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Abstract 

Multi-modal single cell RNA assays capture RNA content as well as other data modalities, such 

as spatial cell position or the electrophysiological properties of cells. Compared to dedicated 

scRNA-seq assays however, they may unintentionally capture RNA from multiple adjacent cells, 

exhibit lower RNA sequencing depth compared to scRNA-seq, or lack genome-wide RNA 

measurements. We present scProjection, a method for mapping individual multi-modal RNA 

measurements to deeply sequenced scRNA-seq atlases to extract cell type-specific, single cell 

gene expression profiles. We demonstrate several use cases of scProjection, including the 

identification of spatial motifs from spatial transcriptome assays, distinguishing RNA contributions 

from neighboring cells in both spatial and multi-modal single cell assays, and imputing expression 

measurements of un-measured genes from gene markers. scProjection therefore combines the 

advantages of both multi-modal and scRNA-seq assays to yield precise multi-modal 

measurements of single cells. 
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INTRODUCTION 

In recent years, there has been a surge in the number and size of atlasing efforts across tissues, 

conditions, and species1–4, driven by the high throughput nature of single cell- and nucleus-RNA 

sequencing (sc/snRNA-seq) technologies. These technologies are now routinely used to 

generate atlases on the scale of up to millions of cells3,5–7, in order to maximize the discovery of 

novel cell types and characterize the transcriptional heterogeneity of individual cell types within 

samples. One of the limitations of the sc/snRNA-seq technologies, however, is that they only 

capture the RNA content of each cell. To address this limitation, there are a growing number of 
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single cell resolution assays that simultaneously measure RNA content as well as other cellular 

annotations and modalities. For example, spatial transcriptomic sequencing assays such as Slide-

seq8 and LCM-seq9 record both the spatial position and RNA measurements from individual spots 

on a sample. There are also multi-modal assays such as Patch-seq10 that measure cellular 

phenotypes in addition to local RNA content, enabling the identification of connections between 

molecular and cellular phenotypes of neurons.  

 

However, single cell resolution assays have a major drawback: they often trade off some precision 

in their RNA measurements in exchange for collecting additional data modalities. In the case of 

some spatial transcriptome sequencing assays such as LCM-seq or Slide-seq, RNA is extracted 

from spots of pre-defined size and location on a tissue, leading to individual spots often capturing 

RNA from multiple cells. Analogously, for Patch-seq, a micropipette is used to puncture brain 

slices and remove RNA from a target neuron, but RNA from neighboring neuronal or glial cells 

can be captured as well11. For technologies such as MERFISH12, in practice only a few hundred 

genes in the genome can be measured in a tissue. This lack of true single cell, genome-wide RNA 

measurements can hinder downstream analysis of spatial gene expression patterns or inferring 

connections between molecular and cellular phenotypes. 

 

Here we present scProjection, a method for projecting single cell resolution RNA measurements 

onto deeply sequenced single cell atlases, in order to achieve single cell precision from the 

original RNA measurements. First, we demonstrate our cell type-specific projections capture RNA 

contributions of component cell types, and importantly that the gene co-expression network of the 

projected data is consistent with the gene co-expression network of scRNA-seq data from the 

same cell population. We then illustrate three use cases of scProjection. First, we show 

scProjection analysis of spatial transcriptomes yields substantially increased detection of cell 

type-specific spatial gene expression patterns across diverse tissues such as the primary motor 

cortex and hypothalamic regions of the brain as well as the intestinal villus. Second, we 

demonstrate scProjection can impute spatial genome-wide gene expression measurements when 

targeted sequencing of limited numbers of genes via MERFISH13 is performed. Finally, we show 

scProjection can separate RNA contributions from multiple cell types when analyzing Patch-seq 

data, where RNA measurements are composed of RNA from the target neuron as well as 

neighboring glial cells. The separation of RNA contributions leads to more accurate prediction of 
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one data modality (electrophysiological response) from another (RNA expression levels). We 

conclude that integrating deep single cell atlases with single and multimodal cell resolution assays 

can therefore combine the advantages of both sequencing approaches to study single cells. 

 

RESULTS 

 

The scProjection model and workflow is illustrated in Figure 1. scProjection assumes that one or 

more RNA samples !! from a single cell resolution assay are available as input (Fig. 1a), as well 

as a deeply sequenced single cell atlas that profiles the same cell types as the single cell 

resolution assay (Fig. 1b). Typical single cell resolution assays of interest include spatial 

transcriptome assays such as LCM-seq, Slide-seq or MERFISH, multimodal assays such as 

Patch-seq, or classical bulk RNA-seq. As output, scProjection simultaneously projects each RNA 

sample !! onto each component cell population " within the single cell atlas to find the average 

cell state (expression profile) of that cell type in the sample ($!,#) (Fig. 1c), as well as the relative 

abundance of that cell type (&!,#) (Fig. 1d). scProjection therefore balances selecting sets of cell 

states $!,# that help minimize reconstruction error of the original RNA measurement !!, with the 

task of selecting cell states that are frequently occurring in the single cell atlas (e.g. the prior).  

 

scProjection uses individual variational autoencoders14 (VAEs) trained on each cell population 

within the single cell atlas to model within-cell type expression variation and delineate the 

landscape of valid cell states15, as well as their relative occurrence. Here, a valid cell state for a 

cell type " is defined as a genome-wide gene expression profile that has either been directly 

measured in the single cell atlas, or is inferred to be feasible based on the covariation of gene 

expression patterns observed in measured cells. In practice, we ignore projections $!,# when the 

predicted cell type abundances &!,# is small (e.g. <5%).  

 

With scProjection, we achieve state-of-the art deconvolution performance in predicting cell type 

abundances with across multiple benchmarks16,17 (Supplemental Note 1). scProjection 

particularly performs well at estimating rare cell type abundances compared to other approaches. 

The rest of this study focuses on the projection task of inferring cell states of individual cell types.  
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Projections distinguish within-cell type variation in gene expression patterns 

 

Initially, we established scProjection’s ability to map mixed RNA samples to the correct 

transcriptional state for each contributing cell type. To do so, we conducted a series of simulation 

experiments in which a pair of cell states were selected from distinct neuron cell types, L2/3 IT 

and L6b, profiled in a recent human cortex cell atlas5. To impose a tiered difficulty, we chose these 

two neuronal subclasses s which are variable in their heterogeneity: L2/3 IT is highly variable with 

many cell states, and L6b is composed of five cell states (Methods). We repeatedly constructed 

mixed RNA samples by first selecting a random subtype, then selecting a cell state from that 

subtype, for each of L2/3 IT and L6b. The gene counts from this pair of randomly selected cells 

were added to form the final mixed RNA sample.  

