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Synopsis The biological challenges facing humanity are complex, multi-factorial, and are intimately tied to the future of

our health, welfare, and stewardship of the Earth. Tackling problems in diverse areas, such as agriculture, ecology, and

health care require linking vast datasets that encompass numerous components and spatio-temporal scales. Here, we
provide a new framework and a road map for using experiments and computation to understand dynamic biological

systems that span multiple scales. We discuss theories that can help understand complex biological systems and highlight

the limitations of existing methodologies and recommend data generation practices. The advent of new technologies such
as big data analytics and artificial intelligence can help bridge different scales and data types. We recommend ways to

make such models transparent, compatible with existing theories of biological function, and to make biological data sets

readable by advanced machine learning algorithms. Overall, the barriers for tackling pressing biological challenges are not
only technological, but also sociological. Hence, we also provide recommendations for promoting interdisciplinary

interactions between scientists.

Introduction

How do we define life quantitatively? All living systems
fall into a multidimensional space defined by scales,
factors, and biological components. To understand life,
we must be able to integrate complex biological pro-
cesses across diverse scales—Physical (e.g., Spatial and
Temporal), Chemical, and Biological (Box 1). In ad-
dition to multiple scales, extrinsic factors such as en-
vironmental stressors and noise can impact a system.
Finally, the response of a system depends on its com-
ponents, from molecules, cells, individuals, communi-
ties, populations to ecosystems. We posit that
knowledge of these three dimensions, that is, biological
components, factors that act on a system, and the scale
of a system (Fig. 1), is necessary and sufficient to
predict a system’s behavior. The axes framework can
serve as a universal vocabulary for defining and com-
paring biological systems.

Most biological phenomena span multiple dimen-
sions of the axes of life, exhibiting various degrees of
emergence, self-organization, robustness, resilience,
and complexity (Kauffman 1992; Stelling et al.
2004; Mazzocchi 2008; Wolf et al. 2018). A classic
example of a challenge involving multiple dimen-
sions of the axes is found in healthcare. Most dis-
eases involve the dysfunction of biological
components at multiple scales from genes to organ
systems usually in response to external stressors like
infection or diet. The actions of those altered pro-
cesses change the behavior of cells, which then lead
to systemic effects within the body over time.

Multi-dimensional problems are ubiquitous in bi-
ology. For example, an integrative analysis of numer-
ous genetic components and environmental factors is
needed to tease out the effects of nature and nurture
in development (Robinson 2004). This can help
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answer why similar mutations during development
sometimes lead to different disease symptoms after
birth (Kammenga 2017). Other examples that span
multiple dimensions include predicting from geno-
type the phenotype of an organism or organismal
community, and predicting how global temperature
change affects organismal behavior and ecosystem
balance. Even seemingly simple biological processes,
such as fish swimming, are multi-dimensional, in-
volving diverse biological components (muscles and
nerves), physical scale (muscle fibers and whole-body
mechanics), and biological factors (group swimming
behaviors on neural stimulation of muscles)
(Massarelli et al. 2017; Mekdara et al. 2018; Tytell
et al. 2018).

The traditional research paradigm focuses on fix-
ing two axes and varying the third. For example,
studying a bacterium exposed to an external pertur-
bation fixes both the scale and components, and
modulates the factors. Axes are also typically fixed
in an experiment to assign causality and to reduce
complexity (Platt 1964). Even within one Axis of
Life, the existence of interaction effects (e.g., epistatic
genetic effects on phenotype) are well documented
but hard to study due in part to small datasets. The
number of possible interactions explodes as multiple
scales are considered (combinatorial complexity).
While fixing axes improve the tractability of studying
a system, it also limits the linking of data across
scales or components. Theoretical and empirical
frameworks are needed for looking across the axes
and making educated hypotheses about which con-
nections across scales might be most fruitful to ex-
perimentally explore.

