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Abstract

Multi-modal single cell RNA assays capture RNA content as well as other data modalities, such
as spatial cell position or the electrophysiological properties of cells. Compared to dedicated
scRNA-seq assays however, they may unintentionally capture RNA from multiple adjacent cells,
exhibit lower RNA sequencing depth compared to scRNA-seq, or lack genome-wide RNA
measurements. We present scProjection, a method for mapping individual multi-modal RNA
measurements to deeply sequenced scRNA-seq atlases to extract cell type-specific, single cell
gene expression profiles. We demonstrate several use cases of scProjection, including the
identification of spatial motifs from spatial transcriptome assays, distinguishing RNA contributions
from neighboring cells in both spatial and multi-modal single cell assays, and imputing expression
measurements of un-measured genes from gene markers. scProjection therefore combines the
advantages of both multi-modal and scRNA-seq assays to vyield precise multi-modal

measurements of single cells.
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INTRODUCTION

In recent years, there has been a surge in the number and size of atlasing efforts across tissues,
conditions, and species'™, driven by the high throughput nature of single cell- and nucleus-RNA
sequencing (sc/snRNA-seq) technologies. These technologies are now routinely used to

357 in order to maximize the discovery of

generate atlases on the scale of up to millions of cells
novel cell types and characterize the transcriptional heterogeneity of individual cell types within
samples. One of the limitations of the sc/snRNA-seq technologies, however, is that they only

capture the RNA content of each cell. To address this limitation, there are a growing number of
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single cell resolution assays that simultaneously measure RNA content as well as other cellular
annotations and modalities. For example, spatial transcriptomic sequencing assays such as Slide-
seq® and LCM-seq® record both the spatial position and RNA measurements from individual spots
on a sample. There are also multi-modal assays such as Patch-seq'® that measure cellular
phenotypes in addition to local RNA content, enabling the identification of connections between

molecular and cellular phenotypes of neurons.

However, single cell resolution assays have a major drawback: they often trade off some precision
in their RNA measurements in exchange for collecting additional data modalities. In the case of
some spatial transcriptome sequencing assays such as LCM-seq or Slide-seq, RNA is extracted
from spots of pre-defined size and location on a tissue, leading to individual spots often capturing
RNA from multiple cells. Analogously, for Patch-seq, a micropipette is used to puncture brain
slices and remove RNA from a target neuron, but RNA from neighboring neuronal or glial cells
can be captured as well''. For technologies such as MERFISH'?, in practice only a few hundred
genes in the genome can be measured in a tissue. This lack of true single cell, genome-wide RNA
measurements can hinder downstream analysis of spatial gene expression patterns or inferring

connections between molecular and cellular phenotypes.

Here we present scProjection, a method for projecting single cell resolution RNA measurements
onto deeply sequenced single cell atlases, in order to achieve single cell precision from the
original RNA measurements. First, we demonstrate our cell type-specific projections capture RNA
contributions of component cell types, and importantly that the gene co-expression network of the
projected data is consistent with the gene co-expression network of scRNA-seq data from the
same cell population. We then illustrate three use cases of scProjection. First, we show
scProjection analysis of spatial transcriptomes yields substantially increased detection of cell
type-specific spatial gene expression patterns across diverse tissues such as the primary motor
cortex and hypothalamic regions of the brain as well as the intestinal villus. Second, we
demonstrate scProjection can impute spatial genome-wide gene expression measurements when
targeted sequencing of limited numbers of genes via MERFISH'® is performed. Finally, we show
scProjection can separate RNA contributions from multiple cell types when analyzing Patch-seq
data, where RNA measurements are composed of RNA from the target neuron as well as

neighboring glial cells. The separation of RNA contributions leads to more accurate prediction of
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one data modality (electrophysiological response) from another (RNA expression levels). We
conclude that integrating deep single cell atlases with single and multimodal cell resolution assays

can therefore combine the advantages of both sequencing approaches to study single cells.

RESULTS

The scProjection model and workflow is illustrated in Figure 1. scProjection assumes that one or
more RNA samples x; from a single cell resolution assay are available as input (Fig. 1a), as well
as a deeply sequenced single cell atlas that profiles the same cell types as the single cell
resolution assay (Fig. 1b). Typical single cell resolution assays of interest include spatial
transcriptome assays such as LCM-seq, Slide-seq or MERFISH, multimodal assays such as
Patch-seq, or classical bulk RNA-seq. As output, scProjection simultaneously projects each RNA
sample x; onto each component cell population k within the single cell atlas to find the average
cell state (expression profile) of that cell type in the sample (y; ;) (Fig. 1c), as well as the relative
abundance of that cell type («; ;) (Fig. 1d). scProjection therefore balances selecting sets of cell
states y; ; that help minimize reconstruction error of the original RNA measurement x;, with the

task of selecting cell states that are frequently occurring in the single cell atlas (e.g. the prior).

scProjection uses individual variational autoencoders'™ (VAESs) trained on each cell population
within the single cell atlas to model within-cell type expression variation and delineate the
landscape of valid cell states'®, as well as their relative occurrence. Here, a valid cell state for a
cell type k is defined as a genome-wide gene expression profile that has either been directly
measured in the single cell atlas, or is inferred to be feasible based on the covariation of gene
expression patterns observed in measured cells. In practice, we ignore projections y; , when the

predicted cell type abundances «; ; is small (e.g. <56%).

With scProjection, we achieve state-of-the art deconvolution performance in predicting cell type
abundances with across multiple benchmarks'®' (Supplemental Note 1). scProjection
particularly performs well at estimating rare cell type abundances compared to other approaches.

