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We establish Hadamard-type inequalities for a class of
symmetric matrices called k-positive matrices for which the
m-th elementary symmetric functions of their eigenvalues
are positive for all m < k. These matrices arise naturally
in the study of k-Hessian equations in Partial Differential
Equations. For each k-positive matrix, we show that the sum
of its principal minors of size k is not larger than the k-th
elementary symmetric function of their diagonal entries. The
case k = n corresponds to the classical Hadamard inequality
for positive definite matrices. Some consequences are also
obtained.
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1. Introduction

Let n > 2 and 1 < k < n. We denote the k-th symmetric function of n variables

A= (A1,--, ) €ER" by

Sk = D> A

1<y < <ip<n
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It is convenient to set
So(A) = 1.
Let T'x(n) be an open symmetric convex cone in R™, with vertex at the origin, given by
Te(n) ={A=(A1,---, ) e R* | S;(AN) >0 Vj=1,--- k}.

The convexity of I'y(n) is a consequence of Garding’s theory of hyperbolic polynomials;
see Example 5.2.

Let M, (R) be the set of n x n matrices with real entries. If A = (a;;)1<i,j<n € Mn(R)
is an n X n symmetric matrix, we use A(4) = (A1, -+, A\,) to denote its eigenvalues. For
A € M, (R), let diag(A) be its diagonal matrix:

diag(A) = diag(ai1, - , nn)-
Notation. We use the following notation:

Sk(A) = Sk(A(A));
[n]={1,---,n}; J=[n]\Jfor J C [n].

For J C [n], we denote by A[J] the principal submatrix of A of size |J| obtained by
deleting the ith row and column of A, for each i ¢ J.

Let Ei(A) be the sum of the principal minors of size k of A € M, (R). Then, by [4,
Theorem 1.2.16], we have

Sk(4) = Ex(A). (1.1)

If A= (aij)i<ij<n € Mp(R) is positive definite, or equivalently, A(A) € I',(n), then
Hadamard’s determinant inequality (see, for example, [4, Theorem 7.8.1]) gives

Sp(diag(A)) = a11- - ann > det A = S, (A). (1.2)

When A € M, (R) is positive definite, and 1 < k < n is fixed, each principal submatrix
of size k of A is also positive definite; thus, we can apply the Hadamard inequality to
each of these principal submatrices of A and use (1.1) to conclude that

Sk(diag(A)) > Si(A). (1.3)

In analogy with the classical Hadamard inequality (1.2), we call (1.3) a Hadamard-type
inequality.

In this note, we show that (1.3) holds for a larger class of symmetric matrices, called
k-positive.
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Definition 1.1 (k-positive matrices). Let 1 < k < n. A symmetric nxn matrix A € M, (R)
is call k-positive if A\(A) € T'x(n).

As will be seen in Example 5.3, the set of k-positive matrices is a convex cone. This
is again a consequence of Garding’s theory of hyperbolic polynomials.

Note that the class of n-positive matrices is equal to the class of positive definite
matrices. The class of k-positive matrices arises naturally in the study of k-Hessian
equations

Sk(D2u) S f
in Partial Differential Equations where D?u denotes the Hessian matrix of u; see [5] for
a survey.
Due to the following remark, we will focus on the case k > 3.
Remark 1.2. Let A = (ai;)1<i j<n € M, (R) be symmetric.
(i) If k =1, then

S1(A) = Z Ai(A) = Zan‘ = Si1(diag(A)).

i=1

(i) If k = 2, then

Sa(A) = Ex(A) = Z QiG55 — Z azzj

1<i<j<n 1<i<j<n
= Sy(diag(A)) — Z a?j < Sy(diag(A)).
1<i<j<n

Equality holds if and only if A is diagonal.

Our main result on Hadamard-type inequalities for k-positive matrices states as fol-
lows.

Theorem 1.3 (Hadamard-type inequalities for k-positive matrices). Let n > k > 3. Let
A € M,(R) be k-positive. Then Sy (diag(A)) > Sk(A). Moreover, equality holds if and
only if A is diagonal.

A simple corollary of Theorem 1.3 and Remark 1.2 is the following.

Corollary 1.4. Let n > k > 1. Let A = (a;5)1<i,j<n € Mp(R) be k-positive. Then diag(A)
is k-positive. In other words, (ai1,- - ,ann) € T'k(n). Moreover, Sy (diag(A)) > Sk(A).
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For p € [n] and A = (A1, -+, An) = (Mi)1<i<n € R™, let us denote the following point
in ]R(:):

At = (i +-- Ay,

1<y <--<ip<n

Note that A;;; = A. We now state an interesting consequence of Corollary 1.4.

