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ABSTRACT

We investigate multi-task learning (MTL), where multiple learning

tasks are performed jointly rather than separately to leverage their

similarities and improve performance. We focus on the federated

multi-task linear regression setting, where each machine possesses

its own data for individual tasks and sharing the full local data be-

tween machines is prohibited. Motivated by graph regularization,

we propose a novel fusion framework that only requires a one-shot

communication of local estimates. Our method linearly combines

the local estimates to produce an improved estimate for each task,

and we show that the ideal mixing weight for fusion is a function of

task similarity and task difficulty. A practical algorithm is developed

and shown to significantly reduce mean squared error (MSE) on syn-

thetic data, as well as improve performance on an income prediction

task where the real-world data is disaggregated by race.

Index Terms— multi-task learning, linear regression, federated

learning, graph regularization

1. INTRODUCTION

In many real-world situations, learning comes with multiple related

tasks, especially in personalized learning settings such as feder-

ated learning [2]. Instead of solving them independently, multi-task

learning (MTL) tackles these related tasks together to take advantage

of their similarities while respecting their differences. For example,

if they have varying levels of difficulty in terms of sample sizes or

signal-to-noise ratios (SNRs), it is advantageous for the harder prob-

lem to borrow information from the easier problem. MTL also often

occurs in a distributed setting, that is, tasks and datasets are assigned

to different machines (e.g. phones, hospitals, countries). A naive

approach is to give all n sets of full local data to a central server or

fusion center for centralized processing. However, this poses dif-

ficulties due to privacy concerns, ownership, communication cost,

or storage constraints. Therefore, this work focuses on privacy-

preserving federated multi-task learning, where related tasks in

different machines are solved jointly in a communication-efficient

manner without sharing the full data.

Graph regularization is a flexible framework that drives the so-

lutions of an optimization problem to have desired properties with

respect to a graph. It is an intuitive approach to MTL that can easily
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Fig. 1: Outline of the the proposed one-shot fusion method for fed-

erated multi-task learning. Only the local estimates, not the full data,

are shared between the machines in a single communication round.

integrate the task relationship information into the problem formula-

tion, with a clear connection to communication as well as relational

networks [3]. This work starts with the classic graph regularization

approach, which uses a penalty function that requires joint optimiza-

tion of all estimates and therefore data sharing. However, we observe

that a completely different framework that does not require data shar-

ing can achieve the same set of solutions under certain settings. This

new perspective on graph regularization leads to the following novel

approach to federated MTL, which is the focal point of this paper.

Specifically, we consider a scenario of n machines, where the

ith machine observes the ith local dataset xi, and xi cannot be

shared outside machine i. Our goal is then to share information from

{xi}
n
i=1 in a meaningful and feasible way such that we can faithfully

estimate the ground truth signals {β?
i }

n
i=1. Our proposed fusion ap-

proach, motivated by graph regularization, is summarized in Fig. 1.

For i = 1, . . . , n, the ith machine calculates a linear unbiased local

estimator β̂i and sends it to the central server. The central server then

linearly combines the local estimates {β̂i}
n
i=1 according to a mix-

ing matrix, and produces the improved MTL estimates
{
β̂

MTL

i

}n

i=1
,

i.e. β̂
MTL

i =
∑n

j=1
Wijβ̂j for some matrix W = [Wij ] ∈ R

n×n.

This approach circumvents the aforementioned privacy concerns re-

garding data sharing, and only calls for a one-shot communication

between the machines. Under very mild assumptions on the noise,

we show that the optimal W depends on task similarity and task

difficulty, e.g. noise level and sample complexity, and propose a

practical and straightforward algorithm for estimating W .

The rest of the paper is organized as follows. The proposed fu-

sion framework is motivated via graph regularization in Section 2,

defined in Section 3, and demonstrated on both synthetic and real-

world data in Section 4. Finally Section 5 discusses related works,

and we conclude in Section 6. The complete proofs are deferred to
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[1] due to length limits.

Throughout the paper, boldface letters a and A represent vec-

tors and matrices, respectively. ‖a‖2 is the `2 norm of a, A> is the

transpose of A, and A−1 is the inverse of A. Ip is the p×p identity

matrix, and diag(a) is the diagonal matrix whose diagonal elements

are a. Expectation is denoted with E, and multivariate normal dis-

tribution with N (µ,Σ).

2. MOTIVATION: MTL VIA GRAPH REGULARIZATION

We define the multi-task linear regression problem as follows. At

each machine i = 1, . . . , n,

xi = Aiβ
?
i + εi, εi ∼ N (0, σ2

i Imi
), (1)

where xi is the observation signal or data, εi ∈ R
mi is the noise,

β?
i ∈ R

d is the ground truth signal or model, and Ai ∈ R
mi×d is

the sensing or feature matrix. The unknown noise level σi > 0, and

εi, εj are uncorrelated for i 6= j. The goal is to estimate {β?
i }

n
i=1

from {xi}
n
i=1 and {Ai}

n
i=1.