The rest of this study focuses on the projection task of inferring cell states of individual cell types.
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Projections distinguish within-cell type variation in gene expression patterns

Initially, we established scProjection’s ability to map mixed RNA samples to the correct
transcriptional state for each contributing cell type. To do so, we conducted a series of simulation
experiments in which a pair of cell states were selected from distinct neuron cell types, L2/3 IT
and L6b, profiled in a recent human cortex cell atlas®. To impose a tiered difficulty, we chose these
two neuronal subclasses s which are variable in their heterogeneity: L2/3 IT is highly variable with
many cell states, and L6b is composed of five cell states (Methods). We repeatedly constructed
mixed RNA samples by first selecting a random subtype, then selecting a cell state from that
subtype, for each of L2/3 IT and L6b. The gene counts from this pair of randomly selected cells

were added to form the final mixed RNA sample.

scProjection was then evaluated on its ability to map the mixed RNA sample back to the correct
transcriptional state and subtype for each of L2/3 IT and L6b, when only provided with a cell atlas
whose cells are annotated at the level of L2/3 IT and L6b (no subtype information was provided
to scProjection). We found that scProjection mapped all 10,000 mixed RNA samples back to their
correct subtype. Furthermore, we found that scProjection mapped the RNA samples to the correct
and higher resolution cell state in 87% of the simulations, and the projected cell state was highly
correlated to the original (Spearman rho=0.99, p < 2.2e-16) (Supplementary Fig. 1). This
compares favorably to CIBERSORTX, which mapped each RNA sample back to the true subtype
only 61% of the time, with an average Spearman correlation of rho = 0.68 to the original cell state.
These findings are consistent with experiments performed on the CellBench gold standard

benchmark data (Supplementary Note 2)

Having demonstrated scProjection can successfully project simulated data to the correct cell state
and subtype, we designed an analogous experiment using experimentally measured RNA
samples from single cell resolution assays. A recent Patch-seq study'® profiled 4,200 mouse
visual cortical GABAergic interneurons from multiple layers of the mouse neocortex, of which the
original study classified 1,818 of them as Sst inhibitory neurons, the most abundant class in the
dataset. As we described above, Patch-seq RNA measurements typically contain RNA from the

target neuron as well as neighboring non-neuronal cells, so the goal of our experiment was to
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perform projection to recover the cell state of the target neuron for each Patch-seq measurement
(Fig. 2a). We first performed a sanity check by using scProjection to estimate the abundance of
the Sst cell type within each of the 1,818 Patch-seq RNA measurements of experimentally defined
Sst neurons. We found Sst was the cell type with highest abundance in 1,764 of the
measurements; these results were consistent even when using two different single nucleus
atlases of the brain (Supplementary Fig. 2). These results confirm we could accurately map

Patch-seq RNA measurements to the correct cell type.

We then used scProjection to project the 1,818 Sst Patch-seq RNA measurements to an Sst
single nucleus atlas® (Fig. 2a). Because the ground-truth cell state of the Patch-seq
measurements is unknown (unlike in the simulation), we instead measured the accuracy of our
projections by comparing the experimentally-defined Sst subtype of the Patch-seq measurement
(which is not provided to scProjection) and the known Sst subtypes of the single nucleus
measurements in the atlas. In 1623 of the 1,818 neurons, the cell state of the projected Sst
neurons matched the annotated cell state of neighboring neurons from the single cell atlas
(Methods) (Fig. 2b). Similarly, we projected a separate Patch-seq dataset consisting of 45 layer
1 inhibitory neurons from two electrophysiologically-defined subclasses (SBC, eNGC) onto a
broad single cell atlas of inhibitory neurons. We found the SBC and eNGC neurons were better
separated after projection (Acc: 0.84) compared to the original Patch-seq RNA measurements
(Acc: 0.35) (Supplementary Fig. 3). In total, our results on these two Patch-seq datasets suggest
that scProjection distinguishes intra-cell type expression variation associated with neuronal firing

patterns within the inhibitory neuron cell types

High-fidelity maintenance of cell and gene network structure

One concern we had while designing scProjection was whether projections altered the input RNA
samples as a population. That is, if two input RNA samples are similar before projection, we
reasoned they should tend to be similar after projection; that is, the overall similarity structure of
the input samples should remain globally consistent. On the other hand, we also would expect
that the co-expression behavior of individual genes after projection would be consistent with the

reference single cell atlas; genes that co-vary (and therefore are more likely to co-function) in the
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single cell data should also do so in the projected samples, since they represent the same cells.
Therefore, to measure these population level behaviors, we constructed cell-cell and gene-gene

co-expression networks before and after projection and compared them.

Figure 2c illustrates three inferred cell-cell co-expression networks: that of the Patch-seq
measurements before and after projection to Sst, as well as from the imputed gene expression
profiles of CIBERSORTx. Overall, the structure of the cell-cell network after projection more
closely resembles the before-projection measured network (Jaccard: 0.72) compared to
CIBERSORTYX, suggesting scProjection maintains the overall structure of a set of input samples
compared to CIBERSORTXx (Jaccard: 0.21). Similarly, Figure 2d qualitatively compares the
inferred gene co-expression network of the measured Sst scRNA-seq data, to both the projected
samples from scProjection, as well as the imputed samples from CIBERSORTX. scProjection’s
network more closely resembles the measuredSst co-expression networks, in comparison to

CIBERSORT which fails to impute many genes as visualized by the black lines.

Detection of novel spatial expression patterns of enterocytes in the intestinal epithelium

We envisioned that one primary application of scProjection is to infer single cell transcriptomes
from RNA measurements produced by spatial transcriptome technologies, in order to detect
spatial gene expression patterns in tissues. Technologies such as Slide-seq®, LCM-seq® and
Visium by 10x Genomics capture RNA from different spots of a tissue slice. Each spot potentially
contains RNA contributions from more than one cell in close proximity (Fig. 1a). Therefore, the
RNA from each spot can be viewed as a miniature bulk RNA sample composed of a small number
of cells, from which we want to extract single cell transcriptomes for each contributing cell type

through projection.

We initially analyzed a dataset collected by Moor et al.'®

in which they performed LCM-seq on five
distinct regions, or zones, of the intestinal villus, as well as separately collected a scRNA-seq cell
atlas from replicate intestinal villi. They identified spatial expression patterns in the dominant cell
type, enterocytes, by (1) identifying marker (landmark) genes for each zone using the LCM-seq
data, (2) assigning zone labels to the scRNA-seq cells using landmark genes, and (3) predicting

zone-specific expression through zone-specific averaging of the labeled scRNA-seq data. We
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reasoned that identification of landmark genes from LCM-seq data could be difficult since LCM-
seq captures contributions from multiple cell types, thus yielding poor labeling of the single cell
atlas cells. We therefore avoided this critical landmark gene selection by taking the opposite
approach: we use scProjection to project the zone-specific LCM-seq samples to the enterocyte
single cell atlas, in order to extract the enterocyte expression patterns within each zone. This

approach would explicitly disregard contributions of non-enterocytes to each LCM-seq sample.