How do we foster and enable new research that
will effectively bridge across the axes? Iterative dialog
of experiments and computation will allow us to
determine generalizable principles to predict
responses of biological systems. Here we propose a
framework for predicting the behavior of such multi-

dimensional systems. We will focus on combating
four key impediments limiting our understanding
of dynamic multiscale systems. This ultimately
requires iterative interactions between diverse disci-
plines and between Data, Methods, and Theory. This
includes:

• multidimensional data generation and manage-
ment—generating, curating, and disseminating
relevant and high-quality data across multiple dis-
ciplines, scales, factors, and components;

• theoretical frameworks for synthesis—developing
theoretical framework that synthesizes data to
drive experimental hypotheses;

• methods to bridge the axes—developing and ap-
plying methods that integrate multi-dimensional
datasets and models to drive research in biological
systems; and

• interaction across disciplines—to foster these
goals, a culture of science is needed that educates,
supports, and values integrative and interdisciplin-
ary approaches.

Here we will address key questions in every step of
this process of understanding dynamic multiscale
systems.

Multi-dimensional data generation and management

The first step in understanding a system is to define
its location on the axes of life. This requires data
generation methods for characterizing its compo-
nents, scale, and factors that influence the system
behavior. An integrative approach to quality data
generation and management has the potential to
provide bridges between disciplines, breaking
through structural and theoretical bottlenecks.
There are several bottlenecks identified, including
choices of data that are appropriate to the system
under study, accessibility, and comprehensibility of
appropriate data by interdisciplinary communities,

Box 1: Terminologies

The axes of life: A framework for comparing biological systems based on their components, scale, and factors acting on the system.

Scale: A physical (e.g., micron and seconds), chemical (e.g., molecular weight), or biological (e.g., number of generations) unit of

measurement.

Component: A distinct biological unit with a specific function in a system (that can be acted upon by evolution) (e.g., protein, gene, or

organ).

Factors: These are external forces or agents that act on a system and change its position in the axes of life (e.g., diet, drugs, social

interactions, and climate change).

Multi-dimensional/multi-axes: This refers to challenges, datasets, or models that span all three axes’ dimensions (e.g., climate change).

Multi-scale: This is a subset of multi-dimensional systems that span multiple scales (spatial and temporal)
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the need for incorporation of quality measures at all
steps from data collection to model generation, and
the continued need of exploratory experimental work
to support and drive integrative approaches.

Briefly, current data generation practices provide
limited representation of all three axes. For example,
in conservation ecology, incorporating data across
realms (i.e., terrestrial, aquatic, and coastal, and ma-
rine) is necessary to provide a holistic view of the
ecosystem and possible strategies in conserving and
managing the system effectively (Tsang et al. 2019).
Traditionally, researchers have been trained to focus
on collecting the measurements within a specific dis-
cipline. However, the ecosystem is rarely isolated in
operation, the connections among ecosystem realms
are explicit and inexplicit.

To overcome the limitation, we recommend fund-
ing for collaborative studies that span all three axes.
As a concrete example of how this might be done,
we give a hypothetical research design from a field
where these effects are ever-present, the function of
the brain. To understand the development and
maintenance of memory, we need to know how ex-
ternal cues (axes: factors operating at organismal and
seconds scale) alter neuronal firing and the alteration
of dendritic spine morphology, potentially impacting
learning and memory (axes: components and
cellular-level/minutes scale). The morphological
changes, along with biochemical activity, then need
to be examined over the course of days to months,
during and in between learning activities, to deter-
mine what alterations occur and how they are me-
diated. With advances in the fields of genetically
expressed fluorescent probes and intra-vital imaging,
it is conceivable that in the near future it will be
possible to affix a microscope to the head of a
mouse, in such a way as to investigate these pro-
cesses during un-anesthetized actions.

