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ABSTRACT

Empirical studies and theoretical models both highlight burstiness
as a common temporal pattern in online behavior. A key driver
for burstiness is the self-exciting nature of online interactions. For
example, posts in online groups often incite posts in response. Such
temporal dependencies are easily lost when interaction data is
aggregated in snapshots which are subsequently analyzed inde-
pendently. An alternative is to model individual interactions as a
multi-dimensional self-exciting process, thus, enforcing both tem-
poral and network dependencies. Point processes, however, are
challenging to employ for large real-world datasets as fitting them
incurs super-linear cost in the number of events. How can we effi-
ciently detect online groups exhibiting bursty self-exciting temporal
behavior in large real-world datasets?

We propose a bursty group detection framework, called MYRON,
which explicitly models self-exciting behavior within groups while
also accounting for network-wide baseline activity. MYRON im-
poses bursty temporal structure within a scalable tensor factor-
ization framework to decouple within-group interactions as inter-
pretable factors. Our framework can incorporate different “shapes”
of temporal burstiness via wavelet decomposition or kernels for
self-exciting behavior. Our evaluation on both synthetic and real-
world data demonstrates MYRON’s utility in community detection.
It is up to 40% more effective in detecting ground truth groups com-
pared to state-of-the-art baselines. In addition, MYRON is able to
uncover interpretable bursty patterns of behavior from user-photo
interactions in Flickr.
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1 INTRODUCTION

Data from many domains can be represented as an evolving net-
work where edges correspond to interactions between actors and/or
items. Examples abound: message exchanges in social networks,
reviews of products on Amazon or businesses on Yelp, and packet
exchange events among internet hosts. Frequently, network inter-
actions are generated from an underlying group structure: related
individuals, groups of related products or interests, or botnet IPs.
Understanding such groups and their temporal behaviors can yield
key insights about the data and aid downstream applications such
as recommender systems, forecasting and anomaly detection.

The collective timing of interaction events contains critical in-
formation about the inherent groups of nodes [18, 30]. Intuitively,
nodes within a group exhibit coherent temporal interactions and in-
dividual interactions beget subsequent within-group interactions in
a self-exciting manner [52, 55]. For example, comments on a forum
post typically elicit other comments in reply or product reviews
might invite further discussion. Such “bursty" behavior has been
described in settings from social to biological systems [14, 24, 36].
Importantly, activity of individual nodes in the group serves to drive
overall group-level activity, as opposed to individual self-excitation.
Hence, tracking the temporal activity of the group over time is
crucial to identifying its members. Additionally, as pairs of nodes
can participate in multiple groups (e.g. friend or work groups on a
social network), the timing of interactions relative to others yields
information about the group identity of edges that is difficult to
derive from the interacting entities alone.

There are several key challenges in detecting groups with bursty
behavior. First, explicitly modeling self-exciting behavior among all
observed interactions through widely-adopted point process models
such as Hawkes processes [21] is prohibitive for large datasets with
millions of interactions [29]. Alternatively, arbitrary aggregation
of the data as tensors [58] or evolving network snapshots [57] can
offer scalability at the expense of losing inter-temporal influence
and quality of group detection. A trade-off between the above two
strategies is possible and is a key contributions of this work.

A second challenge is that groups may overlap and exhibit vary-
ing degrees of burstiness, with some spiking faster or higher [16].
Additionally, group-level bursty activity may be “buried” in back-
ground or other-group activity. Finally, groups present in a system
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Figure 1: Six nodes are members of two overlapping groups (red and blue;
top left), with temporal activities displayed in the central panel. The bot-
tom panel demonstrates in-group interactions varying over time alongside
random background activity potentially involving group nodes. The over-
all, dual-thrust approach of MYRON involves simultaneously fitting tensor
factorization-based group structure and enforcing bursty temporal behavior
on the temporal mode of said groups.

may exhibit variable temporal activity, even effectively “disappear-
ing” and “reappearing” in the data. A robust detection method must
be able to track such a discontinuous group as a consistent entity
as opposed to clusters of nodes in individual bursts.

Figure 1 presents an example of our setting and an overview
of our approach. We seek to identify group membership of nodes
alongside overall group temporal behavior from unlabeled, attribute-
free weighted dynamic graphs representing node interactions over
time. We propose a framework for Mining burstY gROups from
iNteractions (MYRON), based on regularized tensor factorization
that enforces group-level self-exciting structure on the temporal
factors. Our discrete time approach allows for scalability to large
datasets while enforcing long-range temporal influence among
snapshots, thus striking a trade-off between point process models
and aggregated snapshot approaches. MYRON allows flexibility in
modeling the bursty group structure: we demonstrate two alter-
natives based on wavelets and point processes. Our evaluation on
synthetic and real-world datasets demonstrates that MYRON is ad-
vantageous compared to state-of-the-art techniques for both group
detection and temporal burst detection. We also demonstrate that
a key parameter—the number of bursty groups—can be estimated
within practical quality for a dataset of interactions.

Our contributions in this work are as follows:

e We propose a general framework for bursty group detection from
interactions which offers a middle ground between expensive point
processes and temporal-dependency-agnostic snapshot methods.
e We introduce two methods for imposing burstiness via: i) an
interpretable Poisson model, and ii) a light-weight relaxation based
on wavelet decomposition. We also propose a method for estimating
the number of groups.

® Our exhaustive evaluation of MYRON on synthetic and real-world
datasets demonstrates its advantage for group and temporal burst
detection, with quality improvement over baselines of up to 30% in
synthetic and 35% in real-world data.