Figure 3a illustrates the projections of the LCM-seq data to the enterocyte single cell atlas, where
the single cells are labeled according to Moor et al'®. The LCM-enterocyte projections are
generally proximal to the single cells assigned to the same zone by Moor et al., suggesting our
approach is overall consistent with that of Moor et al. However, our approach identifies 3-fold
more zone-specific spatial expression patterns compared to the genes identified by the Moor et
al (Fig. 3b). To validate the predicted enterocyte zone-specific expression patterns, we compared
our predicted zone expression patterns to the smFISH expression quantifications and the original
LCM-seq measurements provided in the original study. We found that across a small set of
validated landmark genes (Ada, Slc2a2, Reg1), our spatial expression predictions followed with
the smFISH quantifications performed in Moor et al. (Fig. 3c). Furthermore, our approach
identified zonation patterns in genes such as Pkib, Slc2a13 and Fam120c which were not
identified by the Moor et al. spatial reconstruction approach yet are clearly zone-specific according
to the original LCM-seq experiments (Fig. 3c). These results in total suggest RNA projections
improve our ability to identify zone-specific expression patterns in dominant cell types such as the

enterocytes.

Rare cell types of the intestinal villus can be spatially resolved

Projection of an RNA sample onto the single cell atlas of a target cell type intuitively requires
sufficient abundance of the target cell type within the RNA sample in order to be successful.
scProjection predicted enterocytes to contribute 90% of the LCM-seq RNA on average. In
contrast, populations such as the secretory (goblets, tuft) cells are rare: for example, goblets only
contribute 8% of the LCM-seq RNA on average?, while tuft cells are only contribute 1% of the

LCM-seq RNA on average (Supplementary Fig. 4). The mucus-producing goblet cells*'??> and
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chemosensory tuft cells®® play an important role in the protection of cells in the intestinal villus as

well as communication with other stroma cell types?*. Manco et al.?°

captured these rare cell types
in the intestinal villi by performing RNA-seq on clumps of physically-adjacent cells in the intestinal
villus, through incomplete dissociation of the tissue. Because of the high abundance of
enterocytes and rare occurrence of goblet and tuft cells, most clumps will contain primarily
enterocytes, and only occasionally contain goblet or tuft cells. To derive spatial expression
patterns of the rare cell types, Manco et al. predicted the zone of the entire clump by comparing
clump expression against a spatial reference from the Moor et al.’® work described above, then
assigned that zone label of the entire clump to the secretory cells within the same clump. We
hypothesized that by replacing the zone-prediction step in Manco et al. with our projection
approach used above for the enterocytes, we can further identify goblet and tuft specific spatial

patterns of expression across the intestinal villus.

Our general strategy was to first train the scProjection VAE components on individual cell types
within a single cell atlas of the intestinal epithelium, which captured enterocytes and rare secretory
types including goblet and tuft cells®®®. We then simultaneously project each clump to the
enterocyte cell type and the secretory cell types (goblet or tuft) separately. We predicted the zone
of the entire clump based on the zone-specific LCM-enterocyte projections similar to above (see
Methods). We computed zone-specific expression patterns of goblet (or tuft) cells by averaging

clump-goblet (or clump-tuft) projections that were predicted to land in the same zone.

We focused first on the mucus-producing goblet cells, because while rare, there were more
goblet-containing clumps available to robustly estimate zone-specific expression compared to tuft
cells. From an initial set of 6,824 clumps, we identified 1,084 clumps that contained at least 40%
cell type abundance from goblet cells. From the 1,084 goblet-containing clumps, we projected
these clumps to the goblet single cell population (n=314) to identify spatial gene expression
patterns. Figure 3d illustrates the 1,084 clumps projected onto the goblet single cell atlas, where
the clumps and single cells are labeled according to Manco et al®® (Supplementary Fig. 4,
Methods). The projected clumps were generally proximal to the single cells assigned to the same
zone by Manco et al., suggesting our approach generally consistently captures zone-specific gene
expression. Using our projections of the clumps, we predicted 2480 genes that exhibit zone-

specific goblet expression patterns, compared to 972 zone-specific genes identified by Manco et
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al.’s approach (Fig. 3e). To validate the predicted goblet zone-specific expression patterns, we
compared our 2480 zone-specific genes with goblet specific landmark and mucus associated
genes (Methods) whose tendency for villus-tip expression was identified in Manco et al. We found
that our spatial expression predictions from the clumps were followed reported zonated
expression and smFISH quantifications (Supplementary Fig. 5) suggesting our projections can

accurately capture zone-specific expression of goblet cells.

As members of the secretory cell class, the goblet and tuft cells derive from a common
progenitor?®, and have previously been noted to both express common immune modulatory
pathways?®. We therefore wondered whether we could identify genes that are both zone-specific,
and specific to a single lineage (goblet or tuft). We therefore identified clumps that contained at
least 40% cell type abundance from the tuft cells, then projected those clumps to the tuft cell
population to identify tuft zone-specific expression patterns similarly to the goblet analysis above
(Fig 3e, Supplementary Fig. 4). To identify goblet (or tuft)-specific, zone-specific expression
patterns, we computed the ratio of goblet and tuft specific expression for each gene per zone,
and identified the top five genes per zone exhibiting goblet specific expression ( log(goblet/tuft) >
0.9) (Fig. 3f). The goblet-specific gene, Agr2, in the crypt zone stands out as highly expressed
and goblet specific (Fig. 3f), and is a known landmark?®. However, most genes that were specific
to goblet or tuft were expressed at relatively low levels (TPM<1), suggesting the differences in

expression between goblet and tuft may be driven by noise.

Transcriptome imputation helps infer global spatial expression patterns in the brain

Imaging-based spatial transcriptome technologies such as MERFISH and seqFISH enable
imaging of individual transcripts in 2D tissue slices and therefore provide insight into spatial
expression patterns at sub-cellular resolution. However, these technologies have two drawbacks:
(1) it may not be practical to spatially profile all genes in the genome; for example, MERFISH
experiments have profiled only hundreds of transcripts®’ to date, and (2) imaging pipelines? are
required to segment the images into cells in order to compute single cell expression patterns,
which can be an error-prone process and lead to transcripts from adjacent cells being grouped

into one ‘cell’®®,
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To address the limitation of the smaller number of genes that can be measured by imaging-based
technologies such as MERFISH and seqFISH, we modified scProjection so that even with a small,
refined set of measured genes for the input RNA samples, scProjection would project those RNA
samples to genome-wide expression profiles of individual cell types. Intuitively, scProjection uses
direct and indirect correlation between the measured genes and missing genes (assessed from
the single cell atlas) to perform non-linear imputation of gene expression measurements. In that
way, scProjection could be used to simultaneously attain single cell expression measurements

and impute the rest of the genome’s expression signal.

