
Machine Learning-based Vulnerability Study of
Interpose PUFs as Security Primitives for IoT

Networks
Bipana Thapaliya

Department of Computer Science
Texas Tech University
Lubbock, Texas, USA

bipana.thapaliya@ttu.edu

Khalid T. Mursi
Department of Cyber Security,

College of Computer Science and Engineering
University of Jeddah

Jeddah, Saudi Arabia
kmursi@uj.edu.sa

Yu Zhuang
Department of Computer Science

Texas Tech University
Lubbock, Texas, USA

yu.zhuang@ttu.edu

Abstract—Security is of importance for communication net-
works, and many network nodes, like sensors and IoT devices,
are resource-constrained. Physical Unclonable Functions (PUFs)
leverage physical variations of the integrated circuits to produce
responses unique to individual circuits and have the potential for
delivering security for low-cost networks. But before a PUF can
be adopted for security applications, all security vulnerabilities
must be discovered. Recently, a new PUF known as Interpose
PUF (IPUF) was proposed, which was tested to be secure
against reliability-based modeling attacks and machine learning
attacks when the attacked IPUF is of small size. A recent study
showed IPUFs succumbed to a divide-and-conquer attack, and
the attack method requires the position of the interpose bit
known to the attacker, a condition that can be easily obfuscated
by using a random interpose position. Thus, large IPUFs may
still remain secure against all known modeling attacks if the
interpose position is unknown to attackers. In this paper, we
present a new modeling attack method of IPUFs using multilayer
neural networks, and the attack method requires no knowledge
of the interpose position. Our attack was tested on simulated
IPUFs and silicon IPUFs implemented on FPGAs, and the results
showed that many IPUFs which were resilient against existing
attacks cannot withstand our new attack method, revealing a
new vulnerability of IPUFs by re-defining the boundary between
secure and insecure regions in the IPUF parameter space.

Index Terms—physical unclonable function, Interpose PUF,
machine learning, neural network, FPGA

I. INTRODUCTION

THE enormous quantity of communication-capable de-
vices have created vast and diverse groups of networks

and security are of critical importance for the communica-
tions among them. But many network nodes are resource-
constrained, like sensors and IoT devices, and cannot accom-
modate conventional cryptographic protocols which are not
lightweight, as pointed out by [6], [17].

Physical Unclonable Functions(PUFs) leverage small phys-
ical variations of the integrated circuits to produce responses
unique to individual circuits and hence are not reproducible

even by their manufacturers. In addition, being implementable
with only thousands of transistors, PUFs incur very low
fabrication costs and require very low operational power. Thus,
PUFs are good candidates as hardware primitives for imple-
menting security protocols for resource-constrained network
nodes.

While physically unclonable, PUFs can be “cloned” by
mathematical or machine learning models, where an attacking
model can be built using a sufficient number of challenge-
response pairs (CRPs) the attacker has accumulated by eaves-
dropping on communications between the PUF and its trusted
partners. Thus, before a PUF design is adopted for security
applications, all vulnerabilities of the PUF, including vulnera-
bilities to machine learning attacks, must be identified so that
application developers can take application-level measures to
prevent the exploitation of the vulnerabilities, or avoid PUFs
whose vulnerabilities cannot be eliminated at the application
level.

Recently, a new PUF design known as Interpose PUF
(IPUF) [11] was proposed which consists of two XOR PUFs
with the output of one XOR PUF interposed to one of the
challenge bits of the second XOR PUF. In the study [11],
IPUFs were tested to withstand the reliability-based modeling
attack [5] as well as one of the most powerful machine learning
methods for attacking PUFs. A later attack study [14] on
multiple PUFs using neural network (NN) with the ReLU
activation functions revealed that IPUFs consisting of small
component XOR PUFs are vulnerable to NN-based attacks. A
more recent attack method [16] was able to crack much large
IPUFs, and it targets IPUF whose interpose bit is the middle
bit of the second XOR PUF. While easily adaptable for IPUFs
with the interpose bit at any other position, the attack method
[16] requires the knowledge of the position of the interpose
bit. Thus, IPUFs whose interpose bit positions are randomly
chosen remain secure against the machine learning attack of
[16].