2 RELATED WORK

Community detection: Community detection is a fundamental
problem in network analysis. While community detection in static
networks has enjoyed sustained research interest [13, 51], commu-
nity detection in dynamic networks is a newer field; for a recent

review, see [43]. A variety of approaches consider evolving com-
munities of (smoothly) varying membership [30, 53]. This group
of approaches focuses on tracking communities’ memberships as
opposed to their varying activity. Other methods, similar to our
setting, focus on the evolving behavior of static-membership com-
munities [11, 18, 44, 54]. Similar to us, many of them leverage
tensors to represent dynamic interaction data [2, 15, 20, 39]. Oth-
ers model the internal community structure as deviating from the
global network behavior [22]. Global temporal network analysis for
community detection has also received increased attention recently
including methods employing local profiles [12] and uncovering
anomalous temporal communities [2, 5, 34]. Recent works have
demonstrated the importance of imposing constraints on commu-
nity temporal behavior through Fused-LASSO regularization for
temporal factors [18], wavelet-based treatment of the temporal
mode in a Tucker decomposition [47], periodic behavior [54] and
general periodicity, trends and graph smoothness via appropriate
dictionary encoding [33]. In contrast to all the above, we explic-
itly model bursty self-exciting behavior and the influence of past
in-group interactions on the future, resulting in superior group
detection as we demonstrate empirically. In particular, bursty be-
havior results from long range dependencies that short-history
models cannot capture.

Bursty behavior modeling and burst detection: Bursty pro-
cesses in data streams or point processes have been modeled as
Markovian [25] and through long-memory self-exciting point pro-
cesses such as the Hawkes process [21]. Hawkes processes have
been employed to uncover the underlying network structure among
entities [28], to group event sequences [50], and for large-scale infer-
ence [27]. This line of work, however, typically suffers from limited
scalability due to long-range inter-event relationships and the com-
putational cost of maximum-likelihood methods typically employed.
Work by Linderman and Adams [29] seeks to alleviate the limited
scalability by temporal aggregation within a Bayesian framework,
though without grouping in the node domain. There is also recent
research on continuous-time-aware tensor decomposition[49, 57]
which combines ideas from Hawkes point processes and tensor
factorization methods, however the approaches in this group suffer
from limited scalability to large-scale networks frequently encoun-
tered in the online domain.

Dynamic graph mining and evolutionary clustering. A paral-
lel line of work to ours is the paradigm of evolutionary community
detection [9, 35], where varying community memberships may be
observed over time. In our approach, even though the communi-
ties discovered by the tensor factorization are static, we are able
to incorporate such considerations by assuming a threshold upon
which a community is considered to have evolved to a different
one [3, 37] (which may be application-dependent), and increase
the number of tensor factors in order to accommodate for a larger
number of communities to be discovered, since our method allows
for potentially significant overlap between communities.

3 PRELIMINARIES AND NOTATION

We introduce key notation used throughout the paper in Table 1.
The input data in our problem setting is a set of temporal inter-
actions of the form (i, j,t), where i € V1,|V1| = Nl and j €



X e R%IXNZXT 3-way temporal interaction tensor
X(i) The mode-i matrix of X.
1 A tensor consisting of all ones.
Cie RIZ\]JXK Group membership matrix for mode i, K is the number
of groups/factors
Ae RZE;K Temporal profile matrix of groups/factors
Se RZ;K Shape-based approx. for temporal profile
s € RI:O Factor scaling vector
bx scalar global background activity level
- > -
1Bl The Frobenius norm ||Bl|f = 3; ; ij
A Importance param. for shape constraint
@y, & Initial and baseline NHP intensity
v.p per-event intensity gain and persistence

Table 1: Key notation used throughout the paper.

V2,|V2| = N2 are the interacting entities (or nodes), and ¢ € [1, T]
is the discrete time of the interaction occurrence. Note that when
analysing user-user interactions (i.e., V1 = V2) the problem be-
comes one of community detection, while in the general case V1 and
V2 could represent different sets of entities, e.g., people and photos.
We aggregate all interactions in a three-way tensor X € R];] 3XN 2T
with entities corresponding to the number of interactions, i.e., we
allow for multiplicity of pairwise interactions within the same time
point. This allows for handling node addition/removal over time
by working with the union of all nodes.

The canonical polyadic decomposition (CPD) [42] is a tensor
extension of SVD and factorizes a tensor X as a sum of K rank-one
tensors [[C1,C2, A]], where Ci € R};%XK are factor matrices for
the first two modes which can be interpreted as groupings of the
corresponding entities, while A € R?&K represents the activity
profiles (temporal factors) corresponding to each of the K groups.
C1and C2 are in general different (e.g. in bipartite graphs), however,
in the case of undirected graphs on a single type of node, they
convey the same information.

4 PROBLEM FORMULATION

Our model is based on the following (informal) generative process:

(1) Interactions arise within overlapping groups of entities whose
strength of group association may vary;

(2) The intensity of within-group interactions exhibits a bursty
self-exciting structure over time.

(3) Background “non-group” interactions of a fixed intensity arise
between random pairs.

Our goal is to recover the bursty group structure corresponding
to the above behavior from temporal interaction data. We formalize
the problem as a regularized tensor factorization as follows:

Bursty Group Detection: Given a tensor X € RYPN2XT of
weighted temporal interactions, group number K, and tempo-
ral fit parameter A, find factor matrices Ci € RI;%XK i€ 1,2
representing node group membership and A € RQ;K repre-
senting corresponding group temporal behaviors based on:

i X - [[C1,C2,A]] — bx1||% +A|]A -S|
c1,c‘§,1}f,lbx,s” [[ 11 =bx1lE +All 1% W

s.t.C1,C2,A,bx >0,
where S is the bursty shape approximation matrix, and by
models the global average interaction level.

The first term in the objective above is a tensor reconstruction
loss augmented by a background interaction level controlled by by,

while the second is a penalty enforcing alignment of the temporal
factor with a bursty activity simultaneously learned in the shape
matrix S. Scalar A balances the fit and burstiness.