In a study of neurons from the hypothalamic preoptic region of the mouse brain, Moffit et al.
assayed 155 marker genes across millions of neurons using MERFISH and generated a matched

scRNA-seq cell atlas. Using scProjection, we imputed genome-wide expression patterns for the

entire MERFISH dataset spatially profiling millions of neurons. Labeling each MERFISH sample
by the cell type that contributes that most RNA, we found scProjection recovered the spatial
organization of Oligodendrocytes across slices from the mouse brain defined by Bregma indices
(Fig. 4a). More specifically, the oligodendrocytes spatially organize into one cluster at Brega 0.26,
then eventually diverge into two populations by Bregma -0.29. To explore potential functional
implications of the segmentation of oligodendrocytes from one into two spatial regions, we
computed Bregma index-specific expression patterns of Oligodendrocytes between Bregma 0.26
and -0.29 and identified many genes with clear differential expression patterns across the two
distal Bregma indices (Fig. 4b). Of particular note are Calca and Dpp10, both of whom are
associated with oligodendrocyte differentiation that occurs along the bregma axis with immature
and mature oligodendrocytes occupying separate compartments of the hypothalamus?’. Neither
of these markers belonged to the 155 marker gene set measured by MERFISH in the original
study. scProjection therefore helps identify genes with spatially distinct expression patterns, even

if they were not measured in the original spatial transcriptome assay.

Identification of spatial motifs in the primary motor cortex

The identification of spatial gene expression patterns is a task often performed at the individual

gene level; many approaches have been developed to identify non-random spatial single gene
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expression patterns 2%3°, Spatial patterning within tissues extends well beyond the level of
individual gene expression patterns, however. At a coarse level, the mammalian brain organizes
neurons into functional neighborhoods that vary with cortical depth'?3'. Interneurons from different
layers of the cortex are widely recognized as distinct in their transcriptome and function ¢ . We
hypothesized that there might be more localized structure to cell type organization in the brain,
involving potentially small groups or types of cells that frequently spatially co-occur together. We

term these larger groups of co-occurring cells “spatial motifs”.

To identify spatial motifs as a function of cortical depth, we analyzed data from a recent MERFISH
study by Zhang et al.®" in conjunction with a million-neuron atlas from Yao et al.® of the mouse
primary motor cortex (MOp). We used scProjection to infer a revised high resolution cell type label
for each MERFISH measurement by projecting MERFISH measurements to the snRNA-seq atlas
and assigning discrete labels based on the taxonomy of Yao et al., which defines 129 cell types

what broadly fall under the category of glutamatergic, GABAergic, and non-neuronal subtypes.

We first performed neighborhood analysis by quantifying, for each high-resolution label, the
complexity of its physical neighborhood within a 100um radius. More specifically, we define the
complexity of a cell’s neighborhood as the number of distinct cell types present in a 100um radius
of the cell (Methods). For each brain slice, we computed the distribution of neighborhood
complexities of glutamatergic (excitatory) neurons as a function of cortical depth and high-
resolution cell type annotated by scProjection. Comparing the neighborhood complexity of
excitatory neurons across cortical depth revealed that most cortical depths were comparably
complex (mean complexity: 4 cell types), with the notable exception of L4/5 IT CTX neurons which
were overall less complex (mean complexity: 1.5 cell types) (Fig. 4¢). 24% of the L4/5 neuron
cells had homogenous neighborhoods that contained no neurons from any other layer, an

observation unique to the L4/5 neuron cells.

Having shown that mapping MERFISH samples to high resolution cell types can enable the
identification of diverse neighborhood types, we next looked for the existence of spatial motifs,
defined as spatial neighborhoods consisting of a specific set of cell types that are unlikely to occur

by chance. We assigned each cell into a spatial neighborhood type based on the number of cell
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types within a 100um distance. We then counted the number of cells assigned to each spatial
neighborhood type, and permuted the cell type labels 1,000,000 times, making sure cell labels
only permute within cells of the same layer. Through comparison with simulated neighborhood
occurrences, we identified a diverse set of 19 significant (permuted p < 0.05/1000000, n>50)
neighborhood types ranging from homogenous L4/5 populations to neighborhoods which exists
on the L2/3 and L6 boundaries (Figure 4d). Many of these neighborhoods involved cell types
from multiple layers, even though our permutations kept cell labels of the same layer together.
This suggests non-random placement of cell types near layer boundaries. These spatial motifs
occurred frequently; on average, 231 cells were assigned to each of the 19 significant spatial
motifs. Of note, the L4/5 IT CTX neurons were the only high-resolution cell type to form islands of
neurons containing only the same type (Complexity: 1) within 100um. By annotating higher
resolution high-resolution cell type annotations onto the MERFISH data with scProjection we can

uncover neighborhood structure underlying coarser cell type spatial variation.

Projection of Patch-seq RNA improves identification of connections between gene

expression and neuron electrophysiology

Besides spatial transcriptome technologies, there are several other single cell resolution assays
that could benefit from scProjection. For example, Patch-seq'® is a protocol for jointly measuring
the RNA, electrophysiological (ephys) and morphological properties of individual neurons, and is
critical for linking the molecular and cellular properties of neurons. Patch-seq uses a micropipette
to puncture a neuron in order to simultaneously measure its RNA and electrophysiological
properties. When applied to in vivo or ex vivo slices of brain tissue, the micropipette passes
through other surrounding cells in order to reach the neuron of interest, leading to the RNA
measurements containing contributions from both the target neuron as well as surrounding glial
cells'. scProjection analysis of several Patch-seq studies indicates cell type abundances from
non-neuronal cells are predicted to be as high as 30%, suggesting significant contamination of
RNA (Fig. 5a). We therefore hypothesized that projecting Patch-seq RNA measurements to a
single cell atlas of neurons would reduce the effect of contaminating RNA and improve
downstream analyses such as correlating gene expression measurements to electrophysiological

measurements of neurons.
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We applied scProjection to a set of 4,200 Patch-seq measurements targeting mouse GABAergic
neurons'®, together with a reference atlas of the mouse brain®. Of the 4,200 measurements,
scProjection predicted that 1,912 of them were primarily targeting Sst inhibitory neurons
(Supplementary Fig. 6), consistent with the fact that these 1,912 assayed neurons were
experimentally identified as Sst before Patch-seq. We focused our experiments on the 1,912
predicted Sst inhibitory neurons because they were the best represented type of neuron, and
therefore projected the 1,912 Patch-seq measurements to the Sst single cells sequenced in the

reference atlas.