In this paper, we present a method for attacking IPUFs
without requiring knowledge of the position of the interpose

978-1-7281-7744-1/21/$31.00 ©2021 IEEE

20
21

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 N

et
w

or
ki

ng
, A

rc
hi

te
ct

ur
e

an
d

St
or

ag
e

(N
A

S)
 |

97
8-

1-
72

81
-7

74
4-

1/
21

/$
31

.0
0

©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
N

A
S5

15
52

.2
02

1.
96

05
40

5

Authorized licensed use limited to: Texas Tech University. Downloaded on May 22,2022 at 19:38:52 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: An arbiter PUF

bit. Our attack method employs a multilayer neural network

with the hyperbolic tangent (tanh) as the activation function

for internal hidden layers. There have been many PUF attack

studies that used neural networks, including [1]–[4], [7], [9],

[10], [14]. The neural networks used in most of these studies

employ the ReLU activation function for internal hidden

layers. However, in a recent study [10], the hyperbolic tangent

function was used as the activation function for modeling

XOR PUFs and led to substantially better learning power in

tests carried out in the study [10], contrary to the popular

belief. In this paper, using a neural network with the tanh
activation function, our attack method which does not require

the knowledge of the interpose bit position has also turned

out to be highly powerful in modeling the behavior of the

IPUF (details in Sec. 3). Tests on both simulated and FPGA-

implemented PUFs have shown that our attack method can

break large IPUFs including IPUFs consisting of two 8-XOR

PUFs as well as IPUFs consisting of an Arbiter PUF and a 9-

XOR PUF, revealing a vulnerability of IPUFs not discovered

earlier.

The remaining of the paper is organized as follows. Section

2 gives a brief description of PUFs and Interpose PUFs.

Section 3 contains the neural network-based attack method,

and Section 4 presents the experimental study. Section 5 gives

the conclusion.

II. PUFS AND INTERPOSE PUFS

Physical Unclonable Functions (PUFs) are increasingly rec-

ognized as potential candidates for implementing security pro-

tocols for resource-constrained communication networks. The

reason behind that recognition has tow-folds. First, traditional

cryptographic protocols require secret keys stored in secure

non-volatile memories. But many devices in communication

networks are within close physical distances and hence any

data stored on such devices, including secret keys, are sus-

ceptible to invasive or side-channel attacks which are usu-

ally more effective within close distances. Second, traditional

cryptographic protocols are not lightweight enough as pointed

out by studies [6], [17], leaving them unsuitable for many

resource-constrained communication devices.

PUFs utilize small variations in integrated circuits (ICs)

to produce responses unique for individual circuits. These

variations are undesirable for conventional ICs, but they are

hardware fingerprints that can be utilized to prevent physical

cloning even by the IC manufacturers. With these variations,

PUFs do not have to store secret keys but make use of

the variations to produce circuit-specific responses, rendering

them good candidates as hardware primitives for security

protocols.

An interpose PUF (IPUF) consists of two XOR PUFs, with

the output of the first XOR PUF interposed as a challenge

bit into the second XOR PUFs. To make discussion in later

sections easier, in this section, we briefly describe the circuit

structures of the XOR PUF and the Arbiter PUF.

A. The Arbiter PUF

An n-stage Arbiter PUF, or APUF for short, consists of

n pairs of 2-to-1 multiplexers (see Figure 1), where the two

multiplexers at the same stage receive the same challenge bit.

The two signals pass through gates of all stages of the paths,

and slightly different delays are incurred when signals pass

through different gates. An arbiter, usually implemented by

a D-latch, determines the final output depending on which

signal arrives first. For instance, if the top path arrives first,

the output is 1, otherwise is 0. The challenge bit values at all

stages determine the paths, and consequently the delays, of

the signals, leading to a total of 2n possible paths.

The response and the challenge of an n-stage arbiter PUF

satisfy the additive delay model [8], which stipulates that the

elapsed times of the two signals arriving at the arbiter are the

summations of the delays incurred at all stages of the PUF.

Based on the additive delay model, the response of an arbiter

satisfies

r = sgn
(n+1∑

i=1

φ(i)u(i)
)
, (1)

where φ’s are transformed challenge [8] given by

φ(i) = (2ci − 1) (2ci+1 − 1) · · · (2cn − 1) (2)

with ci being the challenge bit at stage i, u’s being parameters

quantifying gate delays at different stages, sgn(·) the sign

function, and r the response of the arbiter PUF..

