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ABSTRACT 

Deep neural networks implementing generative models for dimensionality reduction have been 
extensively used for the visualization and analysis of genomic data. One of their key limitations is 
lack of interpretability: it is challenging to quantitatively identify which input features are used to 
construct the embedding dimensions, thus preventing insight into why cells are organized in a 
particular data visualization, for example. Here we present a scalable, interpretable variational 
autoencoder (siVAE) that is interpretable by design: it learns feature embeddings that guide the 
interpretation of the cell embeddings in a manner analogous to factor loadings of factor analysis. 
siVAE is as powerful and nearly as fast to train as the standard VAE but achieves full 
interpretability of the embedding dimensions. Using siVAE, we exploit a number of connections 
between dimensionality reduction and gene network inference to identify gene neighborhoods 
and gene hubs, without the explicit need for gene network inference. We observe a systematic 
difference in the gene neighborhoods identified by dimensionality reduction methods and gene 
network inference algorithms in general, suggesting they provide complementary information 
about the underlying structure of the gene co-expression network. Finally, we apply siVAE to 
implicitly learn gene networks for individual iPSC lines and uncover a correlation between 
neuronal differentiation efficiency and loss of co-expression of several mitochondrial complexes, 
including NADH dehydrogenase, cytochrome C oxidase, and cytochrome b. 

INTRODUCTION  

Single cell genomic assays such as scRNA-seq and scATAC-seq measure the activity level of 
tens to hundreds of thousands of genomic features (genes or genomic regions), yielding high 
dimensional measurements of cells. Features tend to be inter-correlated: gene members of the 
same pathway, complex or module exhibit correlated expression patterns across cells1, and 
proximal genomic regions covering the same regulatory elements or expressed genes are 
correlated in their accessibility patterns2. Key analysis tasks such as visualization3, clustering4, 
trajectory inference5,6, and rare cell type identification7,8 typically do not directly compute on the 
original features. Instead, they first perform dimensionality reduction (DR) to project cells from 
their high dimensional IHDWXUH�VSDFH�WR�D�ORZHU�GLPHQVLRQDO�³cell embedding space´�FRQVLVWLQJ�RI�
a smaller set of embedding dimensions. Individual embedding dimensions capture distinct groups 
of correlated input features, and are often also correlated with biological factors such as case-
control status9, gender10, and others11. Downstream tasks are then carried out on these 
embedding dimensions.  

Given the central role of embedding dimensions, it is useful to be able to characterize and interpret 
which of the original input features contributed to the construction of each embedding dimension. 
For example, in a visualization of a 2D cell embedding space, interpretation of the embedding 
dimensions would identify genes that explain variation in the transcriptome along different axes 
(Fig. 1). Linear DR frameworks such as PCA achieves interpretation through estimation of the 
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contribution of individual features towards each embedding dimension. However, linear DR 
frameworks are considered less powerful because they can often be viewed as a restricted 
implementation of a non-linear framework12. In contrast, non-linear methods such as UMAP, t-
SNE and variational autoencoders (VAEs) produce better visualizations in which cells of the same 
type cluster together more closely (Supplementary Fig. S1), but they are not interpretable and 
require more ad hoc, downstream analysis to gain intuition about the arrangement of cells in the 
visualization. Beyond visualization, interpretability is an important property for other tasks, such 
as the detection of genes and pathways driving variation in expression within or across cell types13 
and identification of genes associated with cellular trajectories directly from visualization14.  

Previous works have explored extensions of the non-linear VAE framework to achieve 
interpretability. Methods such as LDVAE15, scETM16, and VEGA17 achieve interpretability by 
imposing a linear relationship between the latent embedding layer and the output layer in the 
decoder, which in turn makes these approaches effectively linear dimensionality reduction 
methods. Other ad-hoc approaches (DeepT2Vec18 and deepAE19) combine unsupervised 
autoencoders with a supervised loss function that uses metadata such cell type information, which 
depends on having prior knowledge and restricts interpretation only with respect to those features.  

Here we propose a scalable, interpretable variational autoencoder (siVAE) that combines the non-
linear DR framework of variational autoencoders with the interpretability of linear PCA. siVAE is 
a variant of VAEs that additionally infers a feature embedding space for the genomic features 
(genes or genomic regions) that is used to interpret the cell embedding space. Importantly, by 
using a non-linear network to combine the cell and feature embedding space, siVAE achieves 
interpretability without introducing linear restrictions, making it strictly more expressive than 
LDVAE, scETM and VEGA. Compared to other approaches for achieving interpretable, non-linear 
DR, siVAE is either faster, generates better low dimensional representations of cells, or more 
accurately interprets the non-linear DR without introducing linear restrictions or dependence on 
prior knowledge. 

 
RESULTS 
 
siVAE is a deep neural network consisting of two pairs of encoder-decoder structures, one for 
cells and the other for features (Fig. 1a). The cell-wise encoder-decoder learns to compress per-
cell measurements ܺ௖ǡǣ (where ܺ is a matrix of dimension ܥ ൈ  ܨ indexes cells and ܥ where ,ܨ�
indexes features) into a low dimensional embedding (ݖ௖) of length ܭ for visualization and analysis, 
similar to traditional VAEs implemented in single cell genomic applications and others20±22. We 
call the ܥ ൈ  matrix of embeddings ܼ the siVAE score matrix, where the scores of cell ܿ (ܼ௖ǡǣ) ܭ�
represent its position in the cell embedding space.  

To facilitate interpretation of the cell state space, siVAE additionally implements a separate 
feature-wise encoder-decoder network (Fig. 1a) that learns to compress per-genomic features 
across the cells ( ǣܺǡ௙) into a low dimensional embedding (ݒ௙) of length ܭ, analogous to the cell-
wise encoder-decoder. We call the ܨ ൈ  matrix of feature embeddings ܸ the siVAE loading ܭ�
matrix, where the loadings of feature ݂ ( ௙ܸǡǣ) represent its position in the feature embedding space. 
The cell- and feature-wise decoders together are used to generate the observed measurement 
ܺ௖ǡ௙.  
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The strategy siVAE uses to achieve interpretation is best understood by briefly reviewing why 
probabilistic PCA (PPCA) and factor analysis are interpretable15,23. The underlying generative 
model behind PPCA can be thought of as similar to a VAE with a linear decoder, and the output 
of PPCA includes both a factor loading matrix ܸ and score matrix ܼ. In probabilistic PCA, the 
predicted expression of feature ݂ in cell ܿ (ܺ௖ǡ௙) is assumed to be ௙ܸǡǣ

் ܼ௖ǡǣ, the dot product of the 
loadings for feature ݂ and the scores of cell ܿ. PPCA is therefore interpretable, because the larger 
the contribution of a feature ݂ to a particular dimension ݇ (indicated by the magnitude of ௙ܸǡ௞), the 
more the measurement of feature ݂ (ܺ௖ǡ௙�� LV� LQIOXHQFHG�E\�D�FHOO¶V�FRUUHVSRQGLQJ�VFRUH� LQ� WKDW�
dimension (ܼ௖ǡ௞). Conversely, when the magnitude of ௙ܸǡ௞ LV� VPDOO� �RU�HYHQ����� WKHQ� WKH�FHOO¶V�
corresponding score in that dimension (ܼ௖ǡ௞) does not influence ܺ௖ǡ௙ǡ the measurement of feature 
݂ in cell ܿ. In this regard, we say that the PPCA model enforces correspondence between ܼ௖ǡ௞ 
and ௙ܸǡ௞, the cell and feature embedding at dimension ݇. 

siVAE achieves interpretability of the siVAE scores ܼ௖ǡ௞  by adding a small interpretability 
regularization term to its objective function (see Methods). More specifically, this regularization 
term penalizes deviation between the observed measurement ܺ௖ǡ௙, and the dot product of the 
corresponding siVAE scores and loadings ( ௙ܸǡǣ

் ܼ௖ǡǣ). This small regularization term helps enforce 
some soft correspondence between dimension ݇  of the cell scores, and dimension ݇  of the 
feature loadings. 

Our framework for making VAEs interpretable is generalizable to other VAE-based frameworks. 
Given that VAEs have been applied to a wide range of genomics data modalities (epigenomics24±

26 and miRNA27) and analysis (visualization20,28, trajectory inference29, data imputation30, and 
perturbation response prediction31±33), our work can therefore enable interpretability in a wide 
range of downstream applications of VAEs. 

RESULTS ± siVAE accurately generates low dimensional embeddings of cells  
 
We first evaluated siVAE in the context of cell embedding space inference, where the goal is to 
generate low dimensional representations of cells in which cells of the same cell type cluster 
together. We benchmarked siVAE against other interpretable and non-interpretable 
dimensionality reduction approaches using a fetal liver cell atlas34 consisting of 177,376 cells 
covering 41 cell types. We measured the accuracy of each approach in a 5-fold stratified cross 
validation framework by first using the training folds to learn a cell embedding space, followed by 
training of a ݇-NN (݇ ൌ ͺͲ) classifier using the known cell type labels and cell coordinates within 
the embedding space. We then classified the held-out cells. We associate higher ݇-NN accuracy 
with a more accurate cell embedding space in which cells of the same type cluster together. 
 
We compared siVAE against a classic VAE as well as LDVAE15, where all three VAE frameworks 
used cell-wise encoder-decoders of the same size, and the VAE and siVAE use the same 
activation functions. Overall, we found siVAE¶V cell embedding space to be comparable in 
accuracy to classic VAEs, suggesting that the introduction of the siVAE feature-wise encoder-
decoder does not affect siVAE performance in terms of its cell embedding space. 2D visualization 
RI�VL9$(¶V�cell embedding space reveals strikingly similarity to the cell embedding space of the 
classic VAE in that cells of the same type cluster together (Fig. 2a). Furthermore, siVAE is 
competitive in classification accuracy with a classic VAE on the fetal liver cell atlas (Fig. 2b). 
siVAE therefore is competitive with VAEs in terms of generating cell embedding spaces, but has 
the additional benefit of interpretability, which we will explore below. In comparison, the LDVAE 
approach, which is interpretable like siVAE but performs linear DR, yields significantly lower 
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classification accuracy (Fig. 2b) and generates visualizations in which different cell types mix 
together more prominently (Fig. 2a). LDVAE therefore gains interpretability at a cost to the 
accuracy of the cell embedding space.  
 
