


Binarization pushes this benefit to the extreme by replac-

ing floating-point dot products with logical XNOR and bit

counting operations. If binary neural networks (BNNs) can

reach high quality, they are likely to gain a large footprint

for inference both in the data center and at the edge.

BNN optimization is hard. Pioneering modern BNNs

used to suffer from a more than 20% top-1 accuracy gap

compared to their floating-point counterparts [23]. Only re-

cently BNNs have become comparable in quality to the pop-

ular ResNet-18 model [33, 34]. One reason is that BNNs

tend to have a chaotic, discontinuous loss landscape that

renders their optimization challenging [31, 33]. In fact, for

the binarization to work one has to change many things

compared to standard DNN practices. BNNs require multi-

phase training, approximation of gradients, and various ar-

chitectural adjustments that avoid binarization information

bottlenecks.

Our main contributions are as follows:

• We propose PokeConv, a binary convolutional block that

can substantially improve BNN accuracy. We replace

most of the convolutions in ResNet [17] with PokeConv.

• We propose PokeInit block to replace ResNet’s initial

convolutional layer that is hard to binarize. PokeInit

significantly reduces the network’s cost. PokeInit and

PokeConv form the foundation of the PokeBNN family.

• We optimize an under-explored clipping bound hyper-

parameter in BNNs that controls the binarization gradi-

ent approximation. Ablation in Sec. 6 shows we gain

more than 3% in top-1 accuracy through this parameter.

• We motivate and define a novel hardware and energy

inspired cost metric called ACE, which is informed by

inference costs on hardware yet at the same time it

is agnostic to the existing hardware platforms. ACE

improves alignment of the research on energy-efficient

neural networks and research on ML hardware. We use

ACE to quantify the inference cost of PokeBNN.

• We empirically show that on ImageNet [43] PokeBNN

establishes the Pareto-SOTA of top-1 together with cost

metrics: CPU64, ACE, and network size. We improve

over the SOTA ReActNet-Adam by 5.1% top-1 at the

same ACE cost (Fig. 1).

2. Related Work

There is a large and active body of research investigating

the training and acceleration of BNNs. We only review a

subset of the past efforts that have a high influence on the

network design presented in this paper. A comprehensive

survey can be found in [49].

BNN feasibility. The pioneering works [9, 23, 27]

demonstrated the feasibility of BNNs. They established

the training framework for neural networks with binarized

weights and activations and demonstrated promising results

on small datasets such as MINIST and CIFAR-10. How-

ever, their preliminary ImageNet results show a large top-1

accuracy drop from 62.5% to 36.1% on AlexNet [29] and

from 68.9% to 47.1% on GoogleNet [45].

Multi-phase training. A key effective technique is the

multi-phase training [8, 33, 34, 37], where one starts with

training an unquantized model and only later enables bina-

rization. Some approaches employ a three-phase training Ð

from the unquantized version, to binarized activations only,

to binarized weights and activations [37]. Knowledge dis-

tillation is another technique that has commonly been used

to improve the accuracy of BNNs [8, 33, 34, 37].

BNN architecture. Another comprehensive line of work

explores architectural changes to strive for better model

quality. Many of them aim to incur negligible compute

and parameter overhead. For example, a channelwise real-

valued rescaling of the binarized tensors can effectively mit-

igate the quantization loss [2,7,42]. Connecting the unquan-

tized input activations of a binarized convolutional layer to

its output with a shortcut enhances the gradient flow and the

model representation capacity [35]. Squeeze-and-excitation

(SE) [22] is another computationally cheap technique that

promises quality improvement on small convolutional mod-

els including BNNs [37]. FracBNN [50] includes additional

BatchNorm Layers [24] in a BNN to speed up convergence.

Authors in [8] first show that using a PReLU function [16]

after each convolutional layer improves binary model qual-

ity. Along this line, it is recently reported that introducing

learnable biases into the PReLU function leads to extra im-

provements in model accuracy [33, 34]. With the evolution,

current BNNs have finally exceeded 70% top-1.

3. Arithmetic Computation Effort

In this section we motivate and define ACE, which is de-

signed to reflect neural network inference cost on idealized

ML hardware implemented with CMOS methodology.

