume form dwy induced on §; , by g can be expressed as follows relative to
the geometric coordinates:

A g(1.u,w) = /detg dw'dw?. (191)
In addition, the volume form dw, induced on X, by g, which in Cartesian coordinates
takes the form dw, = c3dx'dx?dx3 (see (10)), can be expressed as follows relative

to the geometric coordinates:

dwg(,,u,w) =b(t,u, w) dudwg(,,u,w). (192)
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Let ¢ = ¢(w) be the standard round metric on the Euclidean unit sphere S?, and
let dwy(w) denote the corresponding volume form. The following ratio** of volume
forms will play a role in the ensuing discussion:

dwyiuw)  /detd(t, u, w)
dwy(w) Jdetg(w)

v(t,u, w) = (193)

9.6.4 Levi-Civita connections, angular divergence and curl operators, and curvatures

We let D denote the Levi-Civita connection of the rescaled spacetime metric g and
¥ denote the Levi-Civita connection of g. Our Christoffel symbol conventions for
g are that DgX* = 0gX* + I‘ﬂ“yXV, where I‘ﬂ"‘y = (g_l)"“SI‘ﬂ(sy and Igsy, =
3 {9p8sy + Dy 8ps — Dsgpy |-

If V is a vectorfield and & is a spacetime tensorfield, then Dy§, := V*D,§ and
Dy & ;= NIDyE; note that P, & := ¥, & when both V and & are S; ,-tangent.

If & is an S; ,-tangent one-form, then relative to an arbitrary g-orthonormal frame
{eqy, e}, diVE, == W,4&a and cuflé, := eABW,&p, where repeated capital Latin
indices are summed from 1 to 2 and €48 is fully antisymmetric and normalized
by €!?2 = 1. If f is a scalar function defined on S, ,, then Af := WiAf denotes
its covariant angular Laplacian. We clarify that above and in all of our subsequent
formulas, frame contractions are taken after covariant differentiation. For example,
relative to arbitrary local coordinates {y', y2} on St.uswehave W4 €4 1= e ez ¥, &p and
Wi 2f =e Ae AV ¥, f. Similarly, if € is a symmetric type ( ) S;.u-tangent tensorfield,
then difé4 = Vp&ap and cuflé s := eBCWzEca = $eBC {Wpica — Vepal.

We let Riemy g, 5 denote the Riemann curvature of g and Ricyg 1= (g™ )7/5R1em0t VBs
denote its Ricci curvature. We adopt the curvature sign convention g(D3 vy W —
D%{XW, Z) := —Riem(X, Y, W, Z), where X, Y, W, and Z are arbitrary spacetime
vectors, and D%y W := X*YPD,DgW.

9.6.5 Connection coefficients
Definition 9.2 (Connection coefficients). We define the second fundamental form k

of X, to be the type (g) %, -tangent tensorfield such that the following relation holds
for all 3;-tangent vectorfields X and Y:

k(X,Y):=—-gDxB,Y). (194)

44 Note that RHS (193) is invariant under arbitrary diffeomorphisms on S, ie., diffeomorphisms cor-
responding to the geometric angular coordinates. This ratio is determined by the diffeomorphism from
s? to St,u that we constructed in Sect.9.4 (which in particular determine the component functions

g, u, w) ( Tk TwF )) That s, the ratio is determined by our construction of the geometric coordinates.
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We define the second fundamental form 0 of S; ,, the null second fundamental form
X of S; 4, and X to be the following type ((2)) S u-tangent tensorfields:

Oap :=gDaN, ep), (195a)
Xap :=8MDaL,ep), X, , = 8MDaL, ep). (195b)

We define the torsion ¢ and ¢ to be the following S; ,-tangent one-forms:

1 1
Ca = 78(DLL. eq). Cy = 58DLL. en). (196)

In the next lemma, we provide some standard decompositions and identities. We
omit the simple proof and instead refer readers to [18] for details.

Lemma 9.2 (Connection coefficients and relationships between various tensors). k,
0, X, and x are symmetric tensorfields. Moreover, the following relations hold:

1 1

k= —EéBg = _EéBg’ (197a)

1 1 1 1
X= zﬁLg = EﬁLg’ X= 54@‘? = §¢Lg, (197b)
PyN = —Vinb, D, Np =04z, (198)
DyL = Xapep — kanL, DsL =X, peB +kanL, (199a)
D, L =—knynL, DL =2C,ea+knnL, (199b)
DLL =2Cpea +knNL, Dies =D eq +£AL, (199¢)

1 1
Dpgey = WBeA + EXABL—F z)_(ABL, DLL = —Z(WA Inb)es — kynyL, (199d)

XaB =048 —kap, X,p =—0aB —kap, C,=—kan, Ca=Vplnb+kan.
(200)

9.7 Modified acoustical quantities

As we explained at the end of Sect.2.1.3, to obtain suitable control of the acoustic
geometry, we must work with modified quantities and a metric equal to a conformal
rescaling of g. In this subsection, we define the relevant quantities.
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~ (Int
9.7.1 The conformal metricin M( "
Definition 9.3 (The conformal factor and conformal metric in the interior region

U ). We define o to be the solution to the following transport initial value problem
(with data given on the cone-tip axis defined in Sect.9.4.1):

1
Lo-(tv u, (.U) = E[FL](tv u, (.U), ue [O, T*,(}\)]v 1 e [l/l, T*,()\)]a w e st (2013)

ou, u, w) =0, u €0, Ty, w e S?, (201b)

where 'y ;=T L% and T, := (g’l)“I‘m,\ is a contracted (and lowered) Cartesian
Christoffel symbol of g.
We define

g =g, 7= (202)

to be, respectively, the conformal spacetime metric and the Riemannian metric that it
induces on S; ;.

Definition 9.4 (Null second fundamental forms of the conformal metric). We define the
null second fundamental forms of the conformal metric to be the following symmetric
S; u-tangent tensorfields:

1

~ 1 ~
X = §¢L§9 X = Eng (203)

From straightforward computations, taking into consideration definition (203) and
the PDE (201a), we deduce the following relations:

X =[x+ (Lo)g)}, X=e{x+Lop). (204a)

trgX = tryX +2Lo =trgx + T, trgX = trgx + 2Lo, (204b)
. . L .

x =5 (X —Ti} g +% X=§[trﬁ—2L0}g+)_(. (204¢)

Moreover, above and throughout, if & is a symmetric type ((2)) S;.u-tangent tensorfield,
then trz§ = (2’1)“’360,,3 = e’z"(g’l)"‘ﬂ&a,g = e’z"trga denotes its trace with
respect to g.
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9.7.2 Average values on S;

Some of our forthcoming constructions refer to the average values of scalar functions
f on S; . Specifically, we define the average value of f, denoted by f, as follows:

— 1
f=ru:=
IStulg /s

fdwy, IS ulg = / 1 dwy. (205)
St,u

In the next lemma, we connect the evolution equation for f along integral curves
of L to that of f. We omit the standard proof, which is based on the identity (212a)
below.

Lemma 9.3 (Evolution equation for the average value on S; ,). For scalar functions
f, we have

Lf +trgxf = {trgx —trgx} f + Lf + tryx [ (206)
9.7.3 Definitions of the modified acoustical quantities

Definition 9.5 (Modified acoustical quantities). In the interior region M(lnt), we
define trg')Z(S’"“”) to be® —% plus the trace of the S; ,-tangent tensorfield X defined
in (203) with respect to the conformal metric g defined in (202). That is, in view of

(204b), in /’\\;I(I"Z), we have:

~(Small) —

tryX , (207)

N

2 ~
tryX +T'p — = = trgX —

whereI';, :=T,L% and T, := (g_l)’”\l",(m is a contracted (and lowered) Carggsian
Christoffel symbol of g. We then extend the definition of trg%(sm“m to all of M by
declaring that the first equality in (207) holds in all of M.

In M, we define the mass aspect function p to be the following scalar function:

1
W= Ltryx + Etrgxtrg)_(. (208)

~I . . . .
In M( m), we define the modified mass aspect function®® {1 to be the following
scalar function:

. 1 1
pLi=2A0+ Ltryx + ztrgxtrg)_( — trgxknn + EtrXXFL’ (209)

where 'y := T L".

45 n [54], trg&(s’"“”) was denoted by “z” and trgX was denoted by “trX.”

46 The idea of working with quantities in the spirit of the mass aspect function and the modified mass
aspect function originates in [7]. As in [7,54], we use these quantities to avoid the loss of a derivative when
controlling the L derivative of tryx.
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In M(lnt) , we define y to be*” the S¢,u-tangent one-form that satisfies the following

Hodge system on S; ,:
. 1. =
difh = S (R — ). cuflh = 0. (210)

In /T/ll([m), we define the modified torsion Z to be the following S; ,-tangent one-
form:

7=+ Vo 211)

9.8 PDEs verified by geometric quantities - a preliminary version

To control the acoustic geometry, we will derive estimates for the PDEs that various
geometric quantities solve. In the next lemma, we provide a first version of these PDEs.
The results are standard and are independent of the compressible Euler equations. In
Proposition 9.7, we use the compressible Euler equations to re-express various terms
in the PDEs, which will lead to the form of the equations that we use in our analysis.

Lemma 9.4 [18, PDEs verified by the S; , volume element ratio, null lapse, and con-
nection coefficients, without regard for the compressible Euler equations] The
following evolution equations hold*® relative to a null frame:

Lv = vtryx, (212a)
Lb = —bkyy, (212b)
1 . .
Ltrgx + E(l}’gx)z = —IRI§ — knntrgx — Riepp, (212c)

. . N . 1.
D Xap + (trgX)XaB = —knnXaB — {RlemLALB - ERchLéAB} , (212d)

47 Existence and uniqueness for the system (210) is standard, given the smoothness of the source terms.

48 In [54]*Equation (5.28), the terms in braces on the last line of RHS (212g) were omitted. However,
equation (212g) is needed only to derive the evolution equation (237) for 1, and the omitted terms have the
same schematic structure as other error terms that were bounded in [54]; i.e., the omitted terms are harmless.
Moreover, in [54], the second term on LHS (212d) was listed as %(trgx)f( AB- Fortunately, correcting the
coefficient from % to 1 does not lead to any changes in the estimates, as we further explain in the discussion
surrounding equation (374). In our statement of Lemma 9.4, we also corrected index-placement/sign errors
in some curvature terms, specifically the term %Riem ALLL on RHS (212¢), the term Riemyz; g on

RHS (212g), and the term %EABRiemALLB on RHS (213c). These corrections are harmless in the sense
that in practice, when deriving estimates, we only need to know the schematic structure of the first and
third of these curvature terms, which is provided by (221a) and (222a) and which is insensitive to signs. In
particular, these corrections do not affect the schematic form of the equations of Proposition9.7, which is
what we use when deriving estimates for the acoustic geometry.
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1 . 1 1.
DA+ z(lrgX)CA = —{kpn + (B} XaB — EtrngAN + ERlemALLLa (212e)

1 . .. .
Lirgx + 5 (trgQtrgx = 2R + knwtrgx = XasX 45 + 2] ¢l +Riemap 4,
(212f)

. 1 . 1 . . .
D Xap + 5(rg0Xas = =5 rg)X , p +2Valp — dikCOap + kynRan

NN | SN
+ {ZCACB - |C|§5AB} - {XACXCB - 5)_(CDXCD5AB}

1
+ RiemALLB - ERiemCLLCSAB, (212g)
A N 1 .
di*Xa + Xaken = 3 {Watryx + kantryx} + Riemp g4, (213a)

. 5 5 .
dif = {u—kNNrrgx—mc@—|x|§—2kABxAB}—ERnemALLA, (213b)

1
2
cufll = leABA XBC + l(—:ABRiem (213c¢)

=5 XacXBC ) ALLB-

9.9 Main version of the PDEs verified by the acoustical quantities, including the
modified ones

The main result of this subsection is Proposition9.7, in which we derive, with the
help of the compressible Euler equations, the main PDEs that we use to control the
acoustic geometry. The proposition in particular shows how the source terms in the
compressible Euler equations influence the evolution of the acoustic geometry. Before
proving the proposition, we first introduce some additional schematic notation and, in
Lemma 9.6, provide some decompositions of various null components of the acoustical
curvature, that is, the curvature of g.

Remark 9.4 Compared to previous works, what is new are the terms in Lemma 9.6
and Proposition 9.7 that are multiplied by A~!; these terms capture, in particular, how
the top-order derivatives of the vorticity and entropy affect the acoustical curvature.

9.9.1 Additional schematic notation and a simple lemma

Let U and & be scalar functions or S; ,-tangent tensorfields. In the rest of the paper,
we will use the schematic notation

U=f;, & (214)

to mean that the Cartesian components of U can be expressed as linear combinations
of products of the Cartesian components of £ and scalar functions of type “f, I ;> which
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by definition are linear combinations of products of i) smooth functions of U and i) the
Cartesian components of vectorfields whose Cartesian components are polynomials
in the components of L with coefficients that are smooth functions of W. Expressions
such as f(z) - £(1) - £(2) have the obvious analogous meaning. If & = (&1, - -+, Eun))
is an array of scalar functions S; ,-tangent tensorfields, then f( 0 & means sums of
terms of type f( I &y, 1 < i < m. As examples, we note (in view of the discussion

below (189)) that N,C* = f(z) . é, while f(z) -9 - 3 denotes a scalar function or an
S;.u-tangent tensorfield whose Cartesian components are products of f( ) and a term

that is quadratic in elements the array dW. As another example, we note that (188)
and the discussion below (189) imply that the S; ,-tangent tensorfield J1 has Cartesian
components of the form f( I which we indicate by writing 1 = f( I Finally, we note
that since (by (197a)) the Cartesian components of the second fundamental form k of
%, verify kjj = £ (\il) 0 \_l:’ it follows that the S; ,-tangent tensorfield with components
kan :=k(ea, N), (A =1,2),is of the form kany = f(L) V.

We will use the following simple lemma in our proof of Proposition9.7.

Lemma 9.5 (Identities for the derivatives of some scalar functions). With df denoting
the spacetime gradient of the scalar function f (and thus V1 - df = YV f), we have the
following identities (where in (215b) and (216b), the terms “f(z) on the LHSs are
not the same as the terms “f( ) ” on the RHSs):

M-d(L.L N) =f;, @V, X" %, 77", (215a)
M-dfip) =t @, rgx "D £, 771, (215b)
Moreover,
d(L.L.N) = £z, - @¥, X" %, ¢ 771, (216a)
df j, =tz - @W, X", %, 77N, (216b)

Proof To prove (215a), we first note the schematic relation DL* = dL¥ + T - L =
dL® + f( 0 3‘:1}, where I denotes a Cartesian Christoffel symbol of the rescaled
metric g. Viewing L* as a scalar function, we can interpret this relation as an identity
in which the term on the left and the two terms on the right are one-forms. Projecting
these one-forms onto S, , with the tensorfield 71, and using the first identity in (199a),
the fact that k;; = f (lIJ) 3\11 and the fact that L =f @) and N = f , we deduce that
fora = 0, 1,2, 3, we have the following schematlc identity for the scalar function
LY MdL* = f(z) (3\_1} X)- Considering also thatx = f(L) (8\_13 trg)?(sm“”) D
(as can be seen by decomposing x = X + Z(tl’g)() ¢ and using (207)) we conclude
(215a) for L. In addition, taking into account that L = f( 1) and N = f( 1> and using

the chain and product rules, we also deduce the identity (215a) for L and N. (215b)
follows from similar arguments, and we omit the details.
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The identities (216a)—(216b) from from a similar argument, but we also take into
account (199b) and (199c). Note that the right-hand side of the identity (199c) for
D, L leads to the presence of  on RHSs (216a)—(216b). O

9.9.2 Curvature component decompositions

In the next lemma, we provide some expressions for various components of the cur-
vatures of the acoustical metric g. These expressions will be important for controlling
the acoustic geometry, since curvature components appear as source terms in the PDEs
that they satisfy; see Lemma 9.4. Moreover, some of the curvature components can be
expressed with the help of the equations of Proposition9.1, thus tying the evolution
of the acoustic geometry to the fluid evolution; see Remark 9.6 and Proposition9.7.

Lemma 9.6 (Curvature component decompositions). Relative to the Cartesian coor-
dinates, the following identity holds, where on RHS (217), the component g,5(V) is

treated as a scalar function under covariant differentiation andTy = (g~ )")‘gaﬂ I‘Kﬁk
is treated as a one-form under covariant differentiation:

. 1 -1 > 2 o
Ricap = =50y 8ap (V) + 5 {DaTp + Dple} + 200)[0W,8W].  (217)

Moreover,

Ric;; = L(T'y) + knnTz +A—1f( (G, D)+ -3V -9, (218)

(L)

Finally, there exist scalar functions on S; ,, S; ,-tangent one-forms, and symmetric
type ( ) St .u-tangent tensorfields, all schematically denoted by & and verifying & =
(L) QU (in the sense of Sect.9.9.1), such that

Ric,; — L(Tp) = A" - QU9 (219)

@ €D +1;

(L)

RicLL—%{L(FL)+L(FL)}=7\_1f( C,D)+f- @, 0 -9V, (220

(L)

Ricr4, Riemazzz = (V. P )E+A "' - € D)
+1i) - @W, trgX "D %, 771 -8, (221a)

Riemzpa = difE + A 'f 7 - (C. D) + £z, - @W, Xm0 %, 771) - 80,
(221b)

e*PRiemasLp = cufle, +f 7, - @V, rgX "D %, 771 - v, (222a)

Riem 15 = (V. D )&+ ;) - QU i £, 77" - 00, (222b)
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Riemuprp = difa + 17, - @, trgxmalb %, 771y . 80, (222¢)
Riemcarp = Vi + ;) - @U, 15" £, 77" - 00, (222d)
Riemapap = AV, + £, - QW, trgX "0, %, 7 1) - 90, (222¢)

Remark 9.5 The curvature identities of Lemma 9.6 are crucial for the proof of Propo-
sition 9.7 below. In turn, the structure of the equations of Proposition 9.7 is crucial for
our derivation of estimates for the acoustic geometry.

Remark 9.6 The proofs of the identities (218)—(221b) rely on the compressible Euler
equations, while the proofs of the remaining identities in Lemma 9.6 do not. This
explains why the former identities feature A~!-dependent source terms (which arise
from RHS (156)).

Proof (Discussion of the proofs) The identities (217) and (222a)—(222¢) are the same
as in [54, Lemma 5.12], whose proofs can be found in [20]. The identities (218)—
(221b) also mirror those given in [54, Lemma 5.12], except here there are new terms
of type A~ lf( 0" (C D), which arise when one uses equation (156) to substitute for

the terms Dg(\p)\lf that are generated by the term — Dg(q,)gaﬁ(‘l/) on RHS (217). O

9.9.3 Main version of the PDEs verified by the acoustical quantities

We now provide the main result of Sect.9.9.

Proposition 9.7 (PDEs verified by the modified acoustical quantities, assuming a
compressible Euler solution). Assume that the Cartesian component functions
(lIJ .S, C D) are solutions to the rescaled compressible Euler equations of Propo-
sition 9.1 (under the conventions of Sect.9.3). There exist S; ,-tangent one-forms and
symmetric type (g) St .u-tangent tensorfields, all schematically denoted by & and verify-
ing & = f(z) AU (see Sect.9.9.1 regarding the notation “f(z)~ ”), such that the following
schematic identities hold, where all terms on the left-hand sides are displayed exactly
and terms on the right-hand sides are displayed schematically (in particular, we have
ignored numerical constants and minus signs on the right-hand sides).

Transport equations involving the Cartesian components L' and N': The following
evolution equations hold in M:

=f- -9V, LN' =f- .90 (223)

(L) (L)

Moreover, along ¥y (wWhere w =7 = —u and a = b), we have

d > 0 . -
—Li=gq- f 8‘-IJ+X7a, —N' =a-f; -0V + Ya. (224)
Jw ow &)
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Transport equations involving the Cartesian components @é A ForA =1,2andi =

) : ad i _ _0 i
dwA " (awA> = Jwrt )
and let © ) be the X;-tangent vectorfield with Cartesian components defined by

! L i (225)
(4) JwA |

Then the following evolution equation holds in M:

i
1,2,3, let <33)A) denote a Cartesian component of

LOy =1z, @F, g%, 2 - Oa. (226)
Moreover, along Yo (Where w = ¥ = —u and a = b), the following evolution equation
holds for (w, w) € (0, wy: (n)] x S
0 S
500 =a £ @R O +1, - Va- O, (227)

where @(A) = (®(A)’ (A)’ (A))
Transport equations connected to the trace of x:

(Small) +

LirgX trgx(sma”) A ;) - (€. D)

+f(Z,) . (a‘i} trﬂ(é‘mall) ~—1) 3"IJ+|X| _i_trgX(Small) trgx(Small)’ (228a)

DLWWZX(Sma”) 4+ er %(Small) — A lf(z) W(é, D)
+ A~ lf(z) (s - 3\11 AV, 9%, 85) - (8, trgx(small)’&’ 1
+ f(L) Wa\l—’ (3\IJ tr§~(5ma”) ~_1)
+fg) VXX +H 1) Wtrg“‘(Small) @, trgX(Small) %)
+ f(z) . (3\1’, trgX(Small)’ % 7 1) . (3\1’, n%,%(Small)’ F_l) ) 3\_1" (228b)
Above and throughout, we use S-9W to schematically denote terms of the form S 0, \V,,

wherea=1,2,3,«a=0,1,2,3andt =0, 1,2, 3, 4.

