ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) | 978-1-6654-0540-9/22/$31.00 ©2022 IEEE | DOI: 10.1109/ICASSP43922.2022.9746007

PRIVACY-PRESERVING FEDERATED MULTI-TASK LINEAR REGRESSION:
A ONE-SHOT LINEAR MIXING APPROACH INSPIRED BY GRAPH REGULARIZATION

Harlin Lee*, Andrea L. Bertozzi*, Jelena Kovacevict, Yuejie Chit

*Dept. of Mathematics, University of California, Los Angeles
fTandon School of Engineering, New York University
tDept. of Electrical and Computer Engineering, Carnegie Mellon University

ABSTRACT

We investigate multi-task learning (MTL), where multiple learning
tasks are performed jointly rather than separately to leverage their
similarities and improve performance. We focus on the federated
multi-task linear regression setting, where each machine possesses
its own data for individual tasks and sharing the full local data be-
tween machines is prohibited. Motivated by graph regularization,
we propose a novel fusion framework that only requires a one-shot
communication of local estimates. Our method linearly combines
the local estimates to produce an improved estimate for each task,
and we show that the ideal mixing weight for fusion is a function of
task similarity and task difficulty. A practical algorithm is developed
and shown to significantly reduce mean squared error (MSE) on syn-
thetic data, as well as improve performance on an income prediction
task where the real-world data is disaggregated by race.

Index Terms— multi-task learning, linear regression, federated
learning, graph regularization

1. INTRODUCTION

In many real-world situations, learning comes with multiple related
tasks, especially in personalized learning settings such as feder-
ated learning [2]. Instead of solving them independently, multi-task
learning (MTL) tackles these related tasks together to take advantage
of their similarities while respecting their differences. For example,
if they have varying levels of difficulty in terms of sample sizes or
signal-to-noise ratios (SNRs), it is advantageous for the harder prob-
lem to borrow information from the easier problem. MTL also often
occurs in a distributed setting, that is, tasks and datasets are assigned
to different machines (e.g. phones, hospitals, countries). A naive
approach is to give all n sets of full local data to a central server or
fusion center for centralized processing. However, this poses dif-
ficulties due to privacy concerns, ownership, communication cost,
or storage constraints. Therefore, this work focuses on privacy-
preserving federated multi-task learning, where related tasks in
different machines are solved jointly in a communication-efficient
manner without sharing the full data.

Graph regularization is a flexible framework that drives the so-
lutions of an optimization problem to have desired properties with
respect to a graph. It is an intuitive approach to MTL that can easily
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Fig. 1: Outline of the the proposed one-shot fusion method for fed-
erated multi-task learning. Only the local estimates, not the full data,
are shared between the machines in a single communication round.

integrate the task relationship information into the problem formula-
tion, with a clear connection to communication as well as relational
networks [3]. This work starts with the classic graph regularization
approach, which uses a penalty function that requires joint optimiza-
tion of all estimates and therefore data sharing. However, we observe
that a completely different framework that does not require data shar-
ing can achieve the same set of solutions under certain settings. This
new perspective on graph regularization leads to the following novel
approach to federated MTL, which is the focal point of this paper.
Specifically, we consider a scenario of n machines, where the
ith machine observes the ¢th local dataset x;, and «; cannot be
shared outside machine ¢. Our goal is then to share information from
{@;}i=, in a meaningful and feasible way such that we can faithfully
estimate the ground truth signals {3} };-,. Our proposed fusion ap-
proach, motivated by graph regularization, is summarized in Fig. 1.
For ¢ = 1, ..., n, the ith machine calculates a linear unbiased local
estimator ,[Ai‘z and sends it to the central server. The central server then

linearly combines the local estimates {3, }i—; according to a mix-

. . . . ~MTL

ing matrix, and produces the improved MTL estimates { B, };:1,
. SMTL ~ .

ie. B; =377, Wi;B; for some matrix W = [W;;] € R"*".