ACE metric definition. ACE is defined as follows:

ACE =
∑

i∈I,j∈J

ni,j · i · j (1)

where ni,j is the number of multiply-accumulate operations

(MACs) between a i-bit number and j-bit number and can

be automatically derived from model structure. I and J are

sets of all bitwidths used in the inference of a given neural

network, typically I = J = {1, 2, 4, 8, 16}.

The energy use is highly correlated with the total cost

of the computation. The inference could be happening in

a data center or on edge devices and it can be served from

CPUs, GPUs or TPUs. For edge devices, the battery us-

age is the main concern, which makes the energy use a key

bottleneck in many ML applications. In the case of data

centers, surprisingly, energy is also the main cost driver. In

order to run inferences in a data center, one needs to pay for:



hardware, electricity and power provisioning, and other in-

frastructure costs. A GPU card may cost 1000 USD and

be used for 3-5 years consuming 400W. Electricity bill at

65% utilization and 15 cents per kWh for three years would

amount to 0.4kW * 24h * 365 * 3 * 0.65 * 0.15 USD/kWh

= ∼1000 USD as well. Interestingly, the cost of the power

provisioning in data centers (cooling, transformers, batter-

ies, backup generators) is reported to be more than twice

that of the electricity bill (at least in case of Google data

centers) [25]. Also, a correlation of ML chip cost is re-

ported to be over 90% with its TDP. Overall, the cost of

running inferences is indeed mainly driven by the energy

consumption.

The bulk of the computation energy usage is in arith-

metic operations energy. Contrary to classic CPUs, ML

hardware running inference spends a high fraction of its

energy on the actual arithmetic (e.g., multiplications, ad-

ditions, other functions). For instance, in the case of TPUs,

the cost of computation control is amortized over enormous

SIMD sizes of 16K to 64K [25,26]. This is usually achieved

using systolic arrays [30]. In stark contrast, CPUs have a

typical SIMD size of 4 to 32 (e.g., SSE, AVX). We discuss

other non-arithmetic energy sinks in the appendix in a full

version of paper.

Arithmetic operation energy is proportional to the

number of active bit-adders. To multiply two unsigned

integers a < 2I , b < 2J , one first computes a value of I · J
bits using logical AND operations and sum them in groups:

∑

0≤i<I

ai2
i

∑

0≤j<J

bj2
j =

∑

0≤i<I
0≤j<J

(ai ∧ bj) 2
i+j (2)

In order to evaluate the sum, one uses bit-adders, carefully

taking into account to add bit triplets within one signifi-

cance group. Bit-adder sums three bits and outputs a two

bit result: p1 + p2 + p3 = 2q1 + q2 where pi, qi ∈ {0, 1}.

Bit-adders are the main building block of all multipliers and

adders. Each adder removes one bit from the pool, so taking

into account addition into the accumulator (AC in MAC), a

multiplication will activate I · J bit-adders.3 Notably, cir-

cuits that are not switching leak negligible amounts of en-

ergy, so one only pays for what they use. One may verify

that the number of active bit-adders is measured by ACE.

CPU64 metric. Previous BNN research typically use

FLOPs + 1

64
BOPs as a cost metric [33±35, 42]. It was mo-

tivated by the fact that one 64-bit CPU register can do 64

BOPs in one cycle, compared to one float64 (double pre-

cision) operation per cycle. We extend CPU64 to int4 and

int8 formats using coefficients 1/16 and 1/8, respectively.

Independent verification of energy use. Remarkably,

the actual energy measurements on Google TPUs hardware

3While there are many orders in which one can construct adder trees

(e.g., Wallace tree [46], Dadda tree [11]), affecting latency and clock

speed, the particular order has a limited effect on the energy use.

Table 1. ADD/MUL energy use in femto-Joules (fJ) [19, 25],

and the corresponding CPU64 and ACE metrics. The cor-

relation coefficient between ACE and the sum of ADD and

MUL energy is 0.992 for 7nm and 0.946 for 45nm, whereas

the CPU64-energy correlation is much smaller: 0.703 for 7nm

and 0.724 for 45nm.
ADD Energy (fJ) MUL Energy (fJ) MAC

45nm 7nm 45nm 7nm CPU64 ACE

float32 900 380 3700 1310 1 1024

float16 400 160 1100 340 1 256

bfloat16 - 110 - 210 - 256

int32 100 30 3100 1480 - 1024

int8 30 7 200 70 1/8 64

int4 - - - - 1/16 16

int2 - - - - 1/32 4

binary - - - - 1/64 1

are reasonably correlated with the ACE metric, grounding it

in reality. Tab. 1 reproduces energy measurement reported

by Google and Horowitz [19,25] on 45nm and 7nm process

node and attaches both ACE and CPU64 metrics. Inter-

estingly, bfloat16 and to a large extent float16 and float32

are also well correlated with ACE both in 45nm and 7nm

process nodes. We therefore choose to not special-case the

ACE formula for MAC cost on floating-point formats.