Moreover,

L {ltrgiv} 1 (trgx) v+ - {Llnb} trgXv — |VU|gU

1 Small
=A"- .CD)- v @, ngXSmalh)

0 AW v+ RIG v+ Vol v

(229)
PDEs involving X:

digk = WirgX "D + iR + £ 7, - @, XS R, 7 -9, (230)
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DX+ (rpok = (WPDEHN ;) - € D) +1 7, - @, x5 % 771 - a0,
(231)

The transport equation for (:
1 _ ~
DL+ g0l = (V. DE+ A7) €. D)+, - @, ok %77
U + fi) - X (232)
The transport equation for b:
Lb=b- f(z) -OW. (233)
Transport equation for ¢: Along the integral curves of L, parameterized by t, we

have, with ¢ the standard round metric on the Euclidean unit sphere S?, the following
identity:

d (.., 0 d d 9
dt {r ¢ <8wA’ 8w3) _’é(aw“" 8w3>}
) a a a
(Small) _ s2 (9 9 N_,(_ 9 9
Itrgx L}{r g(awA’8w3> ”‘(awA’awBﬂ
a ) 2 a ad
(Small) I
t -r } — — =X —— —=5 |- 234
{Vgx L ¢<8wA 3w3>+rzx<8w"‘ BwB) (234)
Transport equations for v and Yv:
~=2 2 ~(Small)
Lin (r u) = trygx — = = 9% -ry, (235a)

LV (f*zu) + %(lrgx)yln (f*zu) =f, X ¥n ( ) + WirgXSmalh _y(r ).
(235b)

An algebraic identity for \.: The mass aspect function u defined in (208) verifies the
following identity:

h=A"g, @ D)+ dRE+Ep) KX+ g, Fin (F20) - @9, 0
+fz,- @U, g Smalh £, 771y - 9w, (236)

The transport equation for |L: The modified mass aspect function {1 defined by (209)
verifies the following transport equation:

L+ (trgx)i =31 + 32, (237)

Ty = 7 NdwE + 72, (2382)
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~ ~ 3 a3 ad ad a3 Z o ~(Small) o » =—1
I =M - 3C. D)+ A~ gy (500, 09,82,85) - @U, xS %, ¢ 77

+f(L) WC X+f(L) Yo - (WB\I/ Wtrg"“(small))

+1,-¥o- @V, trg;x(sma”) “Ha 1) - Wik 0¥, 0)
+f(Z) (3\11 ter(Small) l) (a\lf trgX(Small) O - (3\11 trgX(Small) A)
+i - @W, trgxSmalh ).aZ\y. (238b)

The Hodge system for (: The torsion C defined in (196) satisfies the following Hodge
system on S y:

dfe = A7) - (C.D) + diRE + gy - G- G Ep KR

+1 7, - @, rgx D g Y 9 4 £ 7, - Wln( 72 )-(a\i,c),
(239a)
Ccuflc = cufle +f7, - X - X +f ) @, trgxSmalh 71y . 9. (239b)

The Hodge system for C: The modified torsion Zdeﬁned by (211) satisfies the following
Hodge system on S; ;,:

o~ 1, -1 % XX
dfC — o= dife + A Mg - € D)+ gy G G gy XX
i) @7, rgXSmalh ¢ 71y v, (240a)

-

cu;‘lZ:cuﬂ&+f(Z) SRR+ @, trgXSmalh 1y . 9. (240b)

The Hodge system for { — y.: The difference C— i (where C is defined by (211) and
is defined by (210)) verifies the following Hodge system on S; , (see definition (205)
regarding “overline” notation):

div(C — ) = g, + {A"f,: € D) A", - € D)

n if@) 0V, trg%(Small RFT) 00— £ - @, R SmaD £ ) 3\;,]
(241a)
Uil — ) = cufle + £ 7, - X K+ fp) - @, Xm0 %, 771 9w, (241b)

A decomposition of i and a Hodge-transport system for the constituent parts: Let
Iy and J 2y be the inhomogeneous terms from (238a)—(238b). Then in M(Im) (see
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(174b)), we can decompose the solution i to (210) as follows:

h=na+Hha), (242)

where i1y and | o) verify the following Hodge-transport PDE systems:

1 _
dW{DLIA(l) + E(ng)l/t(l)} =Ja) = Jq), (243a)
1
Cuﬂ{DL oy + z(frgx)l/l(l)} =0, (243b)

. 1 - .
dW{DLlA(z) + E(trgX)I/L(z)} =T —Jo) + X Vi + (Va, Wtrgx(sna”)) "

+ @, XD % FN L @0, 1S %) -

+ (trgx — gL, (244a)

1 ¢ N7 ~>(dma
cuﬂ{DLlA(Z) + §<frgx)l/t<z>} =% Vi + (WO, WrrgX SmaiDy .
+ @W, XS R, 71 - @W, trg XD ) -
(244b)

subject to the following initial conditions along the cone-tip axis for u € [0, Ty, (n)]:
ey — hlgt,u, w) = Oast Lu,  |holg@t,u,w) —> Oast fu.  (245)

Proof (Proof sketch) Throughout, we will silently use the identities provided by
Lemma 9.5.

The equations in (223) are a straightforward consequence of the first equation in
(199b) and the relation L! = N* + f(¥).

To prove (224), we first note that along ¥, we have the vectorfield identity % =
aN (see (167)). Also using the identity L' = B’ 4+ N’ and the fact that B’ = f(D),
we deduce that %Li =a-f7 -3V + %Ni. Thus, to conclude both equations in
(224), it suffices to derive the equation for %N i stated in (224). The desired result is
a straightforward consequence of the identity % = aN and the identity (198).

(228a) is essentially proved as [54, Equation (5.75)]. The only difference is that in
the present work, we have the A~ 1 -multiplied terms on RHS (228a), which arise when
one uses equation (219) to algebraically substitute for the term Ricz; on RHS (212c¢).
Similarly, (228b) was essentially proved as [54, Equation (5.76)], the only difference
being that we take into account Lemma 9.5 and the expressions (153a) and (153b)
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for the rescaled C' and D when computing ¥ applied to the A~!-multiplied terms on
RHS (228a).

The identity (229) follows from the same arguments used to prove (228a), based
on (218), (212a), (212b), and (212c¢); see the proof of [54, Proposition 7.22] for the
analogous identity in the context of scalar wave equations.

Based on (222c) and (213a) (and the standard properties of Riemgg,s under
exchanges of indices), the identity (230) was proved as [54, Equation (5.77)].

The identity (231) is essentially proved as [54, Equation (5.68)] based on Lemma 9.6
and equation (212d). The only difference (modulo Footnote 48) is that in the present
work, we have the ?\_l-multiplied terms on RHS (231), which arise when one uses
equation (219) to algebraically substitute for the term Ricz; on RHS (212d). Similar
remarks apply to equation (232), which follows from (212e) and (221a).

(233) follows from (212b).

(234) was proved just below [54, Equation (5.68)].

(235a) and (235b) were derived in the proof of [54] Lemma 5.15, where In (F‘zv)
was denoted by “p.”

(236) is essentially proved as [54, Equation (5.92)], where 7~2v was denoted by
©.” The only difference is that in the present work, we have the A~!-multiplied terms
on RHS (236), which arise when one uses equation (221b) to algebraically substitute
for the term Riemsz; 4 on RHS (212f). We remark that equation (212f) is relevant
for the proof since the argument relies on deriving an expression for LtrgX — Ltrgx.

To prove (239a)—(239b), we use (221b)—(222a) to substitute for the curvature terms
on RHSs (213b)~(213c¢), and we use (236) to substitute for the term pr on RHS (213b).
Similarly, (240a)—(240b) follow from (213b)—(213c¢), the definitions of ( and {1, and
the curvature identities (221b)—(222a). (241a)—(241b) then follow easily from (210),
(240a)—(240b), and the fact that di# of an S; ,-tangent one-form must have vanishing
average value on S; , (in the sense of (205)).

To prove (242)—(244b), one commutes equation (210) with L and uses the same
arguments used in the proof of [54, Equation (6.34)], which in particular rely on
Lemma 9.3 as well as equation (237), derived independently below. We clarify the
following new feature of the present work: in [54, Equation (6.34)], the author derived
equations of the form di/V{DLlll + %(trgx)llt} =, cuﬂ{])L]A + %(trgx)u} =,
whereas for mathematical convenience, we have split these equations into similar
equations for |y and | (,), the point being that later, we will use distinct arguments
to control the | ;). The splitting is possible since equation (210) is linear in i.

To prove (245), we first clarify that the i ;, are solved for by first solving their
Hodge systems (243a)—(244b) to obtain P ;) + %(tl‘g)()]i(i) and then integrating
the corresponding inhomogeneous transport equations to obtain @ ;). However, there
is freedom in how we relate the “initial conditions” of i along the cone-tip axis to
those of Y1) and | (5, where the only constraint is that (242) must hold. Thus, (245)
merely represents a choice of vanishing initial conditions for i ).

113

To prove (227), we first note that since %bio = [aN]|s, and since % commutes
9

with Jois e have the following evolution equation for the Cartesian components

i i
9 ). 3 S Y i_da . : :
(awA) 3 (awA) = azxN' + N'57%. From this evolution equation and the
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second equation in (198), we find, after splitting © into its trace and trace-free parts,
that the evolution equation can be expressed in the following schematic form:

9 9\ N I 3 \/ ; da
gu\awt )~ PN Tt M Ger ) [ T e

1 3y s 9\’ da
J=12,

(246)

where the first product on RHS (246) is precisely depicted and the last two are schemat-
ically depicted. Using (280) to substitute for the term try6 and using (200), we find
that (246) can be expressed as

(0N _1(o i+ f- - @¥0,% IRy b
I O I a-f- - 4= 2
dw \ dwA w \ dwA @ X dwA =123 @) JwA

(247)

where the first product on RHS (247) is precisely depicted and the last two are schemat-
ically depicted. From (247) and the fact that %F = 1 (because 7|y, = w), we easily
conclude the desired equation (227).

To prove (226), we first note that since % = L relative to the geometric coordinates,

_d

and since 2 commutes with ,
at dwA

we have the following evolution equation for the

dwA ) " dt \ gwA dw
and the first equation in (199a), we find, after splitting x into its trace and trace-free
parts, that the evolution equation can be expressed in the following schematic form:

Ly i =D o L' +f; 0¥ 9 :
ar \ dwA e @’ oA ‘
j=12,3

1 3\ . 3\’

Jj=12,3

, i , i .
Cartesian components ( 0 ) s ( 9 ) = —2_L'. From this evolution equation

where the first product on RHS (248) is precisely depicted and the second one is
schematically depicted. Using (207) to substitute for the term tryx, we find that (248)

can be expressed as
(0 \ 9y - 9\
— (=) == (=) +f -@F, X ) — ,
i () =7 () 0@ 0| (55 o123

(249)
where the first product on RHS (249) is precisely depicted and the last one is schemat-
ically depicted. From (249) and the fact that %F = 1, we easily conclude the desired
equation (226).

N o=
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Finally, we provide the lengthy derivation of (237). Throughout the analysis, we
will silently use the following identities, valid for scalar functions ¢:

LLp —LLy =2(C, — CA)Va¢ +knnLy —knnLo, (250)

LAg — AL = —tryxAp — 2Xap Vi e — (difxa) Vae
+ {tryxCy — xaBC, — Riempcrc} Vo, (251)

1 1
Dgi)¢ = —LLy + Ay — StryxLy — StigxLy + 20, Va9 +kyvLy.  (252)

The identities (250)—(252) follow from Lemma 9.2, (187), and straightforward calcu-
lations. We will also often silently use the identity (see (200)) Xap = —XAB — 2kap
to eliminate x AB from various equations.

We now apply L to the definition (208) and use the evolution equations (212c),
(212f), and (212g), and Lemma 9.2 to deduce:

Ly + trgxu

. 1.
= —L(Ricyr) — ERICLLU@_( — (Lkyn)trgX — (LtrgX)knn +2(C, — Ca)FatrgX
. 1. 1 SN .
g X(ARC + 125 + Riemap) + 5 (irexfask,,  + x5 )

—2XAB <2WACB +knnXas +2CaCp — X, XCB + RiemALLB) . (253)

We will now re-express the factor L(kyy) that appears on RHS (253). To this end,
we set X = Y := N in (194), apply Dg to both sides (so that the LHS of the
resulting identity is the scalar function B(kyy)), commute Dg with Dy on the RHS
of the resulting identity using the definition of curvature, use the relation B = %(L +
L) (see (182)), use the relation DgB = 0 (which is straightforward to derive using
that g(B, B) = —1 and the fact that [B, Z] is X;-tangent—hence g-orthogonal to
B—whenever Z is X;-tangent), and use Lemma 9.2 to derive the following “second
variation” identity:

1.
L(kyy) = —L(kyn) + 2kankan — 2(kyn)* + dkanCa + ERlemLLLL- (254)
Since

Ricy . = L"‘Lﬂ(gfl)“”Riemwﬂv,

Riemyp 4, = L*LP (¢~ )" Riemy,p.,
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we have, in view of (187),
Ricy; — Riemazar = L/LP [ — (47" | Rieme5,
= —%E"LﬁL“Q’Riemawgv - %L“LﬂyL“Riemwﬂv
= —%(RiemLLLL +Riemy;;1) = %RiemLLLL.

From this identity, the symmetries of the Riemann curvature tensor, and (221b), we
find that

1
ERiemLLLL = RiCLL — 6ABRiemALBL
= Ricy 1 +di;va+>r1f(z) -(C, D) +1 7, @W, ugxSmall 5,771y . 9.

Combining the above calculations, we can rewrite (253) as follows:

Lu+trgxu=—L(Ricy ) — %RicLLtrgx
+ tryx {L(kNN) — Ricy, — dif — 2kankay + 2(knn)? — 4kANCA}
— tryx {)\_lf(z) @ D) 1, - @, ugX D £ 7 -a\i/}
— (LtrgX)knn +2(C, — Ca)Vatrgx
+ trgx (di/VQ + Iélé + %RiemALLA) + % (tl‘ng(ABXAB + trg)_(lf(l?g)
—2XaB (ZWA Cp +knnXag +28aCB — X, XCB + RiemALLB) .

With the help of (200), we can rearrange the RHS to rewrite this identity as follows:

Lp+toygxp=—L(Ricy) — %RiCLLtrgL( — trgxRicp
1 N a2
— (LirgOk +2(6y — CoVatrgx + 5 (mxiani, p + wexI%I3)
1
+ tryx {dwg — dif€ + SRiem 14 + L(ky ) — 103 + 20k w)* + 4gACA}

—2%AB <2¥7A CB +kNNXAB +2CACB — X o XCB + RiemALLB)

— trgx {rlf@) @Dy +1 7, @F, xSl g 7). a\i/} . (255)

We will now uncover the structure of the terms on RHS (255). To help the reader
navigate the calculations in the remainder of the proof of (237), we also recall that
we treat 'y, 1= (g’l)"}‘gmﬁI‘K’S , as a one-form under covariant differentiation (as in
Lemma9.6), thatT" := LTy, and thatT" 4 := €%, First, invoking (218) and (220),
we find that
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1
— L(Riczy) — ERiCLLtrgX — tryxRierz
1 I !
=—LLT.) - Etrg;(L(FL) - EtrgXL(FL) - EtngL(FL)
| ) . B
— (Lkyn )L = kynLOCL) = StrgxkwaTs =LA 6z - @ D) +1, - 9% - 9%
— g Ny @D gy 0808 ) —wp [N - €D g, - 08,090

(256)

A key observation is that the first, second, and fourth terms on RHS (256) produce
O o(¥) (") (up to lower-order terms) when added to*? A(T"1); this can be seen from the
expression (252). Next, we apply the operator 2A to (201a) and use (251) to commute
it through the operator L. Also using the identity ditxa = —Xapkpn + Vytryx +
%kA NirgX + Riempy g4 (see (213a)) and (200), we obtain the following identity:

2LAC + 2tryx Ao = AT L) — 4%aB V350 — 2(VatrgX) V40
—4RiemABLBX7AO'+trgX§AX7AO'—4)A(AB§AWBO'. (257)

Adding (255) and (257), using (256) and (252), and rearranging the terms, we deduce
that

L(pn+2A0) + trgx (1 + 2A0)
= Oy§)TL) =20, ¥a(TL) = 2kyy L) — (Lkyn)TL
— 4%aB Va0 — 4XaBValh
— 2(WatrgX) ¥4 0 + 2(C,, — Ca) Watrgx
— 4Riem 1 p V40
— (kantrgx — 2XakBN) Va0 — 2XaBC,VpO
— (LtrgX)knn

. . 1 .
+ trgX {dW£ - dWE‘} + EtrnglemALLA
1
+ trgXL(kNN) — ztrgXL(FL)
o+ trgx {1013 + 206nn)? +4¢,Ca
1 NN . 1
+ EtrgXXAB)_(AB + trg)_d)(@ — Etrg)_(kNNl"L

— 2XapRiemarrp — 2548 {knvXas +2Caln}
- trgxf(]:) . (8\_13, trg)?(sma”), X, . v

—lg . 2 R > >
—L{)\ f(L)-(c,D)+f(L)-aw-aw}

49 We recall that Af = WiAf; see the discussion in Sect. 9.6.4.
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—1 3 = =
— g (N, € D)+ £, 00 0T
—upx Vg, €D+ g @9, 009 (258)
We next manipulate (258) as follows: we move the terms tryx L(kyy) — %trng(l"L)

from the RHS to the LHS; subtract (Ltryx)kyy from both sides; add %(Ltrgx)l" Lto

both sides; and finally, add %(trgx)zl" L— (trgx)sz ~ to both sides. After these steps,
in view of definition (209), we see that the LHS becomes

Lt + tryxfi.

With the help of definition (211), we now rearrange some other terms on RHS (258)
as follows:

—4%4B V30 — 4RABVACE = —4%aBY,4 (B,
—2(VatrgX)Wa0 + 2(C, — CA)WatrgX = 2(C, — ZA)WAtrgX-

Combining the above calculations, we have thus far obtained the following equation:
Li+ trgxﬁ
= Uy)Tr) =2, ¥a(CL) — 2kynL(TL) — (L(knn))T'L
1
+ 5 (0T L = (g0 *knn

— 4%Vl +2(L, — CA)Vatrgx
— 4RiemABLBWAG
— (kantrgx — 2XaBkgN) Va0 — 2XaBC, V5O

1
— QLtryx)kyn + E(Ltrgx)l"é
. . 1 .
+ trgx {di#C — diFE} + ztrXXRlemALLA
+ trgx {1813 + 200 + 4, Ca

1 A N 1
+ EtrgxxAB)_(AB + tl‘g)_(|x|§ - ztrg)_(kNNr‘L
— 2%apRiemarrp — 2Xan {knnXas +20aCs)
— trgxf g, - QW XS0 % 7 - 9w

7] R - N = =
—L{?\ f(L)-(C,D)—i—f(L)-B\II-BlI/}

— trg)_({?\_lf(z) @D +1;, -0 -a\i:}

—upx Vg €D i g 09,0 08 (259)
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We proceed to expand the term Dg(@)(l" ) on RHS (259), where we recall from
Definition9.3 thatI'; := L*T,. We therefore compute that>°

Oy T1) = ToOy) L + L0y g To + 2D, LD Ty, (260)

g(¥) g(W)

We first handle the term [, g, L% in (260). Using the decomposition of g~ ! relative
to a null frame (i.e., (187)) and Lemma 9.2, we compute that

O

1.
gL = =DL(DLLY) + D¢, (De, L) + Dp, L L — Dp, o, L* — ERlemaL LL

. . 1 1
= difxac + @ROLY + LN DL + 3 IXBLY + 3XaBX, L
1 1
— trngAe% — EtrngNNLa + Etrg)_(kNNLa + 2CAXAB€OI§ + 2kNNCAe%

1.
+ & XaBeh + 1CGLY — 5 Riem?, ;. 261)

Contracting (261) against I',, we find that

Py L = (@a)Ta + @ROTL + (L)L + 3 XBTL + 3x45x, T
—trgxCalla — %trngNNFL + %trg)_(kNNFL +2CaxaBl'B
+ xaBT B + 05T — %FaRiem“LLL. (262)
Next, we again use (187) and Lemma 9.2 to compute the last product in (260):

Z(DMLQ)DMFO, =kyyL*D. T, — ZCAE%DLFO, — kNNLaDLFa
— 2kanLYD Al + ZXABe%DAFw (263)

Next we use the decomposition xap = Xap + %trgngB, (207), and (213a) to
rewrite the first product on RHS (262) as follows:

(difxa)T 4 = (FptrgX SN 4 — (W4 (CL)IT 4 — RasksnT A
1
+ EtrngANFA + Riem7 45T 5. (264)
Moreover, we use the decomposition x4p = XaB + %trgxg Ap and (207) to rewrite

the last product on RHS (263) as follows, where & denotes the g-orthogonal projection
onto S; , of the one-form with Cartesian components 2I',:

50 Since O o(i)TL) = Oy (L°Ta) = (g H* DD (LYT ), to obtain (260), we have expanded this
expression using the Leibniz rule, where we treat L% as a vectorfield under covariant differentiation and
we treat Iy as a one-form under covariant differentiation.
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2xapegDaTy = 2XapePaT o + tryxei PaT

~(Small)

2 N
= eADA o tgX eGPsTo —Tref Pl +2XaBeEPAT

1 ~ N
= AV + X "V eGPsTe — T LedPaTw + 2% anez Pl
(265)

Moreover, using (212¢), we derive the following identity for the two Litrgx-
involving products on RHS (259):

—2(Ltrgx)knn = (trgX)*kyn + 2|)A(|§kNN + 2tryx(knn)? + 2Ric Lk y, (266)

1 1 1. 1 1.
E(LtrgX)FL = —Z(trgX)ZFL — §|x|§ré - EtrgkaNl"L - §R1cLLFL. (267)

We now use (266)—(267) to substitute for the relevant products on RHS (259), we
use (260) to substitute for the first term Dg @) (') on RHS (259), we use (262)— (263)
to substitute for the first and third products on RHS (260) (specifically, I' Dg(q,)
and 2(D,, L*)D"T,), and we use (264)—(265) to substitute for the relevant products on
RHSs (262)—(263). Also using (200), in total, we compute that the following equation
holds:

Lﬂ.-}—tl‘g}(}vl = L“Dg(@)r‘a —4Riem g7 Va0 — Z)A(ABRiemALLB + Riema; ol
1 1 1 v
— EFaRiemaLLL + EtrngiemALLA + 2RiCLLkNN — ERicLLFL"’ Err,

(268)

where

Err = %djﬁ/& + trgx {difC — it} + Fiza + i(trgx)zr‘é-}— %|x|§r‘é+ %XABXABI‘L
+ (Vg SmaIDYE 4 + @WOT f, + kynLODpTo —204¢% DTy — kyy LD
— 2kNNL(L) = (Va(CL)T 4 = 2kan L¥D AT + trgX S0 5Py T
—T1e5PaTa + 2855 PaTa — 20, VAT L) — 484 Valp +2(L, — Ca)VatryX
— (kantrgX — 2XaBkBN)¥a0 — 2XABC 4 ¥pO +2XaBCaAT B + XABCAT B

1 1 1
+trgx {—Iélﬁ +40kyn)? +40,0a — FANNTL + SkanTa = CaTa — EkNNFL}

1 . R A 1.
+ EtrgXXABXAB +trgx|x|§ +XAB {—4(:A(:B + CAFB} — §|X|§FL
+2knnCaT A + ICI;‘;I‘L trgXfz, - @V, ugXSmall 5 771 . 90

—L{rt L) CCD) +E ) 0890 g [N g € D)+ 1) 000

—ug Ay @D g - @, 008 (269)
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With the help of the decomposition x4p = XaB + %trgxg AB, definition (207) (which
implies that schematically, we have tryx = f(z) . (3\1", trg)?(sm“”), f‘l)), definition
(211), the identity xap + Xag —2kap (see (200)), and Lemma 9.5, we verify by
direct inspection that all terms on RHS (269) can be accommodated into RHS (238b),
aside from the terms on the first line of RHS (269), which split into terms of type
RHS (238a) and of type RHS (238b).