Here we assumed that more accurate Patch-seq RNA measurements should enable better
prediction of ephys properties of neurons from gene expression levels. To this end, our RNA
projection enabled a mean increase of 27% prediction accuracy of two ephys features, sag and
latency, from genome-wide expression profiles (spearman correlation of 0.62 compared to 0.43,
p = 5e-18, rank sum test) (Fig. 5b), while other features were comparable before and after
projection. Additionally, we found that our RNA projections identify significant (q<0.05) cell type-
specific correlations in Sst projected ion channel gene expression and ephys properties
(Supplementary Fig. 7). These results together suggest that RNA projections remove noise
driven by the presence of non-neuronal abundances, which leads to better identification of

connections between gene expression and neuron electrophysiology.

Having used scProjection to establish more gene-ephys connections than could be previously
appreciated from the original Patch-seq data, we further hypothesized that genetic variation may
drive systematic changes in some ephys features, through changes in gene expression patterns.
We extracted cis-eQTLs detected in the human dorsolateral prefrontal cortex from the ROSMAP
consortia*, and found that 91 genes’ expression levels were both associated with genetic
variation, and also correlated with ephys features of neurons. Although gene-ephys connections
were identified via correlative analysis and so we cannot directly infer that these eQTLs will
causally influence ephys properties in general, we looked specifically at ion channel genes
because they play critical roles in establishing ephys responses to neuron stimuli. We found 12
ion channels associated with neuronal firing and under genetic control, of which 58% of them
were only identified after projection (but not with the original Patch-seq measurement). We also

identified 79 genes not annotated as ion channels that are also associated with electrophysiology
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and eQTLs (Fig. 5¢). In fact, 83% of all genes associated with the 31 ephys features are not ion
channel genes. While much of the focus of interactions between genes and electrophysiology is
on ion channels, our results suggest there may be many more genes that either directly influence

ephys in novel ways, or indirectly interact with ion channels for example.

DISCUSSION

In our experiments, we have demonstrated the utility of projections for the analysis of diverse
single cell resolution assays such as spatial transcriptomes and Patch-seq. At its heart, projection
maps RNA samples into the cell state space defined by a single cell atlas. Therefore, RNA
projections can also potentially play a role in up-sampling the per-cell sequencing depth of spatial
and multi-modal sequencing assays, by projecting lower depth samples into a high depth cell
atlas. For example, because RNA capture is not per-cell but per-spot for technologies such as
Slide-seq, the number of effective transcripts sequenced can vary spot to spot®. Furthermore,
mRNA capture efficiencies can vary between protocols®, and technologies such as SMART-
seqVv2 yield significantly high read depth per cell compared to 3’ tagging technologies such as the
10x Chromium 33. scProjection can be used to project RNA samples sequenced from specialized
spatial and multi-modal sequencing assays into a deeply sequenced scRNA-seq atlas for
example, in order to increase the resolution of the resulting gene expression profiles. This is
conceptually similar to the process of imputation that we demonstrated in our MERFISH results,
though imputation is typically cast as a problem of filling in zero transcript counts rather than up

sampling both non-zero and zero counts.

RNA projections are complementary to deconvolution methods. The goal of deconvolution

337 is primarily to estimate the cell type abundances of a set of reference cell populations

methods
within a single RNA sample, and is a very well-studied problem dating back several decades®.
While scProjection also computes such cell type abundance to a set of populations, its primary
goal is to distinguish intra-cell type variation by also mapping the RNA sample onto the precise
cell state within each of the cell type populations that best represents the expression profile of
those cell types within the RNA sample. scProjection therefore distinguishes intra-cell type
variation, whereas deconvolution methods principally focus on differences in cell type

abundances in a sample.
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A major feature of scProjection is that it implicitly fits a probability density function (PDF) over the
cell state space for each cell type. This is advantageous for several reasons. First, this enables
scProjection to reason about the relative frequency of a cell state observed in the training data,
where more frequently observed states have higher probability of being projected to. Second, it
enables scProjection to interpolate between observed cell states when the training data is small,
which can be important for training on rare cell types or on data from smaller studies. Third,
scProjection can also naturally ignore outlier sequenced cells in the training data because they
will not appear often in the cell atlas. In contrast, a number of other methods either average the
expression profiles all cells of the same type such as CIBERSORTX that we tested here®*, or only
map RNA samples to measured single cells in the atlas®. Methods that average cells of the same
type together will be sensitive to outliers, and more importantly will be unable to account for

variation within a given cell type.

One of the caveats of scProjection and related methods, is that by projecting RNA measurements
to a reference single cell atlas, scProjection assumes that the single cell atlas contains accurate
representations of the cell state of cell populations within the RNA sample. There could be
scenarios where this is false; for example, projecting RNA from a spatial transcriptome assay of
(liver) hepatocellular carcinoma samples to a normal liver atlas would miss expression variation
in hepatocytes that is driven by carcinomas. Therefore, if no suitable single cell atlases are
publicly available, it would make sense to collect scRNA-seq data on some biological replicate
samples in addition to the spatial transcriptome datasets. This experimental design of collecting

8,19,40,41

both scRNA-seq as well as spatial transcriptome data is common so we expect this caveat

to not limit the widespread applicability of scProjection.