Implementation of high precision with binary arith-

metic. If we interpret ai, bi as binary matrices and ai ∧ bi
as binary matrix multiplication, then Eq. (2) can be used

to implement higher precision matrix multiplication on bi-

nary hardware. The cost of that emulation is I · J , which is

consistent with ACE metric. The result holds for all linear

operations including convolution.

Comparison to other metrics. Informed by the arith-

metic energy use, ACE for MACs of N-bit and N-bit is

quadratic in N as opposed to our CPU64 extension which

is linear in N. ACE generalizes FLOPS and CPU64 allow-

ing for evaluation of mixed quantization models. ACE al-

lows for evaluation of MACs with different bitwidths for

weights and activations. This is useful as one of them is of-

ten much easier to quantize or binarize. ACE is informed by

CMOS hardware design and manufacture constraints yet at

the same time is hardware target agnostic. With that we aim

to better predict the performance of energy-efficient neural

networks on the future ML hardware. This is an advantage

over popular methods of tuning the model for latency on

GPUs or mobile hardware such as smartphones [20, 44].

4. PokeBNN

In this section, we introduce the design methodology

of PokeBNN family. As a preliminary, we first define

the quantization and binarization math used throughout the

design. We then introduce PokeConv Ð a binarization

friendly convolution replacement, and PokeInit Ð a quan-

tized and cost-optimized initial layer replacement. Finally,

we combine the proposed techniques and use ResNet as a











Table 2. Final results and comparison to prior arts Ð When calculating ACE for FP32 operations, we assume they can be cast to

BF16 without accuracy loss. ª±º indicates unavailable data. The standard deviation of top-1 across 5 different seeds for PokeBNN-1.0x is

0.034%. BF16 PokeBNN is a variant where all convolutions and dense layers are in BF16. The bottom four rows show the base models

for context, all other models are binary.

Model MAC Operations (106) ACE (109) CPU64 (106) Size (MB) Top-1 (%)
FP32 BF16 INT8 INT4 Binary

AlexNet-BNN [23] - - - - - - - - 36.1
GoogleNet-BNN [23] - - - - - - - - 47.1
XNOR-Net [42] 120 - - - 1700 32.4 146.6 4.2 51.2
XNOR-Net++ [7] 120 - - - 1700 32.4 146.6 4.2 57.1
Bi-RealNet-18 [35] 139 - - - 1680 37.3 165.2 4.2 56.4
Bi-RealNet-34 [35] 139 - - - 3530 39.1 194.2 5.1 62.2
IR-Net-18 [41] - - - - - 37.3 165.2 4.2 58.1
IR-Net-34 [41] - - - - - 39.1 194.2 5.1 62.9
SQ-BWN-18 [48] - - - - - 37.3 165.2 4.2 58.4
PCNN [14] - - - - - 37.3 165.2 4.2 57.3
BDenseNet37-Dilated [5] - - - - - - 220.0 5.1 63.7
CI-BCNN-18 [47] - - - - - - 154.0 4.2 59.9
CI-BCNN-34 [47] - - - - - - 182.0 5.4 64.9
MobiNet [39] - - - - - - 52.0 4.6 54.4
BinaryMobileNet [40] - - - - - - 154.0 - 60.9
MeliusNet-29 [4] 129 - - - 5470 38.5 214.5 5.1 65.8
MeliusNet-42 [4] 174 - - - 9690 54.2 325.4 10.1 69.2
MeliusNet-59 [4] 245 - - - 18300 81.0 530.9 17.4 71.0
Real-to-Binary Net [37] 156.4 - - - 1676 41.7 182.6 5.1 65.4
SA-BNN-18 [32] - - - - - - 169.0 4.2 61.7
SA-BNN-34 [32] - - - - - - 201.0 5.5 65.5
SA-BNN-50 [32] - - - - - - - - 68.7
QuickNetSmall [3] - - - - - - - 4.0 59.4
QuickNet [3] - - - - - - - 4.2 63.3
QuickNetLarge [3] - - - - - - - 5.4 66.9
ReActNet-A [34] 11.9 0 0 0 4816.9 7.9 87.2 7.4 69.4
ReActNet-Adam [33] 11.9 0 0 0 4816.9 7.9 87.2 7.4 70.5
PokeBNN-2.0x 0 0 10.7 14.5 14412.2 15.3 227.4 20.7 77.2
PokeBNN-1.75x 0 0 10.2 11.1 11037.1 11.9 174.4 16.3 76.8
PokeBNN-1.5x 0 0 9.7 8.2 8111.7 8.9 128.5 12.4 75.9
PokeBNN-1.4x 0 0 9.5 7.1 7037.2 7.8 111.6 10.9 75.6
PokeBNN-1.25x 0 0 9.2 5.7 5635.8 6.3 89.6 9.0 75.0
PokeBNN-1.0x 0 0 8.7 3.6 3609.5 4.2 57.7 6.2 73.4
PokeBNN-0.75x 0 0 8.2 2.0 2032.7 2.6 32.9 3.8 70.5
PokeBNN-0.5x 0 0 7.6 0.9 905.6 1.4 15.2 2.0 65.2
FP32 ResNet-50 [17] 4089.2 0 0 0 0 1046.8 4089.2 97.3 76.7
BF16 ResNet-50 [1] 0 4089.2 0 0 0 1046.8 4089.2 48.6 76.7
INT4 ResNet-50 [1] 0 0 120.1 3969.1 0 71.2 263.1 13.1 77.1
BF16 PokeBNN 0 3621.8 0 0 0 927.2 3621.8 50.3 79.2