Other examples of hypothetical multi-dimensional
research design include a consortium working to-
gether to study the impact of both global tempera-
ture change and local release of a toxin on microbial
metabolism and ecosystem biodiversity over a de-
cade; this study spans diverse scales (temporal, phys-
ical), factors (temperature and toxins), and
components (molecules, microbes, and plants).
Similarly, quantifying the fitness of a genome-wide
knockout library of Escherichia coli against short-
and long-term treatments of antibiotics, spans all
three axes.

The multi-dimensional studies do not necessarily
have to be large-scale consortium efforts. For exam-
ple, studying the effect of a honeybee transcriptional
regulator on neuronal transcription, brain

metabolism, and colony social behavior as a function
of diet, spans all three axes. Notably, a recent study
on the behavior of honeybees incorporates datasets
that span these three axes (Jones et al. 2020). The
authors analyze numerous biological components
(transcripts and chromatin modifications), quanti-
fied their variation based on social behavior of indi-
vidual honeybees, thus linking molecular and
organismal scales, and performed this study in vari-
ous queenless colonies that exhibited considerable
variation in bee behaviors (factors). This led them
to understand the role of plasticity in gene regulatory
networks on evolution of social behavior (Jones et al.
2020).

These recommendations on data generation go
against the traditional view of fixing various factors
or components, and experimenting in a controlled
environment. Varying a single factor at a time is an
essential part of strong inference (Platt 1964; Beard
and Kushmerick 2009). For example, traditional
studies on transcriptional regulation rely on perturb-
ing transcription factors individually to identify
causal regulation. However, recent studies have
used information theoretic tools to tease out the
effects of hundreds of transcription factors without
the need for perturbing one factor at a time
(Chandrasekaran et al. 2011; Marbach et al. 2012;
Jones et al. 2020). While this traditional approach
has been fruitful, it nevertheless limits the creation
of theories that span the axes of life. With the ad-
vance in methodologies and computational power,
tackling the complexity that span the axes is possible,
and the study systems are closer to reality.

Theoretical frameworks for synthesis

Before multi-dimensional systems are modeled, a
feasibility study should be conducted to ensure the
system can be causally inferred and simulated (e.g., is
predictable). By “predictable,” we do not imply that
the system’s behavior can be forecasted with 100%
accuracy. Rather, quantifying the extent of predict-
ability can ensure that we have identified some of the
causal factors that can continuously or transiently
influence the dynamics of biological systems. For ex-
ample, predicting the phenotype of an organism is
not possible unless relevant variables that influence
the phenotype (genome sequence and environmental
factors) are determined. If a system is not predictable
given a predefined set of measurements, then it may
not be worth studying until we identify the input
data and its critical variables needed to make it
predictable.

Roadmap for understanding dynamic multiscale systems 2013
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Through iterative model-driven experimental data
generation, any system can be made more predict-
able. This strategy was used to improve the regula-
tory network models of E. coli and Saccharomyces
cerevisiae (Covert et al. 2004; Chandrasekaran and
Price 2013). However, in some cases, our ability to
predict a phenotype from genotype may be limited if
the phenotype is strongly driven by noise (Eldar and
Elowitz 2010; Chalancon et al. 2012).

Interpretability of the framework is not necessary
at this stage; for example, black-box neural networks
in conjunction with techniques like cross-validation
can be used to broadly determine whether a system
is predictable. Once the predictability of a system is
established, techniques such as interpretable Artificial
Intelligence (AI) can be applied to identify the pat-
terns and build mechanistic models (Ribeiro et al.
2016; Yu et al. 2018).

Theoretical frameworks for reasoning about the
predictability of systems should be generalizable
and nevertheless make specific predictions/hypothe-
ses about each problem. Frameworks for determining
the predictability of a system can be either derived
from fundamental principles or empirical (data-
driven) (Horgan 1995). An empirical framework
for defining the predictability of a system can be
any method that takes one or more measurements
as input, and predicts one or more output measure-
ments. Empirical frameworks for integrating hetero-
geneous datasets can be broadly grouped into two
categories (1) whether measurements on different
scales can be made on the same entities or (2)
when different sub-populations or biological repli-
cates can be measured. When measurements at dif-
ferent scales can be made on the same entities,
strategies from the fields of multimodal learning
can be applied (Min et al. 2017). Otherwise, strate-
gies from manifold alignment can be used to con-
struct models of biological phenomena at individual
scales, and then alignment is performed to identify
connections between scales (Welch et al. 2017). This
recognition and development of such strategies are
particularly important, as many previous studies and
efforts have collected data at local or individual sys-
tem scale and within a single discipline.