 

scProjection was then evaluated on its ability to map the mixed RNA sample back to the correct 

transcriptional state and subtype for each of L2/3 IT and L6b, when only provided with a cell atlas 

whose cells are annotated at the level of L2/3 IT and L6b (no subtype information was provided 

to scProjection). We found that scProjection mapped all 10,000 mixed RNA samples back to their 

correct subtype. Furthermore, we found that scProjection mapped the RNA samples to the correct 

and higher resolution cell state in 87% of the simulations, and the projected cell state was highly 

correlated to the original (Spearman rho=0.99, p < 2.2e-16) (Supplementary Fig. 1). This 

compares favorably to CIBERSORTx, which mapped each RNA sample back to the true subtype 

only 61% of the time, with an average Spearman correlation of rho = 0.68 to the original cell state.  

These findings are consistent with experiments performed on the CellBench gold standard 

benchmark data (Supplementary Note 2) 

Having demonstrated scProjection can successfully project simulated data to the correct cell state 

and subtype, we designed an analogous experiment using experimentally measured RNA 

samples from single cell resolution assays. A recent Patch-seq study18 profiled 4,200 mouse 

visual cortical GABAergic interneurons from multiple layers of the mouse neocortex, of which the 

original study classified 1,818 of them as Sst inhibitory neurons, the most abundant class in the 

dataset. As we described above, Patch-seq RNA measurements typically contain RNA from the 

target neuron as well as neighboring non-neuronal cells, so the goal of our experiment was to 
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perform projection to recover the cell state of the target neuron for each Patch-seq measurement 

(Fig. 2a).  We first performed a sanity check by using scProjection to estimate the abundance of 

the Sst cell type within each of the 1,818 Patch-seq RNA measurements of experimentally defined 

Sst neurons. We found Sst was the cell type with highest abundance in 1,764 of the 

measurements; these results were consistent even when using two different single nucleus 

atlases of the brain (Supplementary Fig. 2). These results confirm we could accurately map 

Patch-seq RNA measurements to the correct cell type. 

 

We then used scProjection to project the 1,818 Sst Patch-seq RNA measurements to an Sst 

single nucleus atlas5 (Fig. 2a). Because the ground-truth cell state of the Patch-seq 

measurements is unknown (unlike in the simulation), we instead measured the accuracy of our 

projections by comparing the experimentally-defined Sst subtype of the Patch-seq measurement 

(which is not provided to scProjection) and the known Sst subtypes of the single nucleus 

measurements in the atlas. In 1623 of the 1,818 neurons, the cell state of the projected Sst 

neurons matched the annotated cell state of neighboring neurons from the single cell atlas 

(Methods) (Fig. 2b). Similarly, we projected a separate Patch-seq dataset consisting of 45 layer 

1 inhibitory neurons from two electrophysiologically-defined subclasses (SBC, eNGC) onto a 

broad single cell atlas of inhibitory neurons. We found the SBC and eNGC neurons were better 

separated after projection (Acc: 0.84) compared to the original Patch-seq RNA measurements 

(Acc: 0.35) (Supplementary Fig. 3). In total, our results on these two Patch-seq datasets suggest 

that scProjection distinguishes intra-cell type expression variation associated with neuronal firing 

patterns within the inhibitory neuron cell types 

 

High-fidelity maintenance of cell and gene network structure 

 

One concern we had while designing scProjection was whether projections altered the input RNA 

samples as a population. That is, if two input RNA samples are similar before projection, we 

reasoned they should tend to be similar after projection; that is, the overall similarity structure of 

the input samples should remain globally consistent. On the other hand, we also would expect 

that the co-expression behavior of individual genes after projection would be consistent with the 

reference single cell atlas; genes that co-vary (and therefore are more likely to co-function) in the 
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single cell data should also do so in the projected samples, since they represent the same cells. 

Therefore, to measure these population level behaviors, we constructed cell-cell and gene-gene 

co-expression networks before and after projection and compared them. 

Figure 2c illustrates three inferred cell-cell co-expression networks: that of the Patch-seq 

measurements before and after projection to Sst, as well as from the imputed gene expression 

profiles of CIBERSORTx.  Overall, the structure of the cell-cell network after projection more 

closely resembles the before-projection measured network (Jaccard: 0.72) compared to 

CIBERSORTx, suggesting scProjection maintains the overall structure of a set of input samples 

compared to CIBERSORTx (Jaccard: 0.21). Similarly, Figure 2d qualitatively compares the 

inferred gene co-expression network of the measured Sst scRNA-seq data, to both the projected 

samples from scProjection, as well as the imputed samples from CIBERSORTx. scProjection’s 

network more closely resembles the measuredSst co-expression networks, in comparison to 

CIBERSORT which fails to impute many genes as visualized by the black lines.  

 

Detection of novel spatial expression patterns of enterocytes in the intestinal epithelium  

 

We envisioned that one primary application of scProjection is to infer single cell transcriptomes 

from RNA measurements produced by spatial transcriptome technologies, in order to detect 

spatial gene expression patterns in tissues. Technologies such as Slide-seq8, LCM-seq9 and 

Visium by 10x Genomics capture RNA from different spots of a tissue slice. Each spot potentially 

contains RNA contributions from more than one cell in close proximity (Fig. 1a). Therefore, the 

RNA from each spot can be viewed as a miniature bulk RNA sample composed of a small number 

of cells, from which we want to extract single cell transcriptomes for each contributing cell type 

through projection.  

 

We initially analyzed a dataset collected by Moor et al.19 in which they performed LCM-seq on five 

distinct regions, or zones, of the intestinal villus, as well as separately collected a scRNA-seq cell 

atlas from replicate intestinal villi. They identified spatial expression patterns in the dominant cell 

type, enterocytes, by (1) identifying marker (landmark) genes for each zone using the LCM-seq 

data, (2) assigning zone labels to the scRNA-seq cells using landmark genes, and (3) predicting 

zone-specific expression through zone-specific averaging of the labeled scRNA-seq data. We 
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reasoned that identification of landmark genes from LCM-seq data could be difficult since LCM-

seq captures contributions from multiple cell types, thus yielding poor labeling of the single cell 

atlas cells. We therefore avoided this critical landmark gene selection by taking the opposite 

approach: we use scProjection to project the zone-specific LCM-seq samples to the enterocyte 

single cell atlas, in order to extract the enterocyte expression patterns within each zone. This 

approach would explicitly disregard contributions of non-enterocytes to each LCM-seq sample.  