We next constructed a set of model variants of siVAE in order to identify which aspects of siVAE 
lead to its superior performance over LDVAE (Table 1). LDVAE is in principle similar to the classic 
VAE, with two key differences. First, the LDVAE decoder is restricted to use only linear activation 
functions in order to achieve interpretability; thus, LDVAE performs linear dimensionality 
reduction. Second, the LDVAE loss function uses a negative binomial or zero-inflated negative 
binomial distribution over the input features (genes), instead of the Gaussian distribution used in 
a classic VAE. In principle, the NB or ZINB observation model is a better fit for single cell 
transcriptomic data compared to a Gaussian distribution normally used on log transformed data 
35,36. We therefore constructed two variants of siVAE, siVAE-NB and siVAE-linear. siVAE-NB is 
identical to siVAE, except that it uses a negative binomial distribution for the observation layer 
while maintaining non-linear activation functions in its decoders to achieve non-linear DR. siVAE-
linear is identical to siVAE, except that it restricts both the feature-wise and cell-wise decoder to 
use linear activation functions like LDVAE and does not implement the interpretability term. Fig. 
2b and Supplementary Fig. S2 shows that siVAE-NB performs worse than the corresponding 
model with the Gaussian distribution (siVAE), suggesting that using a NB output layer does not 
lead to a more accurate cell embedding space. siVAE-linear is more accurate than LDVAE (Fig. 
2b), indicating that the feature-wise encoder-decoder of siVAE is overall beneficial to 
dimensionality reduction. However, siVAE-linear performs more poorly than siVAE, verifying the 
non-linear activation functions are beneficial to dimensionality reduction.  
 
We also hypothesized that the interpretability term XVHG�LQ�VL9$(¶V�ORVV�IXQFWLRQ would degrade 
the quality of dimensionality reduction to an extent, as siVAE uses the regularization term to 
enforce correspondence between the individual dimensions of the feature and cell embedding 
spaces to achieve interpretability. We therefore constructed siVAE (0=ߛ), representing a siVAE 
model in which we turn off the regularization term by setting its weight ߛ to 0 and therefore disable 
interpretation, but keep the feature embedding space. From Figure 2b, we can see the small gap 
in classification performance between siVAE and VAE closes with siVAE (0=ߛ), showing that the 
intepretability of siVAE comes at a small cost in classification performance, though not nearly as 
large a cost as using linear dimensionality reduction, as evidenced by the poorer performance of  
siVAE-linear and LDVAE. We performed additional experiments to show that when varying ߛ from 
0 to 100, where siVAE (100= ߛ) conceptually behaves similarly to siVAE-linear, the performance 
of siVAE smoothly interpolates between siVAE ( ߛ =0) to siVAE-OLQHDU¶V� SHUIRUPDQFH 
(Supplementary Fig. S4). This suggests that siVAE can be used to carefully balance 
interpretability with non-linear dimensionality reduction capability. 
 
Finally, siVAE natively allows batch correction within the model similar to other models16,20. We 
tested our model on an iPSC neuronal differentiation (NeurDiff) dataset37 in which XX cell iPSC 
cell lines were sequenced using 10x Chromium before and after initiation of differentiation into 
neurons. We specifically focused on the samples from Day 11 before differentiation, as we 
observed a strong batch effect with respect to pool_id (Fig. 2c). When we trained siVAE and 
provided batch information during training, clustering by batch is eliminated while the clustering 
by cell type is still preserved (Fig. 2c). 
 
RESULTS ± siVAE interprets cell embedding spaces faster and more accurately than 
existing feature attribution approaches 
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Having shown siVAE generates cell embedding spaces competitive with classic VAEs, we next 
verified that the interpretations of the embedding dimensions output by siVAE are accurate. Again, 
we define an interpretation of the cell embedding space as a matrix of feature loadings (or more 
generally, attributions) ܸ of size ܨ� ൈ  is the ܭ ,is the number of features (e.g. genes) ܨ where ,ܭ�
number of cell dimensions, and the magnitude of ௙ܸǡ௞  indicates the strength of association 
between cell state dimension ݇ and feature ݂ in the original data space.  
 
In contrast to methods such as siVAE and LDVAE that construct interpretable cell embedding 
spaces by design, there are two competing types of approaches to feature attribution in the 
literature that can help interpret cell embedding spaces post-inference. First, siVAE feature 
embeddings are analogous to general neural network feature attribution methods that quantify 
how each output node of a neural network depends on each input node (feature) of the network38, 
and include methods such as DeepLIFT39, saliency maps40, grad x input39, integrated gradients41, 
Shapley value42 and others38,43±47. One of the strengths of these approaches is they can be applied 
to any trained neural network in principle, making them highly generalizable.  Second, methods 
such as Gene Relevance48  have been developed specifically to interpret cell latent spaces for 
any DR method including those not based on neural networks, and can be applied after cell 
embedding spaces are learned. 
  
We first compared siVAE against Gene Relevance, using the neural network feature attribution 
methods as a gold standard as they have been extensively validated in other applications49.  
Figure 3a shows the mean pairwise correlation between the attributions of siVAE, Gene 
Relevance as well as three neural net feature attribution methods (saliency maps, grad x input, 
and DeepLIFT), where correlations have been averaged over each of the two feature dimensions 
that siVAE used to infer the cell embedding space for the fetal liver dataset. We see siVAE 
loadings are highly correlated with the neural net feature attribution methods (median Spearman 
 P=1.1x10-15) with siVAE in striking agreement with DeepLIFT in particular (median ,0.73=ߩ
Spearman correlation of 0.98, P=2.2 x10-16). In contrast, while Gene Relevance produced feature 
attributions that were consistent across their parameter selections (median Spearman correlation 
of 0.84, P=3.10 x10-22), they were poorly correlated with both neural net feature attribution 
methods (median Spearman correlation of 0.11, P=2.1 x10-6) and siVAE (median Spearman 
correlation of 0.14, P=3.9 x10-6). These results suggest Gene Relevance is less accurate 
compared to siVAE at interpreting cell embedding spaces of VAE architectures. We found 
consistent results when comparing these methods on the MNIST imaging dataset (Supplementary 
Note 1). 
 
 
For the above results, we applied the neural net attribution methods to the decoder of siVAE to 
generate the ground truth feature attributions. Previous work has suggested to apply attribution 
methods to the encoder to improve execution speed19,22. Here we found that running attribution 
methods on the siVAE encoder produce substantially different interpretations that are in strong 
disagreement with interpretations of the decoder (Supplementary Fig. S6), suggesting 
interpretation of the encoder is not appropriate. These results make sense considering the primary 
role of the encoder is to compute an approximate posterior distribution of the latent embedding of 
each cell, as opposed to the decoder, which is responsible for directly mapping points from the 
latent space to gene expression space. Our results therefore suggest feature attributions should 
be applied to the decoder of VAEs instead of the encoder. 
 
During our experiments on interpreting cell embedding spaces, it became evident that a number 
of neural network feature attribution approaches were computationally expensive to execute. 
Because these feature attribution methods perform calculations separately for either each 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 8, 2022. ; https://doi.org/10.1101/2021.09.15.460498doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.15.460498


embedding dimension or each output node of the network, their run time scales linearly with the 
number of embedding dimensions or features when run on VAE decoders20. The number of 
embedding dimensions is expected to be larger as the number of cells in the dataset grows, to 
accommodate more heterogeneity in the dataset; also, the number of features would be expected 
to be large for assays such as scATAC-seq that profile hundreds of thousands of genomic regions 
or more. We conjecture this problem of long execution time has not been previously reported in 
the literature because feature attribution methods are typically run on supervised neural networks 
to interpret class label predictions, and so the number of output nodes is traditionally very small, 
unlike generative models in genomics applications.  
 
We therefore hypothesized that siVAE scales faster than the neural network attribution methods 
on larger single cell genomic datasets. To test this hypothesis, we assembled two datasets for 
execution time testing: the LargeBrainAtlas dataset published by 10x Genomics50 consisting of 
1.3 million brain cells and 27,998 genes measured with scRNA-seq, and the BrainCortex dataset51 
consisting of 8k cells and 244,544 genomic regions measured with SNARE-seq. We first 
compared the execution time of training siVAE on the full LargeBrainAtlas dataset, against the 
run time of training a VAE and individually running each of five neural network attribution methods 
(saliency maps, grad*input, DeepLIFT, integrated gradients and Shapley values) on the trained 
VAE. We found that siVAE achieved an execution time of 2.5 days, less than half of the fastest 
neural network attribution method (forward mode of saliency maps) (Fig. 3d).  
 
To identify the most time-consuming aspects of feature attribution calculations for each method, 
we selected a subset of the LargeBrainAtlas dataset for varying the number of embedding 
dimensions from 20 to 512 and a subset of BrainCortex dataset for varying the number of features 
from 28k to 240k, to identify the speed bottlenecks. siVAE averaged 0.0073 days per embedding 
dimension (Fig. 3e) and 0.0027 days per 10k features (Fig. 3f), indicating siVAE execution time 
was robust to both the number of cells and features. On the other hand, we found the neural 
network attribution methods scale well when either the number of embedding dimensions or the 
number of input features is large, but not when they are both large. For example, DeepLIFT, 
Grad*Input (reverse-mode) and Saliency maps executed at 0.014, 0.0053, and 0.0012 days per 
embedding dimension respectively (Fig. 3e), but scaled poorly with respect to number of input 
features and executed at 2.9, 0.95, and 0.94 days per 10k features respectively (Fig. 3f). 
Switching Grad*Input and Saliency Maps to forward-mode led to fast execution times with respect 
to the number of input features (5.3x10-4 and 6.5 x10-4 days per 10k features respectively (Fig. 
3f)) but led to poor scaling with respect to the number of embedding dimensions (0.18 and 0.17 
days per embedding dimension, respectively (Fig. 3e)). Slower attribution methods such as 
Integrated Gradients and Shapley Value were excluded due to their infeasible execution times. In 
summary, the neural network attribution methods scale poorly either with the number of 
embedding dimensions or the number of input features depending on whether forward- or 
reverse-mode is used. This therefore makes their execution time slow relative to siVAE if both the 
number of features and embedding dimensions is large. 
 
RESULTS ± Co-expressed genes cluster in the feature embedding space 
 
Feature attributions, or factor loadings, of linear DR methods such as PCA have been exploited 
extensively in the literature to gain insight into the structure of gene co-expression networks 
(GCN)15,23,52; here we explore the extent to which the siVAE loading matrix can be leveraged to 
gain insight into GCN structure. GCNs are graphs in which nodes represent genes and edges 
represent co-expression of a pair of genes. A GCN captures co-variation in gene expression 
measurements between pairs (or more) of genes across a population of cells. GCNs are of 
interest because they can be used to identify (1) cell population-specific gene modules, 
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representing groups of genes that are highly co-expressed and therefore are likely to function 
together in a cell type-specific manner, as well as (2) gene hubs, which are genes that are 
connected to an unusually large number of other genes, and typically represent key functional 
genes in the cell53,54. While GCN inference is valuable for interrogating gene regulatory patterns 
in a cell, GCN inference is a notoriously difficult and error-prone task55±57. 
 