Our solution framework, called MYRON, is illustrated in Fig.1.
MYRON addresses all challenges in bursty community detection:
limited scalability of continuous time methods, overlapping group
structure with varied behaviors, and background noise. In the rest
of this section we discuss two alternative approaches of modeling
burstiness in S and justify the specific form of the background
model byx.

4.1 Enforcing bursty structure by S.

One of our key design principles is that within-group activity over
time is self-exciting and forms bursts of interactions, i.e. in-group
interactions boost successive in-group interactions. In addition,
the intensity of this self-exciting behavior is specific to individual
groups. Within our objective we enforce this through a reference
shape S which we model as group-specific bursty time series. A
regularization-based approach for this objective allows for a con-
trolled level of variation in valid profiles and penalizes non-bursty
temporal fits for groups. We consider two models for this refer-
ence bursty shape: (i) a non-homogeneous Poisson process as an
“aggregate” extension of a Hawkes process, and (ii) a time series
with sparse wavelet reconstruction via the Daubechies basis which
resembles bursts in time. The former is rooted in a long history of
self-exciting process models, while the latter offers an efficient yet
high-quality alternative.
Non-Homogeneous Poisson (NHP) burstiness: Self-exciting
point processes are a common, if computationally expensive, way
to model burstiness of event sequences. We adapt the exponential
kernel Hawkes process formulation [21] for event intensity at time
t,ar = ap + 2 r<p ©(t — 1), and introduce a Non-homogeneous Pois-
son process (NHP) for our aggregate group-level activity. We define
the same intensity, or number of expected in-group interactions
in interval [t, ¢+ 1), oz, as: @y = @ + (ar—1 — @) * f(As—1) + y&r—1-
Here @ is a persistent baseline intensity describing the arrival of
within-group non-burst events, f is a decay kernel, y is additional
intensity from events in the previous period, and &; = I&_I; is the
empirical rate of events in that period. This per-interval intensity
is described by a baseline, decayed intensity from the prior period,
and additional intensity from recent events.

Assuming a constant time interval length (similar to [29]), i.e.
dc : Vt, At = c, yields a constant decay kernel . We can rewrite
the intensity recursively as:

t
ar=a(1-p)+fla+y ) fl s ®
i=1

where « is the initial intensity. Note that since A; is absent from
the above equation, we can rescale time such that A; = 1 without
loss of generality and think in units of “time windows". Our NHP
model is an aggregate version of the exponential kernel Hawkes
process and the two are asymptotically equivalent. Specifically, one
can show the following relationship:

THEOREM 4.1. Let f(A;) = ™, then the model from Eq. 2 con-
verges to an exponential-kernel Hawkes process as Ay — 0 and
t — oo.



PRrRoOF. As the window size decreases, we reach a point where
ar € {0, 1}, 1.e. there is at most one event per period. Now, as t — oo,
we approach @ +y ZLI B 14,21, which we can rewrite as @ +
Y.<t YB' 77, thus, arriving at the standard Hawkes formulation. 0O

For interpretability, we require several natural restrictions on
the parameters in Eq. 2. All parameters should be non-negative:
negative intensity has no meaningful interpretation, while y < 0
implies self-attenuation as opposed to self-excitation. In addition,
0 < B < 1, as we expect a decaying influence with time, thus
avoiding intensity buildup in the absence of events.

To impose an NHP-like structure on temporal factors in Eq. 1,
the shape S in the regularization term ||A — S| |12U is instantiated with
a matrix of time series resulting from bursty NHP fits of within-
group events. In other words, S = {at(k>}, where {(xt(k)} is the
NHP intensity fit for the k-th group’s temporal component. Note
that in addition to enforcing a bursty shape, an NHP-based solution
also yields burstiness parameters characterizing group activity.
Daubechies wavelets: While the NHP-based burstiness definition
is interpretable and rooted in a long-standing body of work on
point process modeling, its recursive nature comes with a con-
siderable computational cost. Thus, we also propose an efficient
alternative based on “fitting” factor activity with an appropriate
wavelet basis decomposition. The Discrete Wavelet transform [31]
models a time series as a combination of scaled and shifted wavelet
filters which form a multi-resolution representational basis. Infor-
mally, the wavelet transform will represent an arbitrary temporal
group profile in our framework as consisting of a small number of
scaled and shifted kernel “shapes". In particular, if the kernel shape
is “burst-like", then the temporal profile will be represented by a
number of appropriately placed and sized bursts. By retaining only
high-energy wavelet coefficients, one can reduce the noise [56] in
group activity and focus only on the bursts themselves. For the
purposes of our objective function, S in the wavelet case is a matrix
of group-specific time series reconstructed by sparse wavelet trans-
form. The shape of the Daubechies wavelet [10] captures a “rising
front" behavior similar to the NHP formulation, hence we adopt it
for regularization. Alternative wavelet bases can also be employed.

4.2 Tensor model with background activity.

In the data fit term of Eq. 1 we augment CPD to include a constant
rank-one factor representing a background activity, namely:

X%Z[Clk ® c2k ® ar ] + bx1, (3)
K

where K is the number of bursty groups (or factorization rank) and
clg, 2y, a are vectors representing single-factor loadings in the
respective tensor mode. This modeling decision explicitly allows
for a fraction of node interactions to arise outside the context of
recurring bursty groups. In the case of user-user interactions, this
background behavior can be due to weak ties [19]. Alternatives
to a constant background level can also be considered (e.g. global
periodic behavior or smooth trend), but the simpler approach was
advantageous across datasets, and thus, we focus on it for our
presentation. The introduction of the baseline activity tensor bx 1
is akin to removing the global mean of the input X. Another means
to this end could be to pre-process the data by subtracting the
mean from the tensor element-wise. Such an approach will “densify”

typically sparse input data resulting in significant computational
and memory overhead [4].