 

Figure 3a illustrates the projections of the LCM-seq data to the enterocyte single cell atlas, where 

the single cells are labeled according to Moor et al19. The LCM-enterocyte projections are 

generally proximal to the single cells assigned to the same zone by Moor et al., suggesting our 

approach is overall consistent with that of Moor et al. However, our approach identifies 3-fold 

more zone-specific spatial expression patterns compared to the genes identified by the Moor et 

al (Fig. 3b). To validate the predicted enterocyte zone-specific expression patterns, we compared 

our predicted zone expression patterns to the smFISH expression quantifications and the original 

LCM-seq measurements provided in the original study. We found that across a small set of 

validated landmark genes (Ada, Slc2a2, Reg1), our spatial expression predictions followed with 

the smFISH quantifications performed in Moor et al. (Fig. 3c). Furthermore, our approach 

identified zonation patterns in genes such as Pkib, Slc2a13 and Fam120c which were not 

identified by the Moor et al. spatial reconstruction approach yet are clearly zone-specific according 

to the original LCM-seq experiments (Fig. 3c). These results in total suggest RNA projections 

improve our ability to identify zone-specific expression patterns in dominant cell types such as the 

enterocytes.  

 

Rare cell types of the intestinal villus can be spatially resolved 

 

Projection of an RNA sample onto the single cell atlas of a target cell type intuitively requires 

sufficient abundance of the target cell type within the RNA sample in order to be successful. 

scProjection predicted enterocytes to contribute 90% of the LCM-seq RNA on average. In 

contrast, populations such as the secretory (goblets, tuft) cells are rare: for example, goblets only 

contribute 8% of the LCM-seq RNA on average20, while tuft cells are only contribute 1% of the 

LCM-seq RNA on average (Supplementary Fig. 4). The mucus-producing goblet cells21,22 and 
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chemosensory tuft cells23 play an important role in the protection of cells in the intestinal villus as 

well as communication with other stroma cell types24. Manco et al.20 captured these rare cell types 

in the intestinal villi by performing RNA-seq on clumps of physically-adjacent cells in the intestinal 

villus, through incomplete dissociation of the tissue. Because of the high abundance of 

enterocytes and rare occurrence of goblet and tuft cells, most clumps will contain primarily 

enterocytes, and only occasionally contain goblet or tuft cells. To derive spatial expression 

patterns of the rare cell types, Manco et al. predicted the zone of the entire clump by comparing 

clump expression against a spatial reference from the Moor et al.19 work described above, then 

assigned that zone label of the entire clump to the secretory cells within the same clump. We 

hypothesized that by replacing the zone-prediction step in Manco et al. with our projection 

approach used above for the enterocytes, we can further identify goblet and tuft specific spatial 

patterns of expression across the intestinal villus. 

 

Our general strategy was to first train the scProjection VAE components on individual cell types 

within a single cell atlas of the intestinal epithelium, which captured enterocytes and rare secretory 

types including goblet and tuft cells20,25. We then simultaneously project each clump to the 

enterocyte cell type and the secretory cell types (goblet or tuft) separately. We predicted the zone 

of the entire clump based on the zone-specific LCM-enterocyte projections similar to above (see 

Methods). We computed zone-specific expression patterns of goblet (or tuft) cells by averaging 

clump-goblet (or clump-tuft) projections that were predicted to land in the same zone. 

 

We focused first on the mucus-producing goblet cells, because while rare, there were more 

goblet-containing clumps available to robustly estimate zone-specific expression compared to tuft 

cells. From an initial set of 6,824 clumps, we identified 1,084 clumps that contained at least 40% 

cell type abundance from goblet cells. From the 1,084 goblet-containing clumps, we projected 

these clumps to the goblet single cell population (n=314) to identify spatial gene expression 

patterns. Figure 3d illustrates the 1,084 clumps projected onto the goblet single cell atlas, where 

the clumps and single cells are labeled according to Manco et al20 (Supplementary Fig. 4, 

Methods). The projected clumps were generally proximal to the single cells assigned to the same 

zone by Manco et al., suggesting our approach generally consistently captures zone-specific gene 

expression. Using our projections of the clumps, we predicted 2480 genes that exhibit zone-

specific goblet expression patterns, compared to 972 zone-specific genes identified by Manco et 
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al.’s approach  (Fig. 3e). To validate the predicted goblet zone-specific expression patterns, we 

compared our 2480 zone-specific genes with goblet specific landmark and mucus associated 

genes (Methods) whose tendency for villus-tip expression was identified in Manco et al. We found 

that our spatial expression predictions from the clumps were followed reported zonated 

expression and smFISH quantifications (Supplementary Fig. 5) suggesting our projections can 

accurately capture zone-specific expression of goblet cells. 

 

As members of the secretory cell class, the goblet and tuft cells derive from a common 

progenitor23, and have previously been noted to both express common immune modulatory 

pathways23. We therefore wondered whether we could identify genes that are both zone-specific, 

and specific to a single lineage (goblet or tuft). We therefore identified clumps that contained at 

least 40% cell type abundance from the tuft cells, then projected those clumps to the tuft cell 

population to identify tuft zone-specific expression patterns similarly to the goblet analysis above 

(Fig 3e, Supplementary Fig. 4). To identify goblet (or tuft)-specific, zone-specific expression 

patterns, we computed the ratio of goblet and tuft specific expression for each gene per zone, 

and identified the top five genes per zone exhibiting goblet specific expression ( log(goblet/tuft) > 

0.9 )  (Fig. 3f). The goblet-specific gene, Agr2, in the crypt zone stands out as highly expressed 

and goblet specific (Fig. 3f), and is a known landmark26. However, most genes that were specific 

to goblet or tuft were expressed at relatively low levels (TPM<1), suggesting the differences in 

expression between goblet and tuft may be driven by noise.   

 

Transcriptome imputation helps infer global spatial expression patterns in the brain 

 

Imaging-based spatial transcriptome technologies such as MERFISH and seqFISH enable 

imaging of individual transcripts in 2D tissue slices and therefore provide insight into spatial 

expression patterns at sub-cellular resolution. However, these technologies have two drawbacks: 

(1) it may not be practical to spatially profile all genes in the genome; for example, MERFISH 

experiments have profiled only hundreds of transcripts27 to date, and (2) imaging pipelines28 are 

required to segment the images into cells in order to compute single cell expression patterns, 

which can be an error-prone process and lead to transcripts from adjacent cells being grouped 

into one ‘cell’28.   