In our application of dimensionality reduction in which features are all centered and scaled 
uniformly, the goal of DR methods is to learn (linear or non-linear) patterns of co-expression 
amongst the input features, that allow accurate reconstruction of the input data from low 
dimensional representations. It is therefore natural to ask whether a trained siVAE model could 
yield insight into gene co-expression network structure of the training data, without the need for 
explicit gene network inference. More specifically, we view the siVAE loading matrix that siVAE 
infers as a non-linear analog of the PCA loading matrix. Indeed, one can view probabilistic PCA58 
as a restricted form of a VAE in which all of the activation functions in the decoder are linear, no 
regularization is applied to the decoder weights, and the output distribution is an isotropic 
Gaussian.  
 
Previous work has shown that eigengenes (genes captured by factor loadings of PCA) represent 
network modules in the gene co-expression network59,60. We hypothesized that siVAE genes 
captured by feature loadings of siVAE may also represent network modules, and that co-
expressed genes in the training data are also proximal in the siVAE feature embedding space. To 
explore how a group of co-expressed genes are organized in the feature embedding space, we 
constructed a synthetic gene regulatory network consisting of five communities of 50 tightly 
correlated genes each, as well as an additional group of 50 independent, isolated genes (Fig. 
4a). Each community follows a hub-and-spoke model in which a hub gene is connected to every 
other gene in the community, and each gene in the community is in turn only connected to the 
hub. No edges connect genes from different communities. Based on this gene network, we 
sampled a single cell gene expression dataset consisting of 5,000 cells and 300 genes (see 
Methods). The sampled expression matrix was used to train siVAE to embed genes in its feature 
embedding space.  
 
We found that genes belonging to the same community co-localized in the feature embedding 
space, but interestingly, the hub nodes are embedded in distinct locations their corresponding 
community (Fig. 4b). Our interpretation of this observation is that given the limited capacity of the 
cell embedding space, siVAE tends to keep information specifically about each hub because of 
their high degree centrality. On the other hand, non-hub genes within the same community co-
localize in the feature embedding space because the limited capacity of the VAE forces non-hub 
genes to be predicted similarly, given the retained information about the hub. Interestingly, the 50 
independent, isolated genes in the network were clustered tightly but near the origin in the feature 
embedding space, whereas genes that are part of a community are clustered but located farther 
away from the origin. This is likely because of two reasons. First, the KL divergence term of the 
feature-wise encoder-decoder of siVAE will tend to draw genes towards the origin. Second, 
because isolated genes by definition do not co-vary with other genes, information about their 
expression pattern will tend to be lost during compression, leading the VAE to tend to predict the 
average expression level of that gene in the decoder (which will be 0, because of data centering). 
This in turn encourages the feature embedding to be at the origin because the interpretability term 
encourages the linear product of the feature embedding with the feature loadings to predict the 
JHQH¶V�H[SUHVVLRQ�SDWWHUQ, so if a feature is located at the origin in the feature embedding space, 
it will cause the predicted expression to be 0. 
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We also confirmed that co-expressed genes cluster in the feature embedding space using the 
fetal liver cell atlas data. Unlike the simulations above, for the fetal liver atlas there are no ground-
truth gene regulatory networks available to use to identify truly co-expressed genes that are part 
of the same underlying gene communities. We therefore trained siVAE on the entire fetal liver 
atlas with 40 cell types, and considered marker genes of the same cell type61 to be a ground truth 
set of co-expressed genes. We selected only the four cell types with available marker genes for 
visualization (Fig. 4c). In the resulting feature embedding space learned by siVAE, we see that 
markers of the same cell type tend to cluster in feature embedding space as expected (Fig. 4d). 
Our results overall suggest that co-expressed genes tend to co-localize in siVAE feature 
embedding space. 
 
RESULTS ± Gene hubs can be identified without explicit gene network inference 
 
Our observation that hub genes in a community are treated differently by siVAE led us to 
hypothesize that we may be able to identify hub genes from a trained siVAE model without 
inferring a GCN. Hub genes are often identified after GCN inference because they play essential 
roles both in terms of the structure of the network and the genome itself, and are often targets of 
genetic variants associated with disease62,63. We reasoned that because hub genes are 
connected to so many other genes, siVAE is more likely to store the expression patterns of hub 
genes in the compressed representation (latent embedding) for use in reconstructing the rest of 
the gene expression patterns. We therefore hypothesized that we could identify hub genes as 
those genes that are well reconstructed by a trained siVAE model, because if siVAE captures 
variation in hub gene expression in the cell embedding space, it should also reconstruct the hub 
gene expression more accurately than other genes. We therefore used gene-specific 
reconstruction accuracy in the siVAE model as GCN -free measure of degree centrality. As a 
JURXQG�WUXWK�PHDVXUH�RI�JHQH�FHQWUDOLW\��ZH�FDOFXODWHG�HDFK�JHQH¶V�LQGLYLGXDO�DELOLW\�WR�SUHGLFW�WKH�
expression levels of every other gene in the genome (see Methods)��UHDVRQLQJ�WKDW�D�µKXE¶�JHQH�
should be predictive of many other genes in the network. 
 
Figure 5a FRPSDUHV�VL9$(¶V�HVWLPDWH�RI�JHQH�FHQWUDOLW\�ZLWK�JHQH�FHQWUDOLW\�FDOFXODWHG�RQ�GCNs 
inferred using a number of existing GCN inference algorithms (see Methods). Overall, siVAE has 
the highest correlation between its predicted gene centrality and the ground truth centrality 
(Spearman 0.90=ߩ, P=2.2x10-16), significantly larger than other approaches (median Spearman 
 P=9. x10-11). When identifying hub genes in a network, it is typical to focus on the genes ,0.36=ߩ
with highest predicted centrality. We found that the top 20 genes with highest predicted degree 
centrality for siVAE has mean ground truth degree centrality of 0.092. This compares favorably to 
the GCN inference methods, for whom the median of mean ground truth degree centrality is 0.074 
for the top 20 most central genes identified by the GCN inference methods.  Figure 5b illustrates 
the cumulative ground truth degree centrality of the top predicted hubs according to each method, 
and siVAE consistently selects genes with the largest cumulative degree centrality of all tested 
methods. These results in total suggest that using siVAE, we can identify high degree centrality 
genes more accurately than the more classic approach of first inferring a gene co-expression 
network before identifying high degree centrality genes.  
 
RESULTS ± Systematic differences in gene neighbors identified by dimensionality 
reduction and network inference methods 
 
Finally, we explored the extent to which we could identify neighboring genes that share an edge 
in a GCN, without having to infer GCNs explicitly. Gene neighbors tend to share similar function64, 
interact with one another65 and/or belong to the same gene community66. Identification of gene 
neighbors therefore aids in identifying co-functional genes in the cell.  
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Here we hypothesized that we could identify gene neighbors directly using a trained siVAE model, 
instead of having to first infer an explicit GCN. GCN inference methods typically output edge 
weights between pairs of nodes in the network, where larger weights correspond to a greater 
chance the two nodes share an edge in the underlying GCN. For siVAE, we generate edge 
weights in two ways: (1) siVAE-Euc, the Euclidean distance of the two genes in the feature 
embedding space, where smaller distances correspond to closer proximity, and (2) siVAE-GCN, 
where we first sample a new scRNA-seq dataset from siVAE that matches the size of the training 
data, then run a GCN inference method (ARACNE, MRNET, CLR, and GRNBOOST2) on the 
sampled scRNA-seq dataset to calculate edge weights between genes. To quantitatively evaluate 
the accuracy of neighbor identification using each method, we measured the percentage variance 
explained of a given query gene when predicted by the expression levels of the nearest 20 genes 
ranked by edge weight to the query gene (see Methods). In our evaluations, we only consider the 
152 query genes which were predicted to have high degree centrality across all tested methods 
(see Methods).  
 
Overall, most methods identified neighbors that were equally predictive of the 152 TXHU\�JHQHV¶�
expression levels (Fig. 5c). Excluding LDVAE and ARACNE, the median % variance explained 
for each method was 79.9% r 0.84 s.d. Supplementary Fig. S14 illustrates that excluding LDVAE 
and ARACNE, the pairwise difference in % variance explained between methods is only 0.013% 
on average. Notably, we observed lower % variance explained for LDVAE and ARACNE (on 
average, 77.2% variance explained, and 78.3% variance explained, respectively). The poorer 
results of LDVAE are consistent with our classification performance results above. 
 
When considering the overlap in neighbors selected by different methods, it is striking how the 
dimensionality reduction methods cluster strongly (scVI, siVAE, LDVAE) and the GCN inference-
based methods cluster strongly as well, with markedly less overlap between these two groups 
(Fig. 5d). This is surprising in part because the neighborhood sets are all approximately of the 
same predictive performance (Fig. 5c), suggesting the DR methods are systematically identifying 
different neighbors that are as equally co-expressed as the neighbor set identified by the GCN 
methods. In particular, consider that siVAE-GCN involves identifying gene neighbors using the 
GCN inference methodology, but just applied to a siVAE-generated dataset (instead of the original 
training dataset). Figure 5c illustrates that under the siVAE-GCN neighborhood identification 
framework, the neighborhood genes are still much more similar to siVAE than to the GCN 
inference methods, suggesting the unique neighborhood identified by the DR methods is a 
property of the co-expression patterns that DR methods learn, and not due to the way in which 
neighborhood genes are identified. The poor overlap between the DR and GCN methods also 
holds true if we consider the average pairwise correlation in expression between neighbor sets, 
instead of considering overlap of genes (Fig. 5e). More specifically, the GCN-defined neighbor 
sets had higher average Pearson correlation amongst themselves (average Pearson correlation 
= 0.67, excluding ARACNE) compared to the average Pearson correlation coefficient among the 
neural net-based neighbor sets (average Pearson correlation = 0.46). There was also low average 
correlation between DR and GCN neighbor sets (average Pearson correlation = 0.39). Our results 
therefore suggest that since GCN- and dimensionality reduction-identified neighbor sets are 
systematically different but approximately equally predictive of neighboring genes, then both 
approaches should be used to find co-expressed genes in a network. 
 
RESULTS ± Co-regulation of mitochondrial genes in iPSCs linked to neuron differentiation 
efficiency 
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We next wondered whether we could leverage siVAE to compare GCN structure across multiple 
cell populations and associate changes in network structure with cell population phenotypes. 
Because robust single-GCN inference is already challenging, there has not been extensive work 
into approaches to comparing multiple GCNs67±69. As introduced earlier, the NeurDiff dataset 
includes scRNA-seq data collected across 215 iPSC cell lines profiled before differentiation (at 
11 days), as well as after initiation of differentiation into neurons (day 30 and 52). By computing 
the fraction of sequenced cells at day 52 that were neuronal, each cell line has an estimate as to 
how efficiently they could be differentiated into neurons. Efficiencies were found to be highly 
reproducible and potentially associated with expression profile of the pluripotent cells at Day 1137. 
Thus, we focused on the identification of GCN structure in iPSCs (at day 11) that were associated 
with neuronal differentiation efficiency (measured at day 52) (Fig. 6a). The pluripotent cells 
sequenced at day 11 were further divided into two cell types based on whether they were 
proliferating (P_FPP) or non-proliferating (FPP) mid brain floor plate progenitors, and we 
performed GCN analysis on P_FPP and FPP cells separately.  
 