This approach circumvents the aforementioned privacy concerns re-
garding data sharing, and only calls for a one-shot communication
between the machines. Under very mild assumptions on the noise,
we show that the optimal WV depends on task similarity and task
difficulty, e.g. noise level and sample complexity, and propose a
practical and straightforward algorithm for estimating V.

The rest of the paper is organized as follows. The proposed fu-
sion framework is motivated via graph regularization in Section 2,
defined in Section 3, and demonstrated on both synthetic and real-
world data in Section 4. Finally Section 5 discusses related works,
and we conclude in Section 6. The complete proofs are deferred to
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[1] due to length limits.

Throughout the paper, boldface letters a and A represent vec-
tors and matrices, respectively. ||a||z is the £2 norm of @, AT is the
transpose of A, and A~" is the inverse of A. I, is the p x p identity
matrix, and diag(a) is the diagonal matrix whose diagonal elements
are a. Expectation is denoted with [E, and multivariate normal dis-
tribution with A/ (s, X).

2. MOTIVATION: MTL VIA GRAPH REGULARIZATION

We define the multi-task linear regression problem as follows. At
each machinet =1,...,n,

x; = AiB; + e, € ~N(0,0.1,,), (1)

where x; is the observation signal or data, €; € R™? is the noise,
B € R%is the ground truth signal or model, and A; € R™*¢ is
the sensing or feature matrix. The unknown noise level o; > 0, and
€;, €; are uncorrelated for ¢ # j. The goal is to estimate {3] };-;
from {x; };—; and {A;}i—;.

Let us assume that we have access to (or derived) the similarity
information between n tasks as an adjacency matrix I' € R™*". In
this graph, the ¢th node corresponds to the ¢th dataset, task, or ma-
chine, and the edge weight I';; > 0 represents the similarity between
the 4th and jth nodes. Then, given some regularization parameter
A > 0, the graph-regularized MTL problem [3, 4, 5] solves for

(B1.....B)
= argmin |y @i — AB 3+ A D Tyl8, — B3| @

BB €RY |57 i,j=1

For simplicity of exposition, set I';; = 0 and scale Z?:1 Iiy; =
1 for all 7. Also assume A; is tall and orthogonal, i.e. m; > d
and A] A; = I, and denote the local ordinary least squares (OLS)
estimate as

~0LS
B, = argmin ||x; —
BERE

AB|3 = Al zi. 3)

PO
Then Theorem 1 states that 3, ’s are in fact convex combinations of
local OLS estimates. Proof follows from KKT stationarity condi-
tions, i.e. setting the gradient of (2) to be 0, and properties of I".

Theorem 1 (Graph-regularized Multi-task Linear Regression). Un-

~X
der the assumptions of Section 2, the minimizers {3, }i—, of graph-
regularized linear regression (2) for A > 0, are convex combinations

of local OLS estimates {B?LS =1 (cf. (3)). More precisely,
PO ~oLs
B; = Z O3 /Bj
j=1

for mixing matrix ® € R™*™, which is a right stochastic matrix and

defined as
1 < 1 \"
0=— 1—-—— | T
/\+1k20( /\+1)

While the quadratic nature of (2) is well-studied, Theorem 1
under the simplifying assumptions highlights the privacy-preserving
aspect of the MTL solutions. On one hand, we can solve (2)
which uses the classical optimization-based graph regularization
framework. On the other hand, we can arrive at the same answers
by taking convex combinations of local OLS estimates, which no
longer requires data sharing. This fresh view on graph regularization
motivates a general privacy-preserving approach to federated MTL.

3. A ONE-SHOT LINEAR MIXING APPROACH TO
FEDERATED MTL

Theorem 1 suggests that linearly combining local estimates is a valid
approach to combining information without combining data. Build-
ing on that intuition, we propose MTL estimates

~MTL

B, =Y WyB, i=1,...n, (4)
j=1

which are linear combinations of local estimates {B ., }j=1 according
to a mixing matrix W € R™*™. This may be viewed as learning a
new graph from the data such that VWV is the diffusion operator or the
averaging operator for the local estimates defined on the graph. The-
orem 2 specifies the mixing matrix W} with maximum mean squared
error (MSE) reduction for any linear local estimates {B] }j=1. The
proof of Theorem 2 follows from directly minimizing the MSE of

~MTL

B with respect to WW and assumptions on noise such as uncor-
relation between tasks. Note that unlike the motivating example in

Section 2, we no longer assume tall and orthogonal A;, nor OLS fﬂz
for each machine 1 <17 < n.