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 28, 2022. ; https://doi.org/10.1101/2022.04.26.489628doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.26.489628
http://creativecommons.org/licenses/by/4.0/


To address the limitation of the smaller number of genes that can be measured by imaging-based 

technologies such as MERFISH and seqFISH, we modified scProjection so that even with a small, 

refined set of measured genes for the input RNA samples, scProjection would project those RNA 

samples to genome-wide expression profiles of individual cell types. Intuitively, scProjection uses 

direct and indirect correlation between the measured genes and missing genes (assessed from 

the single cell atlas) to perform non-linear imputation of gene expression measurements. In that 

way, scProjection could be used to simultaneously attain single cell expression measurements 

and impute the rest of the genome’s expression signal.  

 

In a study of neurons from the hypothalamic preoptic region of the mouse brain, Moffit et al. 

assayed 155 marker genes across millions of neurons using MERFISH and generated a matched 

scRNA-seq cell atlas. Using scProjection, we imputed genome-wide expression patterns for the  

 

entire MERFISH dataset spatially profiling millions of neurons. Labeling each MERFISH sample 

by the cell type that contributes that most RNA, we found scProjection recovered the spatial 

organization of Oligodendrocytes across slices from the mouse brain defined by Bregma indices 

(Fig. 4a). More specifically, the oligodendrocytes spatially organize into one cluster at Brega 0.26, 

then eventually diverge into two populations by Bregma -0.29. To explore potential functional 

implications of the segmentation of oligodendrocytes from one into two spatial regions, we 

computed Bregma index-specific expression patterns of Oligodendrocytes between Bregma 0.26 

and -0.29 and identified many genes with clear differential expression patterns across the two 

distal Bregma indices (Fig. 4b). Of particular note are Calca and Dpp10, both of whom are 

associated with oligodendrocyte differentiation that occurs along the bregma axis with immature 

and mature oligodendrocytes occupying separate compartments of the hypothalamus27. Neither 

of these markers belonged to the 155 marker gene set measured by MERFISH in the original 

study. scProjection therefore helps identify genes with spatially distinct expression patterns, even 

if they were not measured in the original spatial transcriptome assay.  

 

Identification of spatial motifs in the primary motor cortex 

The identification of spatial gene expression patterns is a task often performed at the individual 

gene level; many approaches have been developed to identify non-random spatial single gene 
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expression patterns 29,30. Spatial patterning within tissues extends well beyond the level of 

individual gene expression patterns, however. At a coarse level, the mammalian brain organizes 

neurons into functional neighborhoods that vary with cortical depth12,31. Interneurons from different 

layers of the cortex are widely recognized as distinct in their transcriptome and function 1,5,18 . We 

hypothesized that there might be more localized structure to cell type organization in the brain, 

involving potentially small groups or types of cells that frequently spatially co-occur together. We 

term these larger groups of co-occurring cells “spatial motifs”. 

 

To identify spatial motifs as a function of cortical depth, we analyzed data from a recent MERFISH 

study by Zhang et al.31 in conjunction with a million-neuron atlas from Yao et al.5 of the mouse 

primary motor cortex (MOp). We used scProjection to infer a revised high resolution cell type label 

for each MERFISH measurement by projecting MERFISH measurements to the snRNA-seq atlas 

and assigning discrete labels based on the taxonomy of Yao et al., which defines 129 cell types 

what broadly fall under the category of glutamatergic, GABAergic, and non-neuronal subtypes. 

 

We first performed neighborhood analysis by quantifying, for each high-resolution label, the 

complexity of its physical neighborhood within a 100um radius. More specifically, we define the 

complexity of a cell’s neighborhood as the number of distinct cell types present in a 100um radius 

of the cell (Methods). For each brain slice, we computed the distribution of neighborhood 

complexities of glutamatergic (excitatory) neurons as a function of cortical depth and high-

resolution cell type annotated by scProjection. Comparing the neighborhood complexity of 

excitatory neurons across cortical depth revealed that most cortical depths were comparably 

complex (mean complexity: 4 cell types), with the notable exception of L4/5 IT CTX neurons which 

were overall less complex (mean complexity: 1.5 cell types) (Fig. 4c). 24% of the L4/5 neuron 

cells had homogenous neighborhoods that contained no neurons from any other layer, an 

observation unique to the L4/5 neuron cells.  

 

Having shown that mapping MERFISH samples to high resolution cell types can enable the 

identification of diverse neighborhood types, we next looked for the existence of spatial motifs, 

defined as spatial neighborhoods consisting of a specific set of cell types that are unlikely to occur 

by chance. We assigned each cell into a spatial neighborhood type based on the number of cell 
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types within a 100um distance. We then counted the number of cells assigned to each spatial 

neighborhood type, and permuted the cell type labels 1,000,000 times, making sure cell labels 

only permute within cells of the same layer. Through comparison with simulated neighborhood 

occurrences, we identified a diverse set of 19 significant (permuted p < 0.05/1000000, n>50) 

neighborhood types ranging from homogenous L4/5 populations to neighborhoods which exists 

on the L2/3 and L6 boundaries (Figure 4d). Many of these neighborhoods involved cell types 

from multiple layers, even though our permutations kept cell labels of the same layer together. 

This suggests non-random placement of cell types near layer boundaries. These spatial motifs 

occurred frequently; on average, 231 cells were assigned to each of the 19 significant spatial 

motifs. Of note, the L4/5 IT CTX neurons were the only high-resolution cell type to form islands of 

neurons containing only the same type (Complexity: 1) within 100um. By annotating higher 

resolution high-resolution cell type annotations onto the MERFISH data with scProjection we can 

uncover neighborhood structure underlying coarser cell type spatial variation. 

 

Projection of Patch-seq RNA improves identification of connections between gene 

expression and neuron electrophysiology 

 

Besides spatial transcriptome technologies, there are several other single cell resolution assays 

that could benefit from scProjection. For example, Patch-seq10 is a protocol for jointly measuring 

the RNA, electrophysiological (ephys) and morphological properties of individual neurons, and is 

critical for linking the molecular and cellular properties of neurons. Patch-seq uses a micropipette 

to puncture a neuron in order to simultaneously measure its RNA and electrophysiological 

properties. When applied to in vivo or ex vivo slices of brain tissue, the micropipette passes 

through other surrounding cells in order to reach the neuron of interest, leading to the RNA 

measurements containing contributions from both the target neuron as well as surrounding glial 

cells11. scProjection analysis of several Patch-seq studies indicates cell type abundances from 

non-neuronal cells are predicted to be as high as 30%, suggesting significant contamination of 

RNA (Fig. 5a). We therefore hypothesized that projecting Patch-seq RNA measurements to a 

single cell atlas of neurons would reduce the effect of contaminating RNA and improve 

downstream analyses such as correlating gene expression measurements to electrophysiological 

measurements of neurons. 
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We applied scProjection to a set of 4,200 Patch-seq measurements targeting mouse GABAergic 

neurons18, together with a reference atlas of the mouse brain5. Of the 4,200 measurements, 

scProjection predicted that 1,912 of them were primarily targeting Sst inhibitory neurons 

(Supplementary Fig. 6), consistent with the fact that these 1,912 assayed neurons were 

experimentally identified as Sst before Patch-seq. We focused our experiments on the 1,912 

predicted Sst inhibitory neurons because they were the best represented type of neuron, and 

therefore projected the 1,912 Patch-seq measurements to the Sst single cells sequenced in the 

reference atlas.  