Having an adequate approach and framework to
bridge and integrate the existing data across disci-
plines will allow the best use of precedent knowledge.
For example, assessing the impact of climate change
on the stream habitats that support stream fish pop-
ulation requires linking organism and ecosystem
scales. Previous studies have accumulated abundant
biological survey data from local and state studies. At
the same time, US Geological Survey has been

continuously recording long-term hydrological data,
such as daily streamflow and stream temperature
data nationwide. Recently, Tsang et al. developed a
framework to integrate these local and national
efforts (Tsang et al. 2021). This study showed that
data from either scale alone could not predict the
future climate impact on the changes on stream hy-
drologic and thermal habitat conditions, and the
possible impact on the fishes species they support
(Tsang et al. 2021). Similar approaches and concepts
can be applied when dealing with ecosystems level
problems.

Alternately, theoretical frameworks can be derived
from first principles of evolution, chemistry, mathe-
matics, computer science, or physics. For example,
studying the biosonar system of bats involves study-
ing how the physical attributes of the ears transform
the incoming ultrasonic echoes to encode sensory
information, and how the ear shapes of bats have
diversified in the course of evolution in 1400 differ-
ent species (Müller 2010; Gao et al. 2011; Ma and
Müller 2011). Understanding this process involves
integrating data from various physical and temporal
scales (acoustics), diverse ear components, and how
bat behaviors (factors) actively modulate ear struc-
ture. These first principles can also provide limits on
predictability. For instance, predicting electron trans-
fer in proteins may not be completely possible based
on the Heisenberg uncertainty principle. Another set
of examples are the computer science proofs of com-
putational complexity (“NP-hard problems”) for 3D
structure prediction problems (Torrisi et al. 2020),
which then help focus efforts on finding approxi-
mate solutions to difficult problems.

Mathematical modeling and simulations have
enormous potential to unravel the complex interac-
tions of biological phenomena occurring at different
scales (Wooley and Lin 2006; Voit 2019). An emerg-
ing type of mathematical model called multi-scale
models has allowed the linking of models at different
biological scales, from molecular-scale processes like
protein folding to entire organisms (Walpole et al.
2013; van Gestel and Tarnita 2017). For example,
multiscale modeling has been used to understand
the interactions across different scales that are nec-
essary for development of organs and diseases
(Schnell et al. 2007; George et al. 2015). However,
there are limited tools that allow the coupling/inte-
gration of models across axes dimensions. Moreover,
the modeling and analysis of interdependent biolog-
ical systems also require mathematical models capa-
ble of identifying the causal influences and capturing
either the Markovian or non-Markovian dynamics of
some biological constituents. The implementation of
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new techniques that link multiple axes dimensions to
study system-level outcomes would be invaluable in
understanding the complex interactions of biological
systems.

Another key challenge with new high throughput
technologies is that they generate thousands of cor-
relations between biological components. We cur-
rently lack mechanisms to rapidly validate these
correlations and assign causality (National
Academies of Sciences, Engineering, and Medicine,
Division on Earth and Life Studies, Board on Life
Sciences 2020). This requires theoretical frameworks
that bring together orthogonal high-throughput
datasets that can then be cross-verified against each
other to uncover functional or causal relationships.
Some recent attempts at this process include a study
that used a mathematical model of E. coli to recon-
cile thousands of transcriptomics, proteomics, and
enzyme kinetic measurements with physiological
measurements (Macklin et al. 2020), and a systems
biology approach called GEMINI that reconciles
transcriptional regulatory interactions from high-
throughput studies with metabolic data
(Chandrasekaran and Price 2013), Bridging across
axes will enable us to harness a wider range of data-
sets for rapid evaluation of correlations and deter-
mine causality.