Theorem 2 (Fusion of Linear Estimators). Assume observation
model (1). Let B, be any linear unbiased local estimator of 3,

. . -~ 2
which has an expected value (3] and variance IEH B, — ,Bﬂ o Where
the expectation is taken with respect to randomness in the ith dataset.

AMTL ~MTL 2
For B,  as defined in (4), the MSE ]EH,BZ - B H2 is minimized

foralli =1,...,n by the mixing matrix
w=c(C+V) ',
where
C=[8:.8)]",_, .V = dag ([E|B. - B[] ).

. . . SMTL .

It is straightforward to see that the fusion estimate 3,  is al-
ways at least as accurate as 3, in terms of MSE by the optimization
criteria, i.e. foreachi=1,...,n,

~MTL ) ~ )
]EHIBz *IBin SEHIBifﬁiH?

Theorem 2 states that the ideal mixing weights VW depend on

task difficulties and task similarities. For one, V;; = IEHﬂl - ,8;‘ Hz

is precisely the variance of the local estimate ﬁi, which captures
information about the randomness in the ith dataset, e.g. noise level
o; and number of samples m;. Therefore we describe V' as the task
difficulty term. Meanwhile, we categorize C' as task similarity term:
Ci; = (B}, Bj) is clearly proportional to the cosine similarity or
angle between the two ground truth signals.

3.1. Fusion Algorithm

An obvious shortcoming of directly using the results of Theorem 2
to calculate WV is that C' uses the inner product with the ground truth
signal, which is impossible to implement in practice. Therefore, we
adopt an iterative approach to address this issue, giving rise to the
proposed Iterative Fusion algorithm (cf. Alg. 1). We approximate
B ~ Bl to calculate the key matrix C'.

This algorithm avoids concerns about data sharing by compress-
ing the necessary information from each dataset into Bl and V;;. For
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Algorithm 1 Iterative Fusion for Multi-task Linear Regression

1: inputs local datasets {@; };i—1, {Ai}i=1.

2: Each machine locally calculates a linear unbiased estimate (3,
from «; and A;. N

3: Each machine locally estimates E||3; — 37 ||3, e.g. by bootstrap-
ping [6]. .

4V « diag ([EIB, - 813]")

i=1

5: repeat

o O+ [(B.8)]

W<« C(C+V)!

(Optional) Threshold elements of WW.

9: B + Z?:l Wi; B,

10: until termination

11: (Optional) Project Bl onto a constraint set.
AMTL

12: B, <« B,
) ~MTL
13: outputs MTL estimates {3, }i—;

example, if we have tall and orthogonal A;s and decide to combine
OLS local estimates, then each machine will estimate o; from their
dataset, and pass do? with ﬁ to the central server. Note that the
communication between the local machines and the central server
is limited to one round, while the fusion step at the central server
alternates between updating the weights YV and the local estimates
{Bi}?:l- The number of iterations for the fusion step can be fixed
(simulations suggest 2 to 3), or chosen for the specific dataset via
cross validation.

4. NUMERICAL EXPERIMENTS

Python code for the following experiments are published on https :
//github.com/HarlinLee/multitask-fusion.

4.1. Simulations

We test our algorithm by combining local OLS estimates according
to our mixing matrix. We simulate tall and orthogonal sensing ma-
trix A; € R™i*< by sampling each element from A(0, 1) i.i.d, and
orthogonalizing the matrix. We choose m; = d w.l.o.g. and gather
observations via (1). Orthogonal A; is not necessary for our algo-
rithm, but is chosen to simplify the experiment. Variables 37, o;,
and n are determined as follows for different experiments.