We first trained siVAE on each of the 41 iPSC lines to yield 41 gene embedding spaces. We then 
calculated a pairwise distance between every pair of iPSC lines using a graph kernel on the gene 
embedding spaces (see Methods). Figure 6b visualizes these distances between iPSC lines 
using PCA.  Surprisingly, we observed separation of cell lines according to their neuronal 
differentiation efficiency along PC-1, when visualizing all lines together (Fig. 6b), as well as when 
visualizing only iPSC lines that showed any differentiation (Supplementary Fig. 12). This result 
was unexpected because the graph kernel-based visualization (Fig. 6b) does not use any 
information about neuronal differentiation efficiency to guide visualization. The fact that the iPSC 
lines still separate by efficiency suggests that the major differences in network structure between 
iPSC lines is strongly associated with differentiation efficiency. We confirmed on both the two 
progenitor cell types (P_FPP and FPP) that differentiation efficiency explains separation in the 
cell line embeddings (Supplementary Fig. 15), but we focused on FPP for downstream analysis 
because of larger dataset size.  
 
To determine the genes whose varying structure is most responsible for explaining variation in 
Figure 6b, we computed siVAE degree centrality for each gene and for each iPSC line, and used 
gene set enrichment analysis (GSEA) to identify which gene sets and pathways whose degree 
centrality correlated with differentiation efficiency. Overall, we found 125 JHQHV¶�GHJUHH�FHQWUDOLW\�
was significantly correlated with differentiation efficiency (Supplementary Table 12). Of these 
125 genes, 10 of them are from the mitochondrial (MT) genome. We found that the degree 
centrality of all 10 MT genes were significantly correlated with differentiation efficiency (GSEA, 
adjusted P=1.2x10-5) (Fig. 6c). Individually, mitochondrial genes had high correlation between 
their degree centrality and efficiency, with median Spearman correlation of 0.53 and P-value of 
2.3x10-5.  
 
A common explanation for change in connectivity for a single gene in a GCN is a change in overall 
expression; genes that are turned off cannot covary with other genes, for example. To rule out 
this trivial explanation and focus on genes whose degree centrality is correlated with 
differentiation efficiency independent of changes in mean expression, we identified genes whose 
mean expression is correlated with differentiation efficiency. None of the individual mitochondrial 
JHQHV¶�PHDQ�H[SUHVVLRQ�OHYHOV�ZHUH�VLJQLILFDQWO\�FRUUHODWHG with differentiation efficiency (median 
Spearman 0.016=ߩ, median adjusted P=0.75, Supplementary Fig. 16). In contrast, 88 of the 115 
non-MT genes whose degree centrality correlated with efficiency also demonstrated high 
correlation between efficiency and mean gene expression (median Spearman 0.21=ߩ, median 
adjusted P=6.0x10-6). The correlation between MT geneV¶ degree centrality and differentiation 
efficiency is therefore not explained by changes in mean expression of MT genes. 
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1H[W��ZH�H[DPLQHG�WKH�VSHFLILF�FKDQJHV�LQ�07�JHQHV¶�network connectivity that were driving their 
correlation between degree centrality and efficiency. Based on the GCN inferred from siVAE gene 
embeddings, the number of edges between MT genes and non-MT genes were consistently low 
across all cell lines with an average of 0.65 edges per cell line and showed insignificant correlation 
with efficiency (Spearman 0.20=ߩ, P=0.14) (Supplementary Fig. S17). Connectivity between MT 
and non-MT genes therefore does not explain the variation in MT gene connectivity across lines. 
Instead, the correlation between MT gene centrality and differentiation efficiency is driven by 
changes in connectivity within the MT genes with an average of 73 edges per cell line and high 
correlation with efficiency (Spearman 0.59-=ߩ, P=1.5 x10-6).  
 
The mitochondrial genes encode for subunits of mitochondrial complexes. Given our results 
above suggest that connectivity between MT genes is correlated with differentiation efficiency, we 
sought to distinguish if it were connections between MT genes in the same or different complexes 
that are correlated with differentiation efficiency. We performed a Wilcox rank sum test on every 
pair of MT genes to test whether edges between or within MT complexes are correlated with 
differentiation. We identified seven MT edges correlated with differentiation efficiency in total and 
of the seven, six of them connect pairs of MT genes from different complexes. Of these six edges, 
three connect NADH dehydrogenase to cytochrome C oxidase, two edges connect NADH 
dehydrogenase to cytochrome b, and one edge connects cytochrome C oxidase to cytochrome 
b. This suggests that coregulation of distinct MT complexes is an important indicator of 
differentiation efficiency of these iPSC. Given the overall importance of MT genes and the 
potential role they play in differentiation efficiency, we then looked for genetic variants in MT genes 
that are associated with differentiation efficiency. Unfortunately, we were unable to identify genetic 
variants in the MT genome that were significantly correlated with differentiation efficiency 
(Supplementary Note 2). 
 
 
Discussion 
 
Through the development of siVAE, we have mitigated one of the primary limitations of the 
interpretation of VAEs: the slow execution time of neural network feature attribution methods 
when the number of input features and embedding dimensions of the cell embedding space are 
both large. Single cell atlases are ever-increasing in size due to the dropping cost of single cell 
sequencing70. Also, there is rapidly increasing interest and development of multi-modal single cell 
assays such as SNARE-Seq71, ECCITE-Seq72, and SHARE-Seq73 that measure multiple data 
modalities (RNA, ATAC) simultaneously and are yielding single cell measurements with up to 
hundreds of thousands of input features, which will then demand large cell embedding spaces to 
accurately capture covariation in input features. As such, we expect the importance of scalable, 
interpretable VAEs will continue to grow.  
 
Our analysis has also demonstrated how interpretation of cell embedding spaces can lead to 
insight into the gene regulatory networks underlying the cell population siVAE is trained on. In 
addition to showing how co-expressed groups of genes can be identified, we also showed how 
we can identify hub genes, without inferring an explicit GCN. This is useful because GCN 
inference continues to be a highly challenging task, even in the era of large numbers of cells 
sequenced from single cell assays74. Furthermore, siVAE can also find groups of co-regulated 
genes that are not readily identified by GCN methods, suggesting the two approaches to 
identifying co-regulated gene sets are complementary in their findings. By comparing VAEs 
trained on different cell populations, it is likely possible to identify differential co-expression 
patterns between cell populations, also without explicit GCN inference. Finally, we demonstrate 
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siVAE identifies genes with high degree centrality more accurately than ranking genes by explicit 
node degree in a gene network, suggesting siVAE can be used to find central genes in the 
genome. 
 
A surprising observation we made was that the set of neighbors of a given gene with respect to 
the underlying GCN is systematically different between explicit GCN inference methods and the 
dimensionality reduction methods. This even holds true when a trained siVAE model was used to 
sample expression data that was then sent as input into a classic GCN inference method; in this 
scenario, the resulting GCN yielded neighbors that were similar to those identified directly from 
the DR methods. Our experiments further showed that both neighborhood sets are equally co-
expressed with the query gene, suggesting at the least that accurate GCN construction should 
leverage both of these types of approaches to identifying gene neighbors. One possible 
explanation is that DR methods can learn to combine many genes into a single embedding 
dimension, whereas explicit GCN inference methods ultimately represent co-expression patterns 
as individual edges between only pairs of genes, and therefore are more limited in their capacity 
to represent higher order co-expression patterns.  
 
Previous studies have established the importance of mitochondria in reprogramming, 
maintenance of pluripotency, and differentiation through their functional role in energy production 
75±77. With respect to gene regulation, key mitochonGULDO� WUDQVFULSWLRQ� IDFWRUV� LQIOXHQFH� L36&¶V�
ability for differentiation78±82. The mean expression levels of established pluripotency markers 
such as SOX2, Oct4, Nanog, Klf4, and c-MYC83 are correlated with differentiation efficiency37. 
Also, transcription factors associated with mitochondrial biogenesis (TFAM, POLG1, and 
POLG2)77,78 are necessary for successful differentiation. Our results showing coregulation of MT 
complexes as an indicator of differentiation efficiency are complementary in that there are few 
studies identified additional downstream genes84,85 associated with differentiation efficiency; prior 
work focused on identifying genes whose mean expression was correlated with differentiation 
efficiency, and did not identify MT genes37.  
 
There has also been recent work studying the impact of mitochondrial heteroplasmy on iPSC 
differentiation potential. Several studies now suggest mtDNA integrity as mandatory iPSC 
selection criteria86±88. +HWHURSODVP\�RI�VHYHUDO�PXWDWLRQV�KDYH�EHHQ� OLQNHG� WR� L36&¶V�DELOLW\� WR�
differentiate87±90. Manipulating MT heteroplasmy through insertion of wild type mtDNA has been 
shown to revert diseased iPSC state and improve pluripotency91. Correlation of heteroplasmy with 
co-expression of MT complexes is an interesting avenue to pursue to determine whether 
heteroplasmy may be a cause of de-correlation of MT complexes.  
 
While we have chosen the classic VAE framework upon which to build siVAE, our approach to 
introducing a feature-wise decoder and interpretability term is generalizable and can be applied 
to other general extensions of VAE, such as VAE-GANs, ߚ-VAE among others 92,93. With respect 
to genomic data modalities such as epigenomics, miRNA, and scRNA-seq, methods such as 
SCALE94, RE-VAE24, methCancer-gen25, VAEMDA27, scMVAE26, scVI20, Dr.VAE32, scGen33, and 
Dhaka29 could also benefit from similar interpretability terms such as that used for siVAE. Many 
of these methods specifically focus on analysis beyond visualization20,28 such as trajectory 
inference29,95, data imputation30, and perturbation response prediction31±33. An additional 
interpretability term could enable identification of key input features in each task (e.g. which set 
of regulatory genes are tied to differentiation progression, which input genes are used to impute 
missing genes, and which sets of genes are affected by drug perturbation), which is a crucial step 
for validation and downstream application of these methods. Recently, there has been great 
interest in integrative analysis of multi-modal data resulting from sequencing technologies that 
measures two modalities such as SNARE-Seq71 measuring gene expression and chromatin 
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accessibility as well as CITE-Seq96 measuring gene expression and protein expression. Even for 
methods that modifies VAE to jointly model two modalities (totalVI97, multiVI98, scMVP99, 
BABEL100, and Cobolt101), an interpretability term could be applied to understand how individual 
features of each modality relate to features of another modality such as linking enhancers based 
on chromatin accessibility to its target genes.  
 