5 OPTIMIZATION SOLUTION

We next present optimizations for of our objective in Eq. 1 which
requires solving for three factor matrices C1, C2, A, the baseline
level by, and the detailed parameters 6 of the temporal shape,
which in the NHP case consist of per-group («o, @, y, f), and in the
wavelet of a set of per-group vectors of wavelet coefficients. We
outline the steps for solving the compound problem below.

5.1 An alternating optimization solution

Alternating Optimization is a common technique in a variety of
settings, particularly in the case of tensor factorization [23, 26]. We
update individual components of the problem in a cyclic manner
while holding other components fixed, cycling through updates of
C1,C2, A, S, bx. Like coordinate descent, as long as each individual
update is optimal, this is a non-increasing operation to the objec-
tive, as each step minimizes an objective already minimized for
another component by the previous step. Since the overall objective
is bounded, this monotone behavior guarantees convergence. The
structure of the problem leads to related updates for all variables:

e C1,C2 are nonnegative factors updated via
argming; [|X — [[C1,C2,A]] - bx 1]| s.t. Cipge > 0,¥(n, k),

e A is updated via a “shape-based" constraint
argming ||X — [[C1,C2, A]] - bx1||% + A[|A - S||2,

e S is updated by fitting parameters to the estimated A from
above to obtain an approximation for S,

® by is updated based on the current estimates of C1,C2 and A.
Updates for A, C and C2 via ADMM. The Alternating Direction
Method of Moments (ADMM) is commonly used [6] for dividing a
complex optimization problem into simpler components. It has been
recently applied to other regularized tensor decomposition objec-
tives [18, 23]. Intuitively, ADMM works by solving each subproblem
separately while enforcing similarity between the solutions. For
the temporal factor A, the ADMM objective is:

min  [|X - [[C1,C2,A]] - bx 1|5 +AlIA =S|I}
CLC2AAbY @

st.C1,C2, A A bx >0,A=A
The ADMM update involves iterating over the three updates:

A (CTC+pDH(CTX ) + p(A+RA)T) (a)
A —argming A||A -S| + p/2|[Ra +A-AT[|Z () (5)
Ro— Ra+A-AT, (¢)

where C denotes the Khatri-Rao product of C1,C2. The first up-
date can be efficiently computed via the lower Cholesky decom-
position of CTC + pI and the matricized tensor times Khatri-Rao
product (MTTKRP) representation of C‘TX(g), similar to prior ap-
proaches [18, 23]. With S known, the solution to 5(b) becomes
A=(AS+5A)/(A+5).
ADMM updates for C1 and C2 are similar:

C e (CTC+pD(C X3 +p(C+RA)T) ()

C « argmincso p/2||[Rc +C - CT || (b) (6)

Rc & Rc+C-CT, (e)
where C is the updated factor (C1 or C2) and C is replaced with
the product of the fixed factors (e.g. C2 and A when updating C1).
Non-negativity is enforced by retaining positive values in Eq. 6(b).



Algorithm 1 MYRON

Algorithm 2 FACTOR

Require: Tensor X, group count K
Ensure: Factorization {C1, C2, A}, scaling s

1: Initialize C1,C2, A

2: while Factors not converged do

3: C1,s « FACTOR(X(y), bx, C2 O A, s, K, nonnegative)
C2,s « FACTOR(X(3), bx,C1 © A, s, K, nonnegative)
A, s < FACTOR(X(3), bx,C2 © C1, 5, K, shape)
S, params « ShapeApprox(A)
b ije Xijr=Zg(Zi Clig) (X Cljp) (X Agge)

X < NIxXN2xT

NP

Solving for the shape S. The solution to the shape subproblem
depends on the specific constraint considered. In each case, however,
the idea is similar - we fit the temporal profiles A to a specific model
of temporal activity, and use the resultant idealized approximation
as our shape matrix S. When A is known, solving for S in either the
NHP or wavelet formulation requires first fitting a set of parameters
describing the burstiness of proposed traces.

e The NHP case: The problem consists of fitting the four parameters
a0, &, P, y. This can be done independently for each group k = 1..K.
We iterate over the following updates:

o = N-ZeplAra zzt(ll—zj;))tzf‘—yzt &(-pt) (a)
; i =
o _ =B (SrArp'-a X BB -y Sr &S
% = 12T (b) 7
w _ St Ar&-a ¥ & (- -ap e LEr
Yy = ) (c)
X &

B =argming 3, [A; - (@(1 - ) + frao +y Zio 1 A-D 1% (@)

where & = X!_| f71A,_jand N = Ztho A;. All but the f* update
can be computed analytically from first derivatives. The complexity
is driven by Eq 7(d) and specifically the computation of (A; — a;)
which can be done in O(T). Precomputing ¢ each iteration is done
via a single pass through the time series. Overall, the complexity
per update is O(KT), which can be reduced by approximating the
objective. For instance, truncating the influence memory (e.g. con-
sider A;—; for i € [t — O(1),t]) relaxes the dependence on T in
computing f* and minimally affects the solution when f is small.
o The Wavelet case: Given a fixed A, we can compute the complete
wavelet decomposition via Mallat’s pyramid algorithm [32] which
involves iteratively applying approximation and detail filters spe-
cific to the wavelet form. A fraction of the highest (by absolute
value) coefficients are retained. This thresholding is theoretically
optimal in terms of minimizing the mean squared error (MSE) for
sparse wavelet reconstruction [46]. A fraction of 2% yielded maxi-
mal performance across datasets in our evaluation. To obtain the
shape matrix S, we reconstruct each time series from the sparse
coefficient vector by a reverse transform.