To finish the proof of (237), it remains only for us to verify that the remaining
terms on RHS (268) have the form of terms on either RHS (238a) or RHS (238b).
First, using (222c), we see that the term —4Riem4prp¥,40 can be accommodated
into the terms on RHS (238b) featuring a factor of Wo. Next, to handle the term
—2XapRiemy 1 g, we first note that since the Cartesian components gup are of the
schematic form gyg = f (l_I;), the standard expression for the components of Riem in
terms of the Christoffel symbols of g and their first derivatives yields that relative to
the Cartesian coordinates, we have Riemgg, 5 = f (\fl) 92U £ (\fl) -(a \f!)2. It follows
that, schematically, we have —2X 4pRiemaz .5 = f D) X 32y +f )A( (3\11)2 which
is of the form of the next-to-last and last products on RHS (238b). Usmg the schematic

relations 'y, = f(‘ll) BlI/ r, = f(L) B\If and kyy = f(L) B\Il we can handle the

terms Riema; 4T g, —EFaRlem " 11-2Riep L kyy,and ——RicLLFLusingasimilar
argument, which allows us to incorporate these error terms into the next-to-last and
last products on RHS (238b). To handle %trngiem ALLA, We use (221b) to substitute
for Riemy ;4 and (207); this leads to terms of the form RHSs (238a)—(238b). To
treat the remaining term L*JgI", on RHS (268), we first recall that I'y, = f(\if) 9.
Thus, we can commute equation (156) with f (lf/) - 8 (recall that we have dropped the
“N” subscripts featured in (156)) to conclude that L*[JgI", can be accommodated into
the terms on RHS (238b) as desired. We clarify that when one commutes equation
(156) with (\Il) 3 a source term appears from the RHS (156) that is of the form

1f(\ll) v - (C D) One then uses equatlons (153a) and (153b) to express C =
f(\IJ) 0 + f(\I/) S8V and D = f(\Il)aS + f(\IJ) S. B\I/ In particular, this leads
to the presence of the terms of type A~ 'f (U) -9V - S - 3. This finishes the proof of
(237) and completes our proof sketch of the proposition. O

9.10 Norms

In this subsection, we define the norms that we will use to control the acoustic geometry.
These norms are stated in terms of the volume forms defined in Sect.9.6.3.

Definition 9.6 (Norms). For S; ,-tangent tensorfields & and g € [1, 00), we define
1/q
1€z s, = { / L8 w)|§dwg<t,u,w)} : (270a)
we

1/q
1€l e, (s, = {/ @ &, u, W)l dw¢(w)} o &L (s = ess sup g2 |E(7, u, W)y
we
(270b)
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Moreover, if g1 € [1, c0) an~d q> € [1, oo], then with [u]4 := max{0, u} denoting
the minimum value of 7 along C,, we define

T*( 1/£11
el o 2@, = {/ ||E||Lq2 )d’l.'} .
[ul+
€l e 12 @,y *= €8S SUPxequly, T 16Nl 1225, - (271)

Moreover, if g1 € [1, 00) and g2 € [1, oo], then noting that —‘5‘ %) <u <t along

it,we define
‘ 1/q1
IEN 0, ) = f IEN%, . du
En a2 ’
u Lo (2t —%T*;(A) L5(Stu)

NEN oo 23 5y 7= €55 SUPuer— 470 ) I1EN LB 5 (272)

Similarly, if g1, g2 € [1, 00), then

: Vg
<= du ,
”E’”LZIL:?(E,) {‘/_47‘* N ”E'”qu(S ) }

IElger25,) = €55 5047, 0.1 El g, @273)

Similarly, if g1, g2, g3 € [1, 00), then we define

T:(n) 1/q1
||£||L?] LI2LB(M) = [) ”‘Z—v”quL% o dT} ’ (274a)
T*:O\) 1/q1
e g = | | o VeI )du] L Q)
5
T q 1/a
€Nl L9 oo Ry = /0 el o5,y @ } ; (274c¢)
€Nl oo (i7) = 88 SUP; 10, 7.1, uel— 4 Ty 11, wes2 1&(, u, w)ly. (2744d)

We also extend the definitions (274a)—(274b) to allow q1,q2,93 € [1,00] by
making the obvious modifications. We also define, by making the obvious modifica-
tions in (274a)—(274d), norms in which the set M is replaced with the set /\/l( ")
(see (174b)). For example, if q1,¢2,q3 € [1,00), then ||&|

1
L L2 L3 My

1/q1
. qz/(ﬁ q1/92
{fo ™ {fo {fweSz |&E(t, u, w)|g dw¢(w)} } d"l,’} .
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Next, for g € [1, 00), we define the following norms, where (275a) and (275c)
involve v (see definition (193)), such that an L° norm in ¢ or u acts first:

1/q
IIEIIL;L;xv(Eu) = {fsz €58 SUD; [ [u], Ty r)] (U(t, u, W&, u, w)lg) dW¢(w)} ;
(2752)

1/q
NEN L, o0, = { /S eSS SUPy e[y, 7, 11600 1, )] dwﬂw)} . (275b)

1/q

q e q
||£||LZLZQ(§I) = {/w682 €SS SUP,, (47, ) 1] (v(t, u, w)|&(, u, w)|g> dwﬂm} .
(275¢)

9.11 The fixed number p

In the rest of the article, p > 2 denotes a fixed number with

2
0<dg<l——<N-2, (276)
p

where 0 is the parameter that we fixed in (35¢). p will appear in many of our ensuing
estimates.

9.12 Holder norms in the geometric angular variables

Some of our elliptic estimates for ¥ involve Holder norms in the geometric angular
variables, which we define in this subsection. We remind the reader that ¢ denotes the
standard round metric on the Euclidean unit sphere S?. In the rest of the paper, for
points wqy, W) € S?, we denote their distance with respect to ¢ by dg(w (), W(2))
In particular, dg(w(1), W) < 7.

To proceed, for each pair of points W), W) € S* with dg(w(1), w2)) < 7 and
for each pair m, n of non-negative integers, let @’ (w(1); w()) : (Tn’")w(l)(Sz) —
(T w @ (Sz), & — OM(w(1y; we))[E], denote the parallel transport operator with
respect to ¢, where (7)) o (S?) denotes the vector space of type ('Z) tensors at w € S,
Note that 7" (w(1y; w(2)) provides a linear isomorphism between type (') tensors ¢,
at w(yy and type ('Z ) tensors at w () by parallel transport along the unique ¢-geodesic
connecting w(yy and w 7). From the basic properties of parallel transport, it follows
that @} respects tensor products and contractions. That is, if &1) - £(2) schematically
denotes the tensor product of &1y and &) possibly followed by some contractions,
then @' (wy; we)l&ay - L)l = P (way; wenlEml - P (way; we)l&a)l.
If £ = &(w) is a type () tensorfield on S* and dy(w(1); w)) < 7, then we

n
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define®! £l(w ) we) = MWy we)EW)] € (T we (S?). Note that
E&m - £l (way; we) = S(Hl)(w(l); w(2)) ~§(”2)(w(1); w(2)).
Definition 9.7 (Holder norms in the geometric angular variables) For constants 3 €

(0, 1), we define

FOmm et u, wiy) — EN(E u, we); w(1>)|¢(w(]))

&l cop g = sup
&) T o (weyrwo) <3 df(w(l); W)
(277a)
Il cop s, = NelLges. +1Elcop g, - @77

Note that our bootstrap assumption (308a) below implies that if £ is type (’Z ), then
the denominator on RHS (277a) satisfies

Flm—n)

£t u, way) — &N, u, wey; w(l))‘
¢w))

~ [6 s way) =810, wey wq) 78)

g(tu,w)) '

In Sect. 10, we will also use mixed norms that are defined by replacing the L]
0,00

norm from Sect. 9.10 with the C;"" norm. For example, for g € [1, c0), we define
Taon p Va
||E'||L?L3°Cg}80(,/\7”m)) = {/0 €SS SUPy, (0, 7] HEHCS{,%(ST,M) dT} ’ (279)

and we extend definition (279) to the case ¢ = oo by making the obvious modification.

9.13 The initial foliation on %,

In this subsection, we state Proposition 9.8, which yields the existence of an initial
condition for the eikonal function u (see Sect.9.4) featuring a variety of properties
that we exploit in our analysis. More precisely, as we mentioned in Sect.9.4.2, we
set uly, := —w, where w is the function yielded by the proposition. The proof of
the proposition is the same as in [54] and we therefore omit it. In particular, the key
equation (280) stated below is exactly the same as in [54]. The proof of Proposition 9.8
relies on the regularity of the Ricci curvature of the spatial metric induced on ¥, and
the regularity is exactly the same as in [54]. More precisely, since the spatial metric g
satisfies g;; = gij (\TJ), the regularity of the spatial Ricci curvature on X is controlled

ST For example, if & = &(w) is a scalar function, then E” (w(1); wy) = &(w(p)). As a second exam-
ple, if & = &(w) is a one-form, then in a local angular coordinate chart containing the point w(2), we
have, for w1y close to w(g):én (w(1)s w(2))(ﬁ\w(2)) = Mf(w(]); w(z))i(w(l))(ﬁIw(l)),where
the Mf(w(l); w(y)) are smooth functions of w(r) and w(2) such that for A, B,C = 1,2, we have
gﬁ(w()c), w(C)) = 6?, where 6§ is the Kronecker delta. That is, for C = 1, 2, S”(w(c); W) =
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by the energy estimates’> we already derived in Propositions4.1 and 5.1, and we
stress that our energy estimates for W are the same as the energy estimates derived in
[54]. Proposition 9.8 provides, in particular, initial conditions for various tensorfields

constructed out of the eikonal function that are relevant for the study of M(EXt). We
emphasize how important the proposition is for the viability of our approach. For
example, if we had instead chosen the “simpler” initial condition u|yx,, := —r, where r
is the standard Euclidean radial variable, then given the limited regularity of the fluid
solution, the null mean curvature of the spheres {r = const} with respect to the metric
induced on them by the acoustical metric g(\il) would not generally have enjoyed
any useful quantitative pointwise boundedness properties. This could have led to the
instantaneous formation of null focal points®>® and the breakdown of our geometric
coordinate system. In contrast, (281) and the estimates of the proposition imply, for
example, that [|71/2trgX "4 || oo (5) < A71/2. Initial condition bounds of this type
play a crucial role in the proof of Proposition 10.1, which provides the main estimates
for the acoustic geometry.

Proposition 9.8 (Existence and properties of the initial foliation). On the hypersur-
face>* X, there exists a function w = w(x) on the domain implicitly defined by
0w = wep = % % (A)» such that w(z) = 0 (where z is the point in Ly men-
tioned in Sect. 9.4), such that w is smooth away from z, such that its levels sets Sy, are
diffeomorphic to S? for0 < w < wy;(n), such that 0 = Uo<w<w,. Sy is a neigh-
borhood of z contained in the metric ball Br,,,, (2, g) (with respect to the rescaled
first fundamental form g of %) of radius T\ centered at z, and such that the follow-

ing relations hold, where a = is the lapse, trgk = (g~ Dyedg ..

V(g™Hed 9. wdgw

and T, =Ty L% is a contracted (and lowered) Cartesian Christoffel symbol of the
rescaled spacetime metric g:

2
t}’ge-l—kNN = —+trgk—FL, a(z) = 1. (280)
aw

52 As we highlighted in Remark 9.1, the hypersurface that we denote by “%(” here corresponds to the
hypersurface that we denoted by “%y, ” in Sects. 3-8. Hence, to control the appropriate Sobolev norms of
7 along these hypersurfaces, we need the energy estimates. We also point out that Propositions4.1 and
5.1 yield energy estimates for the non-rescaled solution variables, while in the expression “g;; (V)" in the
present section, U denotes the rescaled solution (see Sect. 9.3). Hence, one needs to account for the rescaling
when controlling the size of the L2 norms of the derivatives of 8ij (lI/) (such bounds are needed to prove
Proposition 9.8 using the arguments given in [51, Appendix C]).

53 More precisely, this would have led to the possibility that ||trg)“('(sm”” ) L1([0.T)L® is infinite no matter
’ X

how small T is; see, for example, the proofs of (351b) and (355) for clarification on the connection between
having quantitative control of time integrals of ||trg)’z(s’”“”) I LP(S) and obtaining control over the local
separation of the integral curves of L.

34 Aswe highlighted in Remark 9.1, the hypersurface that we denote by “%(” in this proposition corresponds
to the hypersurface that we denoted by “Xy, " in Sects. 3-8.
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Note that by (200), (207), and the relation 7 (0, —u) = w (for —wy;(n) < u < 0), the
first equation in (280) is equivalent to

2(1 — a)

~(Small) |EO —
aw

rgx ) for0 < w < wy . (281)

Let g, satisfy 0 < 1 — q% < N —2 and let ¢ = ¢(w) be the standard round metric

on the Euclidean unit sphere Sz, where the angular coordinates {wA} A=1,2 are as
in Sect.9.4.2. Then if g, is sufficiently close to 2, the following estimates hold> on

Z(I)U*;W = Uo<w=w,.n,Sw, Where € is as in Sect. 3.3, where the role of q is played by
UEn
_ (U _ Vdetg(w, w)
_ < 4eg - 1/2 _ < 1/2  NEEEAT ) 2
IS AT = 2w @ =D o1 pnn) ATV @)= T oy Y
(282a)
I < \-12
lw2™ 4 (0, ¥in a)”LgsLZ*(E(lf*‘w) SA )
In g, % oy, SATV2 282b
I¥Inall o oo sy Xl o oo gison) S ; (282b)

<A (282¢)

max _||w™2¢ 0 0 —¢ 0 0
A,B=1,2 dwA’ dwB dwA’ dwB INPNTRTS)
Loo(5, 5N

ad ad a ] a
e ) o,
A,B,C=12| 0w Jw Iw Jw ow L%CLZ::(ZO*?O‘))
(282d)
1 2
-2 =2 ~1/2
lw? e ¥in (7~2v) g g, SN2 (282¢)

Finally, Eg) *M s contained in the Euclidean ball of radius T () in X centered
at z.

Proof (Discussion of the proof) Based on the energy estimates we derived in Proposi-
tions4.1 and 5.1 (which are estimates for the non-rescaled solution variables), the proof
is the same as the proof of [54, Proposition 4.3], which is given in [51, Appendix C].

O

55 In [54, Proposition 4.3], the author stated the weaker estimate ||w_l/2(a — U”LOO():W*"(M) < A1z
0

in place of the stronger estimate lw= 2@ - 1) 012 < A2 appearing in (282a).

LPC, I (2(')"*;0\))
However, the desired stronger estimate follows from the Morrey-type estimate (318) and the analysis given
just above [51, Equation (10.113)].
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9.14 Initial conditions on the cone-tip axis tied to the eikonal function

The next lemma complements Proposition 9.8 by providing the initial conditions on the
cone-tip axis for various tensorfields tied to the eikonal function, i.e., initial conditions

relevant for the study of .

Lemma 9.9 (Initial conditions on the cone-tip axis tied to the eikonal function) The
following estimates hold on any acoustic null cone C,, emanating from a point on the
cone-tip axis with 0 < u =t < T ), where “§ = OF)ast | u” means thar®
€y St —wyast | u:

2 . 5 . .
trex — = FrgX " Ry, (G0 = M1, b= 1, [Cly, o, (283a)

FIWtrgxlg. 72V |y, FIWRIg. FI¥Dlg, FIWC|g. FIVolg,
F2Ab, P2 A0, P, FAL
=0®F)ast | u,

ltiE} (G, K Il Lsscs,.) < o©. (283b)

Moreover, with ¢ denoting the standard round metric on the Euclidean unit sphere
S?%, we have

N d 9
lzlfil{ (t, u)g(t, u, w)<8 5 5w c>} ¢(w )<8 5 300 c) (284a)

i 20 0 o 9 8
il ML P A w)<aw3’aw0> wC |1 )<a B awC>

(284b)
Moreover, with wy.(n) = 4T* .(n) (as in Proposition9.8), on Ew* ™
Uwe (0w ()1 Sw, we have (recallmg that w = —ulx, > 0):
Small —4
g N o o) SATE,
3/2 ~(Small) w.. ~(Small) 71/2
I 2R g o 0 PRI o1 ) S
(285)

Finally, with N denoting the unit outward normal to Sy, in o and Il denoting the
g-orthogonal projection tensorfield onto Sy, (where g is the rescaled metric on %),

56 On RHS (283a), the implicit constants are allowed to depend on the L norm of the higher derivatives of
the fluid solution. However, these constants never enter into our estimates since, in our subsequent analysis,
(283a) will be used only to conclude that LHS (283a) is 0 along the cone-tip axis.
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we have

D SN = 5| = O(w)as w | 0. (286)
i,j=1,2,3

Proof (Discussion of the proof) The lemma follows from the same arguments, based on
Taylor expansions, that are found in [34,49], and we therefore omit the details. We refer
to [54, Lemma 5.1] and [51, Appendix C] for the analogous results in the context of
quasilinear wave equations. We also remark that there are simpler, alternative proofs
available in [15, Appendix B] and [38, Sect. 3]. We further clarify that in [34,49],
the expansions along null cones were derived not in terms of 7, but rather in terms
of the affine parameter A = A(¢, u, w) of the geodesic null vectorfield pIL (.e.,
LA = b, where b is defined in (178)), normalized by A(u, u, w) = 0. However,
the same asymptotic expansions hold with 7 in place of A, thanks in part to the
asymptotic relation lim, |, A(;t(’t'f;t‘;’) = 1, which follows from the identities LA = b
and L7 = Lt = 1, and the following fact, which can be independently established
with the help of (180): lim,, {b(¢, u, w) — 1} = 0. We also clarify that the estimate
||w1/2tr§)'z(5m“”)|| < A2 in (285) is stronger than the analogous

2
0,1-% W
LXCy, P(EO**W)

estimate ||w1/2trg)"{(s’"””)||Lw(zw*;(;\)) < A~1/2 stated [54, Lemma 5.1]; the desired
0

stronger estimate is a simple consequence of (281) and the first and second estimates

in (282a). O

10 Estimates for quantities constructed out of the eikonal function

Our main goal in this section is to prove Proposition 10.1, which provides estimates
for the acoustic geometry. As we explain in Sect. 11, these estimates are the last new
ingredient needed to prove the frequency-localized Strichartz estimate of Theorem 7.2.
The proof of Proposition 10.1 is based on a bootstrap argument and is located in
Sect. 10.9. Before proving the proposition, we first introduce the bootstrap assumptions
(see Sect. 10.2) and provide a series of preliminary inequalities and estimates. Many
of these preliminary results have been derived in prior works, and we typically do not
repeat the proofs. In Lemma 10.5, we isolate the new estimates that are not found in
earlier works; the results of Lemma 10.5 in particular quantify the effect of the high
order derivatives of the vorticity and entropy on the evolution of the acoustic geometry;
this will become clear during the proof of Proposition 10.1.

Remark 10.1 We remind the reader that in Sect. 10, we are operating under the con-
ventions of Sect.9.3.
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10.1 The main estimates for the eikonal function quantities

Recall that p > 2 denotes the fixed number satisfying (276), where 0 is the parameter
that we fixed in (35¢). We now state the main result of Sect. 10; see Sect. 10.9 for the
proof.

Proposition 10.1 (The main estimates for the eikonal function quantities). Let p be as
in (276), assume that q > 2 is sufficiently close to 2, and recall that we fixed several
small parameters, including €, in Sect.3.3. There exists a large constant Ag > 0
such that under the bootstrap assumptions of Sect. 10.2, if A > Ao, then the following
estimates hold on M C [0, Ty )] % R3, where the norms referreci to bel’ovw are defined
in Sect.9.10, and the corresponding spacetime regions such as C, C M are defined
in Sect.9.5.