Central Model: This model assumes that all tasks are similar to
each other by roughly the same degree. More concretely, set

B ~N(B",0:14), B ~N(0,Ls), 0 =01 =...=0n, (5

such that ground truth task similarity is uniformly determined by
0., and task difficulty o is identical across ¢. Note that o, = 0
reduces the model to a distributed consensus scenario. We define
task similarity SNR as SNRsm = 101og,,(||3*]|3/do+?) dB, task
input SNR as SNRi, = 10log,,(||3*||5/do?) dB, and task out-
put SNR as SNRou: = —101log;o(MSEqu:) dB, where MSEq,: =

LS 18 - Bl
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(a) Fusion helps when tasks are more similar to each other
(SNRsim 1), and if ground truth signals are more similar to each
other than they are to noise (SNRS.rn > SN Rin). n = d = 20.
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(b) Fusion helps when tasks are hard enough that collaboration helps,
but not too hard that there are no useful information to share (mid-
to-low SNRin). SNRsim = 10dB, 0. = +/0.1
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(c) Fusion helps when there are more tasks (n 7). SNRi, = 0dB,
g; = 1.

Input SNR (dB) —
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Fig. 2: SNR gain compared to the optimal local ridge regression
estimates. Data are simulated under the central model (5). These
phase diagrams visualize the regimes where the fusion method is
effective. Here, d = 20. Averaged over 10 trials.

To understand the effect of SNRgm, SNR;,, and n on the
proposed method, we varied o, € {107%° ... 10'}, o; €
{107%%,...,10"}, and n € {1,...,30}. Then under each set
of parameters, we simulated data under the central model, combined
local OLS estimates via Alg. 1, and for comparison, solved ridge
regression for each local dataset with optimal \; such that the MSE
of ﬁl is minimized. Alg. 1 is run for 10 steps, and the lowest MSE
in hindsight is reported as MSEo:.

The SNR gain is summarized as phase transition diagrams in
Fig. 2. We stress that while our methods combined the local OLS
estimates, SNRout of our methods are compared against SNRout of
the optimal local ridge regression estimates. When compared to the
local OLS estimates, the SNR gain is even more substantial. Fur-
thermore, these results suggest that fusion algorithms are beneficial
when 1) ground truth signals are more similar to each other than they
are to noise, 2) tasks are more similar to each other, 3) tasks are not
too difficult that there is no useful information to be borrowed from
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others, but also not too easy that there is no need to borrow informa-
tion from others, and 4) there are more tasks.

Community model: The n tasks are divided into 3 groups (each
with a portion of 20%, 30%, and 50%), and within each group, data
are simulated following the central model (5). It is notable that the
community structure is captured by the mixing weights in Fig. 3a,
since the algorithm does not make that assumption a priori, nor take
in parameters such as the number of groups. Fig. 3b demonstrates
the successful MSE reduction by the proposed fusion algorithm.

10
010 09
0.08 08
0.06 o7

Mixing Weights —— (Ours) Iterative Fusion
- - Optimal Linear Mixing
-+ Naive Averaging
== Local OLS Ests.

—— Local Optimal Ridge Ests.

i ]
Iteration

(b)

(a)

Fig. 3: (a) Mixing weights produced by fusion algorithm under the
community model recover the community structure among the tasks,
which were not provided a priori. (b) Combining OLS estimates can
yield better estimates than local optimal ridge regression estimates.
MSE reduction by fusion algorithms under the community model.
Here,o* = 0.1,0 = 1,n = 50,d = 100. Averaged over 20 trials.