A related set of approaches to increasing interpretability of generative models focuses on 
disentanglement learning. In particular, methods such as InfoGAN102, FactorVAE48, DirVAE103 and 
others93,104,105 modify generative models such as the VAE to achieve disentangled representation 
by encouraging the individual cell dimensions to be statistically independent. They show that 
independence between cell dimensions oftentimes leads to more correspondence between 
individual cell dimensions and tangible factors such as width and rotation of digits for MNIST. 
However, we do not consider these model variants here because they do not provide contributions 
of individual features to cell dimensions. These approaches still require users to manually draw 
samples of points from the cell embedding space, reconstruct the input features from the cell 
dimensions, then use human intervention to manually inspect how variation across specific 
dimensions might correspond to human-interpretable factors of variation. However, the 
regularization terms that encourages disentanglement between the cell dimensions may be 
applied to siVAE. This would help remove the entanglement between cell dimensions such as the 
overlapping outlines of digits in siVAE loadings for the MNIST dataset.   
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METHODS 
 
Model notation. We denote vectors as lower case, bold letters (e.g. ࢠ). Matrices are upper case 
letters with two subscript indices (e.g. ܺ௖ǡ௙). Constants are upper case letters with no subscripts 
(e.g. ܮ).  
 
Generative process of VAEs. siVAE is an extension of a classic variational autoencoder. Here 
we briefly review the generative process assumed by a standard VAE with ܮ hidden layers in the 
decoder, and in which the hidden units of the last layer of the decoder are linearly transformed 
into the predicted mean of the Gaussian distribution over the observed data:  
௖ǡଵ̱ܰሺͲǡࢠ   ௄ሻ 1ܫ
௖ǡκࢠ  ൌ ௖ǡκିଵሻ, κࢠκሺߤ ൌ ʹǡǥ ǡ  2 ܮ
 ܺ௖ǡ௙̱ܰሺ ௙࢜

௖ǡ௅ǡࢠ்  ௖ǡ௅൯ሻ 3ࢠௗ൫ߪ
 
ܺ௖ǡ௙ is the input observed value for feature (e.g. gene) ݂ and cell ܿ (centered and scaled across 
all cells), where we assume there are ܨ  features and ܥ  cells in the training data.  ࢠ௖ǡଵ  is the 
embedding of cell ܿ in the (latent) cell embedding space of the VAE, while ࢠ௖ǡκ for κ ൐ ͳ represent 
the activations of the hidden layer κ of the decoder for cell ܿ. ௙࢜  is the vector of incoming weights 
to the predicted mean of the output node ݂ of the VAE, while ߪௗሺڄሻ is a one-layer function that 
predicts a non-negative scalar value representing variance. ܫ௄ is the identity matrix of rank ܭ.  
ሻǡڄଵሺߤ ǥ ǡ ሻ represent the parameterized activation functions of hidden layers ͳǡǥڄ௅ሺߤ ǡ -of the cell ܮ
wise decoder, respectively. 
 
Generative process of siVAE. The key idea behind siVAE is that we jointly infer cell-wise and 
feature-wise state spaces, and through regularization, loosely enforce correspondence between 
the cell and feature dimensions. Here, correspondence means variation in dimension ݇ in the cell 
embedding space corresponds to observed variation in each feature ݂ that is proportional to 
feature ݂ ¶V embedding coordinate in dimension ݇ . Through correspondence, the feature 
embedding coordinates (`siVAE loadings¶) become analogous to factor loadings, and the cell 
embedding coordinates (`siVAE scores¶) become analogous to the factor scores of PCA. In 
siVAE, the feature and cell embeddings are sampled from different latent spaces and projected 
to higher dimensions through separate decoders, before combining to produce the means of the 
Gaussians (Figure 1a). The generative process assumed by siVAE is shown below: 
 
௖ǡଵ̱ܰሺͲǡࢠ   ௄ሻ 4ܫ
௖ǡκࢠ  ൌ ௖ǡκିଵሻ,�κࢠκሺߤ ൌ ʹǡ ǥ ǡ  5 ܮ
 ௙࢜ǡଵ̱ܰሺͲǡ  ௄ሻ 6ܫ
 ௙࢜ǡκ ൌ ߱κ൫ ௙࢜ǡκିଵ൯, κ ൌ ʹǡ ǥ ǡ  7 ܮ
 ܺ௖ǡ௙̱ܰሺ ௙࢜ǡ௅

் ௖ǡ௅ǡࢠ  ௖ǡ௅൯ሻ 8ࢠௗ൫ߪ
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Here ࢠ௖ǡ௅, ߤκሺڄሻ, ܫ௄ and ߪሺڄሻ are defined as above for VAEs. ௙࢜ǡଵ is the latent embedding of feature 
݂  in the feature embedding space of siVAE, while ࢜௚ǡκ  for κ ൐ ͳ  represent the activations of 
hidden layer κ of the feature-wise decoder for feature ݂.  ߱ଵሺڄሻǡ ǥ ǡ ߱௅ሺڄሻ represent the activation 
functions of hidden layers ͳǡǥ ǡ  .of the feature-wise decoder, respectively ܮ
 
Comparing Equations 3 to Equations 6-8 illustrate that siVAE turns the last layer of weights leading 
to the Gaussian mean of the VAE into a non-linear transformation of the latent variables ௙࢜ǡଵ. 
siVAE can therefore be viewed as putting a prior over a single (last) layer of weights in the VAE. 
The matrix ܸ ൌ ൣ࢜ଵǡଵǡڮ ǡ ࢜ிǡଵ൧

் encodes the siVAE loadings, while the matrix ܼ ൌ ڮଵǡଵǡࢠൣ ǡ  ஼ǡଵ൧ࢠ
encodes the siVAE scores. Note that we can compute siVAE loadings and scores of other hidden 
layers κ as well, but in this paper, we focus on the latent space (κ ൌ ͳ). 
 
 
Inference and training. We employ variational inference via a pair of encoder networks,�߰ሺ ǣܺǡ௙ሻ 
for features and ߶ሺܺ௖ǡǣሻ for cells, in a manner analogous to variational inference applied to VAEs. 
Note the input for the two encoders is different: ǣܺǡ௙ is a vector of observations for a single feature 
݂ across all training cells, whereas ܺ௖ǡǣ is a vector of observations for a single cell ܿ across all 
features. Our approximate posterior ݍ ቀ൛ ௙࢜ǡଵൟ௙ୀଵ

ி ǡ ൛ࢠ௖ǡଵൟ௖ୀଵ
஼ ቁ factors as follows: 

 
ݍ ቀ൛ ௙࢜ǡଵൟ௙ୀଵ

ி ǡ ൛ࢠ௖ǡଵൟ௖ୀଵ
஼ ቁ ൌෑݍ൫ ௙࢜ǡଵ൯

ி

௙ୀଵ

ෑݍ൫ࢠ௖ǡଵ൯
஼

௖ୀଵ

 
9 

൫ݍ�  ௙࢜ǡଵ൯ ൌ ܰሺ ௙࢜ǡଵǢ టܹ
்߰൫ ǣܺǡ௙൯ǡ ௘ǡటሺ߰൫ߪ ǣܺǡ௙൯ሻሻ 10 

௖ǡଵ൯ࢠ൫ݍ  ൌ ܰሺࢠ௖ǡଵǢ థܹ
்߶൫ܺ௖ǡǣ൯ǡ  ௘ǡథሺ߶൫ܺ௖ǡǣ൯ሻሻ 11ߪ

 
We perform variational inference and learning by maximizing the expected lower bound function 

κ�����, where κ�� ൌ ��ቆݍ ቀ൛ ௙࢜ǡଵൟ௙ୀଵ
ி ǡ ൛ࢠ௖ǡଵൟ௖ୀଵ

஼ ቁ צ ݌ ቀ൛ ௙࢜ǡଵൟ௙ୀଵ
ி ǡ ൛ࢠ௖ǡଵൟ௖ୀଵ

஼ ቁቇ. 

 
 
 

κ����� ൌ κ�� ൅ ॱ௤ሺࢠ೎ǡభǡ࢜೑ǡభሻ ቎෍෍���ܰ൫ܺ௖ǡ௙Ǣ ௙࢜ǡ௅
் ௖ǡ௅ǡࢠ ௖ǡ௅ሻ൯ࢠௗሺߪ

௙௖

቏ 
12 

 
 
Interpretability term. The right-hand side of Equation 12 is analogous to the KL divergence and 
reconstruction loss terms of the original VAE lower bound function. The term in Equation 13, which 
we call the interpretability term, encourages the individual embedding dimensions of ௙࢜ǡଵ and ࢠ௖ǡଵ 
to correspond to each other, by encouraging the linear products between ௙࢜ǡଵ  and ࢠ௖ǡଵ  to 
approximate ܺ௖ǡ௙. In our experiments, we set the penalty term ߛ ൌ ͲǤͲͷ to make the effect of the 
interpretability term small on the overall loss function. 
 
Reducing dimensionality of input for feature-wise encoder-decoder. The size of input ǣܺǡ௙ for 
feature-wise encoder-decoder increases with ܥ , number of cells. To avoid the computational 

 
െߛॱ௤ሺࢠ೎ǡభǡ࢜೑ǡభሻ ቎෍෍���ܰ൫ܺ௖ǡ௙Ǣ ௙࢜ǡଵ

் ௖ǡଵǡࢠ ͳ൯
௙௖

቏ 
13 
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expenses of models with potentially millions of input nodes, we reduce the dimensionality of the 
input from ܥ to ܥ௥௘ௗ through either downsampling or PCA. For downsampled input, we randomly 
sample ܥ௥௘ௗ  cells while maintaining the ratio between the cell types which accounts for 
redundancy of information between cell types with similar gene expression patterns. For PCA 
input, we performed  PCA without whitening on ்ܺ, ܥ ݔ ܩ matrix and retained first ܥ௥௘ௗ principal 
components resulting in ܺᇱ் ௥௘ௗܥ ݔ ܩ ,  score matrix. The preservation of linear covariation with 
PCA is analogous to common usage of PCA before t-SNE or UMAP. In Supplementary Fig. S16, 
we show training the feature-wise encoder-decoder with downsampled and PCA inputs both 
results in loss and clustering accuracy score comparable to that of model trained with the full data. 
 