Estimates for connection coefficients: The connection coefficients from Sects.9.6.5,
9.7.1, and 9.7.3 verify the following estimates:

1rgX ™, %0 Ollp2pn, @y PR LX) R Ollp2 g, @y SN2 (287a)

172 gk ™, %0 Oll e, @y SNV, (287b)
IF@rgX ™, % Ol oo, @y S AT, (287¢)
FtrgX ~ 1, (288a)
”;1/2trgx(s»nall)” (%) < )\—1/2’ (288b)
”rz/zytrgx(smau)”LOOLOOLP Fh SA” 12 (288¢)
IF (WergX "D W0l 210, @y S A2 (288d)

gD % Ol o0 ) SAT2. (288¢)
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In addition, the null lapse b defined in (178) verifies the following estimates:

Hb—l—l bl1—1
Pl I P2 erger2e ity
. b1 —1 i
U T ) —— <A (289)
r L7LE, @)

Furthermore, for any u € [—%T*;(y\), Ti. o0l t € [[uly, Te. (0], and w € S?, the
Cartesian spatial components L' verify the following estimate:

ILi(t, u, w) — L1(0,0, w)] < A€o0, (290)

Moreover, for any smooth scalar-valued function of the type described in Sect. 9.9.1,
we have:

- ~ <
Furthermore,
~(Small) 2 2
rgx yXo IrgX — = q 060 ~
FJNLE Lecy (M)
2 4 2 4
SATIAOETY gy g, (292)
LZ L®(M)

Improved estimates in the interior region: We have the following improved®’ esti-

mates>® in the interior region:

5 }\—1/2—460’ (293)
L2020y

pl—1
r

57 The most important improvement afforded by (295) is that on the LHSs of the estimates, the L,2 norms are
taken after a spatial norm along constant-time hypersurfaces. This is crucial for the proof of Theorem 11.3

and contrasts with, for example, the estimate (288e), in which only the angular C &60 norm is taken before
the Lt2 norm.

58 Our estimate (295) involves Holder norms in the angular variables, while the analogous estimates
in [54] involved weaker L°°-norms. The reason for the discrepancy is that LS (S; ) bound for ¥
proved just below [54, Equation (5.87)] relies on the invalid Calderon—Zygmund estimate ||&|| L3S (S1.) <

Yiz12 186y oo (s, ) In (2 + ”’73/2X73(i) ”L%(&,u)) + llf@”Lg)(St,u) for solutions to the elliptic PDE

(363). Unfortunately, this estimate cannot be correct because the power of 7#3/2 on the RHS is not compati-
ble with the natural scaling of (363) on Euclidean round spheres of radius 7; the natural scaling coefficient
would be 7, not 73/2, and the distinction is especially crucial near 7 = 0. In particular, since the correct
power is 7, one cannot combine the correct Calderon—Zygmund estimate with the 73/ 2—involving bound
(288c) to obtain the estimate for X stated in [54, Equation (5.11)]. For this reason, we use an alternate
approach in deriving some of the estimates for ¥, one that involves Holder norms in the angular variables
and the corresponding Calderon—Zygmund estimate (365).
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~ (Int)

172 (g Smei 3, C)||L35L;>o(5u) AT, ifCu e M (294)

2
~(Small) 2 _ < y—1/2-3¢g _ < x—1/2-3¢0
| (ergx s trgX ;’X)”L,ZLgcc?fo(M”"”) SA , ”C”L,ZLgO(M“"”) SA .
(295)

Estimates for the geometric angular coordinate components of ¢: With ¢ denoting
the standard round metric on the Euclidean unit sphere Sz, we have

a d d ad
max {F_zg <_A’ —B> - f( Y B)} <A (296a)
A,B=1,2 Jw Jw Jw Jw LOO(;\V/()
d ad ad d d
max | —— 17 ¢ —. —= )| ¢ —. —= SATeo,
A,B,C=1.2 || dwA dwB’ g€ dwB’ dwC LI L®@)
(296b)

Estimates for v and b: The following estimates hold for the volume form ratio v
defined in (193) and the null lapse b defined in (178):

Jdetg 5

= Jaet ~ro, (297a)
1
16— ]”LOO(/'\V/[) < AT4eo < rE (297b)

Furthermore,

1 . . . L _
172 ¥ 1n (7 2“)“L§>°L56Lﬁ,(/\~4y [¥1n (7 ZU)HerLgU@), IFLWIn (7 ZU)”L?L&@) <Az,

(298)

Estimates for | and ¥ (: The torsion defined in (196) and the mass aspect function |
defined in (208) verify the following estimates:

G, FRON 210, @y S AT (299)

Interior region estimates for o: The conformal factor o from Definition9.3 verifies
the following estimates in the interior region:

1
72

1 _2 1
WF2LOl oo 2@, 172 P ¥OULE L@y IF2FONLL 120 @,

1¥0ll 200, 3, SN2 ifCoc MU, (300a)

59 we point out that we prove (297a)—(297b) independently in the proof of Proposition 10.2, which in turn
plays a role in the proofs of the remaining estimates of Proposition 10.1. It is only for convenience that we
have restated (297a)—(297b) in Proposition 10.1.
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101 o gcrmn, S AT (300b)

~—1/2

1720, o e

1
< A—7—4€0
poe iy SATT (300¢)

Interior region estimates for o, |1, ¢, and W: The conformal factor o from Defini-
tion9.3, the modified mass aspect function [L defined in (209), and the modified torsion
( defined in (211) verify the following estimates in the interior region:

P4 —4
190152000 g0, NFE VO 2 gim) S AT, (301a)

3. _
e v e < ATHeo, (301b)

In addition, the one-form W, which satisfies the Hodge system (210), verifies the
following estimates:

~ —4
NEVI N 20 s DRI 2 2 ginn) S A0 (302)

Delicate decomposition of ¥ o and corresponding estimates in the interior region:
. .~ .
Finally, in M m), we can decompose Yo into S; ,-tangent one-forms as follows:

Vo =—-(+ (Z— W+ g +he- (303)
In (303), Cis the torsion from (196), Zand W are as in Definition9.5, and 14(1) and |/L(2)
are as in (242) and are respectively solutions to the Hodge-transport systems (243a)—
(243b) and (244a)—(244b) on S; ,, that satisfy the following asymptotic conditions near
the cone-tip axis:

Fikay (1w, ), Py, u, w) = OF)as t |, u. (304)

Moreover, the following bounds hold:

~ _1l_3
1T Wl 2 o iy IR 2o gy S AT, (3052)

—1_4e
|||/l(2) ”LEL?OL?S(/T/(””[)) ,S 7\ 2 O, (305b)

10.2 Assumptions, including bootstrap assumptions for the eikonal function
quantities

In this subsection, we recall some important results proved in previous sections and
state some bootstrap assumptions that will play a role in our proof of Proposition 10.1.
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10.2.1 Restatement of assumptions and results from prior sections

From scaling considerations, it is straightforward to see that (107a)—(107b) imply that
the rescaled solution variables (as defined in Sect.9.1 and under the conventions of
Sect.9.3) verify the following bootstrap assumptions (where 8¢, €9, and the other
parameters in our analysis are defined in Sect. 3.3):

T, — 5 T2 —1/2—4
W 200 Ry + A Z"”“"Pva‘l"'L?L;O(M < AT/,
v>2
(306a)
S < — 5 S ™2 —1/2—4
||a<Q,S)||L;LSC(M)+A0\/Zv250nma(sz,s>||L3L;O(M <ATVEe,
v>2
(306b)

We will use (306a)—(306b) throughout the rest of Sect. 10. We will also use the boot-
strap assumption (40). We clarify that, although the bootstrap assumption (40) refers
to the non-rescaled solution, l,tv also implies that the rescaled solution is contained in
R on the spacetime domain M. Moreover, we recall that we will assume that A is
sufficiently large; that is, there exists a (non-explicit) Ag > O such that all of our
estimates hold whenever A > A(. Moreover, throughout Sect. 10, we will use the top-
order energy estimates of Proposition5.1 along constant-time hypersurfaces and the
energy estimates of Proposition 6.1 along acoustic null hypersurfaces (both of which
concern estimates for the non-rescaled solution variables, from which estimates for
the rescaled variables immediately follow via scaling considerations).

Next, for use throughout the rest of the article, we use (306a)—(306b), the product
estimate (80), the energy estimates of Proposition 5.1, and the harmonic analysis results
mentioned in the proof discussion of Corollary 7.1 to deduce the following estimates
for the rescaled solution, valid for any smooth function f:

IBZ(I) I 20y S A4, (307a)

1%, 32,85, C. D)l 12, Rn)

2

Aéo 260 { D 9 0 9 S D : Q) 9 ->9 _)’ } ~ < 7]/274607
+ > V20 | Py (B, Q, 5)(@F, 9,95, C. D) - <A
v>2 1o
(307b)
Hf(\i, &, )@V, 88, 85, C, D)‘ L2z A~ 1/2—4eo, (307¢)

We clarify that to obtain the bounds in (307b) involving 8;(@, 3‘), we use (157) to
algebraically solve for 9, (€2, S). Moreover, to obtain the bounds in (307b) involving
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C and D, we use (153a)—(153b) to express (é, D) = f(\fl, fz, §) . 3(‘31, ﬁ, 5), where f
is a schematically depicted smooth function.

10.2.2 Bootstrap assumptions for the eikonal function quantities

Recall that p denotes the number we fixed in (276). We assume that

d 9 9 B
72 —_— —— | — [ ——— < \"€o
A,Igi)i,z {r g(awA’ 8w3> ¢(8wA’ 8w3>} = ,  (308a)

L (M)

0 ~_2g 0 0 p 0 B < A€o
max r — —— | ¢ ——, — < .
AB,C=12 | dwA dwB’ dwC dwB 3w )] | o pn @)
(308b)
We also assume that for any a, C /\71, we have
XD, % O om0 g,y < AT (309)
Moreover, we assume that for any S; , C /\71, we have
IF &, wgX ™, Ol s, < 1 (310a)
1
16— llLes(s,.) < X (310b)

In addition, we assume that for every u € [—%T*;O\), Ti.onl t € [[uls, T o],
and w € S%, we have

IL(t, u, w) — L'(0,0, w)| < 1. (311)

Finally, we assume that the following estimates hold in the interior region:

(Small)) ”

IR, trgX )srlﬂ, Il )57\—1/2. (312)

L2L20c0 (i L2Le M
Remark 10.2 Our bootstrap assumptions are similar to the ones in [54, Section 5],
except that for convenience, we have strengthened a few and included a few additional
ones. We also note that we derive a strict improvement of (308a) in (296a), of (308b)
in (296b), of (309) in (288e), of (310a) in (287c), of (310b) in (297b), of (311) in
(290), and of (312) in (295).
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10.3 Analytic tools

In this subsection, we record some inequalities that will play a role in the forthcoming
analysis. All of the results are the same as or simple consequences of results from [54,
Section 5].

10.3.1 Norm comparisons, trace inequalities, and Sobolev inequalities

Proposition 10.2 (Norm comparisons, trace inequalities, and Sobolev inequalities).
Under the assumptions of Sect. 10.2, the following estimates hold (see Sect.9.10 for
the definitions of the norms).

Comparison of S, ,, -norms with different volume forms: If 1 < Q < oo, then for
any S; y-tangent tensorfield &, we have

2
I800s,,, = IF0EN,0 - (313)

Trace inequalities: For any S; ,-tangent tensorfield &, we have

1728l 25, + 1EN L35, S 181 ,)- (314)

Sobolev and Morrey-type inequalities: For any S; ,-tangent tensorfield &, we have

”E'”L%L%U(it) S ||<E||H1(§,)’ (315)

~1/2¢2 ~
I / E'”L%’L,w(a,) 5 l”rDLE»”LPthZ(Eu) + ”‘E'”L&L,Z(Eu)} ”E’”LfSL,z(Eu)' (316)

Furthermore, if 2 < Q < oo, then for any S; ,-tangent tensorfield &, we have

B -2 2
||£||LcQu(St,u) 5 ”rWE'”L%U%SIu)”a”fzu(st,u) + ”E‘“L%U(qu) (317)

Moreover, if 2 < Q < p (where p is as in Sect. 10.1), then for any S; ,-tangent
tensorfield &, we have

180 0 SWVEILG G, ) + 18 (318)
w T,u

In addition, if 2 < Q, then for any S; ,-tangent tensorfield &, we have

1_1 ~
”}"2 [ E,”i;QLgo(il) S {”r(DNs W)E’”LgLﬁ(i,) + ”E’”L(%Lg(it)} ”E‘”quol‘g(ir)
(319)
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Finally, if 0 < 1 — é < N — 2, then for any scalar function f, we have

17 £ll210 5 S 1F v, (320)

Remark 10.3 (Silent use of (313)) Following the proof of the proposition, in the rest
of the article, we will often use the estimate (313) without explicitly mentioning it.
For example when deriving (387), we silently use (313) when controlling the term

||F o (G LQ on the right-hand side of the Calderon—Zygmund estimate (367).

(St.u)

Proof (Discussion of proof) To obtain the desired estimates, we first note that the
following bounds hold: v ~ #> and ||b — Ul oo 71y < AHe < ‘l‘. These bounds
follow from the proof of [54, Lemma 5.4], based on the transport equations (233) and
(235a), the initial conditions (282a), (283a), and (284a) (recall that b|5,, = a and that
u|y, = —w), and the bootstrap assumptions. The estimates in the proposition can be
proved using only on these estimates for v and b — 1 and the bootstrap assumptions,
especially (308a)—(308b), which capture the fact that 7 ~2¢ is close, in appropriate
norms, to the standard round Euclidean metric.

The desired bound (313) follows from the estimate v ~ 72 and the definitions of
the norms on the left- and right-hand sides. All of the remaining estimates follow
from proofs given in other works, thanks to the bounds for v and b mentioned in the
previous paragraph and the bootstrap assumptions; for the reader’s convenience, we
now provide references. (314) follows from straightforward adaptations of the proofs
of [50, Lemma 7.4] and [50, Equation (7.4)]. (315) follows from a standard adaptation
of the proof of [50, Proposition 7.5], together with (313) and (314). The estimate (316)
follows from a straightforward adaptation of the proof of [50, Equation (8.17)], where
one uses 72 in the role of v; see also [52, Lemma 2.13], in which an estimate equivalent
(taking into account (313)) to (316) is stated.

(317) and (318) can be proved by first noting that the same estimates hold for
the round metric ¢ on the Euclidean-unit sphere (with 7 replaced by unity and ¥
replaced by the connection of ¢), and then using the bootstrap assumptions (308a)—
(308b) to conclude the desired estimates as “perturbations” of the corresponding
ones for the round metric. We will give the details for (318) and omit the argu-
ment for (317), which can be proved using similar arguments. Let ¥ denote the
Levi-Civita connection of ¢, and let (V¥ denote the Levi-Civita connection of ¢.
Let I schematically denote the Christoffel symbols of ¢ relative to the geometric
angular coordinates, and let ()T schematically denote the corresponding Christof-

fel symbols of ¢, i.e., schematically, we have I' = (¢~ 1)48 Mcg (de’ 32’ ) and

Op = (g~1HAas awC¢ ( T, aw ) Then schematically, relative to the geometric

angular coordinates, we have V& = ©) VE+ (I — Or ) - &. In view of Definition9.7,
we see that the standard Morrey inequality on the round sphere for type ("'1’ ) tensor-
fields & yields: |F"~"&]l o, 2 S WO¥ell 0, + 11l Hence,
Co ©(Stu) @ ’
multiplying both sides of this inequality by #”~" and using (308a), we find that
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18] 013  SIFOPELgs, )+ Ny, s, and thus

tu

Fm—n _ O .
1€ o1 SR s,y NElig s + 17710 = OT) - Ellyg

(321)

The bootstrap assumptions (308a)—(308b) imply that the last term on RHS (321)
satisfies the estimate

~m—n _ O
17" = Okl o

C

< > HFACB -Or, BHLQ . NENLE S0

AB,C=12 w WOru

9 ) 9 9 ) 9

D D (e g( —) —¢HM ¢( ) IEl235 (51
~ C D’ C D’ w Oru

AB.CDE-12 Jw dwP’ dwE Jw dwP’ dwE L2 (S0)
SATNEN L (510 (322)

From (322), in view of Definition 9.7, we see that if A is sufficiently large, then we can
absorb the last term on RHS (321) back into the left, at the expense of doubling the
(implicit) constants on the RHS. We have therefore proved (318).

The estimate (319) follows from a straightforward adaptation of the proof of [50,
Equation (8.17)], where one uses the geometric coordinate partial derivative vectorﬁeld

33 in the role of the vectorfield -2 3 and 2 in the role of v (note also that D s 1 Elg S

|y, ¥)E|y). Finally, we note that the estimate (320) is proved as [54, Equatlon (5 39)]
as a consequence of (317)—(318).

10.3.2 Hardy-Littlewood maximal function
If f = f(¢) is a scalar function defined on the interval I, then we define the corre-

sponding Hardy-Littlewood maximal function M ( f) = M(f)(¢) to be the following
scalar function on /:

Mipw= s [y (323)

t'elIN(—o0,1) |

We will use the following well-known estimate, valid for 1 < Q < oo:
IMNDNLeay S I lLem- (324)

10.3.3 Transport lemma

Many of the geometric quantities that we must estimate satisfy transport equations
along the integral curves of L. Our starting point for the analysis of such quantities
will often be based on the following standard “transport lemma.”
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Lemma 10.3 (Transportlemma). Let m be a constant, and let & and § be S; ,-tangent

tensorfields such that the following transport equation holds along the null cone por-
tion C,, C M:

D&+ mirgxE = 3. (325)

Then we have the following identities, where 7 and v are defined in Sect.9.6.3, and we
Lecall that [u]+ = max{u, 0} (and thus [u]+ denotes the minimum value of t along

Cu ) ;

t
[v"e] G u w) = lim [u"E] (T,u,w)+/ [v"§] (t.u, w)dT,  (3262)
Tl [ul+

[ul+

t

[72’"&] (t,u, w) = Tii[gh [?2’"&] (T, u, w) + /[uh {[72'”5] (T, u, w)

m [f’” (% - thX) a} (T.u, w)} dr. (326b)

Similarly, if &, §, and & are S; ,-tangent tensorfields such that the following trans-
port equation holds:

2m
D&+ 7£=®~£+3, (327)
and if
161l )@,y =€ (328)

then under the assumptions of Sect. 10.2, the following estimate holds (where the
implicit constants in (329) depend on the constant C on RHS (328)):

t
|f2'"a|g<t,u,w)§$[r;} P2 E |4 (T, u, w) + f P34 (T, u, wydt.  (329)
+

[ul+

Proof (Discussion of proof) The results are restatements of [54, Lemma 5.11] and can
be proved using the same arguments, based on Eq. (212a) and the estimate v & 72
noted in the proof of Proposition 10.2. O

10.4 Estimates for the fluid variables

Recall that Proposition9.7 provides the PDEs verified by the geometric quantities
under study and that some source terms in those PDEs depend on the fluid variables.
In Proposition 10.4, we provide some estimates that are useful for controlling the
fluid variable source terms. In particular, we use the estimates of Proposition 10.4 in
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our proof of Lemma 10.5, which provides the main new estimates needed to prove
Proposition 10.1.

Proposition 10.4 (Estimates for the fluid variables) Under the assumptions of
Sect. 10.2, for any 2. < Q < p (where p is as in (276)), the following estimates
hold on M:

18CP, 2. )l 121,5,) 177208 Q)| o205, SN2 (3302)
17002, &, pzreg, S (330)
18CT, @, i 2,00@,) SAH, (330c)
10CY, 2, 9l 2,7, @, SN (330d)
I7(9, 2, )l 20 @,y S A2, (330e)
- 12 o _

1. DI 2, 177 (R DLW 210 E, SAV2 (330f)
1C. D)1, 5, 172 C Dy, SA (331a)

-2, 7 _
7! 2AC D)l 51005, SA (331b)
1C. D)2y, SAT240, (331¢)
”(C D)”LZLP ©C) ~ < AT 1/2- 4€0 (331d)
||r(C D)||L2L°°(C,¢ < A2 1260 (331e)
0@, D)l 2,0 IF 77 (. DE, Dllzer@,y SA% (331f)

Moreover, for any smooth function f, we have

188, 2. )12, 0 5 1720, QS o207 SATV2 (3320)
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HF(W,DL) {f(\fl,fz, s, Z)axTJHLZ Loz, SV (332b)
[aleci. 2. 9009, , o <3 3320
IC. Dlli2rg s I72(C Dl e pe 122 Rty S A (333a)
[Fwpo{r@.a.5. De | e, SN (333b)
HF& {f(qj’ e 5‘)(5, D)H L2L2E) S AT, (333¢)
FU2E0, DD, ©, S) T < A—deo. (334)

Proof (Discussion of the proof) Thanks to the assumptions of Sect. 10.2, the availabil-
ity of the energy-elliptic estimates of Proposition 5.1, the estimates of Proposition 6.1
along null hypersurfaces (with Eu in the role of A/ in Proposition6.1), and Proposi-
tion 10.2, all estimates except for (334) follow from the same arguments given in [54,
Lemma 5.5], [54, Proposition 5.6], and [54, Lemma 5.7]. We clarify that, in view
of definition (271), (3300) follows from the bootstrap assumptions (306a)—-(306b)
and the bound ||3(\IJ Q S)||L°°(S, u) < ||a(\IJ S)”LOC(E,), which implies that
||3(\I' 52 S)||L2L°C(C ) = ||B(\If S)||L2L°°(M) Similar remarks apply to (331c),
where we take into account definitions (153a)—(153b) and the remarks of Sect.9.3.
Similar remarks apply (331e), where we take into account the bound (177) for 7.
We also refer the readers to the proof of [52, Proposition 2.6] for further details
on the role that the energy-elliptic estimates and the estimates along null hyper-
surface play in the proof of Proposition10.4. To prove the remaining estimate
(334), we use (177) and (330a) to conclude that ||71/28(¥, 2, S)|| 2Ll (V) S

~

Al/2=4e0) 7128 (T, ©, §)||L°°L,°°Lﬁ,m71) < A74€0 a5 desired. o

10.5 The new estimates needed to prove Proposition 10.1

The following lemma provides the main new estimates needed to prove Proposi-
tion 10.1; the other estimates needed to prove Proposition 10.1 were essentially derived
in [54].



41 Page 1140f 153 M. M. Disconzi et al.

Lemma 10.5 (The new estimates needed to prove Proposition 10.1). Under the
assumptions of Proposition10.1, the following estimates hold whenever®® g > 2 is
sufficiently close to 2, where p is defined in (276), and we recall that [u] := max{u, 0}
(and thus [u]+ denotes the minimum value of t along Eu).