Finally, we envision applications of RNA projections beyond what we have illustrated here. For
example, databases such as the Gene Expression Omnibus (GEO) catalog gene expression data
from bulk RNA samples collected since RNA sequencing was first deployed. Using the increasing
number of single cell atlases derived for different tissues and cell types across organisms,
scProjection can be used to re-analyze historic bulk RNA samples to extract average cell states

for individual cell populations that contribute to the bulk RNA sample. Cell type-specific changes
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in case-control studies could then be inferred, as could cell type-specific eQTLs from genetic

studies of disease, for example.
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Figure 1. Schematic of cell type projection and abundance estimation with scProjection.
(a) The primary input to scProjection consists of one or more RNA measurements originating from
mixtures of cells assayed using bulk RNA-seq, multi-modal assays or spatial transcriptomics. (b)
The secondary input to scProjection is a single cell atlas from the same region or tissue as the
mixture samples, and is assumed to contain all the cell types present in the mixture samples. For
each of the annotated cell types in the single cell atlas, a variational autoencoder is trained to
model within-cell type variation in expression. (c,d) The average cell state for each cell type in a
single RNA mixture, along with the relative abundances of each cell type, are estimated by
balancing two objectives: (c) selection of an average cell state per cell type that is likely given the
single cell measurements for each cell type (the prior), and (d) the joint selection of cell states for
each cell type, and abundances, that will lead to the best reconstruction of the original mixed RNA

measurements (data likelihood).
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Figure 2. scProjection distinguishes within-cell type variation and maintains cell-cell and
gene-gene network structure in Sst neurons. (a) Visualization of the snRNA-seq atlas of the
mouse cortex used for projection of mouse Patch-seq data. We subsetted the data to four major
cell types (Sst, Vip, Pvalb and Lamp5), of which Sst was further broken down into 33 distinct cell
states. (b) tSNE plot of the measured single cell (circle) Sst neurons (from (a)) alongside the
mouse PatchSeq (square) measurements projected to the Sst population. shnRNA-seq cells are
colored according to cell state shown in (a). (¢) Cell-cell similarity network of the measured Patch-
seq Sst cells, the scProjection-based projection of Patch-seq RNA to the Sst population, and
CIBERSORTx-predicted contributions of the Sst population for comparison. (d) Heatmaps
visualizing the gene-gene covariation patterns of the measured Patch-seq RNA (lower-triangular),
versus the gene-gene covariation patterns calculated from either the projections of the Patch-seq
RNA to Sst via scProjection, or the CIBERSORTx-based predictions of RNA contributions by Sst.
in the upper-triangular of their respective heatmaps.
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Figure 3. Projection refines spatial expression patterns in common and rare cell types of
the intestinal villus. (a) tSNE plot of the single cell atlas (circles) and projected LCM samples
(squares) across the zones of the intestinal villus. Single cells are colored based on their zone
assignment by Moor et al. (b) Heatmap visualizing the spatial expression patterns of the top 3,000
highly variable genes using the spatial inference approach of Moor et al. on the left and after
projecting the LCM samples with scProjection on the right. Three marker genes (rows) are
labeled: Ada, Slc2a2 and Reg1. On the right is a schematic of a single intestinal villus, along with
the expected dominant zone of expression for Ada, Slc2a2 and Reg1. Shown below the villus is
the actual measured expression pattern of Ada, Slc2a2 and Reg1 in the LCM data of the five
zones. (c) Line plots comparing the measured and projected expression of top zonated genes
across the intestinal villus. (d) tSNE plot of the single cell atlas (circles) and projected clump-seq
(squares) as annotated by the enterocyte component within each clump. (e) Heatmap visualizing
the spatial expression patterns of the top 3,000 highly variable genes in the goblet containing
clump-seq samples using the approach of Manco et al. on the left and after projecting with
scProjection on the right. (f) Heatmap visualizing the expression of the union of the top 5 zonated
genes per zone in the goblet containing clumps. The scatter plot on the right visualizes the
divergence in expression of zonated genes between goblet and tuft containing clumps
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Figure 4. Imputation and high-resolution label transfer identifies spatial expression
patterns in the brain. (a) Stacked tSNE plots of oligodendrocyte populations identified according
to dominant cell type with scProjection across Bregma indices from Moffit et al. (b) Heatmap
visualizing the spatial expression patterns within the oligodendrocytes of imputed (top) and
measured (bottom) genes from the original study. (¢) Neighborhood density plots for each cell
type annotated by scProjection, where the x-axis indicates the neighborhood complexity for each
cell. (d) tSNE plot of a single slice separated by layer type of the neurons according to the post
significant neighborhoods highlighted in the circle plots for a few neurons from the mouse cortex
mapped by Zhang et al. and as annotated by scProjection.
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Figure 5. Projection of Patch-seq RNA links molecular measurements to electrophysiology
of neurons. (a) Box and whisker plots visualizing the abundances of non-neuronal RNA
estimated by scProjection across all samples of multiple PatchSeq studies. (b) Bar plot of the
accuracy (based on Spearman correlation) of gene expression-based prediction of
electrophysiology measurements, when predictions are made using either the original measured
RNA, or the Sst projected PatchSeq samples. (¢) Gene — electrophysiology correlation network,
where edges are between significantly correlated genes and electrophysiology features. Node
size is proportional to the number of eQTLs identified in the xQTL study of the ROSMAP cohort.
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METHODS

scProjection overview. Our framework, scProjection, projects N gene expression profiles b,, €
B generated from RNA samples into each of K different cell populations represented in a
reference single cell atlas, yielding a new set of gene expression profiles x,,,, for k =1, ..., K.
scProjection also estimates «,, x, the proportion of RNA contributed by each cell population k to
sample n (Fig. 1). scProjection assumes that each b,, is a weighted linear combination of the cell

population-specific projections x;, j:

K
bn = 2 A kX k
k

Only b,, is formally observed, and the goal is to estimate a,, ;, and x,, ;.

To perform estimation, scProjection leverages a separate reference single cell atlas in which
single cells s; (representing the ;™ cell sequenced for cell population k in the atlas S) have been
sequenced. In the first step, scProjection trains a deep variational autoencoder (VAE) separately
for each cell population k using all single cells sequenced for cell population k (s. ), yielding a
parameter set {¢y, 0, } (representing the encoder and decoder parameters, respectively) for each
cell population k. After training, each VAE implicitly defines the set of cell states that projections

into cell population k (x, ;) can occupy. In the second step, the VAEs with trained parameters
{¢3,§°>,9,§°)} are used to get initial projections 21(10,)( by inputting each b,, into the k™ VAE and

sampling from the output to estimate 27(10,)( In the second step, we estimate the RNA proportions

@, by solving the above equation by using linear regression by setting x,, , = 3;0,1 Finally in the

third step, we fix the mixing proportions &, ,, and re-update all VAE parameters {¢y, 6}

simultaneously to improve estimates of x,, , by maximizing the reconstruction of each b,,.