5.2 The overall MYRON algorithm

We combine the above updates in the steps of MYRON outlined in
Alg. 1. The outer loop iterates over each of the three factor matrices
with the remainder of the parameters fixed (lines 3-5) following the
ADMM process derived in Sec. 5.1 and detailed in Alg. 2. In line 6,
ShapeApprox() refers to the shape-specific fitting (NHP or Wavelet)
described in Section 5.1 (Solving for the shape S). The mean of the
residual tensor is computed in Step 7, as the difference of the sum
of all entries of X and the sum of the factor-based reconstruction.

In addition to the steps described above, we perform two opti-
mizations that aid computation and convergence:

Require: Tensor X, mean bx, product of known factors W, scale s, group count K,
constraint type cons

Ensure: Fitted factor H, scale s

: Initialize H, R

2WesoWw

3G e—W'w

4: p « trace(G)/k

5: L « LowerCholesky(G + pI)

6: F=WT(X-bx1)

7

8

-

: while Not Converged do
i He (D)L F+pH+U)T)
9: if cons == nonnegative then
10: H<—max(0,HT—U)
11: else if cons == shape then
12: He [AS+LHT-U)]/(A+2)

13 ReR+H-HT
14: H « H./colmax(H)
15: s « s * colmax(H)

(1) Fitting Sparse Global Behavior: Although using the mean of
the overall adjacency tensor as global behavior is a simple pre-
processing step on paper, simply subtracting the mean of the overall
X would yield a large dense tensor which will be inefficient to
decompose. Instead, we represent the aforementioned mean-scaled
constant Kruskal tensor in its decomposed form (i.e. three vectors
of ones and the single scalar bx) and utilize the associativity of the
MTTKRP to compute WT(X(*) = bx1(,)) as follows:

MTTKRP(WT, X (,)) - MTTKRP(WT, bx 1 ().

(2)Enforcing Scale: The approach in Alg. 1 may suffer from scaling
problems between the individual factors. Namely, if the total energy
in the activity of some factor is greater than that of others, the
Frobenious norm shape regularizer will favor smooth fitting of the
k-th factor while essentially ignoring all others, thus yielding poor
fits for less active communities or potentially splitting a larger one
and missing others entirely. This problem can be exacerbated by
the scaling freedom of CPD. In particular, different initialization
of C1,C2, A can lead to varying amounts of energy assigned to
the temporal mode of any given group. We solve this problem by
normalizing each factor as we fit it, holding each column of C1, C2, A
at most 1 and maintaining the group “strength” in an overall scaling
vector s. Prior work has shown that conducting similar iteration
re-normalization of factors for CPD improves convergence [41].
We measure overall convergence via changes in the normalized
reconstruction error. We use a convergence threshold of 10~/ unless
stated otherwise. Relaxing this threshold or bounding the number
of iterations yields significant speed-up at minimal quality cost.
The complexity is dominated by calls to FACTOR (Alg. 2), which
is in turn dominated by a MTTKRP [18] (line 6) and the matrix
inversion in (line 8). Employing Lower Cholesky decomposition
and sparse operations one can reduce the complexity to O(K> +
mK + tymSy ), where m, t}, S; represent the number of non-zeros in
the matrix-tensor product within fixed factors, the number of while
loop iterations (typically small), and non-zeros in the Cholesky
decomposition of the fixed factor product, respectively.

5.3 Estimating the group count K

The group count K is a key parameter in MYRON and hence we pro-
pose and evaluate a method to estimate it. One heuristic approach



Algorithm 3 MYRON-CCD: Detect k* via burst-aware CCD

Require: Tensor X
Ensure: Activity-aware optimal k*
1: for k=minK:maxK do
2. [C1,C2 A s] «MYRON(X, k)
[U,2,V] « SVD(A)
forr=1:k do
Ut=U(,1:71)
Set Ut(|Ut| < 0.1« max(Ut)) =0
O, =Ut+«UtT
X, = X x3 11,
A =1L, % A
c(r) = efficient_corcondia(X,,C1, C2, A,.s)
Store (k, max(c))
12: k* = multi_obj_opt({(k, ¢)})
13: return k*
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for k estimation in tensor decomposition is the core consistency di-
agnostic (CCD) [7]. To account for the contribution of strong bursts
to temporal behavior, we modify CCD to account for periods of
bursts in the temporal dimension by “aggregating” the input tensor
in time according to the temporal factor A. Intuitively, a good esti-
mate for A will allow us to aggregate the timeline and along with
the community factors C1 and C2 will also yield a “good” factoriza-
tion for a temporally aggregated input tensor, where goodness is
measured in terms of high CCD value.

We operationalize the above intuition and show the steps of
MYRON-CCD in Alg. 3. We iterate over a range of candidate group
counts K and apply MYRON to yield factors C1, C2, A (Step 2). We
then apply efficient CCD [40] to associate the optimal CCD ¢ with
each potential rank k (Steps 3-11) by first projecting A and the input
tensor X onto the top SVD vectors for all potential ranks up to k.
Subsequently, we use the multi-objective optimization procedure
described in [38] to determine the best pair (k*,¢*) and thereby
the estimated group count K*. In our case, we may expect periods
of non-bursty activity to be less informative and therefore aggre-
gated into a single time stamp. MYRON’s accounting for global
baseline behavior also serves to smooth out noise. We evaluate
MYRON-CCD and compare it to burst-agnostic estimators also em-
ploying CCD. We show that MYRON-CCD’s estimates improve
with increasing ground truth K.

6 EXPERIMENTS
6.1 Datasets.

Synthetic Data: To evaluate the performance of our method on
data with known behavior, we generate a set of small synthetic
datasets representing communities within an unweighted dynamic
graph. We create two overlapping internally interacting groups,
which allows for controlled variation in experimental parameters,
along with overlaying a background activity level. Edges are gen-
erated from two groups of thirty nodes, with 10 nodes partici-
pating in both groups, according to group-level activity traces.
These traces are generated from an NHP with known parameters
(@ =0.1,ap =0,y = 0.5, f = 0.45), with one group being offset by
10 timepoints from the other to retain a difficult separability, and
contain three small bursts (see the top panel in Fig. 3(e)). Edges are
produced by randomly drawing the number of edges matching the
activity of the group from the pairs of nodes within it. We overlay
global behavior by producing a third group containing all 100 nodes
with non-bursty behavior, where the number of edges in a given

time period is drawn from a Poisson distribution with a constant
or varying intensity depending on the experiment.