 

Here we assumed that more accurate Patch-seq RNA measurements should enable better 

prediction of ephys properties of neurons from gene expression levels. To this end, our RNA 

projection enabled a mean increase of 27% prediction accuracy of two ephys features, sag and 

latency, from genome-wide expression profiles (spearman correlation of 0.62 compared to 0.43, 

p = 5e-18, rank sum test) (Fig. 5b), while other features were comparable before and after 

projection.  Additionally, we found that our RNA projections identify significant (q<0.05) cell type-

specific correlations in Sst projected ion channel gene expression and ephys properties 

(Supplementary Fig. 7).  These results together suggest that RNA projections remove noise 

driven by the presence of non-neuronal abundances, which leads to better identification of 

connections between gene expression and neuron electrophysiology.  

 

Having used scProjection to establish more gene-ephys connections than could be previously 

appreciated from the original Patch-seq data, we further hypothesized that genetic variation may 

drive systematic changes in some ephys features, through changes in gene expression patterns. 

We extracted cis-eQTLs detected in the human dorsolateral prefrontal cortex from the ROSMAP 

consortia4, and found that 91 genes’ expression levels were both associated with genetic 

variation, and also correlated with ephys features of neurons. Although gene-ephys connections 

were identified via correlative analysis and so we cannot directly infer that these eQTLs will 

causally influence ephys properties in general, we looked specifically at ion channel genes 

because they play critical roles in establishing ephys responses to neuron stimuli. We found 12 

ion channels associated with neuronal firing and under genetic control, of which 58% of them 

were only identified after projection (but not with the original Patch-seq measurement). We also 

identified 79 genes not annotated as ion channels that are also associated with electrophysiology 
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and eQTLs (Fig. 5c). In fact, 83% of all genes associated with the 31 ephys features are not ion 

channel genes. While much of the focus of interactions between genes and electrophysiology is 

on ion channels, our results suggest there may be many more genes that either directly influence 

ephys in novel ways, or indirectly interact with ion channels for example.  

 

DISCUSSION 

In our experiments, we have demonstrated the utility of projections for the analysis of diverse 

single cell resolution assays such as spatial transcriptomes and Patch-seq. At its heart, projection 

maps RNA samples into the cell state space defined by a single cell atlas. Therefore, RNA 

projections can also potentially play a role in up-sampling the per-cell sequencing depth of spatial 

and multi-modal sequencing assays, by projecting lower depth samples into a high depth cell 

atlas. For example, because RNA capture is not per-cell but per-spot for technologies such as 

Slide-seq, the number of effective transcripts sequenced can vary spot to spot8. Furthermore, 

mRNA capture efficiencies can vary between protocols32, and technologies such as SMART-

seqv2 yield significantly high read depth per cell compared to 3’ tagging technologies such as the 

10x Chromium 33. scProjection can be used to project RNA samples sequenced from specialized 

spatial and multi-modal sequencing assays into a deeply sequenced scRNA-seq atlas for 

example, in order to increase the resolution of the resulting gene expression profiles. This is 

conceptually similar to the process of imputation that we demonstrated in our MERFISH results, 

though imputation is typically cast as a problem of filling in zero transcript counts rather than up 

sampling both non-zero and zero counts.  

 

RNA projections are complementary to deconvolution methods. The goal of deconvolution 

methods34–37 is primarily to estimate the cell type abundances of a set of reference cell populations 

within a single RNA sample, and is a very well-studied problem dating back several decades38. 

While scProjection also computes such cell type abundance to a set of populations, its primary 

goal is to distinguish intra-cell type variation by also mapping the RNA sample onto the precise 

cell state within each of the cell type populations that best represents the expression profile of 

those cell types within the RNA sample. scProjection therefore distinguishes intra-cell type 

variation, whereas deconvolution methods principally focus on differences in cell type 

abundances in a sample. 
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A major feature of scProjection is that it implicitly fits a probability density function (PDF) over the 

cell state space for each cell type. This is advantageous for several reasons. First, this enables 

scProjection to reason about the relative frequency of a cell state observed in the training data, 

where more frequently observed states have higher probability of being projected to. Second, it 

enables scProjection to interpolate between observed cell states when the training data is small, 

which can be important for training on rare cell types or on data from smaller studies. Third, 

scProjection can also naturally ignore outlier sequenced cells in the training data because they 

will not appear often in the cell atlas. In contrast, a number of other methods either average the 

expression profiles all cells of the same type such as CIBERSORTx that we tested here34, or only 

map RNA samples to measured single cells in the atlas39. Methods that average cells of the same 

type together will be sensitive to outliers, and more importantly will be unable to account for 

variation within a given cell type.  

 

One of the caveats of scProjection and related methods, is that by projecting RNA measurements 

to a reference single cell atlas, scProjection assumes that the single cell atlas contains accurate 

representations of the cell state of cell populations within the RNA sample. There could be 

scenarios where this is false; for example, projecting RNA from a spatial transcriptome assay of 

(liver) hepatocellular carcinoma samples to a normal liver atlas would miss expression variation 

in hepatocytes that is driven by carcinomas. Therefore, if no suitable single cell atlases are 

publicly available, it would make sense to collect scRNA-seq data on some biological replicate 

samples in addition to the spatial transcriptome datasets. This experimental design of collecting 

both scRNA-seq as well as spatial transcriptome data is common8,19,40,41 so we expect this caveat 

to not limit the widespread applicability of scProjection. 