In general, current theoretical methods lack the
ability to transition between axes dimensions as we
lack an underlying “objective” for models (Feist and
Palsson 2016). For example, do all living systems
maximize their biomass production, energy effi-
ciency, degree of emergence, self-organization, com-
plexity, and intelligence? These principles can be
represented mathematically but may not be accurate
biologically. It is unclear if given a genome sequence
and environmental factors as inputs to such a model,
a complex cell or human being would appear natu-
rally as an output.

Most of the mechanistic models of biological sys-
tems have not been validated against the system they
describe. This is sometimes due to the inability to
generate relevant data for model testing and valida-
tion, but it may also be due to a lack of access to
data because it is not publicly available. This brings
us back to the problem of not having better curated
and publicly available data that can be accessed
across researchers working in different disciplines.

Methods to bridge the axes

Development and application of methods for inte-
grative projects pose many unique challenges. Several
fundamental concerns must be addressed that are

often taken for granted in traditional systems. For
example, it is often difficult to define appropriate
objectives for studies bridging the systems, since
the datasets being integrated may approach the sys-
tem from orthogonal directions. The levels of spatial/
temporal scale may be so different that connections
are not obvious.

The ground-level challenge is to define the starting
scale of input data and final scale of our integrative
model, and then look to a theoretical framework and
practical methods to build bridges between these
levels. These differences may occur in multiple
aspects of the system under study, as exemplified
by the conceptual Axes of Life outlined above (Fig.
1) involving scales, factors, and components of bio-
logical systems.

As we build bridges between axes, we also need to
define and incorporate the granularity of the ap-
proach, defining points along the range of scale of
the model/system that are necessary to include. As
part of the National Science Foundation (NSF)
JumpStart meeting, the team repeatedly brought up
the challenges (and potential) of integrating work
across wide scale ranges, and whether it is possible
to ignore features and intermediate scale levels in the
approach. For example, for predicting a
physiological-scale phenotype (e.g., cancer) from
molecular-scale genotype (DNA sequence) one may
ignore explicit modeling of the cellular scale. The
challenge then centers on the questions: How do
we link across scales or components? Can we infer
anything about scales that cannot be measured? Will
links emerge naturally, or do we need to forge undis-
covered links in our method/model? For example, in
mechanistic models of metabolism, the phenotype
(growth of a cell) naturally emerges from interac-
tions between molecular components at a lower scale
(Karr et al. 2012; O’Brien et al. 2015). In contrast, in
empirical models that link mutations at the molec-
ular scale to a physiological phenotype, such as can-
cer (Vogelstein et al. 2013) or social behavior (Jones
et al. 2020), the links are “imposed” by the scientist.

The potential of applying AI to these challenges
promoted a vigorous discussion at the JumpStart
meeting. In particular, development and application
of transparent approaches to look inside the current
AI Black box was identified as a central goal, and is
described in more detail in another paper. Briefly,
some strategies to make AI transparent include link-
ing traditional models based on biological or math-
ematical principles with machine learning models
(Yang et al. 2019; Zampieri et al. 2019; Oruganty
et al. 2020). For example, by linking a machine
learning model of antibiotic action with a
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mathematical model of host immunity, Cicchese
et al. were able to integrate molecular- and
cellular-scale datasets from both pathogen and host
(components), and create a mechanistic picture of
the impact of various antibiotic treatments (factors)
on pathogen clearance inside the lung infection site
from a few days to a month (temporal scale)
(Cicchese et al. 2021). Alternative strategies to
make AI transparent include altering the structure
of the AI model directly based on prior knowledge
of the biological system (Ma et al. 2018).