Training procedure for siVAE. We use a three-step training procedure to improve inference and 
learning, described in more detail in the Supplementary Materials: 
x Pre-train cell-wise encoder and decoder. We first train the cell-wise encoder and decoder, 

similar to how a classic VAE is trained, by optimizing the Equation 12 component of κ����� with 
respect to ሼߤκǡ ௗǡߪ ߶ǡ ௘ǡథǡߪ థܹሽ, and by treating the variables ௙࢜ǡ௅ as parameters to optimize to 
estimate ෥࢜௚ǡ௅. The input to the cell-wise decoder are the cell-wise data points ܺ௖ǡǣ, and the 
output are the same data points ܺ௖ǡǣ. 

x Pre-train feature-wise encoder and decoder. We next train the parameters associated with 
the feature-wise encoder and decoder, namely ሼ߱κǡ߰ǡ ௘ǡటǡߪ టܹሽ,  by training a VAE whose 
inputs are the data features ǣܺǡ௙, outputs are ෥࢜௙ǡ௅ learned from the previous step, and whose 
encoder is defined by�ሼ߰ǡ ௘ǡటǡߪ టܹሽ, and decoder parameterized by ߱κ, for κ ൌ ͳǡǥ ǡ ܮ െ ͳ. 

x Train siVAE. We finally train all model parameters ൛ߤκǡ ௗǡߪ ߶ǡ ௘ǡథǡߪ థܹǡ ߱κǡ ߰ǡ ௘ǡటǡߪ టܹൟ jointly 
by optimizing the full κ����� from Equation 12,13. 

 
siVAE and VAE network design. For our experiments, identical neural net designs were used 
across the feature-wise and cell-wise encoders and decoders in siVAE. The architecture of the 
VAEs we compared against were matched to the architecture of the cell-wise encoder/decoders 
of siVAE. For MNIST and Fashion-MNIST, we set the architecture of the encoder to two hidden 
layers of sizes 512 and 128, and the decoder to two hidden layers of sizes 128 and 512. For all 
other datasets except the LargeBrainAtlas dataset, we set the architecture of the encoder to three 
hidden layers of sizes 1024, 512 and 128, and the decoder to three hidden layers of sizes 128, 
512 and 1024. LargeBrainDataset, we trained an encoder with three hidden layers of sizes 2048, 
1024, and 512, and the decoder with three hidden layers of sizes 512, 1024, and 2048. We used 
a latent embedding layer with size varying between 2, 5, 10 and 20 nodes for all imaging datasets. 
For the fetal liver atlas, we set the latent embedding layer size to be 2 for visualization and 64 for 
all other cases. In the timing experiment, we varied the latent embedding layer size between 20, 
128 and 512 for the LargeBrainAtlas dataset, while setting the latent embedding layer size at 2 
for the scATAC-Seq dataset. For the NeurDiff dataset, we set the size of the latent embedding 
layers to be 32. Additional implementation details as well as a table containing the above 
information on network design can be found in the Supplementary Materials (Supplementary 
Table 1). 
 
siVAE and VAE model selection. We set model hyperparameters and optimization parameters 
by performing a hyperparameter search for the model with lowest total loss on the held-out data. 
For each model, we used the Adam optimizer for training, with a learning rate of either 0.0001, 
0.001, or 0.01. We considered L2 regularization with scale factor ߣ of either ͲǤͲͲͳ or ͲǤͲͳ. For 
imaging datasets, we set the number of embedding dimensions to 20. For genomic datasets, we 
used two embedding dimensions for models that were used for visualization, and otherwise 
considered sizes of 16, 32 and 64 for all other analyses. 
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siVAE model variants. To explore the role of different design choices of siVAE, we created 
several variants of the siVAE model described above. siVAE (ߛ ൌ Ͳ) removes the interpretability 
term in Equation 13 (by default, ߛ ൌ ͲǤͲͷ).  For comparison against LDVAE, whose decoder 
network ultimately predicts the parameters for negative binomial distributions instead of the 
parameters of a Gaussian distribution as implemented in siVAE and VAE, we also implemented 
both siVAE (NB) that predicts the parameters of a negative binomial distribution and VAE (linear) 
that is an identical implementation of LDVAE. siVAE (NB) is formulated as follows, where ݈ఓǡ ݈ఙ 
parametrize the prior for scaling factor and are set to empirical mean and variance of the observed 
data: 
 
 ݈௖̱ ��� ������ሺ݈ఓǡ ݈ఙଶሻ 14 
௖ǡ௙ߩ                  ൌ �������൫ ௙࢜ǡ௅

்  ௖ǡ௅൯ 15ࢠ
                 ݉௖ǡ௙̱
����ሺߩ௖ǡ௙ǡ  ௖ǡ௅ሻሻ 16ࢠௗሺߪ
 ܺ௖ǡ௙̱�������൫݈௖݉௖ǡ௙൯ 17 
   
 

κௌூ௏஺ாಿಳ ൌ κ�� ൅ ॱ௤ሺࢠ೎ǡభǡ࢜೑ǡభሻ ቎෍෍����������൫ܺ௖ǡ௙Ǣ ݈௖݉௖ǡ௙൯
௙௖

቏ 
18 

 
 

VAE (linear) is identical to siVAE (NB) except ௙࢜ǡ௅
்  is replaced by ߶௙, an estimated parameter that 

matches the length of ࢠ௖ǡ௅, thereby removing thefeature-wise encoder-decoder from the model. 
Finally, we implemented siVAE (linear), where the mean of the distribution over ܺ௖ǡ௙ is directly 
predicted from linear multiplication of cell and feature embeddings. The reconstruction loss term 
corresponds to interpretability term, eliminating need for the latter.  
 
 ܺ௖ǡ௙̱ܰሺ ௙࢜ǡଵ

் ௖ǡଵǡࢠ  ௖ǡଵ൯ሻ 19ࢠௗ൫ߪ
 

κ����������� ൌ κ�� ൅ ॱ௤ሺࢠ೎ǡభǡ࢜೑ǡభሻ ቎෍෍���ܰ൫ܺ௖ǡ௙Ǣ ௙࢜ǡଵ
் ௖ǡଵǡࢠ ௖ǡଵሻ൯ࢠௗሺߪ

௙௖

቏ 
20 

 
 
Batch correction is natively implemented in siVAE with a similar approach used in scVI20. ݏ௖ is a vector of 
length ܾ  whose individual element is either a continuous feature or one-hot encoding of categorical 
feature. The batch vector is concatenated to the input of the cell-wise enc-dec as well as the cell 
embedding to minimize the amount of batch effect captured in the cell embedding.  

௖ǡଵ൯ݖଶ൫ߤ௖ǡଶ̱ࢠ  ൅  ௖ሻ 21ݏ௦ሺߤ
 

Additionally in the interpretability regularization term, we add weight ݆௙ , a vector of length ܾ , that 
accounts for batch effect absent in the linear reconstruction in cell embedding.  
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siVAE model availability. siVAE is implemented as a Python package and is available from PyPi 
(https://pypi.org/project/siVAE/). 
 
LDVAE and scVI. We used LDVAE15 and scVI20 implemented in SCANPY106 package available 
from PyPi. The architecture of the model was set to match that of the cell-wise encoder-decoder 
of siVAE, including the number of dimensions of the cell embedding space and the number of 
hidden layers, as well as the number of hidden nodes. Model optimization was performed by 
varying learning rate between 1e-2, 1e-3, and 1e-4 while the rest of the parameters were set to 
default. 
 
Feature attribution methods. Two separate Python packages were used to compute neural 
network feature attributions in our experiments. We used the DeepExplain Python package that 
implemented all feature attribution methods (Saliency Maps, Grad*Int, DeepLIFT, IntGrad, 
Shapley Value) included in our experiments in reverse-mode107. We used the tensorflow-forward-
ad Python package for computing Saliency Maps and Grad*Int in forward-mode108. In both cases, 
the package applies feature attribution between the target nodes and input nodes. For application 
of feature attributions on the decoder, the target nodes and input nodes were set to be the nodes 
of the output layer and latent embedding layer, respectively, for the cell-wise decoder. For 
application of feature attributions on the encoder, the target nodes and input nodes were set to 
be the nodes of the latent embedding layer and input layer, respectively, for the cell-wise encoder. 
By default, the DeepExplain package summarizes the attribution across all target nodes, so binary 
masks corresponding to a single target node were used per target node. Similarly, the tensorflow-
forward-ad package summarizes attribution across all input nodes, so binary masks 
corresponding to a single input node were used per input node. Integrated Gradients and 
DeepLIFT require an additional parameter of input baseline, which represents a default null value 
that input values can be referenced against. We set this value to 0 equaling the mean value of 
gene expression after preprocessing.   
 
For Gene Relevance, we used the published R package48. The method required the latent 
embeddings learned from siVAE as well as the raw count data corresponding to the embeddings. 
We also varied the number of neighborhoods (10, 100, 1000, and default).  
 
 
Feature embeddings for feature attribution methods and Gene Relevance. All feature 
attribution methods tested here can output feature importance scores ௙࢙ǡ௖ that represents a vector 
of contributions of feature ݂ to all cell dimension ݀ for cell ܿ . The Gene Relevance method48 
outputs partial derivatives in the same format. In contrast, siVAE loadings ௙࢜ǡଵ represents a vector 
of contributions of feature ݂ to all cell dimensions, summarized over all cells. To compare feature 
attribution methods to siVAE, we therefore need a procedure for converting the per-cell 
attributions ௙࢙ǡ௖ into a set of overall feature attributions ௙࢛  for each feature f with respect to all cell 
GLPHQVLRQV�DQG�WKDW�VXPPDUL]H�DFURVV�DOO�FHOOV��DQDORJRXV�WR�VL9$(¶V�ORDGLQJV� ௙࢜ǡଵ. To do so, we 

 
െߛॱ௤ሺࢠ೎ǡభǡ࢜೑ǡభሻ ቎෍෍���ܰ൫ܺ௖ǡ௙Ǣ ௙࢜ǡଵ
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first construct a matrix ܵௗǡ௙ǡ௖ , containing all feature attributions for cell dimension ݀, cell ܿ and 
feature ݂. For each cell dimension ݀, we apply PCA to the 2D matrix ܵௗǡǣǡǣ to extract the first 
principal component¶s loadings ࢛ǣǡௗ, a vector of length ܨ that contains the contribution of each 
input feature ݂  to cell dimension ݀ . Repeating this process for each cell dimensions then 
concatenate the resulting vector results in matrix ࢁ௙ǡௗ, whose rows ࢁ௙ǡǣ are analogous to siVAE¶s 
௙࢜ǡଵ . Finally, we calculated Spearman correlation with two-sided test between the feature 

embeddings inferred through different approaches per dimension and reported the median 
values. 
 
Datasets. A table summarizing the following datasets can be found in Supplementary Table 2. 
 
Fetal liver atlas dataset processing. We obtained the fetal liver atlas34 from ArrayExpress with 
accession code E-MTAB-7407 (https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-7407/) 
on 2020/06/10, in processed form. We normalized the count matrix to TP10K, then performed 
feature selection by retaining the top 2,000 highly variable genes, yielding 177,376 cells and 2,000 
genes. We then downsampled the number of cells to 100,000 cells, while preserving the 
proportion of cells from each cell type. Genes were individually centered and scaled to unit 
variance. For visualization of the feature embeddings for the liver fetal atlas in Figure 3b, we 
obtained marker genes for four cell types (hepatocytes, Kupffer cells, NK/NKT cells, and MHC II 
positive B cells) that were available in the MsigDB database109 (downloaded from 
http://www.gsea-msigdb.org/gsea/msigdb/collections.jsp#C8 on 2020/02/08). To account for the 
multiple subtype labels in the fetal liver dataset matching to a single cell type in marker gene set, 
we allowed many-to-one mapping by grouping multiple cell type labels in the dataset that 
corresponded to one of the cell types in marker gene database. The exact groupings are shown 
in Supplementary Table 3. We only visualized the cells with known marker genes, and genes 
that belonged to more than one marker gene set (shared across cell types as a marker) were 
discarded.  
 