The challenge transform (2) turns the relationship between

challenge and the response of an arbiter PUF into a lin-

early separable classification problem, where the hyperplane

represented by the equation
∑n+1

i=1 φ(i)u(i) = 0, resulting

from setting to 0 the term inside the sgn(·) function in

Eq. (1), is the separating hyperplane in the n-dimensional

space of transformed challenges that partition the space into

two regions, with 1 as the responses of all challenges in

one region and 0 the responses for challenges in the other

region. For machine learning attack method that has already

obtained adequate number of CRPs through eavesdropping of

communications or other means, the attack method uses the

obtained CRPs to train a machine learning model so that the

trained model can accurately predict the responses of other

challenges.

B. The XOR PUF

The linearly separable classification model eq. (1) describ-

ing the relationship between the response r and transformed

challenge φ makes arbiter PUFs easy victims of machine

learning attacks [13]. XOR PUFs were introduced to add non-

linearity to the relationship between challenge and response.

Fig. 2: Illustration of an XOR PUF

An XOR PUF consists of k multiple APUFs. As illustrated

in Fig. 2, the k-XOR arbiter PUF uses k arbiter PUFs as

components, where all of the k arbiter PUFs use the same

challenge c as the challenge input. The responses of all

individual arbiter PUFs are XORed together to produce the

final response r for the corresponding input challenge.

With increased nonlinearity for the response as a function

of the challenge, XOR PUFs are more resistant to machine

learning attacks than APUFs. But the reliability-based mod-

eling attack [5] can still easily crack XOR PUFs, where a

reliability-based attack applies the same challenges repeatedly

to the XOR PUF under attack and the responses can help the

machine learning attack method identify where the separating

planes of classification problem that represents the XOR PUF.

The reliability-based attack can be defended when a PUF-

embedded device employs the lockdown mutual authentication

protocol [17] to prevent attackers from applying the same

challenges repeatedly.

In addition to vulnerability to the reliability-based attack,

XOR PUF has also succumbed to a conventional machine

learning attack as showed by a recent study [10], which

employed a multilayer neural network with the hyperbolic

tangent function as the activation function for internal hidden

layers. The machine learning method in [10] was successful

Fig. 3: Illustration of (2,2)-IPUF. The output of the first 2-

XOR PUF interposed as a challenge bit into the second XOR

PUF.

in attacking XOR PUFs up to 9-XOR PUFs.

C. The Interpose PUF

An (x, y)-IPUF consists of an x-XOR PUF and a y-XOR

PUF, where the output of the x-XOR PUF is interposed as

a challenge bit into the y-XOR PUF. With the interpose bit

added as a challenge bit to the second XOR PUF, the y-XOR

PUF has exactly one more stage than the x-XOR PUF. See

Fig. 3 for an illustration of a (2,2)-IPUF.

The IPUF was shown [11] to be secure against both the

reliability-based modeling attack [5] and a successful machine

learning method for attacking PUFs. A later attack study [14]

revealed that IPUFs consisting of small component XOR PUFs

are vulnerable to the attack method that uses neural networks

with the ReLU activation functions. A more recent attack

method [16] was able to crack much large IPUFs, including

IPUFs consisting of a 1-XOR PUF and a 9-XOR PUF as well

as IPUFs consisting two 8-XOR PUFs.

III. THE MACHINE LEARNING ATTACK METHOD

One of the early studies on modeling or machine learning

attacks on PUFs was reported in a 2010 paper [13], in which

Logistic Regression with Resilient Propagation (RProp LR)

was shown to be a fast and broadly applicable attack method

among methods reported in [13]. The LR used alone to attack

IPUFs was not successful, as shown in the work [11] where

the IPUF was introduced.

Recently, a new attack [16] that employs LR in a divide-and-

conquer method for attacking IPUFs, resulting in successful

attacks for large IPUFs including (8, 8)-IPUFs and (1, 9)-
IPUFs. But the required CRPs are very large, 300 million for

attacking (8, 8)-IPUFs and 750 million for attacking (1, 9)-
IPUFs, respectively. In addition, the attack method in [16]

targets IPUF whose interpose bit is the middle bit of the second

XOR PUF. While easily adaptable for IPUF with the interpose

bit at any other position, the attack method [16] requires the

knowledge of the position of the interpose bit. Thus, IPUFs

whose interpose bit positions are randomly chosen remain

secure to the machine learning attack of [16].