Table 3. Impact of the activation clipping bound B in the bina-

rization function.

Clipping Bound B 1.0 1.3 2.0 3.0 4.0 5.0 6.0

Top-1 (%) 70.1 71.4 72.9 73.4 73.3 72.8 72.4

Table 4. Ablate each component in PokeConv. ºAllº indicates

replacing PokeConv with the original 1-bit ResNet Conv block.

Remove Module SE DPReLU Shortcuts BN All

Top-1 (%) 70.6 60.4 68.1 70.2 61.9

depthwise layer trades 2.7% of the total ACE cost for 0.3%

accuracy, which is also a fair trade-off.

Precision ablation. Increasing the weight or activation

precision in PokeConv from 1-bit to 4-bit results in a 75.2%

and 76.8% top-1, respectively. Both of these variants have

an ACE cost of 15, and both are significantly better than

INT4 ResNet [1] but worse than PokeBNN-1.75x. This re-

sult indicates that binarization indeed allocates energy bet-

ter than int4 formats.

7. Conclusion

The main ingredients of PokeBNN: PokeConv, PokeInit,

and the clipping bound (B = 3), together establish a strong

SOTA in the domain of cost-efficient networks. ACE metric

improves alignment of research on cost-efficient neural net-

works with future ML hardware. Our results indicate that

binarization may indeed be a good choice in cost-accuracy

trade-off. The main price of these benefits is a 750-epoch

long training.

There are several unanswered questions. How to take

energy of memory access into account in a synthetic met-

ric? How could the Poke architecture be further simplified

or improved? Could architecture templates different than

ResNet-50 or perhaps neural architecture search yield sig-

nificantly better networks?

Acknowledgements. The authors would like to thank

Catalyst, JAX, and Flax teams for valuable implementation,

discussions, and suggestions on AQT library. This work is

supported in part by NSF Award #2007832.



References

[1] AmirAli Abdolrashidi, Lisa Wang, Shivani Agrawal,

Jonathan Malmaud, Oleg Rybakov, Chas Leichner, and

Lukasz Lew. Pareto-optimal quantized resnet is mostly 4-bit.

IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR) Workshops, 2021. 4, 6, 7, 8

[2] Yash Akhauri. HadaNets: Flexible quantization strategies

for neural networks. IEEE Conference on Computer Vision

and Pattern Recognition (CVPR) Workshops, 2019. 2

[3] Tom Bannink, Adam Hillier, Lukas Geiger, Tim de Bruin,

Leon Overweel, Jelmer Neeven, and Koen Helwegen. Larq

compute engine: Design, benchmark and deploy state-of-

the-art binarized neural networks. Machine Learning and

Systems, 2021. 8

[4] Joseph Bethge, Christian Bartz, Haojin Yang, Ying Chen,

and Christoph Meinel. MeliusNet: An improved network

architecture for binary neural networks. IEEE Winter Con-

ference on Applications of Computer Vision (WACV), 2021.