4.2. Income Prediction

It is becoming increasingly evident that many aspects of life in
the United States are segregated by race and socioeconomic class.
Across these different subpopulations, the optimal models for a task
may be related but not identical, and data may not be shared. To
simulate such a setting that can benefit from federated MTL, we
divide the popular “Adult” UCI dataset [7] according to the race
of the individual (White, Black, Asian-Pac-Islander, Amer-Indian-
Eskimo, Other), and assign each racial group to a machine, i.e.
n = 5. For each group, we calculate local OLS estimates that pre-
dict from the census data whether yearly income exceeds $50K. The
estimates are then combined according to our fusion method, and
their prediction powers are measured on each machine’s test sets.
The area under the receiver operating characteristic (AUC) is used
as a surrogate for MSE of the prediction model, as we do not have
access to the ground truth in this real-world data; AUC closer to 1.0
indicates a more accurate classifier. We estimate V;; in Alg. 1 using

. . ~OLS
o? ~ ||ef™" — AF"3; " ||3/m;. Table 1 demonstrates that our
fusion method improves the AUC significantly on the subsets boxed
in red, which have fewer samples.

5. RELATED WORKS AND CONNECTIONS

Taking a linear combination of local estimates is not a new idea in
distributed learning. However, existing literature focuses on reach-
ing a consensus, and forces the weights to sum to 1 (i.e. weighted
average) [8, 9], or simply takes the naive average [10, 11]. Our work
unifies all averaging-based methods in distributed (consensus) learn-
ing literature as a special case of distributed MTL with identical
tasks. In [12], the unity constraint in averaging is eliminated, but

Race  Train, test (samples) OLS (AUC) Fusion (AUC)
White 25933, 12970 0.800 0.801
Black 2817, 1411 0.832 0.825
A-P-I 895,408 0.785 0.783
A-I-E 286, 149 0.670 0.805
Other 231,122 0.780 0.836

Table 1: Classification results of Adult dataset. Our fusion method
improves the AUC significantly on the subsets with fewer samples
(boxed in red). Here, A-P-I stands for Asian-Pac-Islander, and A-I-E
for Amer-Indian-Eskimo.

the scope is limited to distributed consensus, ridge regression local
estimates, and random-effects model assumption on 3*, which is
integral to their analysis based on random matrix theory. In com-
parison, our framework is applicable to other linear local estimators
and does not rely on any assumptions on the ground truth signal 3*.
However, it can be specialized for each application as in [12], which
highlights its potential for future works in linear mixing.

A different approach is to combine the local gradient updates
instead of the local model weights, which is proposed in many fed-
erated learning and distributed learning on graph [4, 13, 14] literature
as they are tied to (stochastic) gradient descent. The MOCHA algo-
rithm [15] updates their models and relationship matrix iteratively,
but it requires multiple communication rounds between the local ma-
chines and the parameter server, while ours is limited to one. Model
interpolation for personalized federated learning in [16] and [17] are
related, but the local machine only takes a weighted average of a
central model and its own model.

Another popular body of work for MTL is shared architecture
or shared representation learning [18, 19, 20]. These approaches re-
quire joint optimization, and are fundamentally different from our
“post-hoc” method. Unlike [21, 22], we do not assume group spar-
sity. Lastly, meta-learning-based methods [23, 24, 25] differ from
ours in that they focuses on finding a good initialization model—a
central model that can go through a few gradient updates at the local
machines. Their origins are closer to transfer learning, where model
from the source task is used to initialize the target task.

6. CONCLUSIONS

We proposed a novel fusion framework for federated MTL that lin-
early combines local estimates to get improved estimates for each
task, while bypassing the restrictions on data sharing. Motivated by
graph regularization solutions, we developed a concrete but simple
and communication-efficient algorithm for multi-task linear regres-
sion with any unbiased linear estimators. While we use graph regu-
larization to motivate the fusion approach, the resulting method di-
verges significantly. When tested on simulated data, combining local
OLS estimates according to our proposed methods significantly sur-
passed the performance of optimal local ridge regression estimates
under a wide range of conditions. Its performance was also demon-
strated on an income prediction task with real data that has been
disaggregated by race. Ongoing works include extensions of this
framework to biased estimators for linear regression, e.g. ridge re-
gression estimates, and other MTL problems, e.g. principal compo-
nents analysis (PCA).
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