scProjection training of cell population-specific VAEs (Step 1). scProjection uses VAEs to
perform the projection of RNA samples b,, into the gene expression space of each cell population

k to yield the projection x, ;. The set of cell population-specific VAEs are identical in network
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structure and are comprised of a deep encoder network parameterized by weights ¢;, and
decoder network parameterized by weights 6,. To train the VAEs, we optimize the following

objection function with respect to the VAE parameters {¢y, 6, }:

K ] K J
L 83 500) = D D Eay apulspoliogpo itz = [ || [Prelas @l siolipz]
k=1j=1

k=1 j=1
A9, (Zikc|Sj k) = N(Zjse; 119, (5i) 05, (50 )1)
Po, (8isc| 2ii) = N( s 1o, (2i1), 98, (21,)1)

The functions {uy, (), 5, (D} and {ue, (), 05, ()} represent the mean and variance of the normal

distribution predicted by the encoder and decoder, respectively. The parameters of the VAEs
{¢r, 0} are regularized through 30% dropout [13], batch normalization [14] and L2 weight
regularization to ensure robust training. ADAM [15] is used for optimization with a decaying
learning rate starting at 1e-3 and a smooth warmup of the KL term in the ELBO, which has been

shown to produce more accurate reconstructions *2. We denote the trained VAE parameters by
7(0) 5(0)
(0.8}

For the experiments in which we impute genome-wide expression measurements from limited
sets of marker genes such as those measured by MERFISH, the structure of the VAE becomes
asymmetric with the input measurements to the encoder defined by a subset of gene expression
measurements G, € G (corresponding to marker genes). The decoder output is still defined by
the full set of gene expression measurements G made in the single cell atlas. Only estimates of
those genes G, directly measured in mixture samples b, are used in subsequent steps of

scProjection.

scProjection estimation of cell type abudnacne of each cell population (Step 2). Here,

scProjection projects each RNA sample b,, to each cell population k via the VAE parameterized

by {(]3,&0), 9,&0)} to estimate 2y

R = Hg© <ﬂ$,(<o> (bn)>

Then, we estimate the mixture proportions «,, and nuisance parameters of a multi-layer

perceptron f;, (and hold all other variables fixed) by optimizing the following objective function:


https://doi.org/10.1101/2022.04.26.489628
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.26.489628; this version posted April 28, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRkxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

N K
Lbw) = ) 10gN(bn | Y 2Vt fi, (01 © ani)])
n=1 k

Optimization is performed with ADAM [15] and a learning rate of 1e-3 until convergence. The

estimated mixing proportions &, ; are kept fixed for the remainder of the training procedure.

scProjection final estimates of RNA projections (Step 3). In this step, scProjection re-
optimizes the encoder and decoders of the individual VAEs {¢y, 6, } by minimizing the following

composite objective function, which includes the likelihood of both the single cell atlas data s;

and the RNA samples b,,:

B K
ELBO = ) log N(by | Y g, (1, (5r)) @nic. fr, (910 © Ani)D) +
n k=1

2 EE%k(sz|Sj,k)[logp9k(sj,k|zj.k)] -

ko

lZ Z Dice [0 Zne | B )1 P (2 )] +Z Z Dice [, (Zie | 5101 1 ( Zj) ‘

Note in this case, the VAE parameters are initially set to ¢, = A,EO) and 6, = 9,&0) before

optimization, and the parameters of f;, are fixed at their values estimated at Step 2. Intuitively,

we are adjusting the RNA projections x,, , = g, (“d)k (bn)) to better predict the RNA sample b,,,

because the single cell reference data may be collected in a different experiment from the RNA
samples. The single cell data are included in the objective function and serve as a regularization
term to ensure identifiability of each VAE as specific to one cell population k. After training to
@ 5
k '9k

obtain final VAE parameter estimates {cﬁ } we estimate our final RNA projections QS,)( =

Mo <“51(<1) (bn)>-

Acquisition and preprocessing of the intestinal villus dataset. We obtained the gene
expression matrices for the LCM-seq, scRNA-seq and spatial reconstructions experiments
described in Moor et al.’ from GSE109413 and https://doi.org/10.5281/zenodo.1320734. We
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independently normalized the count matrices to TP10K, then scaled and centered using Seurat’s
NormalizeData (without log transform) and ScaleData functions. We retained the union of the
marker genes of each cell type identified from the original study, together with the top 2,000

variable genes of both LCM-seq and scRNA-seq.

Acquisition and preprocessing of the brain MERFISH dataset. We obtained the processed
MERFISH gene luminescence matrix described in Moffitt et al.?” from dryad.8t8s248 and the
scRNA-seq count matrix from GSE113576. We independently preprocessed each data modality
by normalizing to TP10K, then scaled and centered using Seurat’s NormalizeData and ScaleData
functions. We removed entire cell types from the scRNA-seq data that had no analog in the
MERFISH experiments and are defined in Table S9. We retained the union of the marker genes
of each cell type identified in the original study, together with the top 2,000 variable genes across

the entire scRNA-seq atlas.

Acquisition and preprocessing of the mouse Patch-seq dataset. We obtained the gene count
matrix for the mouse Patch-seq experiments described in Berg et al.** from portal.brain-
map.org/explore/classes/multimodal-characterization on January 2019. We discarded samples
that did not pass QC as defined in the original paper in both the RNA and electrophysiology
modalities. We normalized the count matrix to TP10K (without log transform), then scaled and
centered using Seurat’s NormalizeData and ScaleData functions. We retained the union of the
marker genes of each cell type identified from the original study, together with the top 2,000

variable genes across each of the cell types defined in the snRNA-seq.

Acquisition and preprocessing of the mouse brain atlas. We obtained the gene count matrix
for the human brain atlas described in Yoa et al.® from the Allen Institute Cell Types database:
RNA-Seq data page on the Allen Institute’s webpage. We normalized the count matrix to TP10K,
then scaled and centered using Seurat’'s NormalizeData and ScaleData functions. We retained
the union of the marker genes of each cell type reported in the original study, together with the
top 2,000 variable genes across each of the cell types defined in the snRNA-seq. Sublcass
annotations were provided for each cell and were used to filter out L2/3 and L6 for validation

experiments

Acquisition and preprocessing of the Tasic et al. mouse brain atlas. We obtained the gene
count matrix for the mouse brain atlas described in Tasic et al. from the Allen Institute Cell Types
database: RNA-Seq data page on the Allen Institute’s webpage. We normalized the count matrix

to TP10K, then scaled and centered using Seurat’s NormalizeData and ScaleData functions. We
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retained the union of the marker genes of each cell type reported in the original study, together

with the top 2,000 variable genes across each of the cell types defined in the snRNA-seq.