4, 7, 8

[5] Joseph Bethge, Haojin Yang, Marvin Bornstein, and

Christoph Meinel. BinaryDenseNet: Developing an archi-

tecture for binary neural networks. International Conference

on Computer Vision (ICCV) Workshops, 2019. 7, 8

[6] James Bradbury, Roy Frostig, Peter Hawkins,

Matthew James Johnson, Chris Leary, Dougal Maclau-

rin, George Necula, Adam Paszke, Jake VanderPlas, Skye

Wanderman-Milne, and Qiao Zhang. JAX: composable

transformations of Python+ NumPy programs. Version 0.1,

2018. 1

[7] Adrian Bulat and Georgios Tzimiropoulos. Xnor-

net++: Improved binary neural networks. arXiv preprint

arXiv:1909.13863, 2019. 2, 8

[8] Adrian Bulat, Georgios Tzimiropoulos, Jean Kossaifi, and

Maja Pantic. Improved training of binary networks for hu-

man pose estimation and image recognition. arXiv preprint

arXiv:1904.05868, 2019. 2, 5

[9] Zhiyong Cheng, Daniel Soudry, Zexi Mao, and Zhenzhong

Lan. Training binary multilayer neural networks for im-

age classification using expectation backpropagation. arXiv

preprint arXiv:1503.03562, 2015. 2

[10] Jungwook Choi, Zhuo Wang, Swagath Venkataramani,

Pierce I-Jen Chuang, Vijayalakshmi Srinivasan, and Kailash

Gopalakrishnan. PACT: Parameterized clipping activa-

tion for quantized neural networks. arXiv preprint

arXiv:1805.06085, 2018. 7

[11] L. DADDA. Some schemes for parallel multipliers. Alta

Frequenza, 1965. 3

[12] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,

Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,

Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-

vain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image

is worth 16x16 words: Transformers for image recognition

at scale. International Conference on Learning Representa-

tions (ICLR), 2021. 6

[13] Ruihao Gong, Xianglong Liu, Shenghu Jiang, Tianxiang Li,

Peng Hu, Jiazhen Lin, Fengwei Yu, and Junjie Yan. Differen-

tiable soft quantization: Bridging full-precision and low-bit

neural networks. International Conference on Computer Vi-

sion (ICCV), 2019. 4

[14] Jiaxin Gu, Ce Li, Baochang Zhang, Jungong Han, Xianbin

Cao, Jianzhuang Liu, and David Doermann. Projection con-

volutional neural networks for 1-bit cnns via discrete back

propagation. AAAI Conference on Artificial Intelligence,

2019. 8

[15] Peng Guo, Hong Ma, Ruizhi Chen, Pin Li, Shaolin Xie, and

Donglin Wang. FBNA: A fully binarized neural network ac-

celerator. International Conference on Field Programmable

Logic and Applications (FPL), 2018. 5

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Delving deep into rectifiers: Surpassing human-level perfor-

mance on imagenet classification. International Conference

on Computer Vision (ICCV), 2015. 2

[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR),

2016. 2, 4, 6, 8

[18] Jonathan Heek, Anselm Levskaya, Avital Oliver, Marvin Rit-

ter, Bertrand Rondepierre, Andreas Steiner, and Marc van

Zee. Flax: A neural network library and ecosystem for jax.