In 2012, a two-layer neural network [7] was used to attack

2-XOR PUFs, with four neurons for a hidden layer and one

neuron for the other layer. In 2018 [4], a neural network with

three ReLU-based hidden layers and one sigmoid output layer

was used to attack XOR PUFs, and successfully attacked up to

8-XOR PUFs with an efficiency much faster than earlier attack

methods on similar XOR PUFs. But when applied to IPUFs,

ReLU-based neural networks can break only small IPUFs as

supported by a 2019 study [14], and our own trials showed that

ReLU-based neural networks were not able to break IPUFs

consisting of two k-XOR PUFs with k > 4 in our trials.

In a recent study [10], a multilayer neural network with the

hyperbolic tangent function (tanh) as the activation function

was employed to attack XOR PUFs, showing substantially

higher learning power than ReLU-based neural networks.

Though it is believed that tanh sometimes suffers from

vanishing gradient problem (which made it less popular after

TABLE I: Specification of the Neural Network

Hyperparameters Description

No. of Neurons on hidden layers Varies with IPUF size

Hidden layer activation function Hyperbolic tangent

Output layer activation function Sigmoid

Optimizer Adam

Learning rate Adaptive

Bias Initializer Zeros

Weight Initializer Xavier Normal

Loss function Binary Cross Entropy

the introduction of ReLU), it seems that during the training
of the networks for attacking PUFs, tanh works substantially
better than ReLU. And the vanishing gradient problem has not
appeared in the PUF attack study [10] as well as in this study.
Additionally, as mentioned by Mursi et. al. [10], using tanh
as the activation function also led to requiring fewer network
layers than those with ReLU as the activation function. For
these reasons and for the reason that an IPUF consists of two
XOR PUFs, in this paper, we have decided to try the tanh-
based neural network.

With the activation function chosen, the neural network we
use for modeling an n-stage (x, y)-IPUF has the following
structure of layers (also see Fig. 4 for illustration):

• The input layer of (n) challenge bits c1, c2, · · · , cn,
• the challenge transform layer that transforms challenge

bits from input layer to φ’s according to (2),
• three layers of the densely connected neural network

whose weights for all neurons are to be trained, and
• the single-bit output layer to produce the output that

models the response of the IPUF.

Other parameters of the neural network are listed in Table I.

IV. EXPERIMENTAL STUDIES

A. The Experiment Set-up

1) Simulated CRPs: Firstly, for generating the simulated
data, we used the pypuf library published by Wisiol et. al. [15]
in prior work on IPUF attacks [16] so that we can have a fair
comparison of the attacking results. The software can be found
at: pypuf.rtfd.io. We implemented the framework in Python
and generated the data for the attack. Firstly, we generated 5
samples of data using different PUF instances for each IPUF
using the interpose position as 32. Secondly, we generated 3
samples for each IPUF type using different PUF instances by
selecting interpose bit below 32, where the interpose bit is
randomly chosen. Similarly by randomly selecting interpose
bit above 32, thus leading to a total of 11 samples for each
IPUF type. The simulation is based on a linear additive delay
model, and the arbiter delays are drawn independently using
a Gaussian distribution. We generated a different number of
CRPs for each IPUF type for 64-bit instance, the number of

CRPs were increased depending upon the complexity of IPUF,
summing up to 230 million CRPs for all our experiments, with
x ranging from 1 to 7, and y ranging from 5 to 7 in a typical
(x, y)-IPUF.

2) Silicon CRPs: To study the security vulnerability of
IPUFs on real data, we programmed IPUFs on Artix®-7
FPGAs using the Xilinx Vivado design suite which is a
software suite produced by Xilinx Inc. for synthesis and
analysis of HDL designs. For our experiment, Vivado HL
Webpack edition 2018.3 was used along with Xilinx SDK.
VHSIC Hardware Description Language(VHDL) was used to
build IPUF designs. Each IPUF, consisting of upper XOR
PUF and lower XOR PUF, was placed vertically on the chip
using Tool Command Language (TCL). Firstly, we placed the
MUXes for both upper and lower XOR PUFs. And while
generating the CRPs, we first pass the challenges only to the
upper XOR PUF and wait for its response before the signal
races through the second XOR PUF. Once the response from
the upper XOR PUF is received, we interpose the response bit
in the middle of the challenges of the second XOR PUF. The
response received from the second XOR PUF was recorded as
the final response for our CRPs.