Acquisition and preprocessing of the CellBench benchmark. We obtained the gene count
matrix for the RNA mixture experiments in CellBench described in Tian et al.** from the R data
file . mRNAmix_qc.RData available on GitHub (https://github.com/Shians/CellBench). We
normalized the count matrix to TP10K (without log transform), then scaled and centered using
Seurat’s NormalizeData and ScaleData functions. We retained the union of the marker genes of
each cell type identified by CIBERSORTX, together with the top 3,000 variable genes computed
separately on the RNA mixtures profiled on CEL-Seq2 and SORT-Seq.

Acquisition and preprocessing of the ROSMAP-IHC benchmark. We obtained the gene count
matrix for the bulk-RNA experiments and IHC measurements described in Patrick et al. from the
R data files available on Github (https://github.com/ellispatrick/CortexCellDeconv). We
normalized the count matrix to TP10K (without log transform), then scaled and centered using
Seurat’s NormalizeData and ScaleData functions. We retained the union of the marker genes of

each cell type reported in Darmanis et al.**, together with the top 2,000 variable genes.

Execution of deconvolution methods. In the two sections below on benchmarking cell
proportion estimations in different datasets, we compared scProjection against CIBERSORTx*,
MuSiC*®, NNLS, dtangle®*, DSA¥, and single gene deconvolution. Each method was run based
on method-specific guidelines provided by the original authors and following the workflows
defined by in tutorials for each approach. Prior to running each method, the FindVariableGenes
function implemented in Seurat was used to identify the most variable genes for a consistent
subsetting of the data matrices. CIBERSORTXx was provided counts for all highly variable genes
in the scRNA-seq data along with cell type annotations to create a signature matrix. Then counts
for all highly variable genes in the mixture data were provided to CIBERSORTx which then
estimates RNA proportions. MuSiC was provided counts for all highly variable genes in the
scRNA-seq and mixture data along with cell type annotations. NNLS (as implemented by us in R)
was provided the TPM values for all highly variable genes in the scRNA-seq and mixture data.
Proportions from NNLS for cell type k were computed by summing the learned weights across
all cells annotated as cell type k; this was repeated for each cell type and each mixture sample.
dtangle was provided with a mean count vector per cell type in the scRNA-seq data and the
original counts from the mixture data along with cell type markers and annotations. DSA was
provided with the original counts for the mixture data and cell type specific marker genes. Single

gene deconvolution was performed by identifying individual marker genes of each cell type, which
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were used to estimate the relative proportion of each cell type with respect to the remaining

markers.

Benchmarking cell population proportion estimation on the CellBench dataset. The
CellBench dataset provides gene expression profiles obtained from sequencing titrated RNA
mixtures from three human lung adenocarcinoma cell lines (H1975, H2228, HCC827), as well as
single cell RNA profiles from each cell line. Sequencing was performed using either plate based
(CEL-Seq2 or Drop-Seq) or droplet based (10x Chromium and Drop-seq Dolomite) protocols. The
proportion of RNA from each cell line was recorded for each mixture and defines a baseline for
methods aiming to computationally estimate the RNA percentages. We trained scProjection using
the RNA mixtures as inputs b,, and the single cell data as the atlas S. We treated the scProjection
estimates @&, , as our predictions of abundances for each cell type. We then compared
scProjection-based deconvolution against other methods as described above (Supplementary

Figure 8).

Benchmarking cell population proportion estimation on the ROSMAP-IHC dataset. To
provide a more challenging and realistic deconvolution benchmark, we used the ROSMAP-IHC
dataset consisting of 70 bulk RNA samples of the dorsolateral prefrontal cortex (DLPFC), an
scRNA-seq atlas derived from the DLPFC, and cell population proportions estimated using IHC
from adjacent samples to those samples used for sequencing. The bulk RNA, reference single
cell atlas and cell population proportions were collected and estimated in three different studies,
thus introducing technical and biological variability between data modalities that does not exist in
the CellBench study. We trained scProjection using the RNA mixtures as inputs b,, and the single
cell data as the atlas S. We treated the scProjection estimates &, , as our predictions of
abundances for each cell type. We then compared scProjection-based deconvolution against
other methods as described above (Supplementary Figure 9, 10). Furthermore, for each
proportion estimated by scProjection we assign a confidence score indicating the certainty of the

mixture being assigned to a specific cell type (Supplementary Figure 11).

Prediction of cell population using scProjection. From scProjection’s estimates of cell
population specific abundances, treated as probabilistic class assignments, the class with

maximal probability is assigned as the cell population label for each sample.
Cell annotation with k-NN label transfer

After estimating the projection of a mixture onto a single cell atlas the projected mixture is

labeled based on annotations in the single cell atlas of its 5-nearest scRNA-seq neighbors.
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Zonated gene expression scoring

For each gene we compute the distance from an idealized zone-specific measurement as the
difference between gene;z.q;= (1,0,0,0,0) and the computed gene zonation score vector. A
threshold was set based on the 75" quantile of the resulting scores to compare the number of

zonated genes across methods.

Constructing a gold standard set of zonated goblet expression patterns based on clumps.
Manco et al.? sequenced ‘clumps’ consisting of multiple physically-proximal cells from partially-
dissociated intestinal villi. Using scProjection, we performed expression deconvolution and
identified enterocyte-goblet clumps that contained both enterocytes and goblet cells, using a
single cell atlas of enterocytes'® and goblet cells®®. Based on our zonated enterocyte expression
patterns (Fig. 4b), we predicted the zone of each enterocyte-goblet clump based on the projection
of the enterocyte-goblet clump onto the enterocyte single cell atlas. Because the goblets in the
enterocyte-goblet clumps are physically proximal to the enterocytes, we then assumed the goblets
in each enterocyte-goblet clump was from the same zone as the projected enterocyte. For each
zone, we identify all enterocyte-goblet clumps from that zone, project the enterocyte-goblets to
the goblet single cell atlas, and average across all such projections to estimate zone-specific

goblet expression.
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