Synthetic data for K-finding experiments in section 6.6 is gener-
ated in a similar fashion, though the temporal profiles are created
randomly per group with a € [0,0.5],y € [0.5,1] X §, B € [0, 1] for
500 discrete time points. Communities are drawn as a random set
of 50 nodes from within 200 with arbitrary overlap.

Real-world Datasets: We also evaluate our methods on several
real-world interaction datasets which represent either user-user
(Reddit, Github Repos) or user-item (Delicious, Flickr, Github Top-
ics) dynamic interaction graphs.

e Reddit: This dataset is obtained from a full dump of Reddit com-
ments collected in 2015 [1]. We combine multiple subreddits (each
a ground truth group), with responses to comments or a top-level
post recorded as bi-directional edges between the posting users. The
final dataset contains “programming", “gaming", “politics", “geek",
and “lost" for the first four months of 2009. Data is aggregated
hourly.

oFlickr: This is a benchmark image captioning dataset for sentence-
based image description. The dataset used in this paper is obtained
by selecting the six most frequent tags from [45]. Tensor modes
represent user-image-date, where date is at daily granularity.

e Delicious[45]: This dataset was obtained by crawling Del.icio.us
portals during 2006 and 2007. The most recent postings were mon-
itored over a period of several months to collect an initial list of
user names. User pages were crawled for corresponding postings
and stored as tags. The tensor modes represent user-page-date and
a non-zero entry indicates that a user has tagged a web page in
a given day. We use a set of frequently-used tags as groups, with
the most-tagged pages and most active users within those tags as
nodes (weighted by participation frequency).

o Github: We present two Github-derived datasets using hourly
data from the first three months of 2016. Github Repos consists of
users interacting with a set of six repos (those ranked 100-105 by
activity within those three months, to avoid bot-heavy and single-
user repos), with a ground truth of activity-weighted user-repo
interaction. Github Topics consists of users who interact with repos
tagged with five language-based keywords java, javascript, python,
go, and C. We use repo events within these topics as our ground
truth.

6.2 Experimental setup.

To demonstrate the benefits of incorporating proper temporal de-
pendence and removal of the global trend, we compare two ver-
sions of our method, MYRON-NHP and MYRON-Wav, against two
alternative methods. The first is direct non-negative tensor factor-
ization via CPD (TF), which imposes no additional structure on the
factorization. The second baseline LARC [18], assumes a piecewise-
constant temporal behavior on groups. We downloaded LARC’s
implementation from the authors’ website!. To tune the values of
the two regularization parameters we performed a grid search be-
tween 0.01 and 10 (exponential step). The default parameters in the
authors’ implementation resulted in the best overall performance
and we used them across experiments. We obtain non-negative
tensor factorization (TF) solutions also from the implementation

http://www.cs.albany.edu/~petko/lab/software/LARC_CODE.zip



Statistics Signed error =+ std for estimation of K MYRON-NHP | MYRON-Wav LARC [18] TF [15]
Dataset V] T | K || MYRON-NHP | MYRON-Wav | TF-CCD CCD DIV | Time (s) | DIV | Time (s) | DIV | Time (s) | DIV | Time (s)
Reddit[1] 35196X35196 | 2880 | 5 107 107 107 -3F 0.521 148.9 0.592 171.3 0.891 149.7 0.943 8.0
Delicious[45] 10kx10k 1430 | 10 -1+4.1 -3+6.3 5+0.9 3+14 0.48 307 0.664 72.7 0.763 | 2883 |0.819 19.5
Flickr[45] 3478*x100k 705 | 6 26+t6 23+63 05+4.8 | -1.6+4.6 | 0.585 98.6 0.755 43.7 0.945 68.7 0.941 1.4
Github Repos 8294x8294 2183 | 6 2.6+3.2 5+34 -19+11| -2+£0.9 0.584 188.5 0.608 57.9 0.598 99.5 0.643 22.6
Github Topics || 9020*x137819 | 2184 | 5 15+ 15F 15F -2F 0.864 45.5 0.894 31.5 0.901 146.0 0.911 7.4

Table 2: Real-world dataset statistics (columns 1-4), quality of k estimation (columns 5-8) and quality and running time of ground-truth group discovery (columns
9-17). (* Denotes the mode with ground truth groups.; ¥ The estimates in these experiments are either the maximum tests K of 15 or or the minimum of 2 (extremes

in the search space), indicating that no good matches were detected.
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Figure 2: Performance comparison on ground-truth group detection for varying (a) activity volume, (b) noisy interactions, (c) burstiness, and (d) global behavior.

of LARC with only non-negative regularization on the temporal
factor.

When running MYRON, we set the A parameter at 0.2 for all
experiments. Values in [0.01,10] were searched, with 0.2 yield-
ing the best performance overall (though the effect of A was not
strong). Runtimes are given with a convergence bound of 107>,
which yielded minimal changes in performance compared to 1077
(see Figure 3(d)). MYRON-Wav retains the top 2% of the wavelet
coefficients.

In all experiments we use group number K equal to the ground
truth number of groups, which is obtained through the construction
of the datasets. In general, K is an unknown parameter, but as
our metrics are based on alignment with ground truth it is more
difficult to measure the quality of a fit with a different number of
communities. We also evaluate the quality of estimating K.