 

Finally, we envision applications of RNA projections beyond what we have illustrated here. For 

example, databases such as the Gene Expression Omnibus (GEO) catalog gene expression data 

from bulk RNA samples collected since RNA sequencing was first deployed. Using the increasing 

number of single cell atlases derived for different tissues and cell types across organisms, 

scProjection can be used to re-analyze historic bulk RNA samples to extract average cell states 

for individual cell populations that contribute to the bulk RNA sample. Cell type-specific changes 
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in case-control studies could then be inferred, as could cell type-specific eQTLs from genetic 

studies of disease, for example. 
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Figure 1. Schematic of cell type projection and abundance estimation with scProjection. 
(a) The primary input to scProjection consists of one or more RNA measurements originating from 
mixtures of cells assayed using bulk RNA-seq, multi-modal assays or spatial transcriptomics. (b) 
The secondary input to scProjection is a single cell atlas from the same region or tissue as the 
mixture samples, and is assumed to contain all the cell types present in the mixture samples. For 
each of the annotated cell types in the single cell atlas, a variational autoencoder is trained to 
model within-cell type variation in expression. (c,d) The average cell state for each cell type in a 
single RNA mixture, along with the relative abundances of each cell type, are estimated by 
balancing two objectives: (c) selection of an average cell state per cell type that is likely given the 
single cell measurements for each cell type (the prior), and (d) the joint selection of cell states for 
each cell type, and abundances, that will lead to the best reconstruction of the original mixed RNA 
measurements (data likelihood).   
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Figure 2. scProjection distinguishes within-cell type variation and maintains cell-cell and 
gene-gene network structure in Sst neurons. (a) Visualization of the snRNA-seq atlas of the 
mouse cortex used for projection of mouse Patch-seq data. We subsetted the data to four major 
cell types (Sst, Vip, Pvalb and Lamp5), of which Sst was further broken down into 33 distinct cell 
states. (b) tSNE plot of the measured single cell (circle) Sst neurons (from (a)) alongside the 
mouse PatchSeq (square) measurements projected to the Sst population. snRNA-seq cells are 
colored according to cell state shown in (a). (c) Cell-cell similarity network of the measured Patch-
seq Sst cells, the scProjection-based projection of Patch-seq RNA to the Sst population, and 
CIBERSORTx-predicted contributions of the Sst population for comparison. (d) Heatmaps 
visualizing the gene-gene covariation patterns of the measured Patch-seq RNA (lower-triangular), 
versus the gene-gene covariation patterns calculated from either the projections of the Patch-seq 
RNA to Sst via scProjection, or the CIBERSORTx-based predictions of RNA contributions by Sst. 
in the upper-triangular of their respective heatmaps. 
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Figure 3. Projection refines spatial expression patterns in common and rare cell types of 
the intestinal villus. (a) tSNE plot of the single cell atlas (circles) and projected LCM samples 
(squares) across the zones of the intestinal villus. Single cells are colored based on their zone 
assignment by Moor et al. (b) Heatmap visualizing the spatial expression patterns of the top 3,000 
highly variable genes using the spatial inference approach of Moor et al. on the left and after 
projecting the LCM samples with scProjection on the right. Three marker genes (rows) are 
labeled: Ada, Slc2a2 and Reg1. On the right is a schematic of a single intestinal villus, along with 
the expected dominant zone of expression for Ada, Slc2a2 and Reg1. Shown below the villus is 
the actual measured expression pattern of Ada, Slc2a2 and Reg1 in the LCM data of the five 
zones. (c) Line plots comparing the measured and projected expression of top zonated genes 
across the intestinal villus. (d) tSNE plot of the single cell atlas (circles) and projected clump-seq 
(squares) as annotated by the enterocyte component within each clump. (e) Heatmap visualizing 
the spatial expression patterns of the top 3,000 highly variable genes in the goblet containing 
clump-seq samples using the approach of Manco et al. on the left and after projecting with 
scProjection on the right. (f) Heatmap visualizing the expression of the union of the top 5 zonated 
genes per zone in the goblet containing clumps. The scatter plot on the right visualizes the 
divergence in expression of zonated genes between goblet and tuft containing clumps 
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Figure 4. Imputation and high-resolution label transfer identifies spatial expression 
patterns in the brain. (a) Stacked tSNE plots of oligodendrocyte populations identified according 
to dominant cell type with scProjection across Bregma indices from Moffit et al. (b) Heatmap 
visualizing the spatial expression patterns within the oligodendrocytes of imputed (top) and 
measured (bottom) genes from the original study. (c) Neighborhood density plots for each cell 
type annotated by scProjection, where the x-axis indicates the neighborhood complexity for each 
cell. (d) tSNE plot of a single slice separated by layer type of the neurons according to the post 
significant neighborhoods highlighted in the circle plots for a few neurons from the mouse cortex 
mapped by Zhang et al. and as annotated by scProjection. 
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Figure 5. Projection of Patch-seq RNA links molecular measurements to electrophysiology 
of neurons. (a) Box and whisker plots visualizing the abundances of non-neuronal RNA 
estimated by scProjection across all samples of multiple PatchSeq studies. (b) Bar plot of the 
accuracy (based on Spearman correlation) of gene expression-based prediction of 
electrophysiology measurements, when predictions are made using either the original measured 
RNA, or the Sst projected PatchSeq samples. (c) Gene – electrophysiology correlation network, 
where edges are between significantly correlated genes and electrophysiology features. Node 
size is proportional to the number of eQTLs identified in the xQTL study of the ROSMAP cohort. 
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 METHODS 

scProjection overview. Our framework, scProjection, projects ' gene expression profiles ($ ∈
* generated from RNA samples into each of + different cell populations represented in a 

reference single cell atlas, yielding a new set of gene expression profiles ,$,#, for " = 1,… , +. 

scProjection also estimates &$,#, the proportion of RNA contributed by each cell population " to 

sample 1 (Fig. 1). scProjection assumes that each ($ is a weighted linear combination of the cell 

population-specific projections ,$,#:   

($ =	3&$,#,$,#
%

#
 

Only ($ is formally observed, and the goal is to estimate &$,# and ,$,#.  

To perform estimation, scProjection leverages a separate reference single cell atlas in which 

single cells 4&,# (representing the  5th cell sequenced for cell population " in the atlas 6) have been 

sequenced. In the first step, scProjection trains a deep variational autoencoder (VAE) separately 

for each cell population " using all single cells sequenced for cell population " (7∗,#), yielding a 

parameter set {9# , :#} (representing the encoder and decoder parameters, respectively) for each 

cell population ". After training, each VAE implicitly defines the set of cell states that projections 

into cell population " (!$,#) can occupy. In the second step, the VAEs with trained parameters 

<9=#()), :=#())> are used to get initial projections ,?$,#())  by inputting each ($ into the "th VAE and 

sampling from the output to estimate ,?$,#()) . In the second step, we estimate the RNA proportions 

&@$,# by solving the above equation by using linear regression by setting ,$,# = ,?$,#()) . Finally in the 

third step, we fix the mixing proportions &@$,#, and re-update all VAE parameters {9# , :#} 
simultaneously to improve estimates of ,$,# by maximizing the reconstruction of each ($. 

scProjection training of cell population-specific VAEs (Step 1). scProjection uses VAEs to 

perform the projection of RNA samples ($	into the gene expression space of each cell population 