All of the typical challenges with managing data
are multiplied in integrative approaches, and the
flexibility of methods to deal with these challenges
will be necessary. For example, how do we deal with
noise? Noise operates at multiple spatio-temporal
scales and on various components, each of which
must be quantified in unique experimental manners,
and will need to be mined and integrated in a con-
sistent way into the resultant synthesis. Methods to
handle small and inconsistent datasets are also essen-
tial, since integrative efforts are often focused on
data-poor nascent fields that are under rapid devel-
opment and may require integration of results from
multiple groups (Sung et al. 2012).

As we move toward bridging across the axes of
life, a critical first step involves selection of

appropriate, tractable systems. Most biological pro-
cesses are complex (in the sense that their rate of
change may not only exhibit various degrees of non-
linearities, but also a non-trivial combination of
Markovian and non-Markovian dynamics). To
make headway, we should seek systems that are sim-
ple enough that we can isolate specific behaviors and
processes, while still being complex enough to re-
quire observations that span the axes dimensions.
Overall, the advantages of focusing on a few model
systems like E. coli should be carefully weighed
against its limitations. For example, we may miss
novel biological phenomena seen in exotic systems
like archaea or aplysia that can lead to fundamental
new insights.

One field where these questions might be cur-
rently addressable is neurobiology, where the action
of individual neurons influences organismal behav-
ior. The nematode Caenorhabditis elegans possesses a
relatively simple neural architecture that can be easily
visualized, and some researchers have already begun
to explore how activating light-sensitive ion channels
affect behaviors, such as motility (Sejnowski et al.
2014). Along the same lines, multiscale neuronal
analysis has revealed that brain regions exhibit
long-range memory/non-Markovian and multifractal
characteristics.

Work by Eric Tytell and collaborators attempts to
use a version of our proposed framework to study
seemingly simple biological processes—fish swim-
ming. Yet our understanding of this process has
been impeded by its multi-dimensionality. The
Tytell lab’s work focuses on using a well-
understood model organism, the lamprey. Because
of the relative simplicity of the lamprey’s structure
(cylindrical body geometry, a non-segmented noto-
chord, cuboidal muscle blocks, and a well-
characterized spinal central pattern generator) the
lab has been able to integrate isolated muscle experi-
ments with mathematical modeling to quantify the
effects of neural muscle stimulation on body me-
chanics (Tytell et al. 2018). They have applied
computational-fluid dynamics modeling to quantify
the effects of body mechanics on swimming behavior
(Hamlet et al. 2015) and the feedback of swimming
behavior on neural stimulation of muscles
(Massarelli et al. 2017). The lab is even extending
the studies to multiple individual fish swimming to-
gether (Mekdara et al. 2018). This integrative ap-
proach examines a biological problem across
diverse biological scales, components, and factors.
This has been facilitated by the collaboration among
modelers and experimental scientists and has the

Fig. 1. The axes of life. Biological systems span three orthogonal

axes spanning various scales (size and time), number of compo-

nents and interactions, and influenced by external factors. Factors

and components may operate at various scales. Characterizing a

system based on these three axes is necessary to predict its

behavior. The components axis can be considered a measure of

biological complexity of the system as defined in different bio-

logical disciplines. For example, in ecology, the complexity of a

system is proportional to the number of species and the number

of interactions among them. Similarly, the complexity of the gene

regulatory network is a function of the number of transcriptional

regulators and their interactions (Szathm"ary et al. 2001)

(Diagram of the chemotactic pathway in E. coli modified from

Falke et al. (1997)).
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potential to inform the evolution of other body
forms over time.

Similarly, Jones et al.’s study highlighted earlier
utilizes cutting edge technologies to bridge the axes
(Jones et al. 2020). They used an automatic behavior
monitoring system to track individual honeybees in a
colony and used convolutional neural networks (a
type of machine learning algorithm) to quantify in-
dividual behaviors. These behaviors at the organis-
mal scale were then linked to molecular scale
measurements of gene expression and gene regula-
tion for each individual bee using a gene regulatory
network model built using an information theoretic
approach called ASTRIX (Chandrasekaran et al.
2011). The authors then predicted individual behav-
iors solely based on the expression of transcription
factors using another machine-learning algorithm
called Random Forests. This study spanning multiple
axes dimensions was made possible thanks to a di-
verse team comprising entomologists, bioengineers,
genome scientists, data scientists, and
bioinformaticians.