Results are presented as averages of five runs, with initializa-
tions identical across methods for each run. For timing purposes,
experiments were run on a 20 core 2GHz Intel(R) Xeon(R) Gold
6138 server with 240GB of RAM; note that none of the methods are
run in parallel, i.e. implementations utilize only a single core.

The primary comparison metric presented is Jensen-Shannon
divergence (DIV), which measures the difference between two dis-
tributions. We treat the weights on the node factors as a distribution
over nodes. Lower DIV values correspond to a better agreement
with ground truth distributions of node weights within a commu-
nity. Clusters are matched to ground truth in a greedy best-match
fashion. We follow the same quality evaluation procedure as in the
LARC baseline [18].

Implementation of MYRON is available at http://www.cs.albany.
edu/~petko/lab/code.html.

6.3 Detection of ground truth groups.

MYRON-NHP and MYRON-Wav effectively detect ground truth
groups with a variety of behaviors. To determine sensitivity to

variation in group and global activity levels, in Figs. 2(a) and 2(b)
we vary the total energy (i.e. number of edges) within the group
or within the global behavior respectively, while keeping the other
fixed. In Fig. 2(a), low-activity groups lead to poor performance for
all methods, however MYRON gains accuracy faster with increasing
burst energy, even as early as 20% of the global energy within each
group. Conversely, increasing global activity effectively serves as
noise, masking in-group relationship between nodes. Low noise
poses no challenge for all method but TF, however LARC quickly
begins to add group membership due to background (non-group)
interactions. At the same time MYRON is mostly insensitive to
significant levels of non-group activity.

Fig. 2(c) shows the importance of modeling bursty behavior
in particular by varying the y parameter in the generated NHP
groups. Low values of y yield mostly static traces that exhibit neither
high nor frequent bursts, whereas larger values yield strong and
frequent bursts. The total group activity is normalized to be equal
across all settings. All methods perform poorly at low burstiness,
however MYRON quickly improves. High burstiness groups are
more pronounced and easier to detect for all methods.

Figure 2(d) demonstrates that despite relying on mean centering,
MYRON retains performance even with non-constant global behav-
ior. The global group behavior is defined as pB1 + (1 — p) B2, where
B1 is a linearly increasing trace representing a common setting of
overall network growth over time whereas B2 is a constant inten-
sity global behavior. None of the methods are noticeably affected by
variations in the global behavior, but the relatively high volume of
this behavior (equivalent to 0.75 in Figure 2(b)) obscures the groups
to LARC and TF.

Results from group detection quality in real-world datasets are
presented in Tbl. 2 (last 8 columns). Overall, MYRON-NHP outper-
forms competitors despite occasionally being marginally slower.
MYRON-Wav also does well to varying degrees likely dependent
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Figure 3: Scalability on different dimensions (a-c) and convergence behavior (d) of all methods on Synthetic data. Panel (¢) compares detection of three pro-

nounced bursts (outlined), which MYRON-NHP fits in period and “shape”.

on how well the wavelet basis describes the underlying data struc-
ture. However, MYRON-Wav is notably faster on most datasets.
We present performance on bipartite graphs as well, in particular
through the Delicious, Flickr, and Github Topics datasets, demon-
strating that MYRON is not confined to community detection alone.

6.4 Scalability.

Figure 3 investigates the scaling of competing techniques with
respect to the number of entities (Fig. 3(a)), T (Fig. 3(b)) and the
fraction of non-zero entries (Fig. 3(c)). Fig. 3(a) shows qualitatively
similar polynomial growth across all methods with larger N1, corre-
sponding to similarity in the fitting process for node-mode factors
- slowdown is largely due to increased convergence complexity.
MYRON performs noticeably faster than LARC with only a slight
relaxation in tolerance. Increasing T (Fig. 3(b)) also exhibits simi-
lar behavior with method-specific overhead, though the benefit of
MYRON-Wav is clearer: NHP is more complex with time (which
also accounts for the initial gap at small N1 and T. Running times
are minimally affected by tensor density, at least in the regimes
tested (Fig. 3(c)). Real interaction data is likely to be very sparse, e.g.
constant communication within large cliques is a different setting
altogether. Overall, MYRON’s running time compares favorably
with other discrete-time tensor-based methods, which themselves
are significantly more scalable than continuous-time methods such
as multi-dimensional Hawkes processes.

Fig. 3(d) provides more detail on the convergence properties of
each method, for a 10k X 100 X 750 tensor. Both versions of MYRON
converge to near-optimal DIV only marginally slower than non-
negative TF’s convergence. Hence stopping early (or using a looser
convergence criterion) can yield fast and good-quality results.

6.5 Burst detection.

In Fig. 3(e) we present the estimated bursts position for compet-
ing methods in synthetic data with a ground truth bursty profile
(top). MYRON-NHP closely reconstructs the bursty profile of the
ground truth behavior. Since LARC aims to obtain a piece-wise
on/off behavior without too many switches it “breaks” bursts into
short spikes, and thus, fails to detect the presence of longitudinal
bursts. TF does not impose any shape regularization on the tem-
poral information and simply minimizes the reconstruction error.
While it manages to partially recover bursts, it detects too much
non-burst activity leading to noisy detected groups and higher DIV
in group detection.

6.6 Estimating K.

Next we evaluate the quality of MYRON-CCD (Sec. 5.3) for estimat-
ing the number of groups in synthetic and real datasets. We set

minK = 2 and maxK = 15. We compare the estimates to those of
two burst-agnostic alternatives: TF-CCD, which follows the same
procedure as MYRON-CCD but uses TF instead of MYRON in step
2; and CCD [40] which is the original method for TF K estimation.