MNIST and Fashion-MNIST dataset processing. We obtained both datasets from the 
TensorFlow datasets web page on 2020/02/20. Images were flattened and centered and scaled 
to unit variance per feature across all images before input into the models. 
 
CIFAR-10 dataset processing. We obtained CIFAR-10 from the TensorFlow datasets web page 
on 2020/02/20. We then subsampled the image classes to only the airplane and ship classes 
because other image classes require convolutional layers to achieve good classification 
performance, but here our goal was to benchmark VAEs. Images were flattened and centered 
and scaled to unit variance per feature across all images before input into the models. Color 
channels were concatenated and flattened. 
 
LargeBrainAtlas dataset processing. We obtained the 1.3 Million Brain Cells dataset referred 
WR�DV�³/DUJH%UDLQ$WODV´ from the 10x Genomics website (https://support.10xgenomics.com/single-
cell-gene-expression/ software/pipelines/latest/advanced/h5_matrices) on 2020/04/28. We 
normalized the count matrix to TP10K, then retained all genes. After, genes were individually 
centered and scaled to unit variance.  
 
BrainCortex dataset processing. We obtained the BrainCortex dataset (GSE126074) from 
(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE126074) on 2020/12/01. We 
performed quality control based on TSS enrichment and nucleosome signal which filtered the 
dataset down to 244,544 features.  
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NeurDiff dataset processing. We obtained iPSC neuronal differentiation dataset referred to as 
³1HXU'LII´� GDWDVHW� IURP� https://zenodo.org/record/4333872 accessed on 2021/12/10. We only 
used the gene expression matrix for day 11 (D11) with pre-normalized expression. We divided 
the dataset according by cell types (FPP and P_FPP) then filtered out the cell lines that contained 
less than 1000 cells of that cell type. The downstream preprocessing and experiments were 
performed per cell type. Per cell type dataset, batch correction was performed per cell line to 
regress out pool_id as well as cell cycle score using regress_out() function from scanpy106. Next, 
we performed feature selection by taking the union of the top 2,000 genes with highest variance 
in each cell line as well as the top 2,000 genes with highest variance across all cell lines. 
Afterwards, genes were individually centered and scaled to unit variance. The final dataset 
consisted of 41 cells lines (109,483 cells) with 3,362 genes for P_FPP and 27 cell liness (85,961 
cells) and 3308 genes for FPP (Supplementary Table 2).  

 
Generation of simulated scRNA-seq datasets from a gene network. To explore the 
organization of genes in siVAE feature embedding space, we simulated scRNA-seq data where 
the correlations between genes is consistent with a specified gene co-expression network. We 
designed a gene co-expression network that consisted of five communities of 50 genes each, as 
well as an additional set of 50 isolated genes that are independently varying. Each community 
included a single hub gene that was connected to the other 49 genes in the community, in a hub-
and-spoke model. No other genes in the community were connected to any other gene. All edge 
weights representing pairwise correlations between genes in the same community were set to 
0.6. The adjacency matrix capturing the co-expression patterns between the 300 genes were 
converted to covariance matrix via the qpgraph R package110, using the function qpG2Sigma with 
parameters rho=0.6.  Afterwards, we used the resulting covariance matrix as input to a 
multivariate Gaussian distribution and sampled 5,000 cells for training with siVAE.  
 
Cell type classification. The five-fold nested cross validation experiments reported in Figure 1c 
compares the performance of siVAE, VAE, and LDVAE on the fetal liver atlas dataset when 
matching their cell-wise encoder and decoder network designs. The number of embedding 
dimensions was fixed to be 2. After training using the training fold, the encoders were used to 
compute embeddings for the training and test datasets. We then used a ݇-NN (݇ ൌ ͺͲ) classifier 
to predict labels of test cells based on the embeddings of the training and testing datasets. Similar 
five-fold nested cross validation experiments were performed on the imaging datasets (MNIST, 
Fashion MNIST, CIFAR-10). However, we allowed the model to individually select the number of 
embedding dimensions ܭ from the set ሼʹǡͷǡͳͲǡʹͲሽ using the training fold. In addition, the number 
of clusters, ݇, was set to 15 as imaging datasets have far fewer classes than the fetal liver atlas 
dataset. 
 
Execution time comparison experiments. We performed a series of experiments to compare 
siVAE training execution time against the combined execution time of VAE training and executing 
feature attribution methods. For Saliency Maps and Grad * Int, both forward and reverse modes 
were used. The majority of the feature attribution methods rely on taking the gradient of a single 
output nodes with respect to all input nodes using automatic differentiation in reverse-mode. For 
models with high number of output nodes, the operation becomes computationally infeasible. 
Using automatic differentiation in forward-mode allows gradient calculation of all output nodes 
with respect to a single input node but faces the same computational issue for models with high 
number of input nodes. 
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For the first experiment, we benchmarked using the 10x Genomics dataset. In the case of the 
feature attribution execution times, we extrapolated the execution time on the LargeBrainAtlas 
dataset from the execution time on 100,000 cells, due to time constraints and the fact that runtime 
of these methods should scale linearly with the number of cells. In contrast, execution times of 
siVAE are those measured on the full dataset. For the second experiment, we tested the effect of 
varying the either the number of embedding dimensions or the number of features on the 
execution time. As the execution time for two feature attribution methods (Integrated Gradients 
and Shapley Values) exceeded a realistic run time of 100 days, only the faster three methods 
(Saliency Maps, Grad * Int, and DeepLIFT) were used for the second experiment. For the 10x 
Genomics dataset, the number of embedding dimensions were set to 20, 100 and 500. Similar to 
the first experiment, siVAE was run on the entire set of 1.3 million cells, and the VAE+feature 
attribution approaches were run on 100,000 cells and then linearly interpolated to the full dataset 
size. For the scATAC-seq execution times, we varied the number of features by selecting the top 
݊ highly variable genomic regions, where ݊ was set to either 28k, 120k or 240k. We used a single 
NVIDIA GeForce GTX1080 Ti GPU, Intel Core i5-6600K CPU, and 32 GB RAM for all 
experiments. 
 
Estimating gene centrality using siVAE. We reasoned that the expression patterns of genes 
with high degree centrality would be most likely to be retained by siVAE during dimensionality 
reduction, because those genes could be used to reconstruct the expression patterns of the many 
other genes connected to them. If so, then the hub genes would also be likely to be the genes 
whose expression patterns are reconstructed with the lowest error. We therefore define gene 
centrality for siVAE as the negative reconstruction error of siVAE on each individual gene during 
training.  
 
Estimating gene centrality using GCN inference methods. The GCN inference methods 
tested here all output pairwise weights between genes, where larger weights indicated higher 
confidence in a pairwise edge in the underlying GCN. We WKHUHIRUH�PHDVXUHG�HDFK�TXHU\�JHQH¶V�
degree centrality for GCN inference methods by averaging the weights between the query gene 
and every other gene in the network. 
 
Estimating the ground truth gene centrality. To compute the accuracy of siVAE-based gene 
centrality and GCN-based gene centrality, we generated ground truth gene centrality estimates 
as follows. We reasoned that a well-connected gene with high degree centrality would be highly 
co-expressed with many other genes in the genome, either in a linear or non-linear way. One way 
to quantitatively measure the degree of co-expression of a single query gene to all other genes is 
to measure how well the query gene can predict the expression level of all other genes in the 
genome. Therefore, our ground-truth gene centrality is defined as the percentage of variance 
explained by a query gene, with respect to all other genes in the genome. To measure percentage 
variance explained, for each gene in the genome, we trained a neural network consisting of a 
single input node (corresponding to the query gene expression), 3 hidden layers with 128, 512, 
and 1024 nodes, and a final output layer of 2000 nodes for all remaining genes in the genome. 
The percentage variance explained per gene was measured as ͳ െ ���ሺ ǣܺǡ௚ െ ෠ܺǣǡ௚ሻȀ���ሺ ǣܺǡ௚ሻ 
where  ෠ܺǣǡ௚  is a vector of expressions for ǣܺǡ௚  predicted by siVAE. We then averaged the 
percentage variance explained over all predicted genes, for all cells in a dataset, and refer to this 
quantity as the ground truth gene centrality.  
 
Identifying gene co-expression network neighbors from siVAE models. GCN inference 
methods typically output a weighted adjacency matrix that indicates the strength of co-expression 
of every pair of genes, which in turn could be used to find the closest neighbors of every gene in 
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the genome based on the largest values of the adjacency matrix. In our experiments in Figure 
5c, we used siVAE to also identify the closest co-expression neighbors of every gene in the 
genome, using two different approaches based on leveraging the feature embedding space. In 
RXU� ILUVW� DSSURDFK� �µGLVWDQFH-EDVHG� QHWZRUN� QHLJKERUV¶��� ZH� XVHG� (XFOLGHDQ� GLVWDQFH� LQ� WKH�
feature embedding space as a measure of distance between two genes in the network; the ݇ 
nearest neighbors of a given query gene were defined as the ݇ genes with shortest distance to 
WKH� TXHU\� JHQH��2XU� VHFRQG� DSSURDFK�� WHUPHG� WKH� µ*CN-EDVHG� QHWZRUN� QHLJKERUV¶�� LQYROYHG�
passing a matrix of feature embeddings to a GCN inference method (CLR) as input in place of 
the typical gene expression matrix input, in order to infer a classic gene co-expression network. 
From this gene co-expression network, we extracted the nearest neighbors of every gene 
according to the strategy described below for GCN inference methods.  
 
Identifying gene co-expression network neighbors using GCN inference methods. For GCN 
inference methods, we used the output adjacency matrix to identify the closest 20 neighborhood 
genes per target gene based on largest pairwise weights for each gene. 
 
Benchmarking gene neighborhoods. We computed the accuracy of both siVAE to the GCN 
inference methods in terms of their ability to identify neighbor genes that are co-expressed. To do 
so, we applied each method to identify the 20 closest neighbor genes to the query gene. We then 
defined a prediction task in which the 20 neighbor genes were used as input to a neural network 
to predict the expression of the target query gene. We used a fully connected neural network 
consisting of 3 hidden layers each with 16, 8, and 4 nodes, in addition to the input layer (with 20 
nodes corresponding to the 20 closest neighbors), and the output layer consisting of a single node 
for the query gene. Accuracy was defined as the percentage variance explained with respect to 
the query gene. We compared siVAE to the GCN methods based on a set of 152 query genes, 
which were identified by taking the intersection of siVAE and each GCN inference PHWKRG¶V�WRS�
500 highest centrality genes, to ensure that the query genes were of high degree centrality (and 
therefore should have many neighbor genes). 
 