Estimates for time-integrated terms:

t

A = IF(C, D)|(, u, w) dt < A1/ 12e0,
Rt ) Jia, 2L
(335a)
t
At ~21 f IF2(C, D)|(T, u, w) dt S AT 1260,
PR 1) S, 2LV
(335b)

1 t
;2(1‘, u) [u]

2 4
-1 5 )\5—1—4(’30(54‘2)’

I72(C. D)| (T, u, w) dt

[ ~
L? L (M)
(335¢)

1 t
fl/z(ts u, w) [u]+

—1 5)\—1/2—12€0’

LPLE LG (M)

7(C, D)|(T, u, w)dt

(335d)
1 t

—1 5)\—1/2—12€0’

LRLE LG (M)

72(C. D)|(, u, w) dt

uly

(335¢)
1 t -
He—— [ PCDItu wdr <ATl6e0 (3356)
r(t’ Lt) [ul+ LOO(M)

—1

1 d -
32—/ 7(C. D)I(T, u, w)dT SATIE e,
73/ (t,u) [ul+ LOO(M)
(335g)

t
-1 I72(C, D)|(t, u, w) dt < A1=8e0 (335n)

=2 ~
r (t,u) [ul+ Lo (M)

-1 5 )\—1/2—8€0’ (3363)

LZLP LY (M)

1 fo
f3/2(t,_u) /[u]+ |77 W(C, D)ly(T, u, w)dt

1

)\—1
210

< AT1/28e0 (336b)
LILPLE, (M)

t
/ IF3Y(C, D)lg(T, u, w)dT
s u) [ul+

60 The estimates (335¢) and (340b) in fact hold whenever g > 2, butin proving Propositions 10.1 and 11.1,
we need these estimates only when ¢ > 2 is sufficiently close to 2.
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1 ‘ o
o ‘73(5-3\U,3\U,3Q,35)'(3W,t gmald o ¢ w=H| (o u w)dt
P S, " ‘g LELELl, (V)
< Al/2-12e0 (3372)
1 i o ‘
NE |75 -0,09,09,03) - @F, 1 X" %, €. 7| (r.u, w)dr
e, u) Ju, p "
< p-1/2-12eq (337b)
I L
M7 / |75 0,09,09,03) - @F, X" %, €. 7| (r.u, w)dr
F(t,u) Ju, p Lot G
saTee, (338a)
1 ‘ o o
N F2(8-00,00,88,05) - 0T, xS %, (,r_l)’ (T, 1, W) dt
U2t u) Ju, p Lt
LI (338b)
t
A= I72C, dD)|(T, u, w) dt §5A—4zeo’ (339a)
Ft,u) Ju, L20200, (R0

-1 < A712€0 (339b)

1 r
GIET) /m I72(3C, aD) (T, u, w) d

L2LRLE (M)
Standard spacetime norm estimates:
AMFC DI 2 poopr, ity S ATAEC, (340a)
> 2 4
NUWFCDI g S AT ITAeGED, (340b)
L2 L LE, (M)
NUFC D2 p2pr, gy SATPE, (340¢)
N UFBEC. Dl o1 pr, iy S A2 00 (340d)

NUFS - 89.09,8.85) - @ X R L F D2y pn iy SATETI00.
(340e)

Proof Throughout the proof, we silently use the simple bound 7 (T, u) /7 (¢, u) < 1 for
T1I.
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To prove (335a), we firstuse (151) and the bound ||(é, D)llLss(s,.) =< ||(8, D)L=z,
to deduce that

t
LHS (335a) <A™ '/ I(C, D)|(T, u, w) dt

[ul+

LA LS (M)

,S A71/274€o

t
/[ 1C. D)l Lsscs, ) dT

uly

LPLY

—1/2—4 > —
SATVEENC D oo ity
Using (151) and (307b), we bound the RHS of the previous expression by
SATEONC, D)l 2 pooiry S AV/AT120

as desired.

The estimate (335b) can be proved using an argument that is nearly identical to the
one we used to prove (335a), and we therefore omit the details.

To prove (335c¢), we argue as above to deduce that

q

LHS (335¢) < A7 '
LE LPLEg M)

t
/ I(C, D)|(T, u, w) dt
[

uly

2t
SATIAI8e0yg / I1C, D)llLsss,,) AT

[ul+

LLE

_142_16 -
S, A ¢ a0 I, D)||L}L20(.7\V4)~

Using (151) and (307b), we bound the RHS of the previous expression by

_1/7— 2_16 - 2_q_lo . _ 2_1_ 4
<A 1/2—4eo+5—7 50”(67 D)”L,ZL;C(M) < A4 1-e0—8eo — A4 I—4eo(;+2)

as desired.
The estimates (335d)—(335h) can be proved using similar arguments that also take
into account the bound (177) for 7, and we therefore omit the straightforward details.
To prove (336a), we first observe (switching the order of L{° and L?°) that it suffices
to prove that for each fixed u € [—%)\1_860 T, \1=8€0T, ], we have

)\7] < }\71/27860'

L&L, @)

t
/ [72¥(C, D)y (T, u, w)dt
[ul+

Using (151), (177), and (333b), we conclude that the LHS of the previous expression
is

SAFPPREC D), @y SACNFVE Dl p2pn, @) SN 278€0



Rough sound waves in 3D compressible Euler flow with vorticity Page 117 0f 153 41

as desired.

The estimate (336b) can be proved using a similar argument, and we omit the
details.

To prove (337a), we first observe (switching the order of LO° and L and using
that |§| < 1) that it suffices to prove that for each fixed u € [—%)\"860 T, A =8eoT,],
we have

)\—1

'
f[u]+

PR, Q, S) - @V, wgxSmaD % ¢ F Y| (T, u, w)dt
¢ L1, @)
< \~1/2-12¢0

Using (151), (177), (307b), and (309), we deduce that the LHS of the previous expres-
sion is

SATORD, @ Hllizige, AT, L Dz e,

|@F. uzxSih %, )| < AT/ 12e0 (341)

L2 @Co ™

as desired.

The estimates (337b), (338a), and (338b) can be proved using similar arguments,
and we omit the details.

To prove (339a), we first use (151) to deduce (switching the order of LLZI and Ltz)
that

LHS (339a) < A™1/274¢€0

t
/ I7@C. 9D) 3,7, 5., AT
0 L

Using (151) and (333c) with Q := p, we deduce that the RHS of the previous expres-
sion is

SATEEOIF@C, D) 121 n, ity S AP PONF@C BD) | o2 n, ity S AT

as desired.

The estimate (339b) can be proved using similar arguments that also take into
account the bound (177) for 7, and we therefore omit the straightforward details.

To prove (340a), we use (151), (177), and (331a) to conclude that

LHS (340a) S A2 72 ) o ) 72 C DIl e oo, oty S A28
(342)

as desired.
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To prove (340b), we use a similar argument to conclude that

1 1 (1—8€g) 2 ~1/2 1/2
7 (f D <ATA q||r r C D)l oo
I7C )“L JreeLl, My I oo ®) I7°75C )”L L LE, (M)
< )\7_1 d4eo= 660 )\3 ! 460(3 D (343)
as desired.

The estimate (340c) follows easily from (340a) and the bounds (177) for u.
To prove (340d), we use (151) and (333c) with Q := p to deduce that

THRC D)l gy, o S A IFOC Dzt i
~a P 1
SATPONFBC, D)l oo 2rn, iy S AT

as desired. .
To prove (340e), we first use (151), (177), and the fact that |S| < 1 to deduce that

LHS (340e) < A~1/24€0

FOW,8%,85) - @V, ugX Small g ¢ F

LLILD, (M)

SAV28€01@W, 8. 05) oo 2 o 1) 1OV, g™ R Ol o217,
) &

+ATSN@, 92,9 o211 Ry (344)

Using (307b) and the bootstrap assumptions (309), we conclude that RHS (344) <
A—2-10€0 45 desired. O

10.6 Control of the integral curves of L

The main results of this subsection are Proposition 10.7 and Corollary 10.8. The propo-
sition yields quantitative estimates showing that at fixed u, the distinct integral curves
of L remain separated (see Footnote 40). The corollary is a simple consequence of the

proposition and the bootstrap assumptions. It provides LZLC’OC0 %0 estimates for the
fluid variables. Later, we will combine these estimates W1th the Schauder-type esti-

mate (365) to obtain L:’Lg"Cg’,éo—control of X for several values of ¢; see the proofs
of (292) and (295) for X.
We start with some preliminary estimates, provided by the following lemma.

Lemma 10.6 (Preliminary results for controlling the integral curves of L). Under the
assumptions of Sect. 10.2, if A is sufficiently large, then the following results hold.

Results along ¥o: For A = 1,2 and i = 1,2,3, let (8 aA) denote the Carte-
sian components of %, and let Oy be the S, ,-tangent vectorfield with Cartesian
components O(A) =1 (ﬁ)l, as in (225). Along Xy (where r = w = —u), for
0 < w =< wen = %T*;(;\) and w € S% we view ®2A) = @iA)(O,w,w), and

similarly for the Cartesian spatial components N' and L'. Then for each w € S?,
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limy 0 N7 (0, w, w), limy, 0 L (0, w, w), and limy, o @iA) (0, w, w) exist, and we
respectively denote the limits by N0, 0, w), L' (0,0, w), and @iA)(O, 0, w). Fur-

thermore, for each w € S?, we have that
0 _
2ea(0.0, w)©%, (0,0, w)&y (0,0, w) = ¢<w><8 o B) + Oy,

In addition, the following estimates hold for (w, w) € [0, %T*;()\)] x S?, where
x1(0, w, w) are the Cartesian spatial coordinates viewed as a function of w, w along
>0, and 7' are the Cartesian spatial coordinates of the point 7 € % (see Sect.9.4):

X0, w, w) =7 +w {N"(o, 0, w) + (90\*460)} : (345a)
N' (0, w, w) = N'(0,0, w) + OA*<), (345b)
LY(0, w, w) = L'(0,0, w) + OA*€0), (345¢)
O/ 4 (0, w, W) = B4 (0,0, W) + OA~*<0), (345d)

Moreover, the following identity holds:

d a .
—N 0,0, w) = —L 0,0, w) = @l(A)(O, 0, w). (346)
dwA

Inaddition, withdy(w(1), W(2)) denoting the distance between the points w1y, W(2) €
S? with respect to the standard Euclidean round metric ¢ on S*, we have the following
estimate:

3 3

D INY0,0, way) = NH(0,0, wa)l = Y IL(0,0, way) — L0, 0, we))l
i=1 i=1
R dy(w(1), W()). (347)

Finally, we have the following estimate, (a« = 0, 1, 2, 3):

L]l (348)

. <1
0,8 N
LPCy °(Z0)

Results along the cone-tip axis: In ./’\71(1"1), let us view ®§A) = @’éA)(t,u, w),

and similarly for the Cartesian spatial components N' and L'. Then for each
(u, w) € [0, Ty;(n)] x Sz, lim, @’(A)(t, u, W) exists, and we denote the limit by

éA)(u u, w). Furthermore, the following estimate holds for (t, w) € [0, Ty, (n)] %
% gab 1,1, ) (1,1, W)O (1,1, ) = ) (587 525 ) + OA0), and

within each coordinate chart on S? for each w in the domain of the chart,
(O, 1, w), O@)(t, t, w)} is a linearly independent set of vectors in R3.
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Moreover; along the cone-tip axis, that is, for t € [0, Ty, ()] we have:

N'(t, 1, w) = N'(0,0, w) + OA3), (3492)
Li(t, t,w) = Li(O, 0, w)+ O(}\_SEO), (349b)
Oy (1.1, w) = [4)(0,0, w) + OA~*). (349¢)

In addition, for (t, w) € [0, Ty;(\)] % S?, the following relations hold along the
cone-tip axis, that is, fort € [0, Ty.(n)]:

9 . 9 . .
ToaN 1 W) = oo L1t w) = 0, (1, 1, w). (350)

Results in M: Foru € [—%T*;(M, Te.ovl t € lluly, T, (0], and w € S?, we have

Li(t,u, w) = L(0,0, w) + OA*€0), (351a)
Ofy) (. 1, w) = B4 (0,0, w) + OA™*), (351b)

Proof Proof of the results along X. We start by showing thatlim,, o @é A) O, w, w) :=

@é A)(O, 0, w) exists, and we exhibit the desired properties of the limit. We will use
the evolution equation (227).

From the bootstrap assumptions, the simple bound ||f(z) Il oo () < 1 implied by
them, the estimates of Proposition9.8, (318) with Q := p, (332a) and (332c) along
>o with Q := p, the bound (177) for 7|5, = w, and the estimate ||®iA)||Lm(§0) <1
implied by (282c), we find that the first term on RHS (227) verifies

lla - f(Z) -0V, )A() : ®(A)”L,1,,L‘ZS(§0)
SNPAFTOW N 12 11 50y + N PTHNIW N 12 12 50 + A PTHURN 12 100 )

< Ao,
and that the last term on RHS (227) verifies the same bound:
Iy - ¥a - Ol g SA P IVal iz, SAH
We now integrate equation (227) with respect to w and use these estimates and the
initial condition for ®4) at the convenient value w = 1 (which, by (282c¢), is a value

at which the vectors @)(1) and @)(2) are known to be finite and linearly independent)
thereby concluding that if A is sufficiently large, then limy, o ®’( A)(O, w, W) exists,

that for0 < w < %T*;()\) and w € S? we have

Ol (0, w, W) = O (0, 1, ) + OAT*),
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and that

: 3 9
2¢d (0,0, w)O¢, (0,0, w)Ofp (0,0, w) ~ ¢(w) (W W) .

Except for (346), these arguments yield all desired results for 92 4 along %o, including
(345d). To prove (346), we contract the estimate (286) against @f A) (0, w, w), use the
idf:ntities w@{A)lZ[;.BCNi = MLANi, @{A)VI; = @iA), and L' = B! + N, use that
B'(0, 0, w) = B'|; is independent of w, and use the previous results proved in this
paragraph.

The results for L' and N’ along % stated in the lemma, including (345b) and
(345c), can be obtained from similar reasoning based on the evolution equations in
(224), and we omit the details.

Next, we consider the map M(w) = (N'(0,0, w), N*(0,0, w), N30, 0, w))
from the domain S? to the target

UT, S0 :={V € T,%0 | geal,VVe =1} =~ 2.

The results from the first paragraph of this proof, including (346), yield that the
differential of 91 with respect to w is injective. Thus, 91 is a differentiable open map
from S? to S?, and it is a standard result of differential topology that 91 must be
a covering map (in particular, it is onto). Thus, taking into account the quantitative
bounds for the differential of 91 with respect to w proved above, we conclude that
there exists a uniform constant 0 < (3 < s such that if A is sufficiently large, then
(347) holds (with bounded implicit constants) for all pairs wy), wp) € S? such
that dy(w(1), wp)) < . Moreover, since the domain S? is path-connected and the
target UT, 2 >~ S? is simply connected, it is a standard result in algebraic topology
that 91 is in fact a diffeomorphism (see [33, Theorem 54.4] and note that UT, X =~
S? has a trivial fundamental group since it is simply connected). In particular, 9 is
globally injective. This fact yields (347) (again, with bounded implicit constants) for
all W), W) € S2 with < d,é(w(l), (U(z)) <.

To prove (345a), we first use (167) to deduce %xi(o, w, w) = [aN']0, w, w).
Also using (282a) and (345b), we see that 52-x (0, w, w) = N*(0, 0, w) +OA~4€0).
Integrating this estimate with respect to w starting from the value w = 0, and using
the initial condition x? (0, w, w) = Z', we conclude (345a).

We now show that for each (u«, w) € [—‘5—t (A, 0) x S,

lim Oy (11, w) = B4, (0, u, w)
and

. a a _
ng(Ov uv (’U)®EA)(07 u, w)®213)(07 u, w) = ¢(w) (ma W) + O()\ 60).
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The desired results can be obtained by using arguments similar to the ones given in the
first paragraph of this proof, based on the evolution equation (226) and the bootstrap
assumptions, including (151), (306a), (308a), and (312).

Finally, we prove (348). The resultis trivial for L since this component is constantly
unity. Next, we note the schematic identity X7Li = f( )X + f( I 3\_13, where on the

LHS, we are viewing YL’ to be the angular gradient of the scalar function L'. Hence,
applying (318) with Q := p and with the scalar function L' in the role of &, and using
the simple bound ||f(]:) | oo (71 < 1 implied by the bootstrap assumptions, we find

that for u € [—%T*;()\), 0], we have

||Li||co$1,% ) 5 ||FX||L{’U(SO.M) + ”Fa\p”qu(So,u) + 1.

(SO,M

Also using the first identities in (200) and (204c), (207), the schematic identity kap =
f( I dV, and the parameter relation (276), we find that

|Lf et g, S S IFgX " N oo, ) + ||re||LooLp & T ||ra\y||LmLp G+ 1
From (282b) with g := p, (285), (332a), and (177) for u|x, = —w, we conclude that
the RHS of the previous estimate is < 1, which yields (348).
Proof of the results along the cone-tip axis. The ODE (161) can be expressed in
the schematic form < N(,u =f (\I/) AV - Nw, Here, Nw = Nw (#) denotes the array
of Cartesian spatial components of the unit outward normal vector N (correspond-
ing to the parameter w € Sz) along the cone-tip axis y,(¢). That is, if N(¢, u, w)
denotes the array of Cartesian spatial components of N viewed as a function of the
geometric coordinates (¢, u, w), then Nw (1) = =N (t,t, w). Moreover 1n the pre-
vious expressions, we have abbreviated U = Uo v2(t) and v = [3\11] o vz(1).
Integrating the ODE in time and using the bootstrap assumptions, we deduce that
INb(@) — N (0)] < fot 10V (x.) dT. From this estimate, (151), and (306a), we
arrive at the desired bound (349a). The desired bound for (349b) follows from (349a),
the identity L = B + N, and the estimate |B¥(z, 7, w) — B*(0, 0, w)| < A—8eo,
which follows from integrating the estimate |[BB*|(T, T, w) < ||8‘~fl|| L3, (valid
since B* = B¢ (\_fl)) with respect to T and using (151) and (306a).

We now show that for each (u, w) € [0, Ty )] X 82, lim, |, ®er)([’ u, w) =

@éA)(u, u, w) exists and that

d

gcd(u,u,w)®fA)(u,u,w)®?B)(u,u,w)=¢(w)<a T 508

>+oo€o

The desired results can be obtained by using arguments similar to the ones given in the
first paragraph of this proof, based on the evolution equation (226) and the bootstrap
assumptions, including (151), (306a), (308a), and (312); we omit the details.

We now prove (350). From the identity L = B + N and the fact that
= 1B o W0 y,(1)] = LNt w) =
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awAL (t,t, w), as is stated in (350). From the fact that lim,, éA) (t,u,w) =
( A)(u, u, w) and the asymptotic initial condition (283a) for |r]71‘; o,L" — ]7[lj|, we
find that j) N, t, w) = @2 (1, 1, w), which finishes the proof of (350).
We now prove (349c). We differentiate the ODE (161) with respect to the param-
eter w4 (that is, with the operator %), use the fact that ﬁ[\fl o vz(1)] =

ﬁ ([0W] o y4(1)) = 0, integrate the resulting ODE in time, and use the bootstrap
assumptions, thereby deducing that

i N (t) — i N (V) /IIB‘IJII i
3(1) w w L>®(X1) 3w

Nw() in(O)‘dT

+/ ||3\f’||LOC(2T)
0

3 -
Foi N ©) ‘ dr. (352)

From (352), (151), (306a), (286) (which, in view of (282c), implies that N w(0) ‘

1), and Gronwall’s inequality, we find that WNI (t,t, w) = —N’ 0,0, w) +
O(\8€0). From this estimate and (346), we deduce that 7o A Ni(t, t,w) =
@éA)(O, 0, w) + OA4€0), Finally, from this bound and (350), we conclude (349c).
Proof of the results in M. We now show that (351b) holds. This estimate can be
obtained by using arguments similar to the ones given in the first paragraph of this

proof, based on the evolution equation (226) and the bootstrap assumptions, including
(151), (306a), (308a), and (312). The initial conditions for ®l(A) on %o (which are

relevant for the region M(EXt)) can be related back to @é A) (0, 0, w) via the already

proven estimate (345d), while the initial conditions for @é A) Oon the cone-tip axis

(which are relevant for the region /A\;l(Ext>) can be related back to @é A)(O, 0, w) via
(349c¢); we omit the details.

The estimate (351a) can be obtained in a similar fashion based on the evolution
equation for L' stated in (223), the bootstrap assumptions, (151), (306a), and the
already proven estimates (345c) and (349b); we omit the details. O

We now derive quantitative control of the integral curves of L in M.

Proposition 10.7 (Control of the integral curves of L in /\A/Jl). Let Y. w (t) be the family
of null geodesic curves from Sects.9.4.1 and 9.4.2, which depend on the parameters
(u, w) € [—5T>,< s T ] X S? and are parameterized by t € [[uly, Ti.(\)] and
normalized by TL? W@ =1 Let wqy, W) € S?, and let dy(w 1y, w2)) denote their
distance with respect to the standard Euclidean round metric ¢. Under the assumptions
of Sect. 10.2, the following estimate for the Cartesian components Tl‘;‘; w (&) (which
can be identified with the Cartesian coordinate functions x*, viewed as a function of
(t,u, w)) holds foru € [—%T*;()\), T, vl andt € [[uly, T, n)]:

3

DI ) () = Tk (D]~ Fly(@(1), 02). (353)
a=0
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Proof At the end of the proof, we will show that the following two estimates hold for
u e [—%T*;(A), T*;()\)],t (S [[M]+, T*;()\)], and w € Sz, (A = 1, 2andi = 1, 2, 3)2

Thw® = i (1) + (¢ = 1) {L70,0, ) + 0 *0) | (354)

awiAT;;w(t) = 7{©0,)0.0.w) + 0] (355)
From (355) and the properties of the (linearly independent) set {®1)(0, 0, w),
©2)(0,0,w)} shown in Lemma 10.6, it follows that the map w —
(Tul; w (@ Tlf; w @5 Ti u)(t)) has an injective differential and, in particular, there
exists 0 < [ < 7 such that if A is sufficiently large, then (353) holds whenever
dy(w(y, wey) < B. From (347), (354), and the fact that Tl w @) s 1ndepen-
dent of w when u € [0, Ty (a)], it follows that for this ﬁxed value of f3, i

A > 0 is sufficiently large, then (353) holds whenever B < dg(w(y, we)) < 7,
u € [0, Ti;(\], and ¢ € [u, Ty, ()] (353) can be proved in the remaining case, in
which 3 < dy(w(y, we) <m,u € [—;—‘T*;()\), 0], and ¢ € [0, Ty (a)], via a similar
argument that also takes into account the estimate (345a), as we now explain. (345a) is
relevant in that the identity L/ = B’ 4+ N, the fact that B/ (0, 0, w) is independent of
w, and the estimates (345a) and (354) collectively imply that for u € [—%T*;O\), 0],
t €10, T*;()\)], and W), W) € Sz, we have

o
Zl u; w(l) Tlt w(2) (t)|

= (lu| +1) Z IL1(0,0, way) = LI(0, 0, we))| + OA*<0)
i=1

In view of (347) and the assumption 3 < dg(w (1), W(2)), we see that for A sufficiently
large, the O(A™4€0) term is negligible. Since 7 = |u| + ¢ when u < 0, we have
completed the proof of (353).