Fig. 4 presents the error of the estimates of all competing methods
on synthetic datasets of 200 nodes over 500 time steps containing
varying numbers of independently bursty, Hawkes-process gener-
ated groups. Results are averages of 5 different datasets per value of
K. While accurate detection of group count is difficult (as evidenced
by error throughout and significant variance), MYRON outperforms
non-burst-aware alternatives especially for larger K. In particular
the wavelet approach smooths out noise in the data and predicts
K with increasing accuracy. In contrast using the method Alg. 3
with burst-agnostic TF as the factorization approach consistently
overestimates K, likely due to an increased impact of noise. CCD
without adjustment yields consistent underestimates of increasing
error.

Real data results (Tbl. 2, columns 5-8) feature significant variance,
but also show that a burst-aware approach estimates a reasonable
number of communities when the ground truth K is big (e.g. for
Delicious where K=10). Of note is that while the specific K is hard
to estimate exactly, estimates by MYRON-CCD are reasonably close
to ground truth values. While MYRON-CCD Error overestimates
K when the ground-truth is slow (both Tbl. 2 and Fig. 4), running
MYRON light slightly larger K is likely to capture the true com-
munities regardless, alongside either background contributions or
multiple version of the same community.

In general, very accurate detection of group count remains a dif-
ficult problem. For application purposes other approaches may also
be considered, including for example cross-validation for value im-
putation [8, 48]. We note that our approach is not computationally
trivial, requiring significant memory for the purposes of recon-
structing a potentially dense “compression” of the input dynamic
graph. However, our analysis demonstrates that i) finding a reason-
able estimate for group count is not impossible, and ii) methods
that properly account for temporal behavior in the groups have
advantages.

6.7 Case study: analysis of a Flickr dataset.

Next we visualize and discuss the temporal behavior of detected
groups by MYRON in Flickr. The Flickr dataset was crawled by Gor-
litz et al. [17] and spans the period from January 2004 to December
2005. From the raw data, which consists of (User, Image, Tag, Time)
tuples, we extract (User, Image, Time) tuples corresponding to six
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Figure 5: A case study of MYRON-Wav’s detection of bursts in the Flickr
dataset involving six frequent tags

frequently used tags: Party, Family, Roma, Japan, and Friends; the
tags are then used as our ground truth groups.

The results of employing MYRON in Flickr are visualized in
Fig. 5, where the x-axis is the time (day), and the y-axis is the factor
value corresponding to each reconstructed group. The bursts of
the curves can be explained by different tagging intensity within a
particular group. For example, group 4 (Japan) has limited activity
throughout the data collection period, however, a burst focused on
a political event (a Liberal Democratic Party victory in multiple
branches of government) is detected by MYRON-Wav. Another
interesting tag/group, Roma (group 3), is active throughout the year.
The images tagged by this group are mostly historic places like La
Fontana dei Quattro Fiumi (Fountain of Four Rivers), Piazza Navona,
Tiber and St. Peter church. As we do not have any demographic
information of users, we mapped other groups i.e. Party, Family and
Friends, to USA events. Results show bursts that are consistent with
holiday seasons. We do not observe any significant bursts in group
5 (Travel), but this tag is active during holidays like Christmas
and New year’s eve, and may simply have a higher overall level of
activity that is less distinctly captured.

7 DISCUSSION

Detection from raw interactions: Our experiments demonstrate
that MYRON is able to detect ground truth communities containing
bursts, solely using interaction data, more accurately than close
baselines which do not explicitly account for bursty activity. Hence
our methodology is especially applicable and necessary for social
media and online forum discussion datasets whose activity is in-
herently self-exciting. The community burstiness that we leverage
can be in the form of particular events to discuss, release-centered
activity in a github repository within a topic “group", or topic-level
events or salient moments as in the case study above.

Burst modeling: The distinction between the NHP and Wav vari-
ants of MYRON deserves special mention. Modeling bursty behav-
ior via any means is beneficial, as both variants outperform base-
lines. However, in most of our datasets, the NHP version performs
better quality-wise, bolstered by a more general modeling of bursty
processes. This quality comes at a higher computational cost, par-
ticularly for longer time scales. In addition to group detection, NHP
also provides a more general, faithful, and intepretable description
of the “type” of burstiness of a given group in terms of the NHP
process parameters. These parameters have physical equivalents
in standard Hawkes parameters and can be employed to simulate
more group interaction with “faithful” temporal properties.

On the other hand, wavelets essentially pinpoint burst locations

without describing the entire temporal behavior. The Wav formula-
tion also offers trivial migration to other wavelet forms for temporal
group behavior which may fit particular data better. Many standard
wavelets are less bursty in shape, but the MYRON framework is
able to accommodate these regardless.
Limitations and extensions: Self-excitation is only one poten-
tial form of community behavior, though a common one. Trends
over time and periodicity are other possible temporal patterns. If
these occur at the global level, their contribution can be modeled by
augmenting the baseline behavior term by in MYRON. At the com-
munity level, other temporal “shapes" can be considered, including
discrete Fourier transforms, other wavelet forms, or a variety of
other temporal behaviors that can be modeled as an approximate
representation of noisy time series. We leave such extensions to
future work.

8 CONCLUSION

In this paper we introduced a general and robust framework for
bursty group detection from interaction data based on tensor factor-
ization, called MYRON. We incorporated burstiness via two alter-
native models: i) an interpretable non-homogeneous Poisson model
which generalizes classic Hawkes process models for individual
events and ii) a light-weight alternative employing Daubechies
wavelet decomposition. We performed extensive evaluation of our
framework on synthetic and real-world datasets spanning different
types of online interaction data. Our evaluation demonstrated the
advantage of MYRON for group and temporal burst detection in
comparison to recent state-of-the-art baselines. Our methodology
enabled improvement of quality for group detection of up to 30%
in synthetic and 40% in real data. In addition, MYRON was able to
detect interpretable bursty behavior, which we linked to real-world
events, when employed to mine the user-photo interactions in the
Flickr dataset.
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