Version 0.3, 2020. 1

[19] Mark Horowitz. 1.1 computing’s energy problem (and what

we can do about it). International Solid-State Circuits Con-

ference Digest of Technical Papers (ISSCC), 2014. 3

[20] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh

Chen, Bo Chen, Mingxing Tan, Weijun Wang, Yukun Zhu,

Ruoming Pang, Vijay Vasudevan, Quoc V. Le, and Hartwig

Adam. Searching for mobilenetv3. International Conference

on Computer Vision (ICCV), 2019. 3, 5

[21] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry

Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-

dreetto, and Hartwig Adam. Mobilenets: Efficient convolu-

tional neural networks for mobile vision applications. arXiv

preprint arXiv:1704.04861, 2017. 6

[22] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation net-

works. IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2018. 2, 5

[23] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-

Yaniv, and Yoshua Bengio. Binarized neural networks. Ad-

vances in Neural Information Processing Systems (NeurIPS),

2016. 2, 4, 7, 8

[24] Sergey Ioffe and Christian Szegedy. Batch normalization:

Accelerating deep network training by reducing internal co-

variate shift. International Conference on Machine Learning

(ICML), 2015. 2, 5

[25] Norman P. Jouppi, Doe Hyun Yoon, Matthew Ashcraft, Mark

Gottscho, Thomas B. Jablin, George Kurian, James Laudon,

Sheng Li, Peter Ma, Xiaoyu Ma, Thomas Norrie, Nishant

Patil, Sushma Prasad, Cliff Young, Zongwei Zhou, and

David Patterson. Ten lessons from three generations shaped

google’s tpuv4i : Industrial product. International Sympo-

sium on Computer Architecture (ISCA), 2021. 3

[26] Norman P. Jouppi, Cliff Young, Nishant Patil, David Patter-

son, Gaurav Agrawal, Raminder Bajwa, Sarah Bates, Suresh

Bhatia, Nan Boden, Al Borchers, Rick Boyle, Pierre-luc



Cantin, Clifford Chao, Chris Clark, Jeremy Coriell, Mike

Daley, Matt Dau, Jeffrey Dean, Ben Gelb, Tara Vazir Ghaem-

maghami, Rajendra Gottipati, William Gulland, Robert Hag-

mann, C. Richard Ho, Doug Hogberg, John Hu, Robert

Hundt, Dan Hurt, Julian Ibarz, Aaron Jaffey, Alek Ja-

worski, Alexander Kaplan, Harshit Khaitan, Daniel Kille-

brew, Andy Koch, Naveen Kumar, Steve Lacy, James

Laudon, James Law, Diemthu Le, Chris Leary, Zhuyuan

Liu, Kyle Lucke, Alan Lundin, Gordon MacKean, Adriana

Maggiore, Maire Mahony, Kieran Miller, Rahul Nagarajan,

Ravi Narayanaswami, Ray Ni, Kathy Nix, Thomas Nor-

rie, Mark Omernick, Narayana Penukonda, Andy Phelps,

Jonathan Ross, Matt Ross, Amir Salek, Emad Samadi-

ani, Chris Severn, Gregory Sizikov, Matthew Snelham, Jed

Souter, Dan Steinberg, Andy Swing, Mercedes Tan, Gre-

gory Thorson, Bo Tian, Horia Toma, Erick Tuttle, Vijay Va-

sudevan, Richard Walter, Walter Wang, Eric Wilcox, and

Doe Hyun Yoon. In-datacenter performance analysis of a

tensor processing unit. SIGARCH Comput. Archit. News,

2017. 3

[27] Minje Kim and Paris Smaragdis. Bitwise neural networks.

arXiv preprint arXiv:1601.06071, 2016. 2

[28] Diederik P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. arXiv preprint arXiv:1412.6980,

2014. 6

[29] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.

Imagenet classification with deep convolutional neural net-

works. Advances in neural information processing systems

(NeurIPS), 2012. 2

[30] HT Kung and Charles E Leiserson. Systolic arrays (for vlsi).