To speed-up the CRPs transformation, AXI Universal Asyn-
chronous Receiver Transmitter (UART) with a baud rate of
230,400 bits/second, was used. Thus, the time required for
generating a million CRPs was only 10 minutes. Finally, the
Xilinx SDK was utilized to program the input/output workflow
behavior of the CRPs generation from the chips. The experi-
ments were done on three 28-nm test chips. We generated the
CRPs from these 3 different devices. The number of CRPs was
different for each IPUF type depending upon the complexity
of the IPUF, for example, 5M for (5, 5)-IPUF and 15M for
(1, 9)-IPUF, sufficient enough to have multiple samples for
each of them leading to a total of 15 samples using 3 different
devices for each IPUF type. The number of CRPs for all the
IPUF types and all samples collectively led us to have 210
million CRPs, in total. The silicon CRPs were generated at an
ambient temperature of approximately 23°C, and core voltage
was set to 1.0V using the built-in chips resistor. Even though
the incurred noise during the generation process affects the
model training, we were able to break the IPUFs on silicon
CRPs with high accuracies as shown in the next section.

3) The Machine Learning Attack Tests: The proposed deep
learning model was written using Python 3.7 with PyTorch
[12] machine learning library. The experiments were carried
out on a Windows machine with 16 GB of main memory with
1.99 GHz, Intel Core i7 processor. Each of the experiments
was conducted without any external parallel execution from
our side.

For each of the reported attacks, we dedicate 10K CRPs
as a test set and 5K CRPs as a validation set. The number
of CRPs for the test set and validation set remains the same
for all the experiments. The modeling accuracies mentioned
in the next section is the prediction accuracy evaluated using
this test set and is completely fresh data that the model has
never seen before. Please note that the CRPs mentioned in

Authorized licensed use limited to: Texas Tech University. Downloaded on May 22,2022 at 19:38:52 UTC from IEEE Xplore. Restrictions apply.

Fig. 4: The deep neural network architecture used for the proposed method. The no. of neurons in each hidden layer varies
from 16 to 128 depending upon the complexity of the IPUF.

Table III does not include the test set and validation set CRPs
and are solely used for training. The training was performed
by implementing the method discussed in the previous section
with the specifications as mentioned in table I and architecture
as given in fig. 4.

B. The Experiment Results

We have listed our experimental results for the simulated
CRPs, CRPs generated by using simulator from Wisiol et. al.
[16] under table II. The x and y under the column “(x, y)-
IPUF” represents IPUF with x number of components for the
upper or the first XOR PUF layer and y number of components
for the lower or the second XOR PUF layer in the IPUF.
“Avg. Pr. Acc” is the average prediction accuracy from all the
samples. We generated a different number of CRPs depending
upon the complexity of the IPUF, starting from 500K and
gradually increasing it. The minimum number of CRPs that
resulted maximum accuracy and minimum loss was recorded
to generate other samples.

The column “Method” represents the comparison of our
method against the others. As mentioned in section 1, there
are only two prior works on the IPUF attack until the time
this paper was published: one from Santikellur et. al. [14] and
the other from Wisiol et. al. [16]. The work by Santikellur et.
al. includes the result only for IPUF up to components x=4
and y=4. However, in this work, we focus on larger IPUFs
since smaller IPUFs are easier to attack. Thus, we compare
our method with Wisiol et. al. [16] only and is represented
as method “A”. Our method is represented as method “B”.
It is important to note that the divide-and-conquer method
used in Wisiol et. al. approach (method “A”) was implemented
based on the assumption that the attacker already knows
the interposed bit position, whereas our model has no such
assumption. Therefore, we tested our model using different
interpose positions. All the results stated from method “A” in

table II uses interpose bit position as 32, which is known to the
attacker. For the proposed method, different interpose positions
are used; 5 samples generated by using interpose position as
32, 3 samples by using randomly selected interpose position
below 32, and 3 samples using randomly selected interpose
position above 32, all unknown to the attacker, and the average
of those 11 samples is reported.