" to yield the projection ,$,#. The set of cell population-specific VAEs are identical in network 
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structure and are comprised of a deep encoder network parameterized by weights 9#, and 

decoder network parameterized by weights :#. To train the VAEs, we optimize the following 

objection function with respect to the VAE parameters {9# , :#}: 

AB{9# , :#}; D4&,#EF = 	33G+!",-#,"	/0#,"	)Hlog L1"B4&,#MN&,#FO
2

&34

%

#34
−QQR%5HS6"BN&,#M	4&,#)||L(N&,#)O

2

&34

%

#34
			 

S6"BN&,#M4&,#F = 'BN&,#; U6"B7&,#F, V6"7 B7&,#FWF 

L1"B4&,#M	N&,#) = 'B	4&,#; U1"BX&,#F, V1"7 BX&,#FWF 

The functions DU6"(∙), V6"7 (∙)E and DU1"(∙), V1"7 (∙)E  represent the mean and variance of the normal 

distribution predicted by the encoder and decoder, respectively. The parameters of the VAEs 

{9# , :#} are regularized through 30% dropout [13], batch normalization [14] and L2 weight 

regularization to ensure robust training. ADAM [15] is used for optimization with a decaying 

learning rate starting at 1e-3 and a smooth warmup of the KL term in the ELBO, which has been 

shown to produce more accurate reconstructions 42. We denote the trained VAE parameters by 

<9=#()), :=#())>. 

For the experiments in which we impute genome-wide expression measurements from limited 

sets of marker genes such as those measured by MERFISH, the structure of the VAE becomes 

asymmetric with the input measurements to the encoder defined by a subset of gene expression 

measurements [8 ⊆ [ (corresponding to marker genes). The decoder output is still defined by 

the full set of gene expression measurements [ made in the single cell atlas. Only estimates of 

those genes [8 directly measured in mixture samples ]$ are used in subsequent steps of 

scProjection. 

scProjection estimation of cell type abudnacne of each cell population (Step 2). Here, 

scProjection projects each RNA sample ($ to each cell population " via the VAE parameterized 

by <9=#()), :=#())> to estimate ,?$,#()) :	 

,?$,#()) 	= 	 U19"(&) ^U69"(&)(($)_ 

Then, we estimate the mixture proportions &$,# and nuisance parameters of a multi-layer 

perceptron :̀( (and hold all other variables fixed) by optimizing the following objective function:  
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A(]$) = 	3 log'(]$	| 	3!@&,#())&$,#
%

#
, :̀((V$,#7 	⊕ &$,#)W)

;

$34
 

Optimization is performed with ADAM [15] and a learning rate of 1e-3 until convergence. The 

estimated mixing proportions &@$,# are kept fixed for the remainder of the training procedure. 

scProjection final estimates of RNA projections (Step 3). In this step, scProjection re-

optimizes the encoder and decoders of the individual VAEs {9# , :#} by minimizing the following 

composite objective function, which includes the likelihood of both the single cell atlas data 7&,# 

and the RNA samples ]$:  

ELBO =	3log 	
<

$
'(($	| 	3 U1" bU6"(($)c&@$,#

%

#34
, :̀((V$,#7 	⊕ &@$,#)W) + 

										3 	
#

3G+!",-#,"	/0#,"	)[	log L1"B4&,#MN&,#F	]	
&

− 

			g3 	
#

3	R%5HS6"BN$,# 	M	($	F|	|	LB	N$,# 	F] +3	
#

3	R%5HS6"BN&,# 	M	4&,# 	F|	|	LB	N&,# 	F	
&

	
$

h 

 

Note in this case, the VAE parameters are initially set to 9# = 9=#()) and :# = :=#()) before 

optimization, and the parameters of :̀( are fixed at their values estimated at Step 2. Intuitively, 

we are adjusting the RNA projections ,$,# = U1" bU6"(($)c to better predict the RNA sample ($, 

because the single cell reference data may be collected in a different experiment from the RNA 

samples. The single cell data are included in the objective function and serve as a regularization 

term to ensure identifiability of each VAE as specific to one cell population ". After training to 

obtain final VAE parameter estimates <9=#(4), :=#(4)>, we estimate our final RNA projections ,?$,#(4) =

U19"()) ^U69"())(($)_. 

 

Acquisition and preprocessing of the intestinal villus dataset. We obtained the gene 

expression matrices for the LCM-seq, scRNA-seq and spatial reconstructions experiments 

described in Moor et al.19 from GSE109413 and https://doi.org/10.5281/zenodo.1320734. We 
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independently normalized the count matrices to TP10K, then scaled and centered using Seurat’s 

NormalizeData (without log transform) and ScaleData functions. We retained the union of the 

marker genes of each cell type identified from the original study, together with the top 2,000 

variable genes of both LCM-seq and scRNA-seq. 

Acquisition and preprocessing of the brain MERFISH dataset. We obtained the processed 

MERFISH gene luminescence matrix described in Moffitt et al.27 from dryad.8t8s248 and the 

scRNA-seq count matrix from GSE113576. We independently preprocessed each data modality 

by normalizing to TP10K, then scaled and centered using Seurat’s NormalizeData and ScaleData 

functions. We removed entire cell types from the scRNA-seq data that had no analog in the 

MERFISH experiments and are defined in Table S9. We retained the union of the marker genes 

of each cell type identified in the original study, together with the top 2,000 variable genes across 

the entire scRNA-seq atlas.  

Acquisition and preprocessing of the mouse Patch-seq dataset. We obtained the gene count 

matrix for the mouse Patch-seq experiments described in Berg et al.43 from portal.brain-

map.org/explore/classes/multimodal-characterization on January 2019. We discarded samples 

that did not pass QC as defined in the original paper in both the RNA and electrophysiology 

modalities. We normalized the count matrix to TP10K (without log transform), then scaled and 

centered using Seurat’s NormalizeData and ScaleData functions. We retained the union of the 

marker genes of each cell type identified from the original study, together with the top 2,000 

variable genes across each of the cell types defined in the snRNA-seq. 

Acquisition and preprocessing of the mouse brain atlas. We obtained the gene count matrix 

for the human brain atlas described in Yoa et al.5 from the Allen Institute Cell Types database: 

RNA-Seq data page on the Allen Institute’s webpage. We normalized the count matrix to TP10K, 

then scaled and centered using Seurat’s NormalizeData and ScaleData functions. We retained 

the union of the marker genes of each cell type reported in the original study, together with the 

top 2,000 variable genes across each of the cell types defined in the snRNA-seq. Sublcass 

annotations were provided for each cell and were used to filter out L2/3 and L6 for validation 

experiments 

Acquisition and preprocessing of the Tasic et al. mouse brain atlas. We obtained the gene 

count matrix for the mouse brain atlas described in Tasic et al. from the Allen Institute Cell Types 

database: RNA-Seq data page on the Allen Institute’s webpage. We normalized the count matrix 

to TP10K, then scaled and centered using Seurat’s NormalizeData and ScaleData functions. We 
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retained the union of the marker genes of each cell type reported in the original study, together 

with the top 2,000 variable genes across each of the cell types defined in the snRNA-seq. 