Let us assume that we have access to (or derived) the similarity

information between n tasks as an adjacency matrix Γ ∈ R
n×n. In

this graph, the ith node corresponds to the ith dataset, task, or ma-

chine, and the edge weight Γij ≥ 0 represents the similarity between

the ith and jth nodes. Then, given some regularization parameter

λ > 0, the graph-regularized MTL problem [3, 4, 5] solves for

(β̂
λ

1
, . . . , β̂

λ

n)

= argmin
β
1
,...,βn∈Rd

[
n∑

i=1

‖xi −Aiβi‖
2

2 + λ

n∑

i,j=1

Γij‖βi − βj‖
2

2

]

.(2)

For simplicity of exposition, set Γii = 0 and scale
∑n

j=1
Γij =

1 for all i. Also assume Ai is tall and orthogonal, i.e. mi ≥ d

and A>
i Ai = I , and denote the local ordinary least squares (OLS)

estimate as

β̂
OLS

i = argmin
β∈Rd

‖xi −Aiβ‖
2

2 = A
>

i xi. (3)

Then Theorem 1 states that β̂
λ

i ’s are in fact convex combinations of

local OLS estimates. Proof follows from KKT stationarity condi-

tions, i.e. setting the gradient of (2) to be 0, and properties of Γ.

Theorem 1 (Graph-regularized Multi-task Linear Regression). Un-

der the assumptions of Section 2, the minimizers {β̂
λ

i }
n
i=1 of graph-

regularized linear regression (2) for λ > 0, are convex combinations

of local OLS estimates {β̂
OLS

i }ni=1 (cf. (3)). More precisely,

β̂
λ

i =

n∑

j=1

Θij β̂
OLS

j

for mixing matrix Θ ∈ R
n×n, which is a right stochastic matrix and

defined as

Θ =
1

λ+ 1

∞∑

k=0

(
1−

1

λ+ 1

)k

Γ
k
.

While the quadratic nature of (2) is well-studied, Theorem 1

under the simplifying assumptions highlights the privacy-preserving

aspect of the MTL solutions. On one hand, we can solve (2)

which uses the classical optimization-based graph regularization

framework. On the other hand, we can arrive at the same answers

by taking convex combinations of local OLS estimates, which no

longer requires data sharing. This fresh view on graph regularization

motivates a general privacy-preserving approach to federated MTL.

3. A ONE-SHOT LINEAR MIXING APPROACH TO

FEDERATED MTL

Theorem 1 suggests that linearly combining local estimates is a valid

approach to combining information without combining data. Build-

ing on that intuition, we propose MTL estimates

β̂
MTL

i =
n∑

j=1

Wijβ̂j , i = 1, . . . , n, (4)

which are linear combinations of local estimates {β̂j}
n
j=1 according

to a mixing matrix W ∈ R
n×n. This may be viewed as learning a

new graph from the data such that W is the diffusion operator or the

averaging operator for the local estimates defined on the graph. The-

orem 2 specifies the mixing matrix W with maximum mean squared

error (MSE) reduction for any linear local estimates {β̂j}
n
j=1. The

proof of Theorem 2 follows from directly minimizing the MSE of

β̂
MTL

with respect to W and assumptions on noise such as uncor-

relation between tasks. Note that unlike the motivating example in

Section 2, we no longer assume tall and orthogonal Ai, nor OLS β̂i

for each machine 1 ≤ i ≤ n.

Theorem 2 (Fusion of Linear Estimators). Assume observation

model (1). Let β̂i be any linear unbiased local estimator of β?
i ,

which has an expected value β?
i and variance E

∥∥β̂i − β?
i

∥∥2

2
, where

the expectation is taken with respect to randomness in the ith dataset.

For β̂
MTL

i as defined in (4), the MSE E
∥∥β̂

MTL

i − β?
i

∥∥2

2
is minimized

for all i = 1, . . . , n by the mixing matrix

W = C (C + V )−1
,

where

C =
[
〈β?

i ,β
?
j 〉
]n
i,j=1

,V = diag
([

E
∥∥β̂i − β

?
i

∥∥2

2

]n
i=1

)
.

It is straightforward to see that the fusion estimate β̂
MTL

i is al-

ways at least as accurate as β̂i in terms of MSE by the optimization

criteria, i.e. for each i = 1, . . . , n,

E
∥∥β̂

MTL

i − β
?
i

∥∥2

2
≤ E

∥∥β̂i − β
?
i

∥∥2

2
.

Theorem 2 states that the ideal mixing weights W depend on

task difficulties and task similarities. For one, Vii = E
∥∥β̂i − β?

i

∥∥2

2

is precisely the variance of the local estimate β̂i, which captures

information about the randomness in the ith dataset, e.g. noise level

σi and number of samples mi. Therefore we describe V as the task

difficulty term. Meanwhile, we categorize C as task similarity term:

Cij = 〈β?
i ,β

?
j 〉 is clearly proportional to the cosine similarity or

angle between the two ground truth signals.

3.1. Fusion Algorithm

An obvious shortcoming of directly using the results of Theorem 2

to calculate W is that C uses the inner product with the ground truth

signal, which is impossible to implement in practice. Therefore, we

adopt an iterative approach to address this issue, giving rise to the

proposed Iterative Fusion algorithm (cf. Alg. 1). We approximate

β?
i ≈ β̂i to calculate the key matrix C.

This algorithm avoids concerns about data sharing by compress-

ing the necessary information from each dataset into β̂i and Vii. For
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