The CRPs used for testing the model is not included in
the training CRPs listed under table II, so is with method
“A”. Method “A” employs parallel computing using 4 cores
for the larger experiments ((7, 7)-IPUF and above), therefore
the training times of the method was multiplied by 4 so that
the timing becomes comparable with our method. We do not
include the column for success rate as we were able to receive
a 100% success rate for all our samples; success is defined
as final prediction accuracy as 85% and above. The average
prediction accuracy (Avg. Pr. Acc.) for method “A” for the
IPUFs (5, 5) to (7, 7) is left blank because the accuracy for
those IPUFs in the paper [16] is the average accuracy only of
the successful test samples, and since the success rate is not
100%, there is no enough information to calculate the average
accuracy of all samples (successful and unsuccessful).

As the value of y in an (x, y)-IPUF increases, we observed
that the required training CRPs and the training time also
increase, along with the required number of hidden units in
each layer. We also altered the batch size for the experiment
as the number of CRPs increases. The stated results clearly
indicate the efficiency of our model as we achieve 100%
success rates by using no more than 6 million CRPs even
for higher IPUFs like (1, 7)-IPUF and (7, 7)-IPUF. We were
able to break the IPUFs with CRP sizes less than those needed
by method “A” except for (1, 5)-IPUF, and our method incurs
much shorter training times. For instance, the time required for
breaking (7, 7)-IPUF was at maximum a 3 hours compared to
68 hours required by method “A”. The results also indicate that

Authorized licensed use limited to: Texas Tech University. Downloaded on May 22,2022 at 19:38:52 UTC from IEEE Xplore. Restrictions apply.

our model is suitable for IPUFs with any interpose position as
we successfully attacked the given IPUFs for randomly chosen
interpose positions below or above 32.

Similarly, table III shows experimental results for the silicon
CRPs, CRPs generated by PUFs implemented on FPGAs
for different component IPUFs using different CRPs. An
additional column named “FPGA” has been added to this table
to denote the 3 FPGA devices that were used to test our
model. We also list the best prediction accuracy represented as
“Best Pr. Acc.” and the worst prediction accuracy denoted as
“Worst Pr. Acc.” achieved out of all the samples. Since we are
the first ones to try the deep learning-based approach on the
Silicon CRPs for IPUF, there is no record for the comparison.
Therefore, we state only our results. The result stated for each
device in the table is calculated out of the 5 samples generated
from that particular FPGA device. In our experimental results
for silicon data, we achieve above 90% accuracy for all the
sizes and complexities of the IPUF. Since the silicon data
has noise, it was difficult to cross 95% training accuracy for
the (x, y)-IPUF with y >5. However, we did not increase
the number of CRPs further as it was evident enough that it
was unsafe given the prediction accuracy had reached 90% or
above in all the cases for silicon CRPs.

The observed accuracy and time clearly state the efficiency
of the proposed model. The CRPs and the training time
received for even the highly complex (1, 9)-IPUF was at
a maximum of 4 hours with only 3 million CRPs using
our method. Therefore, the results obtained by the proposed
method using very less CRPs and training time show that
even larger IPUFs are not secure enough to withstand machine
learning attacks.

V. CONCLUSION

The advent of the IoT era calls for new security mechanisms
to address the peculiar challenges posed by IoT networks.
Physical Unclonable Functions offer a potential solution for
many IoT devices’ resource-constrainedness and physical
proximity to the crowds. But any PUF design must be thor-
oughly examined to identify all its vulnerabilities before being
used in real applications. Interpose PUF was believed to be a
highly secure PUF design that can withstand both reliability-
based modeling attacks and machine learning attacks. In
this study, we have investigated attacks on IPUFs based on
multilayer neural networks which use the hyperbolic tangent
function as the activation function for hidden layers, and the
attack method has shown to have cracked large IPUFs with
random interpose bit position, which existing attack methods
failed to break, revealing a new security vulnerability of the
Interpose PUF to network security application developers.