Sparse Matrix Proceedings 1978, 1979. 3

[31] Hao Li, Soham De, Zheng Xu, Christoph Studer, Hanan

Samet, and Tom Goldstein. Training quantized nets: A

deeper understanding. Advances in Neural Information Pro-

cessing Systems (NeurIPS), 2017. 2

[32] Chunlei Liu, Peng Chen, Bohan Zhuang, Chunhua Shen,

Baochang Zhang, and Wenrui Ding. SA-BNN: State-aware

binary neural network. Proceedings of the AAAI Conference

on Artificial Intelligence, 2021. 5, 8

[33] Zechun Liu, Zhiqiang Shen, Shichao Li, Koen Helwegen,

Dong Huang, and Kwang-Ting Cheng. How do adam and

training strategies help bnns optimization? International

Conference on Machine Learning (ICML), 2021. 1, 2, 3,

6, 8

[34] Zechun Liu, Zhiqiang Shen, Marios Savvides, and Kwang-

Ting Cheng. ReActNet: Towards precise binary neural net-

work with generalized activation functions. European Con-

ference on Computer Vision (ECCV), 2020. 2, 3, 4, 5, 6, 7,

8

[35] Zechun Liu, Baoyuan Wu, Wenhan Luo, Xin Yang, Wei Liu,

and Kwang-Ting Cheng. Bi-real net: Enhancing the perfor-

mance of 1-bit cnns with improved representational capabil-

ity and advanced training algorithm. European Conference

on Computer Vision (ECCV), 2018. 2, 3, 4, 7, 8

[36] Kien Mai Ngoc, Donghun Yang, Iksoo Shin, Hoyong Kim,

and Myunggwon Hwang. Dprelu: Dynamic parametric rec-

tified linear unit. The 9th International Conference on Smart

Media and Applications, 2020. 5

[37] Brais Martinez, Jing Yang, Adrian Bulat, and Georgios Tz-

imiropoulos. Training binary neural networks with real-to-

binary convolutions. International Conference on Learning

Representations, 2020. 2, 5, 8

[38] NVIDIA. NVIDIA A100 Tensor Core GPU Architecture,

2020. 1

[39] Hai Phan, Dang The Huynh, Yihui He, Marios Savvides, and

Zhiqiang Shen. MoBiNet: A mobile binary network for im-

age classification. IEEE Winter Conference on Applications

of Computer Vision (WACV), 2020. 8

[40] Hai Phan, Zechun Liu, Dang Huynh, Marios Savvides,

Kwang-Ting Cheng, and Zhiqiang Shen. Binarizing mo-

bilenet via evolution-based searching. In IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), June

2020. 8

[41] Haotong Qin, Ruihao Gong, Xianglong Liu, Mingzhu Shen,

Ziran Wei, Fengwei Yu, and Jingkuan Song. Forward and

backward information retention for accurate binary neural

networks. IEEE Conference on Computer Vision and Pat-

tern Recognition (CVPR), 2020. 4, 8

[42] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon,

and Ali Farhadi. XNOR-Net: ImageNet classification using

binary convolutional neural networks. European Conference

on Computer Vision (ECCV), 2016. 2, 3, 8

[43] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-

jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,

Aditya Khosla, Michael Bernstein, Alexander C. Berg, and

Li Fei-Fei. Imagenet large scale visual recognition challenge.

International Journal of Computer Vision (IJCV), 2015. 2, 6

[44] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-

moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted

residuals and linear bottlenecks. IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), 2018. 3

[45] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,

Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent

Vanhoucke, and Andrew Rabinovich. Going deeper with

convolutions. IEEE Conference on Computer Vision and Pat-

tern Recognition (CVPR), 2015. 2

[46] C. S. Wallace. A suggestion for a fast multiplier. IEEE Trans-

actions on Electronic Computers, 1964. 3

[47] Ziwei Wang, Jiwen Lu, Chenxin Tao, Jie Zhou, and Qi Tian.

Learning channel-wise interactions for binary convolutional

neural networks. IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2019. 8

[48] Jianguo Li Yinpeng Dong and Renkun Ni. Learning accurate

low-bit deep neural networks with stochastic quantization.

British Machine Vision Conference (BMVC), 2017. 8

[49] Chunyu Yuan and Sos S Agaian. A comprehensive review

of binary neural network. arXiv preprint arXiv:2110.06804,

2021. 2

[50] Yichi Zhang, Junhao Pan, Xinheng Liu, Hongzheng Chen,

Deming Chen, and Zhiru Zhang. FracBNN: Accurate and

FPGA-efficient binary neural networks with fractional ac-

tivations. ACM/SIGDA International Symposium on Field-

Programmable Gate Arrays (FPGA), 2021. 2, 5

[51] Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He

Wen, and Yuheng Zou. DoReFa-Net: Training low bitwidth



convolutional neural networks with low bitwidth gradients.

arXiv preprint arXiv:1606.06160, 2016. 4


	. Introduction
	. Related Work
	. Arithmetic Computation Effort
	. PokeBNN
	. Quantization and Binarization Equations
	. PokeConv
	. PokeInit and Projection Layer Optimization
	. Model Assembly

	. Experiments
	. Training Setup
	. Evaluation Results

	. Ablation Study
	. Conclusion