Acquisition and preprocessing of the CellBench benchmark. We obtained the gene count 

matrix for the RNA mixture experiments in CellBench described in Tian et al.44 from the R data 

file mRNAmix_qc.RData available on GitHub (https://github.com/Shians/CellBench). We 

normalized the count matrix to TP10K (without log transform), then scaled and centered using 

Seurat’s NormalizeData and ScaleData functions. We retained the union of the marker genes of 

each cell type identified by CIBERSORTx, together with the top 3,000 variable genes computed 

separately on the RNA mixtures profiled on CEL-Seq2 and SORT-Seq. 

Acquisition and preprocessing of the ROSMAP-IHC benchmark. We obtained the gene count 

matrix for the bulk-RNA experiments and IHC measurements described in Patrick et al. from the 

R data files available on Github (https://github.com/ellispatrick/CortexCellDeconv). We 

normalized the count matrix to TP10K (without log transform), then scaled and centered using 

Seurat’s NormalizeData and ScaleData functions. We retained the union of the marker genes of 

each cell type reported in Darmanis et al.45, together with the top 2,000 variable genes. 

Execution of deconvolution methods. In the two sections below on benchmarking cell 

proportion estimations in different datasets, we compared scProjection against CIBERSORTx34, 

MuSiC35, NNLS, dtangle36, DSA37, and single gene deconvolution. Each method was run based 

on method-specific guidelines provided by the original authors and following the workflows 

defined by in tutorials for each approach. Prior to running each method, the FindVariableGenes 

function implemented in Seurat was used to identify the most variable genes for a consistent 

subsetting of the data matrices. CIBERSORTx was provided counts for all highly variable genes 

in the scRNA-seq data along with cell type annotations to create a signature matrix. Then counts 

for all highly variable genes in the mixture data were provided to CIBERSORTx which then 

estimates RNA proportions. MuSiC was provided counts for all highly variable genes in the 

scRNA-seq and mixture data along with cell type annotations. NNLS (as implemented by us in R) 

was provided the TPM values for all highly variable genes in the scRNA-seq and mixture data. 

Proportions from NNLS for cell type 	" were computed by summing the learned weights across 

all cells annotated as cell type "; this was repeated for each cell type and each mixture sample. 

dtangle was provided with a mean count vector per cell type in the scRNA-seq data and the 

original counts from the mixture data along with cell type markers and annotations. DSA was 

provided with the original counts for the mixture data and cell type specific marker genes. Single 

gene deconvolution was performed by identifying individual marker genes of each cell type, which 
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were used to estimate the relative proportion of each cell type with respect to the remaining 

markers. 

Benchmarking cell population proportion estimation on the CellBench dataset. The 

CellBench dataset provides gene expression profiles obtained from sequencing titrated RNA 

mixtures from three human lung adenocarcinoma cell lines (H1975, H2228, HCC827), as well as 

single cell RNA profiles from each cell line. Sequencing was performed using either plate based 

(CEL-Seq2 or Drop-Seq) or droplet based (10x Chromium and Drop-seq Dolomite) protocols. The 

proportion of RNA from each cell line was recorded for each mixture and defines a baseline for 

methods aiming to computationally estimate the RNA percentages. We trained scProjection using 

the RNA mixtures as inputs ]$	 and the single cell data as the atlas 6. We treated the scProjection 

estimates &@$,# as our predictions of abundances for each cell type. We then compared 

scProjection-based deconvolution against other methods as described above (Supplementary 

Figure 8). 

Benchmarking cell population proportion estimation on the ROSMAP-IHC dataset. To 

provide a more challenging and realistic deconvolution benchmark, we used the ROSMAP-IHC 

dataset consisting of 70 bulk RNA samples of the dorsolateral prefrontal cortex (DLPFC), an 

scRNA-seq atlas derived from the DLPFC, and cell population proportions estimated using IHC 

from adjacent samples to those samples used for sequencing. The bulk RNA, reference single 

cell atlas and cell population proportions were collected and estimated in three different studies, 

thus introducing technical and biological variability between data modalities that does not exist in 

the CellBench study. We trained scProjection using the RNA mixtures as inputs ]$	 and the single 

cell data as the atlas 6. We treated the scProjection estimates &@$,# as our predictions of 

abundances for each cell type. We then compared scProjection-based deconvolution against 

other methods as described above (Supplementary Figure 9, 10). Furthermore, for each 

proportion estimated by scProjection we assign a confidence score indicating the certainty of the 

mixture being assigned to a specific cell type (Supplementary Figure 11). 

Prediction of cell population using scProjection. From scProjection’s estimates of cell 

population specific abundances, treated as probabilistic class assignments, the class with 

maximal probability is assigned as the cell population label for each sample.  

Cell annotation with k-NN label transfer  

After estimating the projection of a mixture onto a single cell atlas the projected mixture is  

labeled based on annotations in the single cell atlas of its 5-nearest scRNA-seq neighbors.  
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Zonated gene expression scoring 

For each gene we compute the distance from an idealized zone-specific measurement as the 

difference between ij1j!=8>?= (1,0,0,0,0) and the computed gene zonation score vector. A  

threshold was set based on the 75th quantile of the resulting scores to compare the number of  

zonated genes across methods. 

 

Constructing a gold standard set of zonated goblet expression patterns based on clumps. 

Manco et al.20 sequenced ‘clumps’ consisting of multiple physically-proximal cells from partially-

dissociated intestinal villi.  Using scProjection, we performed expression deconvolution and 

identified enterocyte-goblet clumps that contained both enterocytes and goblet cells, using a 

single cell atlas of enterocytes19 and goblet cells20. Based on our zonated enterocyte expression 

patterns (Fig. 4b), we predicted the zone of each enterocyte-goblet clump based on the projection 

of the enterocyte-goblet clump onto the enterocyte single cell atlas. Because the goblets in the 

enterocyte-goblet clumps are physically proximal to the enterocytes, we then assumed the goblets 

in each enterocyte-goblet clump was from the same zone as the projected enterocyte. For each 

zone, we identify all enterocyte-goblet clumps from that zone, project the enterocyte-goblets to 

the goblet single cell atlas, and average across all such projections to estimate zone-specific 

goblet expression. 
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