VI. ACKNOWLEDGMENT

The research was supported in part by the National Science
Foundation under Grant No. CNS-1526055 and Grant No.
OAC-2103563. We would also like to thank the anonymous
reviewers whose comments/suggestions helped improve this
paper.

REFERENCES

[1] Meznah A Alamro, Khalid T Mursi, Yu Zhuang, Ahmad O Aseeri,
and Mohammed Saeed Alkatheiri. Robustness and unpredictability for
double arbiter pufs on silicon data: Performance evaluation and modeling
accuracy. Electronics, 9(5):870, 2020.

[2] Meznah A Alamro, Yu Zhuang, Ahmad O Aseeri, and Mohammed Saeed
Alkatheiri. Examination of double arbiter pufs on security against
machine learning attacks. In 2019 IEEE International Conference on
Big Data (Big Data), pages 3165–3171. IEEE, 2019.

[3] Mohammed Saeed Alkatheiri and Yu Zhuang. Towards fast and accurate
machine learning attacks of feed-forward arbiter pufs. In 2017 IEEE
Conference on Dependable and Secure Computing, pages 181–187.
IEEE, 2017.

[4] Ahmad O Aseeri, Yu Zhuang, and Mohammed Saeed Alkatheiri. A
machine learning-based security vulnerability study on xor pufs for
resource-constraint internet of things. In 2018 IEEE International
Congress on Internet of Things (ICIOT), pages 49–56. IEEE, 2018.

[5] Georg T Becker. The gap between promise and reality: On the insecurity
of xor arbiter pufs. In International Workshop on Cryptographic
Hardware and Embedded Systems, pages 535–555. Springer, 2015.

[6] Charles Herder, Meng-Day Yu, Farinaz Koushanfar, and Srinivas De-
vadas. Physical unclonable functions and applications: A tutorial.
Proceedings of the IEEE, 102(8):1126–1141, 2014.

[7] Gabriel Hospodar, Roel Maes, and Ingrid Verbauwhede. Machine learn-
ing attacks on 65nm arbiter pufs: Accurate modeling poses strict bounds
on usability. In 2012 IEEE international workshop on Information
forensics and security (WIFS), pages 37–42. IEEE, 2012.

[8] Jae W Lee, Daihyun Lim, Blaise Gassend, G Edward Suh, Marten
Van Dijk, and Srinivas Devadas. A technique to build a secret key
in integrated circuits for identification and authentication applications.
In 2004 Symposium on VLSI Circuits. Digest of Technical Papers (IEEE
Cat. No. 04CH37525), pages 176–179. IEEE, 2004.

[9] Khalid T Mursi, Bipana Thapaliya, and Yu Zhuang. A hybrid-optimizer-
enhanced neural network method for the security vulnerability study
of multiplexer arbiter pufs. In Journal of Physics: Conference Series,
volume 1729, page 012010. IOP Publishing, 2021.

[10] Khalid T Mursi, Bipana Thapaliya, Yu Zhuang, Ahmad O Aseeri, and
Mohammed Saeed Alkatheiri. A fast deep learning method for security
vulnerability study of xor pufs. Electronics, 9(10):1715, 2020.

[11] Phuong Ha Nguyen, Durga Prasad Sahoo, Chenglu Jin, Kaleel Mah-
mood, Ulrich Rührmair, and Marten van Dijk. The interpose puf:
Secure puf design against state-of-the-art machine learning attacks. IACR
Transactions on Cryptographic Hardware and Embedded Systems, pages
243–290, 2019.

[12] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward
Yang, Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and
Adam Lerer. Automatic differentiation in pytorch. In NIPS-W, 2017.

[13] Ulrich Rührmair, Frank Sehnke, Jan Sölter, Gideon Dror, Srinivas
Devadas, and Jürgen Schmidhuber. Modeling attacks on physical
unclonable functions. In Proceedings of the 17th ACM conference on
Computer and communications security, pages 237–249, 2010.

[14] Pranesh Santikellur, Aritra Bhattacharyay, and Rajat Subhra
Chakraborty. Deep learning based model building attacks on
arbiter puf compositions. IACR Cryptol. ePrint Arch., 2019:566, 2019.