It remains for us to prove (354)—(355). The estimate (355) follows directly from
multiplying (351b) by 7 and considering the deﬁn1t10ns of ®! (A) and Ti w (0). Toderive

(354), we first use (351a) to deduce that (t) = L' (t,u, w) = L'(0,0, w) +

O(A—4€0), Integrating this estimate with respect to time starting from the time value
[u]+, we conclude (354). O

Ll w

We now derive the main consequence of Proposition 10.7: a corollary that yields
L,2L§O C &5" (M) estimates for various fluid variables.

Corollary 10.8 (L2L°°CO 20 (/\/l) estimates). Under the assumptions of Sect. 10.2, we
have the following estimates:

18w 102, 95)|| IC. <123,

LLECs™ (M) ety 1C PNz ectio ) =

(356)
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Moreover,

1P, 2, )]l <L (357)

LeLEC (M)

Proof We prove (356) only for the first term on the LHS; the remaining terms on
LHS (356) can be bounded using the same arguments. To proceed, we first use (353)
to deduce that

19U (7, u, W) — AV (1, u, w2l
[Fdy(w1y, w(2))]%0

5 ||alIJ ”C?’BO(i[).

From this bound, the estimate (177) for 7, and the inequality A1 ~8€0)%0 < X\%0 < \€0
(see (35b) (35¢)), we find, conmdermg separately the cases 0 < 7 < land 1 < r,
that ||8\-IJ|| 050 (s, ) < ?\€°||6\IJ|| 0.50 5 - . From this bound and (307c¢), we conclude
the desued estimate (356).

To prove (357), we note that Proposition 5.1 and Sobolev embedding HY (;) —
CS’EO(E,) imply that the non-rescaled solution variables (W, €2, S) are bounded in
the norm || - || Loo¢%%0 (R by < 1. It follows that the rescaled solution variables on

t x
LHS (357) (as defined in Sect. 9.1 and under the conventions of Sect. 9.3) are bounded
in the norm || - || 3%y by < 1 and in the norm || - ”L?OCB‘EO(M) by < A7°0, From
these estimates and arguments similar to the ones given in the previous paragraph, we
conclude (357). O

10.7 Estimates for transport equations along the integral curves of L in Holder
spaces in the angular variables w

We now derive estimates for transport equations along the integral curves of L with
initial data and source terms that are Holder-class in the geometric angular variables
w.

Lemma 10.9 (Estimates for transport equations along the integral curves of L in
Holder spaces witllrespect to w). Let C, C M. Let § be a smooth scalar-
valued function on C, and let ¢ be a smooth scalar-valued function on Sy, .. For
(t, w) € [[uls, Te. )] X S?, let the scalar-valued function ¢ be a smooth solution to
the following inhomogeneous transport equation with data given on Sy, u

Lo(t,u, w) =, u, w), (358a)
o([uly, u, w) = @(w). (358b)

Under the assumptions of Sect. 10.2, the following estimate holds fort € [[ul+, T, () ]:

t

ol oo s, ) S 190 cos0s,, )+ f 18l os0g AT (359)

[ul+
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Moreover,

t
” F(t,u, w)ydt
[u]

t
S/[ 181 coso g aT- (360)

Casy e )

Proof The lemma is a straightforward consequence of the fundamental theorem of
calculus and the fact that the angular geometrlc coordinate functions {w4} 4 1,2 are
constant along the integral curves of L = a -

10.8 Calderon-Zygmund- and Schauder-type Hodge estimates on S; ,,

Some of the tensorfields under study are solutions to Hodge systems on S; ,,. To control
them, we will use the Calderon—Zygmund and Schauder-type estimates provided by
the following lemma.

Lemma 10.10 (Calderon—Zygmund- and Schauder-type Hodge estimates on S; ;).
Under the assumptions of Sect. 10.2 and the estimates of Proposition10.4, if & is an
S;.u-tangent one-form and 2 < Q < p (where p is as in (276)), then

~—1
IVl Lo s, + 17 el o, ) < IARE o+ llcuréll o o (6D
Similarly, if € is an S; ,-tangent type (g) symmetric trace-free tensorfield, then

I7El o5, ) + 17" Ell s, ) S IAMEN (g . (362)

Moreover, let & be an S; ,-tangent type (g) symmetric trace-free tensorfield, let § (1)
be a scalar function, let § 2y be an S; ,-tangent type ((2)) symmetric tensorfield, and let

& be an S; ,-tangent one-form. Assume that®!

difvg = W3y + dirg o) + 6. (363)

Let2 < Q < o0, and let Q' be defined by % + 5 = é Then the following estimate
holds:

1l oG, ) < 212 180,065, +180,0. (364)
.

61 On RHS (363), we made a minor change compared to [54]*Proposition 5.9: we allowed for the presence
of the () term, in particular so that we can handle the second term on RHS (230). We will now explain
why the estimate (364) holds in the presence of this new term. First, we can split the S; ;-tangent type (2)
symmetric tensorfield § (o) into its trace-free and pure-trace parts. We then bring the trace-free part over to
the left-hand side of the equation (so that the new LHS is of the form di#(& — §(2))), while we absorb the
pure-trace part of §(2) into the §(jy term. This allows one to reduce the proof of (364) to the case in which
the 3(2) term on RHS (363) is absent, as was assumed in [54, Proposition 5.9].
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In addition, if 2 < Q < p (where p is as in Sect. 10.1), then

&l 013 S D0 180l 0y +17GIg - (365)
Cw (Sr,u) i:1’2 Cw

Similarly, assume that &, § (1), and §2) are S; ,-tangent one-forms and & i), and
&2y are scalar functions such that & satisfies the following Hodge system:

dip€, = divS 1y + G, (366a)

cylé = cufl§ o) + B (o). (366b)

Then under the same assumptions on Q and Q' stated in the previous paragraph, &,
satisfies the estimates (364)—(365) with & := (&), B(2)).

Finally, assume that & § = (§(1), §2)), and & are S; , tensorfields of the type
Jrom the previous two paragraphs (in particular satisfying (363) or (366a)—(366b)).
Assume that § is the S ,-projection of a spacetime tensorfield § or is a contraction
of a spacetime tensorfield § against L, L, or N. If Q > 2, 1 =m <o, and & > 0

is sufficiently small, then the following estimates hold, where § denotes the array of
(scalar) Cartesian component functions of §:

NElLos (0 S Hvé’mﬁ (367)

= -2
+ 3| e .
§ LS (Si0) I ”LXQ(S,,H)

YL (St)
Proof (Discussion of proof) Aside from (365), these estimates are a restatement of
[54, Lemma 5.8], [54, Proposition 5.9], and [54, Proposition 5.10]. Thanks to the
bootstrap assumptions and the estimates of Proposition 10.4, the estimates can be
proved using the same arguments given in [52, Lemma 2.18], [20, Proposition 6.20],
and [52, Proposition 3.5].

The elliptic Schauder-type estimate (365) for Hodge systems can be proved using
a perturbative argument, that is, using the (standard) fact that it holds on S equipped
with the standard round metric ¢, and then obtaining the desired estimate perturbatively,
with the help of the bootstrap assumptions (308a)—(308b) (which imply that 7 ~2¢ is
close to ¢) and the Morrey-type estimate (318). Here we will give a detailed proof
of (365) for one-forms & that solve the system (366a)—(366b). The estimate (365) for
S;.u-tangent type ((2)) symmetric trace-free tensorfields & that solve (363) can be proved
using similar arguments, and we omit those details.

To proceed, we let ¥, ¢, T, © ¥, ¢, and OT be as in our proof of (318). Let di#¢,
denote the divergence of & with respect to ¢, and let (V'djt& denote the divergence

of & with respect to ¢. Let ¢ denote the type (g) volume form of ¢, let @¢ denote

the type ((2)) volume form of ¢, and let ¢ ** denote the type ((2)) volume form of ¢,

i.e., the dual of ¢ with respect to ¢. Then by (366a)—(366b), & satisfies the following
equations, schematically depicted relative to the geometric angular coordinates, where
Id denotes the type (}) identity tensorfield, [¢ - (F2¢~ )14 = ¢pc(F¢~1)AC, and
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[(O¢ . 72¢ ¥4 = O¢ o (72 ¢ ¥)AC (and note that if § = 72¢, then ¢- (72¢~!) =1d
and O¢ . (7 ¢#) = —Id):

Odige, = Odig{[1d - ¢+ g1 &) + Ol P 5
+726a0) + (O =) - ¢ - §a) + (PT =) - ¢ - & (368)

Ocure, = <°>cuﬂ{[1d +O¢ - (7¢H]- a} - (°>cuﬂ{(°)¢ S (F¢ ) -S(z)}
+7260) + (OT =) - (P¢™) - Fo) + (OT =) - 2¢™) - £ (369)

We view (368)—(369) as a div-curl system on the standard round sphere. To control the
solutions, we will use the following simple product-type estimate, which can easily

be seen to be valid for §; ,-tangent tensorfields &1y and &), where “-” schematically
denotes tensor products and natural contractions:

&)y - a(z)llcfu‘ﬁo(s,,u) N ||£(1)||ng(s,,u)||<§(2)|IC-$50(SW) + IIE(z)IIng(s,,“)IIE(1)||C-(L)D<60(SW)-
(370)

From (368)—(369) and the fact that the analog of (365) holds on the standard round
sphere, we have, in view of Definition9.7 and (278), (370), the Morrey estimate (318)
for the standard round sphere, and (308a), the following estimate:

2 [ d’s —¢sp - (fzg_l)AD]

H IFEl o1 2
(Stw)  A,B,C=1,2

IFel o2 S
Co © ¢ LEG) o 2w
+ Y |10 - ese - @eHAY| IFED 5,2
AB=12 L&GSu) = ey s
) - -
Y | [+ Qe @™ el
AB,C=12 1% L& (Stu) Co 2w
+ 2 |+ Q@A IR 2
AB=12 G ey 9 (s
C D ~
D DU L e o I L VTP
A,B,C=1,2 wisLu Co  ~(Stu)
C ~ ~
+ 2 |Orhs T ] 0, IPREF s o IFE o, 2
AB.C=1.2 L& (Stu) Co Q(St,u)
P2 g s olF8 I o1z +IP2¢ g0 I8l oz
Co = (Stu) Cow (St.u)
C D, -
+ 2 [ Oras-T] 0 P s 0 Tl 60 2
L& (Stu) Cow Q(Sz_u)

A,B,C=1,2

C ~ ~
D R L U R o o B [V P s ey B
L& (St.u) W 0
A,B,C=1,2 Cw (St.u)
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+ 2 1P86l e 371
i=1,2 ’

Using (371) and (308a)—(308b), we deduce that

R S L I YRERE D D [ iV IPRE R D LT By
Cw 0 (St,u) Cw 0 (St,u) l':1~,2 Cw Q (Sr,u) i:l,2 ’
(372)

From (372), we see that if A is sufficiently large, then we can absorb the first term
on RHS (372) back into the left, at the expense of doubling the (implicit) constants
on the RHS. We have therefore proved (365) for one-forms ¢ that solve the system
(366a)—(366Db). O

10.9 Proof of Proposition 10.1

Armed with the previous results of Sect. 10, we are now ready to prove Proposi-
tion 10.1. Let us make some preliminary remarks. We mainly focus on estimating the
terms that are new compared to [54], typically referring the reader to the relevant
spots in [54] for terms that have already been handled. When we refer to [54] for proof
details, we implicitly mean that those details can involve the results of Proposition 9.8,
Lemma 9.9, the inequalities proved in Sect. 10.3, and Proposition 10.4, which subsume
results derived in [54]. The arguments given in [54] often also involve the bootstrap
assumptions of Sect. 10.2, which subsume the bootstrap assumptions made in [54].
We sometimes silently use the results of Proposition9.8 and Lemma 9.9, which con-
cern estimates for the initial data of various quantities. We also stress that the order in
which we derive the estimates is important, though we do not always make this explicit.
Moreover, throughout the proof, we silently use the simple bound 7 (T, u) /7 (¢, u) < 1
for T < 7. Finally, we highlight that the factors of f I appearing on the RHSs of the
equations of Proposition9.7 are, by virtue of the bootstrap assumptions, bounded in
magnitude by < 1. Therefore, these factors of f( [, are not important for the over-
whelming majority of our estimates, and we typically do not even mention them in
our discussion below.

Remark 10.4 Inthe PDEs that we estimate below, all of the terms that are new compared
to [54] are easy to identify: they all are multiplied by A=,

10.9.1 Proof of (297a)-(297b)

Based on the transport equations (233) and (235a) and Lemma 10.3, the proof of
[54]*Lemma 5.4 goes through verbatim.

10.9.2 Proof of (290) and (291)

Throughout, we will use the simple product-type estimate (370). We will also use
the simple estimate ||f o <Z||C0,50(S ) <1+ ||<Z||C0.50(S » which is valid for scalar
w 1,u w 1,u
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functions f of array-valued functions ¢ on S; , whenever f is smooth on an open set
containing the image set ¢(S; ;).

We first prove (291). To proceed, we note that from the bootstrap assumptions, it
easily follows that ||f(L) Loty S <1, ”‘I’”Lw(M) < 1, and ||L||L°°(M) < 1. From
these bounds, the estimates mentioned in the previous paragraph and (357), we see

<
that ||f 7 I R0 (s, ) 1]V %30, )—l-ll L| OéO(S IR 1+||L|| o305, )" . Thus, to

prove (291), it suffices to show that for u € [—gT*;(y\), Ti.onland t € [[ul4, Ti; (0],

~

we have ||Z|| c%Sos, ) < 1. To this end, we first note that Lemma 10.6 and the
w t,u

bootstrap assumptions imply that for u e [—‘—t Ti;(A)» Te: (0], we have the follow-

ing estimate: ||L|| %% St < 1 (in fact, (349¢)—(350) imply the stronger bound

o~
+

||L||Co.1(s )y S < 1foru € [0, Ty, )], whose full strength we do not need here). From
this “initial data bound,” the first transport equation in (223) the estlmates mentioned

in the previous paragraph, the estimate ||f(L) Il -o. 0805, ) ~ <14 ||L|| 050, )" the esti-

mate f[’u]+ [N o305, dt < A77€0 (which follows from (151) and (356)), and

inequality (359), we deduce that the following bound holds for u € [— % Ti; Ay Te: )]
andt € [[I/L]+, T, (n) ], where we recall that [#] = max{0, u} is the minimum value
of t along C,:

t
L <L ¥ 1 dt
I ”C&BO(SM,) S ||C&60(S[u]+,u) + /{;h IIf (L) I 050(S )

t

ST+ IL oo g, )+/
w ul4,u

[ul+

191l o505\ dT

t
+/[ 19wl coso g N MEN o0 s ) AT

ult

t
- - .
<1 +/[ 199 cosos I o505 dT. (373)

M]+ T,u)

From (373), the estimate f[;] ||8\TJ|| 0505, )d”t < A~7€0 noted above, and Gron-

wall’s inequality, we deduce that ||L|| 080 (5, )~ < 1, thereby completing the proof of
(291).

We will now prove (290). To proceed, we again use the first transport equation in
(223), the fundamental theorem of calculus, and the bootstrap assumptions and argue
as above to deduce |L (¢, u, w) — L ([uly, u, w)| < j[’u]+ ||3®||Lm(51) dt < A7eo,
From this estimate and the data bounds (345¢c) and (349b), we conclude the desired
estimate (290).
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10.9.3 Proof of (287a)-(287b) for X, P, X, ,and P, C

We first prove (287a) for ||X|| L2L0,@0) From the transport equation (231), (326a), and
(297a), we deduce

t -
814 ) < lim |f2>2|g(fr,u,w>+r1/ 2@ DIt u, w) dr
T [uly [ul+

t

t
+ f 1727, P )Elg (T, ) dT+/
[ul+ [

POV, gk SmalD ¢ 771 8| (1, u, w)dr,
uly ¢

(374)

where the correction mentioned in Footnote 48 leads to m = 1 in (326a), thus correct-
ing the value m = % appearing [54, Equation (5.69)]. We now divide (374) by 72(t, u)
and take the norm || - || 2, » @, The arguments given just below [54, Equation (5.68)]
yield that the norms of all terms on RHS (374) are < A~/ 2 (the correction of the value
of m mentioned above does not substantially affect the arguments given there), except
the term multiplied by A~ was not present in [54]. To handle the remaining term, we
use (335b). We clarify that to handle the case in which # < 0, this argument relies on

the initial data bound ||wl/2)2||LOCLp (£ < A~1/2_ which follows from i) using
w Hw 0

the first equation in (200) to express X in terms of 0 and 12; ii) bounding 0 in the norm

lw' 0 (o, by using the estimate (282b); and i) bounding k in the norm
w Hw (&g

||w1/2 . IILOOL,, (50 by using the schematic identity kap = f(Z) -0V, the estimate
w Hw 0

(291), and the estimate (330a) for 7129 in total, this allows one to deduce (recalling

- . 2 .
thatw = —u|x, > Oand that7 (T, u) = T—u) the estimate || ’rf—zx(O, u, w)||LtszU(5u) <
2| /2%(0, u, w)”LSOL’ZU = ||w1/272||L3$L{},(28’*"(M) < A~1/2, which is needed to con-

trol the term generated by the first term on RHS (374) when u < 0.
To prove the estimate for (287b) for ||F1/2%|| L®LD, @) We note that all terms on

RHS (374) can, after being divided by 73/2, be handled using similar arguments (see
just below [54, Equation (5.73)], where we again note that the correction of the pow-
ers of ¥ mentioned above does not substantially affect the arguments), but the term
multiplied by A~ was not present in [54]. To handle this remaining term, we use
(335e).

We now prove (287a) for |7 X|| L2200, @ We use the transport equation (231) to
solve for D ; X, multiply the resulting identity by 7, and then take the norm ||- | 200, @o
Thanks to the already proven bound (287a) for ||X|| L2L0, @) the same arguments given
in the paragraph below [54, Equation (5.73)] imply that all terms satisfy the desired
estimate (where the correction mentioned in Footnote 48 is not important for this
argument), except the following term was not present there: A‘lff( D) C, D). To
handle this remaining term, we use (340a).

The estimates (287a) and (287b) for ¢ and P ¢ follow from a similar argument
since, by (232), ( satisfies a transport equation that is schematically similar to the one
that ¥ satisfies, except it features the additional source term (- X, which can be handled
with the bootstrap assumptions (309); we omit the details. We clarify that, in view of
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the second term on LHS (232), the correct power of 7 in the analog of inequality (374)
for { is 7. Thus, to handle the A~! -multiplied terms, we use the estimates (335a) and
(335d) in place of the estimates (335b) and (335¢) we used to handle ¥.

10.9.4 Proof of (294) for x and (

These estimates follow from (316) with (¥, {) in the role of &, the already proven
estimates (287a) for (X, ¢) and (D ;. X, P; ), and the bootstrap assumptions (312) for
X Q.

10.9.5 Proof of (287a), (287b), (294), (288a), (288b), and (288e) for try¥, trzX ™,
and P tryx ™l

To prove (288a), we note that the definition (207) of trg%s’"“”) implies that it suffices

to prove the pointwise bound |Ftrg§(5’"“”)| < A~%€0_ To this end, we first use the
transport equation (228a) and (329) with & := 0 to deduce

|7 trgx(small)I(t u, w)

t -
< dim [P ugX Mt u, w) + AT / [72(C, D)|(T, u, w) dt

~ ruly [ul+
. t
+/ ~(Small) ~—1) 3\11‘ (T u, w)dT+/ |;2>A<)A(|g(fr,u,w)d’f
[M]+ [M]+
t
4 / 72 ugX Small) g Small) | (¢, u, w) d. (375)
[ul+

We now divide (375) by 7 (¢, u). To handle the term on RHS (375) that is multiplied
by A1, we use (335f). The remaining terms were suitably bounded in the arguments
given just below [54, Equation (5.78)]. We have thus proved (288a). The estimate
(288b) follows from nearly identical arguments, where one uses (335g) to handle the
)\_l-multiplied term; we omit the details.

The estimates (287b) and (294) for trgi(sm””) then follow as straightforward con-
sequences of (288b).