Quantifying overlap in gene neighborhoods between siVAE and other methods. We also 
used two different strategies to gauge the overlap in the gene neighborhoods predicted by siVAE 
and each GCN inference method, defined as the 20 closest genes to every query gene. For 
percentage overlap, we measured the percentage of genes that overlapped between any two sets 
of neighborhood genes. For mean correlation, we measured the Pearson correlations with two-
sided test of gene expression between every pair of genes between two neighborhood gene sets 
for the same query gene, then averaged the 20*20 = 400 correlation values together to compute 
mean correlation. 

Generating cell line embeddings with siVAE and graph kernel. We first divided the dataset 
by cell lines to generate a dataset per cell line. To avoid the downstream effect of datasets with 
different sizes, we performed downsampling by splitting each cell line into equal sized bins of 
1000 cells. Bins that were not fully filled up were discarded for further analysis. Each binned 
datasets were fed into siVAE for generating gene embeddings and siVAE-inferred degree 
centrality. We then used in Weisfeiler-Lehman GraKeL111 to infer adjacency matrix per gene 
embedding then generate similarity matrix between inferred network generated per binned 
datasets. The downsampled versions of the same cell lines were averaged together in the 
similarity matrix before PCA visualization of the cell lines. 

Isolating and visualizing change in mitochondrial genes connectivity. Spearman correlation 
was measured between inferred degree centrality and differentiation efficiency per gene with 
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Benjamini Hochberg correction for the P-values. For geneset enrichment analysis (GSEA) of the 
mitochondrial genes, we manually added MT gene set consisting of all the genes starting with 
³07-´ to the curated genesets of KEGG pathways (http://www.gsea-
msigdb.org/gsea/msigdb/collections.jsp). GSEA was performed using prerank function from 
GSEAPY package on the Spearman correlation coefficients109. Spearman correlation between 
mean expression of a gene and differentiation efficiency was measured through averaging the 
expression of a gene also with Benjamini Hochberg correction for P-values. Finally, we used 
Wilcoxon Rank Sum test to detect which gene-to-gene connections between mitochondrial genes 
led to significance difference in efficiencies of cell lines based on the inferred adjacency matrix. 
The mitochondrial gene network was visualized using Biocircos112 with all mitochondrial genes 
but only the significant mitochondrial edges.   

Testing for mitochondrial mutations causal for differentiation efficiency. Variant call files 
(VCF) per iPSC cell lines in NeuriDiff dataset were downloaded from HipSci data browser 
(https://www.hipsci.org/lines/#/lines). We filtered for only mitochondrial variants by discarding all 
variants not found in MT chromosome. We performed Wilcox rank sum test on individual variants 
with respect to differentiation efficiency by treating the cell lines either with or without variant as 
two independent groups. Next, we performed gene-based burden testing where the variants were 
grouped into genes based on genetic region and jointly correlated with neuronal differentiation 
efficiency. In addition to grouping based on individual mitochondrial genes, we also added 
additional grouping for all mitochondrial variants. Benjamini-Hochberg was used to correct for 
multiple testing for all tests.  
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Model Interpretability Reg. Decoder Observation model 
siVAE Yes Non-Linear Gaussian 
siVAE (ߛ ൌ Ͳ) No Non-linear Gaussian 
siVAE-linear No Linear Gaussian 
siVAE-NB Yes Non-linear Negative Binomial 
VAE NA Non-linear Gaussian 
scVI NA Non-linear Negative Binomial 
LDVAE NA Linear, single Negative Binomial 
VAE (linear) NA Linear, single Negative Binomial 

 
Table 1. List of model variations with corresponding features. Usage of the interpretability term 
only applies to siVAE and its variants. A linear decoder is composed of the same number of layers 
as the non-linear decoder unless specified as single, in which case the latent embedding layer is 
directly transformed to an output layer.  
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Figure 1: The siVAE model for inferring interpretable representations of single cell 
genomic data. (a) The input to siVAE is a cell by feature matrix; shown here is a synthetic gene 
expression matrix of eight genes, four of which are tightly regulated (genes 1,2,3, 4), and the other 
four of which vary independently (5,6,7, 8). siVAE is a neural network consisting of a pair of 
encoder-decoders, that jointly learn a cell embedding space and feature embedding space. The 
³FHOO-wise encoder-GHFRGHU´�DFWV�OLNH�D�WUDGLWLRQDO�9$(��ZKHUH�WKH�LQSXW�WR�WKH�HQFRGHU�LV�D�VLQJOH�
cell ܿ¶V�PHDVXUHPHQW�DFURVV�DOO� LQSXW� IHDWXUHV��ܺ௖ǡǣ). The cell-wise encoder uses the input cell 
measurements to compute an approximate posterior distribution over the location of the cell in 
the cell embedding space��7KH�³IHDWXUH-wise encoder-GHFRGHU´�WDNHV�DV�LQSXW�PHDVXUHPHQWV�IRU�
a single feature ݂ across all input training cells ( ǣܺǡ௙). The feature-wise encoder uses the input 
feature measurements to compute an approximate posterior distribution over the location of the 
feature in the feature embedding space. The decoders of the cell-wise and feature-wise encoder-
decoders combine to output the expression level of feature ݂ in cell ܿ (ܺ௖ǡ௙). (b) Visualization of 
the cell and feature embedding space learned from the gene expression matrix in (a). Note the 
embeddings of genes 1, 2, 3 and 4 all have large magnitudes along dimension 1 but not dimension 
2, suggesting genes 1, 2, 3 and 4 explain variation in the cell embedding space along dimension 
1. Genes 5, 6, 7, and 8 sit at the origin of the feature embedding space, suggesting they do not 
co-vary with other features. (c) The expression patterns of gene 1 are overlaid on the cells in the 
cell embedding space. Gene 1 clearly increases in expression when inspecting cells from left to 
right, consistent with the feature embedding space that shows Gene 1 having large loadings on 
dimension 1. (d��,Q�FRQWUDVW��*HQH��¶V�H[SUHVVLRQ�GRHV�QRW�KDYH�D�FOHDU�SDWWHUQ�RI�YDULDWLRQ�ZLWK�
respect to position of the cell in cell embedding space��FRQVLVWHQW�ZLWK�*HQH��¶V�ORFDWLRQ�FORVH�WR�
the origin in the feature embedding space. (e) A trained siVAE model can be used to identify hubs 
and gene neighbors in a gene co-expression network, without the need to explicitly infer a co-
expression network.
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Figure 2: $FFXUDF\�HYDOXDWLRQ�RI�VL9$(¶V�cell embedding spaces. (a) 2D visualization of the 
inferred cell embedding spaces of a classic VAE, siVAE, a variant of siVAE in which the 
interpretability regularization term is removed (ߛ ൌ Ͳ) and LDVAE. Each point represents a cell 
and is colored according to cell type. (b) Barplot indicating the accuracy of a ݇-NN (݇ ൌ ͺͲ) 
classifier predicting the cell type labels of single cells based on their inferred position in the cell 
embedding space inferred by siVAE and other methods trained on the Fetal Liver Atlas dataset. 
(c) 2D visualization of the inferred cell embeddfing space using UMAP and siVAE with batch 
correction. Top row shows annotation based on cell type, and the bottom row shows annotation 
based on batch. 
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Figure 3: siVAE yields accurate and fast interpretations. (a) Heatmap indicating the mean 
pairwise correlation between the interpretations (loadings) of siVAE, Gene Relevance as well as 
three neural net feature attribution methods (saliency maps, grad*input, and DeepLIFT), where 
correlations have been averaged over each of the 2 embedding dimensions for the fetal liver atlas 
dataset. (b) Barplot indicating the time required to train siVAE versus training a classic VAE and 
applying feature attribution methods on the LargeBrainAtlas dataset. (c) Line plot indicating the 
time required to train siVAE and feature attribution methods on the LargeBrainAtlas dataset when 
the number of embedding dimensions for siVAE is varied, and the number of features is fixed at 
28k. (d) Line plot indicating the time required to train siVAE and feature attribution methods on 
the scATAC-Seq dataset when the number of features is being varied, while the number of 
embedding dimensions is fixed at 20. 
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Figure 4: Co-expressed genes tend to co-localize in the siVAE feature embedding space. 
(a) The gene co-expression network used to simulate single cell expression data. The network 
consists of five tightly correlated groups of 50 genes each, along with 50 isolated genes. (b) 
Scatterplot of the feature embeddings produced from siVAE trained on the dataset simulated from 
the network in (a). Each point represents a gene, colored and labeled by the community it belongs 
to in (a). (c) Scatterplot of the cell embedding space inferred by siVAE trained on the fetal liver 
atlas dataset. Each point represents a cell and is colored based on its pre-defined cell type. (d) 
Scatterplot of feature embeddings inferred by siVAE trained on fetal liver atlas dataset. Each point 
represents a marker gene and is colored based on its prior known association to a cell type. 
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Figure 5: siVAE can be used to gain insight into gene co-expression network structure 
without explicit network inference. (a) Scatterplot showing the correlation between ground truth 
degree centrality and predicted degree centrality, based on using siVAE training performance, or 
by computing node degree when a network is inferred using the MRNET or CLR algorithms. (b) 
Average true degree centrality of the top 50 genes predicted to have highest degree centrality 
across different methods. (c) Bar plot indicating the prediction accuracy (% variance explained) 
of the neighborhood gene sets when predicting each query gene, averaged over the top 152 
query genes with highest predicted degree centrality across all tested methods in the fetal liver 
atlas dataset. Blue bars denote methods based on dimensionality reduction, while orange bars 
indicate methods based on explicit gene regulatory network inference. (d) Heatmap indicating the 
pairwise Jaccard index (overlap) between neighborhood genes identified by pairs of methods. (e) 
Heatmap indicating the mean pairwise correlation in expression between pairs of methods with 
respect to their neighborhood genes. Each box indicates average of the pairwise correlation 
matrix where the columns and rows correspond to neighborhood genes identified by two methods. 
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Figure 6: Connectivity between mitochondrial genes decrease for iPSC cell lines with 
higher differentiation efficiency. (a) Schematic for generating cell line network embeddings. 
Each of the stacked bar indicates an iPSC cell line whose gene network is inferred with siVAE. 
(b) Scatterplot of cell line embeddings. Each dot indicates cell line in the cell line-to-cell line matrix 
generated from graph kernel trained on siVAE inferred gene network. (c) Bar plot showing 
Spearman correlation between degree centrality and differentiation efficiency. Each bar indicates 
a gene, and the colored bars belong to mitochondrial genes. Each color represents mitochondrial 
complex the gene is coding for. P-value (d) Visualization of mitochondrial genes in siVAE inferred 
gene network for three selected cell lines. Only 7 connections that are significantly less likely to 
be present in cell lines with higher efficiency are being displayed. 
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