[15] Nils Wisiol, Christoph Gräbnitz, Christopher Mühl, Benjamin Zengin,
Tudor Soroceanu, Niklas Pirnay, and Khalid T. Mursi. pypuf: Crypt-
analysis of Physically Unclonable Functions, 2021.

[16] Nils Wisiol, Christopher Mühl, Niklas Pirnay, Phuong Ha Nguyen,
Marian Margraf, Jean-Pierre Seifert, Marten van Dijk, and Ulrich
Rührmair. Splitting the interpose puf: A novel modeling attack strategy.
IACR Transactions on Cryptographic Hardware and Embedded Systems,
pages 97–120, 2020.

[17] Meng-Day Yu, Matthias Hiller, Jeroen Delvaux, Richard Sowell, Srinivas
Devadas, and Ingrid Verbauwhede. A lockdown technique to prevent ma-
chine learning on pufs for lightweight authentication. IEEE Transactions
on Multi-Scale Computing Systems, 2(3):146–159, 2016.

Authorized licensed use limited to: Texas Tech University. Downloaded on May 22,2022 at 19:38:52 UTC from IEEE Xplore. Restrictions apply.

TABLE II: Prediction accuracy and training time of our attack method using simulated CRPs

Stages (x,y)-IPUF Method CRPs Avg. Pr. Acc. Training time

64-bit

1,5
A 500K >95% 9.14 m

B 1M 99% 2 m to 28 m

1,6
A 2M >95% 1.48 h

B 2M 96% 12 m to 42 m

1,7
A 20M >95% 20.07 h

B 6M 96% 45 m to 2 h 22 m

5,5
A 1M - 14.59 m

B 1M 88% 10 m to 1 h 5 m

6,6
A 5M - 2.50 h

B 4M 88% 1 h 8 m to 2 h 25 m

7,7
A 40M - 68.84 h

B 6M 87% 1 h 50 m to 3 h

”A” refers to the method by Wisiol et. al. [16] which requires interpose
position known to the attacker, and ”B” refers to the proposed method which
allows random interpose position unknown to the attacker.
Avg. Pr. Acc. not available for Method “A” for (5,5), (6,6), and (7,7) IPUFs.

TABLE III: Prediction accuracy and training time of our attack method using silicon CRPs

Stages (x,y)-IPUF FPGA CRPs Best Pr. Acc. Avg. Pr. Acc. Worst Pr. Acc. Training time

64-bit

5,5

Dev1 800K 98% 97% 96% 20 m to 40 m

Dev2 800K 97% 97% 97% 15 m to 45 m

Dev3 800K 98% 97% 97% 15 m to 40 m

6,6

Dev1 1M 96% 95% 95% 39 m to 1 hr 25 m

Dev2 1M 96% 95% 95% 35 m to 1 h 15 m

Dev3 1M 97% 96% 96% 30 m to 1 h 30 m

7,7

Dev1 2M 95% 95% 95% 35 m to 1 h 20 m

Dev2 2M 96% 95% 95% 48 m to 1 h 22 m

Dev3 2M 96% 95% 95% 40 m to 1 h 30 m

8,8

Dev1 2M 94% 94% 94% 41 m to 1 h 10 m

Dev2 2M 94% 94% 94% 43 m to 56 m

Dev3 2M 95% 94% 94% 45 m to 1 h 20 m

1,6

Dev1 1M 95% 95% 95% 24 m to 48 m

Dev2 1M 95% 95% 95% 45 m to 1 h

Dev3 1M 95% 94% 94% 25 m to 55 m

1,7

Dev1 2M 95% 94% 94% 34 m to 4 h

Dev2 2M 95% 94% 93% 40 m to 2 h 30 m

Dev3 2M 95% 94% 94% 45 m to 3 h

1,8

Dev1 2M 94% 94% 94% 31 m to 1 h 45 m

Dev2 2M 94% 93% 93% 44 m to 2 h

Dev3 2M 94% 93% 93% 40 m to 2 h 30 m

1,9

Dev1 3M 93% 93% 93% 1 h 15 m to 7 h

Dev2 3M 93% 92% 92% 55 m to 2 h 30 m

Dev3 3M 93% 92% 92% 1 h 30 m to 4 h

Authorized licensed use limited to: Texas Tech University. Downloaded on May 22,2022 at 19:38:52 UTC from IEEE Xplore. Restrictions apply.