We now prove the estimate (288e) for trg)N((S'””l D First, using the transport equation
(228a), we deduce that

L ugxSmaiDy = 5 .= A7 Zf@) €, D) + 7 f) -

+7 f(L)x X+7 trgx(sm“”) trgx(sm"”) (376)

(3\1’ trgx(sm“”) 1 v

From (376) and the vanishing initial condition (along the cone-tip axis) for
thrgﬁ(sm“m guaranteed by (283a), we find, with [#]_- := | min{u, O}| and [u]; :=
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max{u, 0}, that

trg)'z(Small) (t,u, w) =

2
D ) +

t
_ Ju, drT.
(0 + ul /[u]+ ST wydr

(377)

F2(t, u)

Using (377), applying the product-type estimate (370) to the term § in (376), using the
already proven estimate (291) for f (i) and using (360), we find, in view of the definition

(323) of the Hardy-Littlewood maximal function, that for u € [—%‘T*; s Ti; (0] and
t € [[ul+, Ti. (0], we have

3/2
~(Small) < (]~ H 1/2,.. ~(Small) H
X" coengs, ) S ey 0 PERosos
—1y 7 ~(Small)
I, D)llL}C&éO@ ) + ||(3‘1’ tryx ,X)Il 80 G,
M(18%1, o005 )- (378)

From (378), the last estimate in (285), the parameter relation (276), (151), (309),
3/2
~(Small) < 2 —1/2 —1+4e
and (356), we find that ||tryX ||C8L;50(St,tf) S (t+[u],)27\ + A 0+
M (||3Q/||L20C&50(i)). Taking the norm || - ||L?([[u]+7T*Z(7\)]) of this inequality and
using (151), (324) with Q := 2, and (356), we conclude the desired bound (288e) for

trgi(Small) )
: > (Small) b~ :
The estimate (287a) for ||tryX I L2L0,@) then follows as a straightforward

consequence of the estimate (288e) for trgi(s’"“”).
We now prove the estimate (287a) for ||7ID Ltrg%sm“”) II L2205, @) by using the trans-

port equation (228a) to algebraically solve for 7I) Ltrg&(s’"“”). Thanks to the bound
(177) for 7, the bootstrap assumptions, and the already proven bounds (287a) and
(287b) for x and trg)N((S’”””), the same arguments given just below [54, Equation (5.80)]
imply that all terms on RHS (228a) and the term ztrﬁ(sm“”) on LHS (228a) satisfy
(upon being multlphed by 7) the desired estimate, except the following term was not
present in [54]: A~ rf@) (C D). To bound this remaining term, we use (340a).

10.9.6 Proof of (287¢)

(287c) follows from the already proven estimate (287b) and the bound (177) for r.

10.9.7 Proof of (288c) and (288d)

To prove (288d), we first note the following bound for some factors in the next-to-
last product on RHS (228b), which follows from (151), (306a), and (309): ”f(i)

@W, trzX e Q)| Lol @) S A€ < 1. From this bound, the transport equation
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(228b), and (329) with & :=f 7 - @, tryxSmalh %), we deduce

|73 WX D 4 (2, u, w)

t
< lim [P WugX S |yt u, w) + AT f 7 Y(C, D)lg(t, u, w)dT
[

Tl uly

t
+?\_1/ ‘ P(S5-8W,8W,09,85) - @V, rzX 5D %, 77 (T w)dr
[

uly
t
+
[ul+

t
+/ IPWK - Klg (T, u, w) dt

[ul+
t
g
[ul+

In the arguments given in the paragraph below [54, Equation (5.81)], with the help
of the bootstrap assumptions, all terms on RHS (379) were shown, after dividing by
72(t, u), to be bounded in the norm || - l220,@,) bY S A~1/2 A —2€0 IFWRN 212, @,

POV - @, gy Sl rh’g (T, 4, w) d7

PO, ugX el g Fy @, g Smalh 71y 9w (T u, w)dr.

(379)

except that the two terms multiplied by A~! were not present there. To handle these
remaining terms, we use (336b) and (337b), which in total yields

IFPegX S 2y @y SN2 NTONFRRI 200, @ (380)

Next, we note that the divergence equation (230), the Hodge estimate (362) with
Q := p, and the same arguments given in the paragraph below [54, Equation (5.82)]
yield

IF¥RN 20n, @ S WFRX S O 2 ) + A2 (381)

From (380) and (381), we conclude (when A is sufficiently large) the desired bounds
in (288d).

As is noted just below [54, Equation (5.84)], the estimate (288c) can be proved
using a similar argument, based on dividing (379) by 732 (t, u), where we use (336a)
and (337a) to handle the two )\_l-multiplied terms on RHS (379).

10.9.8 Proof of (295) for trz)”('(s’""”) and trgx — %

We first prove (295) for trg%(s’"“”). A slight modification of the proof of (378) yields
the following bound:

(Small) ”

1
g% 50 gimy SATNC Dy oo g, + M (1991 oo g )

(382)

LPC

~(Small) 2
+ ||(3\l/ tryX )||L2L°°Cw5°(/\/l”m))

t=u
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From (382), (151), (312), and (356), we deduce

g0 coso gy SN+ M (1% o0 g ). (383)
Taking the norm | - ||er([O’T*:(A)]) of (383) and using (151), (324) with Q := 2, and
(356), we conclude the desired bound (295) for trg%s’"“” )

The estimate (295) for tryx — 2 then follows from the identity tryx — 3 =
trg)"('(sm“”) — I';, the schematic relatlon r, = f( D) 3\11, the already proven esti-
mate (295) for trg%(s’”“”), the product-type estimate (370), (291), and (356).

10.9.9 Proof of (295) for

We first use equation (230), the estimate (365) with Q := p, the parameter relation
(276), the product-type estimate (370), (291), and Holder’s inequality to deduce that

~ Small
IRI 2 o 050 my S MK 3 o0 g + 1B

L2L3°C 121200020 (Um)

172 oo ) 199l 2 Lo 7y | P2 @W, XS0 %)

LELELG (M)

(384)

Using the bound (177) for 7, the estimate (287b) for trg)?(sm“”) and X, the estimate
(330a) for W, the already proven estimate (295) for trgi(s'"“”), (306a) for aW, and
(356) for 3, we conclude that RHS (384) < A~1/273¢€0 a5 desired.

10.9.10 Proof of (292) for trax(sm“”) and trgx — =

We first bound | trgX$me!D]| o

L2 LPCG
which is a simple consequence of the estimate proved just below (378), and which
holds for ¢ € [0, Ty. ()1

0. . We start by noting the following estimate,
0 (M

~(Small) I <)Lz + A~ IHaeo +M (”aw ”Locco’éo(f) )) ’
W '

(385)

”trZ LOOCO 00(2 ) N

Taking the norm || - || ¢ of (385) and using (151), (324) with Q := %, and
L (10, T 0D
(356), we conclude that if ¢ > 2 is sufficiently close to 2, then the desired estimate

(292) for trgX ™4l holds.

To prove (292) for tryx — % we use (207), the schematic relation I'; = f(z) . 3\11,
the product-type estimate (370), (151), (356), (291), the already proven estimate (292)
for ||tr§)<(5m“”) || s to conclude that if ¢ > 2 is sufficiently close to 2,
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then
X — % < |l Smath + [|0¥
lrgx — 21 4 Lo gy SR g sy o F 0PN g g, 2
g }\5*1*460(5*1) + (}\1—860)(;*7 ')\—1/2—360
< \i—1-4e0(G=D)
as desired.

10.9.11 Proof of (292) for ¥

A slight modification of the proof of (384) yields that

S ~(Small) N7
”X“L,%L;cc‘}f% < llrgX I 4 % o050 () + 13| ,%Locc?fo(m)
1/2 _ 1/2 ~(Small)
IRV e e 189 o H AV, g% .
751 oo gy IILg ( X Lo LsoL, (VD
(386)

From (386), (151), (177), (287b), the already proven bound (292) for trgxSme/),
(332a), and (356), we conclude that if ¢ > 2 is sufficiently close to 2, then

2_1—4ep(d-1 .
||X||L2LOOC 0% 7%, <A 061 as desired.
w

10.9.12 Proof of (288e) for ¥

Using (318) with Q := p and taking into account (276), we find that ||)2||L2Co,50 @) S
3%l L2L0,@) T x|l L202,C Using the already proven estimates (288d) for
IF¥Xll 20, @,) and (287a) for ||l 2, @,)» We conclude that the RHS of the pre-

. Lo _1 .
vious expression is < A2 as desired.

10.9.13 Proof of (296a)-(296b)

Based on the transport equation (234), Lemma 10.3, (284a)—(284b), (282¢)—(282d),
(151), the bootstrap assumptions, Proposition 10.4, and the previously proven esti-
mates (287a), (288d), (288e), and (295), the proof given in [54, Subsubsection 5.2.2]
goes through verbatim.

10.9.14 Proof of (289) and (293)

Based on the transport equation (233), the bootstrap assumptions, and the previously
proven estimates (297b) and (287a), the arguments given in the discussion surrounding
[54, Equation (5.90)] go through verbatim.
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10.9.15 Proof of (298)

Based on the evolution equations (235a)—(235b), Lemma 10.3, the bootstrap assump-
tions, and the previously proven estimate (288d), the proof of [54] Lemma 5.15 (in
which In (7 72v) was denoted by “¢”) goes through verbatim.

10.9.16 Proof of (288e) for || C|| and (299)

Lz 0,50 > @
We first simultaneously prove (288e) for || C”cho’é‘)(ﬁ ) and (299) for ||FWC||L,2LCU(§”)
with the help of the Hodge system (239a)—(23t9b). We now define the following two
scalar functions: § := RHS (239a), & := RHS (239b). From the Calderon—Zygmund
estimate (361) with Q := p, we deduce that for each fixed u € [—%T*;(M, Te.n],
we have ”FWC”L,ZL’ZU(EM) < 7S, Qj)”L?qu(Eu)‘ In the arguments given just below
[54, Equation (5.97)], based on the bootstrap assumptions, (151), (177), and the pre-
viously proven estimates (287b), (288e) for trg)"{(s”’“”) and ¥, and (298), all terms
on RHSs (239a)—(239b) were shown to be bounded in the norm |7 - || L2L0,@) by

< ATVZ g A 4eo 1C0l 12 00 @, €Xcept that the terms on RHS (239a) that are mul-

tiplied by A~! were not present there. To handle these remaining terms, we use
(340a). We have thus shown that V¢l 2,0 @) S A2 + A0l 20 @, -

Moreover, using (318) with Q := p, the parameter relation (276), and (287a) (Wthh

1/2
implies that [|Cll ;2,2 @,) < ICl2.0,@,) S A /2, we find that ”C”L,Zc?;%(cu) S

”FWC”L,ZL&(EM) + ||C||L[2L%U@) < ”;WC”L,ZL’Z.)(@) + A~ /2. Combining the above esti-
mates, we find that |F¥Cll 2.0 @) < A2 N0 Fve | 1212, @)+ from which
we readily conclude (when A is sufficiently large) the desired bound (299) for
||;7X7C||Ltszv(a‘) and the desired bound (288e) for || C”L?Cﬂ’,éo @

To prove (299) for ||7 “”L,ZL‘Z.,(EM)’ we must show that |7 x RHS (236) ”L?Lﬁ,(a,) <
A~1/2 In the arguments given just below [54, Equation (5.101)], based on the bootstrap
assumptions, (151), (177), and the previously proven estimates (287b), (288e), and
(298), all terms on RHS (236) were shown to satisfy the desired bound, except the
term on RHS (236) that is multiplied by A~!' was not present there. To handle this
remaining term, we use (340a).

10.9.17 Proof of (295) for C and (292) for C

To prove (295) for ¢, we will use the Hodge system (239a)—(239b). From these equa-
tions and the Calderon—Zygmund estimate (367) with C in the role of &, with Q := p
and m := 2, with f( D 0V in the role of § (where § represents the second terms on

RHSs (239a) and (239b)), with f(¥) - 3V in the role of § and with 8 > 0 chosen to
be sufficiently small, we find (where the implicit constants can depend on &’) that
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Small ~—1 T
”C”LZLOO(M("”)) < |F@V, trgx( mall) ¢ ¢ 71, @V,%, Lare Lt (™),
[ — ~ ~=2 .
+AIFC Dl 20, 1y + | FFIn <r u) i
& AW T, .
+Hv Py (1 g, - 0%) e L2 (387)

Assuming that 8 > 0 is chosen to be sufficiently small (in particular, at least as
small as the parameter §¢ in (306b)), the arguments given on [54, page 52] show that,
thanks to the bootstrap assumptions, (151), (177), and the already proven estimates
(287b), (288e), (295) for trgXS™e!D and ¥, and (298), all terms on RHS (387) are <
A—2-3€0 4 A4 ¢l L2100, EXCEPL that the term on RHS (387) that is multiplied

t=x

by A~! was not present in [54]. To handle this remaining term, we use (340a). This
shows that ”C||L2L°°(M”””) N A-13e0 4 )\_4€O||C||LI2L§C(M(IVLI)) which, when A is
sufficiently large, yields the desired bound (295) for C.

Similarly, based on the Hodge system (239a)—(239b), the Calderon—Zygmund esti-
mate (367) with Q := p, the bootstrap assumptions, (151), (177), the already proven
estimates (287b) and (298) and the already proven estimate (292) for trg)N((S”’“”) and
X, the arguments given on [54]*page 52 yield the desired estimate (292) for ¢, where
we use (340b) to handle the A~ -multiplied terms on RHSs (239a)—(239b).

10.9.18 Proof of (300a)-(300c¢)

Based on (201a)—(201b), Lemma 10.3, the bootstrap assumptions, and the previously
proven estimate (295), the proof of these estimates given in [54, Lemma 6.1] goes

through verbatim, except for the estimate (300a) for ||F% Yol L2 L2@C) To bound this
remaining term, we first use (297a) to deduce (noting that # > 0 since, by assumption,

we have a, C M(lnt>)

~1
172 )170||L,, L@y S /Sz €SS SUP; ey, 7, 117 2 WO (7, 1, W) dwycw)

1_2
5 /;2 ess Supte[uvT*:(A)] {U(t’ u, w)|r2 ”WU|§(I, u, (U)} dZUﬂw)

*s\N

1_
= |I7?

vol; LR (388)

2
From (388) and the already proven bound (300a) for ||7 P2 rYol Ll L@, We conclude

that RHS (388) < A~7/2 as desired.

10.9.19 Proof of (301a)-(301b)

1212255 (™) < 1; this is viable because

(301a) yields an improvement of this bootstrap assumption.

We make the bootstrap assumption ||Vol||
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We start by deriving a preliminary estimate for ||7 WZH ) using Hodge

Ll
system (240a)—(240b). To proceed, we define the following two scalar functions:
§ = RHS (240a), & := RHS (240b). From these equations and the Calderon—
Zygmund estimate (361), we deduce

1Yl < 7S + 78| + 7l

20208, L2020,y 20208,y 20208,y

In the last two paragraphs of the proof of [54, Proposition 6.3], based on the bootstrap
assumptions, (151), (177), and the previously proven estimates (287a) and (295), the
author showed that all terms on RHSs (240a)—(240b) are bounded in the norm ||7 -

I 22,0 ®) by < A=#€0, except that the terms on RHS (240a) that are multiplied
u™t-w

by A~! were not present there. To handle these remaining terms, we use (340c), which

in total yields the desired preliminary estimate ||7¥V(|| 1212100 (G < Adeo 4
aLliLw M)

”Fm'LgL,ZL{L (/"\;l(lm))-

We now derive estimates for [1. Using the transport equation (237), the identity

(326a), the vanishing initial conditions for 721 along the cone-tip axis guaranteed by

(283a), and (297a), we see that in ./\N/l(lm), we have
t
Pl @ 5 [ 7 130+ Iol) (e dr (389)
u

where J(1y and J(2) are defined in (238a)—(238b). We now divide (389) by 7 (¢, u) and
take the norm || - IILZLsz Ry In the proof of [54, Proposition 6.3], the author
derived estimates for the terms on RHS (389) that imply, based on the bootstrap
assumptions, (151), (177), and the previously proven estimates (287a), (287¢), (288c¢),
(2884d), ani (295), that ||Fm|L§L,2L£’.,(]\7l”"”) < AT4e0 4 )\_860”FEL”LgL?Lﬁ)(/TA(’"”) +
)\_4€°IIFWCIILgerL&(Mum)), except that the terms on RHS (238b) that are multi-
plied by A~! were not present there. To handle these remaining terms, we use
(338a) and (339a). Considering also the preliminary estimate for |7 ¥ (|| L2020 0y
u™t Hw

— < —4eg
L%L%Lﬁ,(./\/l(lnt)) ~ )\ +

A8eo|17 L2020 (s Thus, when A is sufficiently large, we conclude the desired

bound (301a) for ||7 1]

mate for HFWCHLEL%L{’U(]\V/I r

the desired bound (301a) for ||;WC”L§L?L&(M”"”)'
A similar argument yields (301b), where we divide (389) by 7!/ 2(t,u), and to

handle the terms on RHS (238b) that are multiplied by A~ ! we use (338b) and (339b);

we omit the details.
It remains for us to prove the estimate (301a) for || Vo ||

derived in the previous paragraph, we deduce |7t

120200, (R4 Inserting this bound into the preliminary esti-

N derived in the previous paragraph, we also conclude

~ . First, usin
LﬁL%C&EO(MU"”) N g

definition (211), (318) with Q := p, and the parameter relation (276), we see that

d0 , T, < |7 C ~ (In ~ (In
19015200 g, S IFFQE Ol a2 gt + 1¥01 20 gy,
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We have already shown that ”FWC”LgL,ZLCU(/\’?t“"’)) < AT*€0. To bound

IP¥Cll 22,0 ) by < A7*€0, we square the already proven estimate (299) for
u-t w

17V L1200, @) integrate with respect to u over u € [0, T} ()], and use the bound

(177) for u. Finally, to obtain the bound ”WG”LgL%L%U Ry

the already proven estimate (300a) for || ¥ o] ;2 L2, @) integrate with respect to u over
u € [0, Ty; ()], and use the bound (177) for u. éombining these estimates, we conclude

— < A—4eo i
that ||WG||L3L%C&50 w0y S A as desired.

< A4€0, we square

Remark 10.5 Throughout the rest of the proof of Proposition 10.1, we silently use
the following estimates, valid for 1 < Q < oo, which are simple consequences of

(97a): [F el S 1fll 05, and [ Fll o5, S 1fl,0,,, (see (205) regarding
the “overline” notation).

10.9.20 Proof of (302)

Using the Hodge system (210), (318) with Q := p, and (361) with Q := p, we find
that

NEVR 12,50 TS S IFGE = B2 5, (390)

Taking the norm || - || 212 of (390) over the range of (¢, u)-values corresponding

to M(Int) and using the already proven estimate (301a) for ||7 ||
arrive at the desired bound (302).

~ we
L%L%LZ,(M(I’”))’

10.9.21 Proof of (303)-(305b)

We first note that the decomposition (303) follows from the definitions of the quantities
involved.

Throughout the rest of proof, 27! (§, &) will denote the solution & the following
Hodge system on S; ,,: div€, = §, cuylE, = &. In our applications, & will be a one-form
or a symmetric trace-free type (g) tensor (where in the latter case, one can show that
the one-forms § and & are constrained by the relation &4 = €4p54, Where €4p i
the antisymmetric symbol with €12 = 1 relative to a g-orthonormal frame on S; ;).

We start by proving (305a) for the term || {— || L2150 (RAU™) on the LHS. We will use

the Hodge system (241a)—(241b). Note that we can split Z— = 271 (divE, curlé) +
g1 (--+,--+), where di#¢, is the first term on RHS (241a), cuflE is the first term on
RHS (241b), and (--- , ---) denotes the remaining terms on RHSs (241a)—(241b).
Recall that the S; ,-tangent tensorfields denoted here by & have Cartesian component
functions of the form f( 0" £ (and thus & satisfies the hypotheses needed to apply

the estimate (367) with f;, - ¥ in the role of § and f(¥) - 3V in the role of ).

Therefore, using (367) with & > 0 chosen to be sufficiently small (at least as small
as the parameter 8o > 0 in (306b)) and m := 2 to handle the term 2~ (di¥%, curlf),
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and (318) and (361) with Q := p to handle the term 2~ !(--- , - -.), we deduce that

~

= Ml 2o g0y S I7@W, ugX S, %, ¢ 771 - @, %, O
+ AN IFC D) 2o 2, R
+ [Py (18) - 29))|

LtngoLﬁj(m(lnt))

+ 1892 oo Rty
(391)

L2021 (M)

=V

Atthe very end of the proof of [54, Proposition 6.4] (in which the author derived bounds
for the second piece of a quantity denoted by “AT,” which was split into two pieces
there), the author gave arguments showing that, thanks to the bootstrap assumptions,
(177), and the previously proven estimates (287c) and (295), all terms on RHS (391)
are < 7\’%’360, except that the term A~ ||F((?, D)”L%LOOLﬁ,(M) was not present in
[54]. To handle this remaining term, we use (340a). We have therefore proved (305a)
for ||C — 'A”L,ZL§O(/'\71”’”>)‘

To prove (304), we first note that in view of (245), it suffices to show that
FU(t, u, w) = O@F)as t | u. The desired bound follows from applying the Calderon—
Zygmund estimate (367) with § = 0 to the Hodge system (210) and using the
asymptotic estimate (283a) for (L.

We now prove the estimate (305a) for the remaining term ||y, || on
the LHS. Note that 4y solves the Hodge-transport system (243a)—(243bx), where the
inhomogeneous term J(j) — m is defined by (238a). From (297a), (326a), and the
initial condition (304), we deduce the pointwise identity

L2Lo (M)

t
u(l)(z,u,w)zu*%(t,u,w)/ [u%@”(ja)—m,m] (t,u, wydt.  (392)

The term J 1) —m on RHS (392) is the same term appearing in [54]. At the start of the
last paragraph in the proof of [54, Proposition 6.4] (in which the author derived bounds
for the first piece of quantity denoted by AT, which was split into two pieces), the author
derived estimates for RHS (392) showing that ||/, ||L,2L§C(A7(’”’)) < 7\_%—430’ which
is in fact slightly better than the bound stated in (305a).

