Post-Fault Power Grid Voltage Prediction via
I1D-CNN with Spatial Coupling
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Abstract—We propose a one-dimensional convolutional neural
network (1D-CNN) with spatial coupling for post-fault power
grid voltage prediction. Our proposed deep learning framework
was inspired by the celebrated Prony’s method in classical signal
processing. Our spatio-temporal model significantly outperforms
existing benchmarks, including long short-term memory model,
and is applicable to other strong transients in power industries.
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I. INTRODUCTION

Accurate power grid prediction and fault detection is cru-
cial for decision making after anomalies (e.g. short circuits,
weather related damages) occur. Computationally, it is chal-
lenging if a large physical system of circuit equations [6]
has to be solved rapidly to produce accurate predictions. An
alternative approach is to learn the system’s response from
short time observations and generate subsequent system re-
sponses. Classical signal processing uses linear time invariant
filters, such as Padé and Prony’s methods [3]. However, these
methods are designed to fit responses with a rational system
function. Besides requiring the users to select the degrees of
numerator and denominator polynomials from observed data,
the prediction is only on a scalar time series and can be
sensitive to the choice of the degrees and unstable [5].

Prony’s method is well-known for modeling impulse re-
sponses resembling post-fault responses of a power system.
In this paper, we generalize Prony’s method to 1D-CNN [1]
with additional spatial information (e.g. currents in power lines
near a node/bus). The presence of temporal (1D) convolution
is a common ground of both methods, though 1D-CNN also
contains nonlinear operations such as activation and max-
pooling as well as dense layers. Related work [4] applied
long short-term memory (LSTM) neural network to model
transient dynamics of individual power generator and observed
much faster inference than computational physical simulations
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[6]. However, we have not found LSTM to be effective in
modeling post-fault responses. When varying the lookback of
the LSTM model between 1 and 20, we found that the errors
compound far too quickly in prediction, making the model
fairly useless. Compared to the LSTM, a 1D-CNN is much
better at extracting non-local dynamic features for prediction.
Our main contributions are:

1) We trained ID-CNN to successfully generalize the
Prony’s method to deep learning in the context of power-grid
data, free from choosing integer hyper-parameters location by
location.

2) The input to the 1D-CNN can be a concatenated vector
consisting of node voltage and nearby line currents, consistent
with measurements commonly used in power energy industry.

3) When applied to the prediction of voltage response
shortly after a fault occurs on a realistic power system, 1D-
CNN with neighboring current as joint input outperforms 1D-
CNN with voltage input alone, while the latter improves on
Prony’s method.

II. DATASET AND OUR GOAL

Time-domain simulations using a software tool EPTOOL
[2] generate a library of system dynamic responses to a variety
of disturbances. The simulations are performed on the New
York/New England 16-generator 68-bus power system. The
data consists of 3638 different events (faults), 70 percent of
which are selected as training data, 30 percent as test data.
Each event contains data describing 1000 points of time (1000
ms) for each of the 68 buses. The first 200 points after the
spike (estimated to be around the 105-th point) are used as
input, the last 600 points are used as output. The voltage is
recorded for each node, and the current is recorded for each
line connecting the nodes to one another. Our goal is to predict
the power grid’s response immediately after the fault occurs
for unseen scenarios, which assists real-time decision-making.
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Fig. 1: Comparing 1D-CNN output (green), Prony’s output [3]
(red), and predictions vs. data (blue). Training/test timestamps:

0-200/201-800; separated by the vertical line at 200 ms.

III. MODEL AND TRAINING

Our 1D-CNN model consists of a 1D-convolutional layer, a
max-pooling layer, a 1D flattening layer, and two dense layers,
with 392,466 parameters, of which 387,842 are trainable. For
voltage data, the input is a vector x € R?°C, representing the
magnitude of the voltage for the first 200 time steps (200 ms);
the fault occurs approximately 100 ms into the input, so this
reflects the behavior of a node in the power grid immediately
before and after a fault. The 1D-CNN outputs a prediction for
the voltage of the next 600 time steps y € R6, allowing
us to predict voltage response on the power grid after the
fault occurs. We found that incorporating neighboring current
information can improve the predictions of the network. To
accomplish this, we train a separate 1D-CNN for each node
in the power-grid. The input is a multidimensional vector (a
matrix) z € R200%(N+1) ‘where N is the number of neighbors.
The first row represents the voltage at the node, whereas the
subsequent rows represent the current from the neighbors. We
train the nodes separately since the voltage behavior per node
is highly independent. To train the model, we minimize MSE
(mean-squares-error) between predicted voltage and actual
voltage for the next 600 points by a stochastic gradient descent
solver in Tensorflow.

IV. EXPERIMENTS

On its own, the 1D-CNN generically outperforms Prony’s
method [3] as seen in comparisons of Fig. 1 on 4 buses.
Prony’s method requires hand-selecting two integer parameters
to fit the observation at each node of the power network, which
is labor intensive. An advantage of our 1D-CNN approach
is that it can model all nodes without tuning integer hyper-
parameters. The 1D-CNN is further improved by coupling
neighboring currents (Table 1 and Fig. 2). Our model inference
is fast, e.g. with an average prediction time of 0.046 seconds
on a Tesla T4 machine.

In Table 1, we compare performance of the various models
on voltage prediction. MSE results are grouped based on the
number of neighbors for each node: the maximum number of

TABLE I: MSE Comparison between different CNN models.

Neighbors | MSE (1D-CNN with neighbors) | MSE (1D-CNN)
1 1.6e-4 1.6e-4
2 1.7e-4 2.9e-4
3 1.5e-4 2.3e-4
4 1.9e-4 3.0e-4
5 1.1e-4 2.1e-4
Total 1.6e-4 2.3e-4
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Fig. 2: Contrasting the predictions of 1D-CNN coupling 4
neighboring line currents (green) with ground truth data (blue).

neighbors in this graph is 5. The first column is the MSE
when training a separate 1D-CNN for each node utilizing
neighboring current information. The second column repre-
sents the results of the 1D-CNN with only voltage as input,
no additional current information from the neighboring lines.

V. CONCLUSION

Motivated by the classical Prony’s method, we adopted
the 1D-CNN with spatial coupling for real-time long-term
power grid prediction after the fault of the system occurs. Our
proposed algorithm remarkably outperforms existing bench-
mark method, indicating the potential of 1D-CNN with spatial
coupling for power industrial applications.
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