Interaction across disciplines

In addition to all the above, we agree there are bar-
riers when bringing together all disciplines, institu-
tions, departments, programs, and even sources of
funding to deal with all the above barriers. These
barriers exist because of the differences among all
disciplines, such as language, terminology, and
definition.

It could also be because of self-imposed barriers
that limit interactions among the disciplines. Our
tendency to gravitate toward like-minded individuals
reduces cross-pollination that could bolster advances
in interdisciplinary science. These interaction barriers
also arise from academic cultural differences and
from the physical separation of different disciplines
that occurs at most institutions. In addition, differ-
ent disciplines may approach similar problems from
different perspectives, which causes a separation in
focus when different disciplines try to answer similar
questions. The agencies and sources of funding set
their priorities, while researchers are driven to dif-
ferent emphasis and goals in question.

One short-term goal that can be achieved is to
develop a general “match-making” system for help-
ing researchers identify possible collaborators with
complementary expertise (but similar research inter-
ests). Such a system would facilitate interdisciplinary
collaboration in an equitable way (e.g., less-
established scientists with fewer connections can still
identify new collaborations). Here, we propose that

Google Scholar be combined with techniques from
network science and natural language processing to
automatically generate “page ranks” of related col-
laborators to a given individual.

Another goal that can be achieved is to create
more interdisciplinary journals that are topic-
related instead of methods or discipline related.
This would allow researchers working on similar
topics across different disciplines to have a common
venue in which to publish and stay informed of
advances in their area. Another goal would be to
organize interdisciplinary research meetings/work-
shops and bring together people from different dis-
ciplines to work on similar topics.

Conclusion

Approximately three million years ago a sequence of
genetic mutations began occurring that would even-
tually lead to the evolution of humans. Those mo-
lecular level events produced an organism with
altered behaviors that over the course of millions
of years would lead to an altered global climate,
the development of novel plants, and animals (e.g.,
corn and dogs), and the destruction of others (e.g.,
the woolly mammoth and the dodo). The impact of
these mutations cannot be understood without a full
comprehension of the interplay across biological
components, factors, and scales. How do we begin
to understand these complex interdependencies?

Here we introduce the axes of life framework that
may be broadly applicable in characterizing biologi-
cal systems based on their components, scale, and
external factors acting on the system. We recom-
mend methods for data generation and integration
that span the axes of life and enable the discovery of
universal biological principles. Our proposed frame-
work and guidelines do have certain limitations. In
practice, the axes framework is limited to systems for
which a reasonable estimate of the underlying com-
ponents and system properties are available.
Similarly focusing on data generation and integration
in a few well-studied model systems might prevent
us from discovering novel biological phenomena in
exotic species.

Finally, there is one cautionary note. Great break-
throughs are rarely the result of actively trying to
make a great breakthrough. Rather, they often
come from asking questions that had not previously
been asked or choosing to look at something that no
one had looked at before. For example, the theory of
evolution was not developed because Darwin sought
to discover a rule of life; it came because his travels
exposed him to an array of observations that enabled
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him to deduce a common unifying thread. The
Special Theory of Relativity was a result of Einstein
asking himself what it would look like if he were to
run along with a beam of light. If we try too hard to
ask big questions, we may miss the smaller question
whose answer may contain a deep truth. Last but not
least, we must also question whether our current
funding paradigm provides sufficient freedom to al-
low researchers to follow their instincts, to allow
their curiosities to guide them toward discovery, in-
stead of requiring them to select problems that have
an easily sellable significance and high likelihood of
success.
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