Finally, we prove the estimate (305b) for ;) using the Hodge-transport system
(244a)—(244b). We first define the following two scalar functions: § := RHS (244a),
® := RHS (244b). From (244a)—(244b), (297a), (326a), and the initial condition
(304), we deduce the pointwise identity

t
oy (2, 10, ) = V72 (8, u, w)/ [v227'G.®)] (r.u, wydr. (393)

From (318) with Q := p and (361), we find that IIQ_l(S, Slroes.y) S
17 (S, ®)||qu(5;“)' From this estimate, (393), (297a), and the simple bound
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F(t,u)/F(t,u) < 1fort <t, we deduce that
||IA(2)||L5L;>OLO£(M(W>) SIIFE, ®)||L5L,'L€U(/\~A(””))'

In [54, Equation (6.37)] and the discussion below that equation, based on the
bootstrap assumptions, (151), (177), and the already proven estimates (287a),
(287¢), (288d), (295), (301a), and (302), the author gave arguments that imply that
17 (S, 6)”L2L}L{’U(A7“"”) < A—2—4€0 a5 desired, except that the terms in J2) — J(2)
(i.e., the first term RHS (244a)) generated by the two terms on RHS (238b) with
the coefficient A~! were not present in [54]. To handle these new terms, we use
(340d)—(340e). We have therefore proved (305b), which completes the proof of Propo-
sition 10.1.

11 Summary of the reductions of the proof of the Strichartz estimate
of Theorem 7.2

In this section, we outline how the Strichartz estimate of Theorem 7.2 follows as a
consequence of the estimates for the eikonal function that we derived in Sect. 10. We
only sketch the arguments since, given the estimates that we derived in Sect. 10, the
proof of Theorem 7.2 follows from the same arguments given in [54]. For the reader’s
convenience, we note that the flow of the logic can be summarized as follows, although
in Sects. 11.1-11.5, we will discuss the steps in the reverse order:

1. Estimates for the eikonal function, connection coefficients, and conformal factor
o obtained in Sect. 10

2. — Estimates for a conformal energy for solutions ¢ to the linear wave equation
Hey9 =0

3. — Dispersive-type decay estimate for the linear wave equation solution ¢

4. — Rescaled version of the desired Strichartz estimates

5. = Theorem 7.2.

We remind the reader that the completion of the proof of Theorem 7.2 closes
the bootstrap argument initiated in Sect. 3.5, thereby justifying the estimate (17) and
completing the proof of Theorem 1.2.

11.1 Rescaled version of Theorem 7.2

From standard scaling considerations, one can easily show that Theorem 7.2 (where
in (108), U denotes the non-rescaled wave variables) would follow®? from a rescaled
version of it, which we state as Theorem 11.1. Here we do not provide the simple proof
that Theorem 7.2 follows from Theorem 11.1; we refer readers to [54, Section 3.1]
and [54, Theorem 3.3] for further discussion.

62 More precisely, the analog of Theorem 7.2 in [54], namely [54, Theorem 3.2], was stated only in
the special case T = f;, where T is as in the statement of Theorem 7.2. However, the case of a general
T € [tk, tg+1] follows from the same arguments.
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Theorem 11.1 (Rescaled version of Theorem 7.2). Let P denote the Littlewood—Paley
projection onto frequencies & with % < |&| < 2. Under the assumptions of Sect. 10.2,
there is a Ao > O such that for every A > A, every q > 2 that is sufficiently close to
2, and every solution ¢ to the homogeneous linear wave equation

Dg(@)w =0 (394)
on the slab [0, Ty.n)] x R3, the following mixed space-time estimate holds:
P3¢l Laq0.7,.0onLe S 1901 L2(5)- (395)

We clarify that in (394), the argument “U” in g(\fJ) denotes the rescaled solution, as
in Sects. 9.1 and 9.3.

11.2 Dispersive-type decay estimate

As we discussed in Sect. 11.1, to prove Theorem 7.2, it suffices to prove Theorem 11.1.
Theorem 11.1 canbe shown, via a technical-but-by-now-standard 77* argument, to fol-
low as a consequence of the dispersive-type decay estimate provided by Theorem 11.2.
See [54, Appendix B] for a proof that Theorem 11.1 follows from Theorem 11.2. We
remark that the proof given in [54, Appendix B] goes through almost verbatim, with
only minor changes needed to handle the fact that the future-directed unit normal to
3, is B in the present article (and thus the B-differentiation occurs on LHS (397)),
while in [54], the future-directed unit normal to %, is o;.

We now state Theorem 11.2. In Sect. 11.3, we will discuss its proof.63

Theorem 11.2 (Dispersive-type decay estimate) Let P denote the Littlewood-Paley
projection onto frequencies & with % < |&| < 2. Under the conventions of Sect.9.3
and the assumptions of Sect. 10.2, there exists a large Ao > 0 and a function d(t) > 0
such that if A > A and if g > 2 is sufficiently close to 2, then

d <1 396
I IIL%([O’T*;(M])N (396)

and for every solution ¢ to the homogeneous linear wave equation (394) on the slab
[0, T ()] X R3, the following decay estimate holds for t € [0, Ty.p)]:

3 2
1
I1PBol Lz, < {ﬁ +d(r)} {Z 19" @l 1z + D N™ Bl L1 5 | -
(1 +0)i

(397)

63 The presence of up to three derivatives of ¢ on RHS (397) is not problematic because in practice, the
estimate (397) is only used on functions supported near unit frequencies in Fourier space (and thus the
functions’ derivatives can be controlled in terms of the function itself, by Bernstein’s inequality). See [54,
Appendix B], especially the first estimate on page 105.
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11.3 Reduction of the proof of Theorem 11.2 to the case of compactly supported
data

It is convenient to reduce the proof of Theorem 11.2 to a spatially localized version in
which the L' norms on the RHSs of the estimates are replaced with terms involving L?
norms, which are more natural (in view of their connection to energy estimates). More
precisely, the same arguments given in [54, Section 4] yield that Theorem 11.2 follows
as a consequence of Proposition 11.1, which is an analog of [54, Proposition 4.1], and
Lemma 11.2, which is an analog of [54, Lemma 4.2]. We will discuss the proof of
Proposition 11.1 in Sect. 11.5, while we provide the simple proof of Lemma 11.2 in
this subsection.

Proposition 11.1 (Spatially localized version of Theorem 11.2) Let R > 0 be as in
Sect. 9.1, fix any®* z € X, and let v, (1) be the unique point on the cone-tip axis in
(see Sect.9.4.1 for the definition of the cone-tip axis). Let P denote the Littlewood—
Paley projection onto frequencies & with % < |&| < 2. Under the assumptions of
Sect. 10.2, there exists a large Ao > 0 and a function d(t) > 0 such that if A > Ag
and if ¢ > 2 is sufficiently close to 2, then

|l 1, (398)

g S
LI (0. 0]

and for every solution ¢ to the homogeneous linear wave equation (394) on the slab
[0, T (0] X R whose data on 31 are supported in the Euclidean ball Bg(y,(1)) of
radius R centered at y,(1), the following decay estimate holds for t € [1, T,.(n)]:

I1PBo|lLes) S { +d®) ¢ {180l 2z + l9l2z) ) (399)

2
q

(I 4+1r=1)

Remark 11.1 (¢ vanishes in ([1, Ti. 0] x R3) \]\V4(11nt)) From the definition (171)

of J\F\//lilm), (174b), (174c), (175), and standard domain of dependence consider-

ations, it follows that the solution ¢ from Proposition11.1 satisfies ¢ = 0 in
~
(I1, Tooony] x RI)AM™.

Lemma 11.2 (Standard energy estimate for the wave equation). Under the bootstrap
assumption (306a) for the first term on the LHS, there exists a large Ay > 0 such that
if A > Ao, then solutions ¢ to the homogeneous linear wave equation (394) (where
in (394), g = g(\f!), with U the rescaled solution) verify the following estimate for
t €10, T*;()\)].‘

19l 25, S 101125 (400)

64 Aswehi ghlighted in Remark 9.1, the hypersurface that we denote by “X(” in this proposition corresponds
to the hypersurface that we denoted by Xy, in Sects. 3-8. Similar remarks apply for the other constant-time
hypersurfaces appearing in this proposition.
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Moreover, for 0 <t < 1, we have
lelli2cs,) S 10@ll25y) + l@llz2(sy)- (401)

Proof Reasoning as in our proof of (52), but omitting the ¢? term in the analog of the
energy (49) and the energy identity (53), we find that

1
18611755, S 18911755, + /0 199l ez 1991175 5., dT.

(400) now follows from this estimate, Gronwall’s inequality, and the estimate
||3\TJ||L1([O,T*:W])L§Q < A—8€0 < 1, which is a simple consequence of (151) and
(306a).

(401) then follows from (400) and the fundamental theorem of calculus. m]

11.4 Mild growth rate for a conformal energy

The proof of Proposition 11.1 fundamentally relies on deriving estimates for a confor-
mal energy, which we define in this subsection. We stress that our definition coincides
with the definition of the conformal energy given in [54, Definition 4.4].

11.4.1 Definition of the conformal energy

We start by fixing two smooth, non-negative cut-off functions of (¢, u), denoted by W
and W and satisfying 0 < W(t,u) < 1,0 < W(t,u) < 1, such that the following
properties hold for > 0:

1 it % e0,1/2], it % efo, 1],

W(t,u) = W(t,u) =
€ %) 0 if% € (—oo, —1/41U[3/4, 1], W, w 0 if% € (—oo, —1/4],
(402a)
Wt u)y=W(t,u) ift e[l Tyl and% c[—1/4,0]. (402b)
See Fig.4 for a schematic depiction of the regions in the case z := 0, where for

convenience, we have suppressed the “quasilinear nature” of the geometry by depicting
it as flat.

Definition 11.1 (Conformal energy). For scalar functions ¢ that vanish outside of

/\715’"’) (see definition (171) and Remark 11.1), we define the conformal energy ¢’[¢]
as follows:

loie = [, =W Dl + 7P do,
ZY

+ /~um> W [IFDL‘PF + 17Vl + lez} dwy. (403)
ET
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Fig.4 Schematic illustration of the regions appearing in definition (402a) in the case z := 0

11.4.2 The precise eikonal function and connection coefficient estimates needed for
the proof of the conformal energy estimate

The following corollary is a routine consequence of Proposition 10.1. It provides all
of the estimates for the eikonal function and connection coefficients that are needed
to prove Theorem 11.3, which in turn provides the main estimates needed to prove
Proposition 11.1. Some statements in the corollary are redundant in the sense that they
already appeared in Proposition 10.1. For the reader’s convenience, we have allowed
for redundancies; having all needed estimates in the same corollary will facilitate our
discussion of the proof of Theorem 11.3.

Corollary 11.3 (The precise estimates needed for the proof of the conformal energy
estimate). Let

N | A 2
A= <trgx(sm””) X try ,c,aw,c, D, ——— .k, LInb,0,0 — :),
r

7

(404)

where f( [ is any smooth function of the type described in Sect.9.9.1.
Under the assumptions of Sect. 10.2, the following estimates hold:

Ty < ATBEOT 0<7<2Twnn. (4052)

1
16 =ity SA™ =< 7 v AP, FrrgX ~ 1. (405b)

Moreover, we have the following estimates,% where the norms are defined in
Sects.9.10 and 9.12, the corresponding spacetime regions such asC c Mare defined

65 Our estimates (406a) and (409b) feature the power —1/2 — 3€( on the RHS, as opposed to the power
—1/2 — 4¢( that appeared in the analogous estimates of [54]. This minor change has no substantial effect
on the main results.
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in Sect. 9.5 (see especially (172)), and p is as in (276):

A —1/273¢0, (4062)

~ <
L%L;C(/\/l(lm)) <A

IF (V. DLAN 2@ 1Az, @ e I17PAl e 205, SAT20 (406b)

1 12 1
172 Lol 20, 1727 W0l L1 @ IF2FON 2,10
(Inz)

IVl 20 @ S A 12 ifC, c M (407a)
101 o gy, S A5 (407b)
~— 1
P20 o gimy S AT, (407¢)
7172 b~ 2 -1/2
F lrgx— = rgx + ~,kNN osae (408)
r L*L2,@C)
@2 oo oo gty - IF /ZWO-”LOCL“’LP i, SATITR (409a)

fd ~1/2 —1-3
1C €= s )l 2 gt - WP V0N o o) S AT/ 20, (409b)
P2 X T oy iy S AT, (409¢)
I7¥01 ooy gt S AT, (409d)

<ATI.
)
(409)

1 1
Pzl —trgXv | — — (trgx) v+ = {L In b} tryXv — |X70'|gU
2 4 oLl 7 i

Proof The bootstrap assumptions imply that ||f( 0l Loo (T < 1; thus, we can ignore
f(i) throughout the rest of this proof. The estimates (405a), (405b), (406a), (406b),
(407a), (407b), and (407c) are restatements of (151), (177), (307b), and of estimates

derived in Propositions 10.1 and 10.4, combined with the schematic relations L Inb =
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fg) 00, Lo = £ - 90, k = f(¥) - 8%, 0 = L +f; -9¥, and 0 — 2 =

trgxSmall) 4 fii - dW (see (197a), (201a), (233), (200), and (207)). Here we clarify

that although the proof of the estimate (295) relied on Schauder-type estimates for ¥

that forced us to obtain control of ||(trg%(sm“”), tryX — %, )AO”LZLOOCO'%(M(“”))’ we
tu w

have stated the estimate (406a) in terms of the weaker norm || - ; control

22 o 1m0,
of this weaker norm is sufficient for the proof of Theorem 11.3. ’

(408) follows from (406b) and the schematic relations tryx — = = trg&(s’”“”) +

U, trygx + 2 = —trgXSmalh +1g, - .V, and kyy = f.7, -9V (see (197a),

(200) and (207)).

(409a) follows from (300a) and (305b).

(409b) follows from (300a), (305a), and (406a) for .

(409¢) follows from (288a), (301b), (334), the estimate [|F'/2[| oo 77, S AV/Z4€0
guaranteed by (405a), (332a) for the second term on the LHS, and the schematic
relations 'y, =f 7, - 3 and trgX = tryx + fiy- av.

(L)

ollows from the boun a) for ||F 7 o|l;» ;o y and the estimate
(409d) foll fi he bound (407a) f LOL®@,)
||f1/2||L°<>(/’\7!) < Al/2—4€0 guaranteed by (405a).

To obtain (409e), we first use (229), the estimate (405b) for v, and the aforemen-
tioned estimate
7 1/2 ||Loo( < Al/2—4eo

to deduce that

LHS (409¢) < IF'/2@W, C, D)l o oo 1, Rty

 Al/2mde0 (410)

2w, trgX 5" %, Vo )HLOOLWL” Ry

From the estimate (331a), the estimate (406b) for ||71/2A || LLl @) and the estimate
(407a) for |72 Vo 12,15@G,)» We conclude that RHS (410) S A~ 12 a5 desired. O

11.4.3 Mild growth estimate for the conformal energy

The main estimate needed to prove Proposition 11.1 is provided by the following
theorem. The proof of the theorem is fundamentally based on the estimates for the
acoustic geometry provided by Corollary 11.3.

Theorem 11.3 (Mild growth estimate for the conformal energy). Let R > 0 be as
in Sect.9.1 and let 'y,(1) be the unique point y,(1) on the cone-tip axis in X (see
Sect.9.4.1). Let ¢ be any solution to the covariant linear wave equation (394) on the
slab [0, Ty, 0] x R such that (¢ls,, 0rplx,) is supported in the Euclidean ball of
radius R centered at the point y,(1) in X (and thus Remark 11.1 applies).

Then under the assumptions of Sect. 10.2, for any ¢ > 0, there exists a constant
C. > 0 (which can blow up as ¢ |, 0) such that the conformal energy of ¢ (which is
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defined in (403)) satisfies the following estimate fort € [1, Ty, ()\]:

Clolr) < Coll+ 0% {18013 g, + ol ) - @11)

Proof (Discussion of proof) Given the estimates that we have already derived, the
proof of Theorem 11.3 is the same as the proof of [54, Theorem 4.5] given in [54,
Section 7.6]. Thus, here we only clarify which estimates are needed to apply the
preliminary arguments given in [54, Section 7], which are used in [54, Section 7.6] to
prove Theorem 11.3.

The proof of (411) given in [54, Section 7] is carried out via a bootstrap argument,
wherein one needs to establish [54, Equations (7.61)—(7.63)] to close the bootstrap;
see [54, Section 7.4.1]. For the reader’s convenience, we first list the main steps given
in [54, Section 7], which lead to the proof of Theorem 11.3. They are a collection
estimates for the linear solution ¢ in the statement of the theorem:

1. The most basic ingredient in the proof is that one needs a uniform bound, in
terms of the data, for a standard non-weighted energy of ¢ along a portion of the
constant-time hypersurfaces ¥, and null cones C,; see [54, Lemma 7.1].

2. A Morawetz-type energy estimate, which, when combined with Step 1, yields
preliminary control of a coercive spacetime integral of [d¢|* and ¢2 near the cone-
tip axis. The integral involves weights with negative powers of 7, and it is bounded
by the data plus some error terms that are controlled later in the argument.

3. Inthis step, one makes preliminary progress in controlling the yet-to-be-controlled
error terms mentioned above in Step 2. Specifically, one derives estimates showing
that 7-weighted versions of ¢ can be controlled in L2 along a portion of %, in terms
of a weighted spacetime integral involving the square of its outgoing null derivative
and an integral of ¢? along a portion of a sound cone.

4. Comparison results for various norms and energies, some of which involve the
conformal metric g from Sect.9.7.1 and a corresponding conformally rescaled
solution variable ¢ := e~ “ .

5. Weighted energy estimates for the wave equation [Jg@ = - - -, where the energies
control the L and ¥ derivatives of ¢ along portions of X, with weights involving
v (see (193)) and positive powers of 7. These are obtained by multiplying the
wave equation (g = --- by (Lg + %trg)?)fm for appropriate choices of m > 0,
and integrating by parts. Ultimately, when combined with the results from the
previous steps, this allows one to bound the conformal energy (i.e., the terms on
on RHS (403)) in the region {# < %} N /A\;l(lm); see [54, Section 7.6], in particular
[54, Equation (7.94)] and [54, Equation (7.95)].

6. A decay estimate for the standard non-weighted energy along ¥, showing in
particular that it decays like (14 7)~2; see [54, Equation (7.93)]. Ultimately, when
combined with the preliminary estimates for ¢ provided by Step 3, this yields the
desired control of the conformal energy (i.e., the terms on on RHS (403)) in the

region {u > 5} N /\7(1"0; see [54, Section 7.6].

We now discuss precisely which of the estimates we have already derived are needed
to repeat the arguments of [54, Section 7] and to carry out the above steps. We will
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not fully describe all of the analysis in [54, Section 7]; rather, we will describe only
the part of the analysis that relies on the estimates we have derived. Specifically, we
focus primarily on arguments that rely on estimates for the acoustic geometry. We
again emphasize that although we have derived the same estimates for the acoustic
geometry as in [54], our proof of the estimates (derived in Sect. 10) required substantial
additional arguments because we had to control new source terms coming from the
entropy and vorticity. The remaining arguments, not discussed here, needed to close
the bootstrap—and hence establish Theorem 11.3—are the same as in [54, Section 7],
to which we refer the reader for more details. We start by noting that the basic estimates
(405a), (405b), and (407b) are used throughout [54, Section 7]. We also refer readers
to Footnote 65 regarding a minor discrepancy between the estimates we derived here
and corresponding estimates in [54]; we will not comment further on these issues.

Step 1 (see [54, Lemma 7.1]) is essentially equivalent to the basic energy estimates
for the wave equations derived in the proofs of Propositions4.1 and 6.1, differing only
in that the needed estimates are spatially localized. For the proof, one needs only the
bound

1P apll 10 SATS, (412)

where (B)Haﬂ are the Cartesian components of the deformation tensor of B. Recalling
that each Cartesian component B* satisfies B = f (\i’) for some smooth function
f (where U is the rescaled solution), we see that the Cartesian components (B)naﬂ
satisfy (B)Ha/g =f (\fl) - dW (for some other smooth function f). Hence, the desired
bound (412) follows from (151), (307¢), and Holder’s inequality.

The Morawetz estimate from Step 2 is provided in [54, Lemma 7.4] and [54,
Lemma 7.5]. The proof relies on applying the divergence theorem (the geometric
version, with respect to the rescaled metric g) on an appropriate spacetime region to
the vectorfield ®J¢[¢] := Q*[p]Xp — 5 {8 )30} ¢ + 10 (&™) as(p?),
where QP[] is deﬁned in (45), X := fN, N is the outward g-unit normal to S; , in

—1
% (see (181)), f == €5 (lfﬁ
geometric derivatives of N that can be expressed in terms of connection coefficients
of the null frame and their first derivatives. For the proof of [54, Lemma 7.4] and [54,
Lemma 7.5] to go through verbatim, one needs only the estimates (406a) and (406b);
see just below [54, Equation (7.18)].

In obtaining estimates for 7-weighted versions ¢ in Step 3, in the sub-step provided
by [54, Lemma 7.6], one needs the estimate (406a); see below [54, Equation (7.34)].

For the comparison results from Step 4, in the sub-step provided by [54, Proposi-
tion 7.10], one needs the estimates (406b) and (407a); see below [54, Equation (7.43)]
and [54, Equation (7.45)]. In the sub-step provided by [54, Lemma 7.11], one needs
the estimates (406b) and (407a).

In deriving the weighted energy estimate from Step 5, in the sub-step provided
by [54, Lemma 7.15], one needs the estimate (406a); see the first line of the proof.
Then, in the same proof, to bound the error terms denoted on [54, page 87] by “A;”,
(i = 1,2, 3), one needs, respectively, the estimates (409a), (409b), and (409c); see
the analysis just below [54, Equation (7.72)].

and © := 7~! f. The error terms involve various
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For the energy-decay estimate provided by Step 6, in the sub-step provided by [54,
Proposition 7.22], the estimates (409d)—(409e) are ingredients needed to help bound
the term denoted by “Z” on [54, page 94]; see [54, page 95] for the role that (409d)—
(409e) play. One also needs (407a) (see the bottom of [54, page 95]) and (406a) (see
the top of [54, page 96]). O

11.5 Discussion of the proof of Proposition 11.1

Thanks to the assumptions of Sect. 10.2 and the estimates for the acoustic geometry that
we obtained in (292), Proposition 11.1 follows as a consequence of Theorem 11.3 and
the same arguments given in [54, Section 4.1] (see in particular [54, Proposition 4.1])
and Lemma 11.2.

Acknowledgements We are grateful to Qian Wang and the anonymous referees for offering enlightening
comments and insights, and for suggestions that have helped improve the exposition.
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