Theorem 1.5. Let A = (a;j)1<ij<n € M,(R) be symmetric. Let p € [n] and 1 < k
(2) If M(A)p € Fk((Z)) then (@11, ,Gnn)[p) € Fk((;;)) and Sk((a11,- -+, Gnn)[p))
Sk A)p))-

<
>

We deduce from Theorem 1.3 the following result.

Corollary 1.6. Let n Z k Z 2. Let A = (aij)lgi,jgn, and B = (bij)lgi,jgn S M»,L(R) be
two k-positive matrices. Then

D bk (A[{i)]) 2 k[Sk(A)] T [Sk(B)]*.

The rest of this note is organized as follows. In Section 2, we prove Theorem 1.3. In
Section 3, we prove Theorem 1.5. The proof of Corollary 1.6 will be given in Section 4.
The final Section 5 relates the main results and concepts of this note with hyperbolic
polynomials.

2. Proof of Theorem 1.3

In this section, the entries of A € M,,(R) will be denoted by a;; so A = (ai;)1<i j<n-
We start with the following useful expansion.

Lemma 2.1. Let A € M, (R) be symmetric. If A[{n}¢] is diagonal, then for k > 2, we
have

Si(A) = Si(diag(A)) =Y a2, > Wiriy " Wi _gin_s

<n 1‘1<"'<74'k_2€{i,’r7,}C
= Sy(diag(A)) =) _ af, Sk-a(diag(A[{i,n}])).
i<n

Proof. Recall that S;(A) is the sum of the principle minors of size k of A. Using the
definition of determinant of k x k matrices together with the fact that A[{n}¢] is diagonal,
we find
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S (A) = Sy (ding(A))

2 . ) n il L ik;,g
+ E Ain E sign (TL i i1 - dp_o Qiyiy " Qige_gip_2

i<n 1 <-<ip_p€{i,n}e

dlag E am E Qiyiy " Qig_gip_o

i<n i1 <-<ip_p€{i,n}e
Here
sign oo k=2) =
n v 1 - Vk—2
is the sign of the permutation of k£ numbers i,n,i1, -« ,ig_o. O

Our key lemma in the proof of Theorem 1.3 is the following.

Lemma 2.2. Let n > k > 2 and let A € M, (R) be symmetric. Let j € [n]. Assume that
Sk—2(diag(A[{i, j}°])) > 0 for all i # j. Then

Sk(A) < Sk(A[{I}D) + a5 Se—1 (AH{T})-
Moreover, the equality holds if and only if a;; =0 for all i # j.
Proof. We can assume that j = n. Then, for all ¢ < n, we have
Sk—2(diag(A[{7, j}°])) > 0

Case 1. Consider the case A[{n}°] := (ai;j)1<i,j<n—1 is diagonal. Then, from Lemma 2.1,
we have

Sk(A[{n}]) + annSk—1 (A[{n}7]) — Sk(A) = Sk(diag(A)) — Sk (A4)
= Si_o(diag(A[{i,n}]))a3,

<n

Moreover, the equality holds if and only if a;, = 0 for all i < n.

Case 2. General case. We can find an orthogonal matrix U € O(n — 1) such that
UtA[{n}]U is diagonal. Let

wW=U1:= (g ?) € O(n)

and B = (ain)lgign_l. Then
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UtA[{n}|U U'B
t _
WEAW = ( B .

has the form considered in Case 1. Note that S,,(W'AW) = S,,(4) > 0 for 1 <m < k.
Therefore, from Case 1, we have

Sk(A) = Sk(WtAW) < Sk(UtA[{TL}C]U) + annSk,l(UtA[{n}c}U)
= Sk(A{n}) + annSk—1 (A[{n}]).

The equality occurs if and only if U'B = 0, or equivalently, a;, = 0 for all i <n. O

The key assumption in Lemma 2.2 can be deduced, in many cases, from the following
result which is a consequence of Sylvestre’s criterion established in [5, Theorem 2.1].

Theorem 2.3 (Theorem 2.1 in [5]). Let A € M,,(R) be k-positive where k > 2. Then for
all i € [n], we have that A[{i}°] is (k — 1)-positive.

For reader’s convenience, we provide a different proof of Theorem 2.3 using Garding’s
inequality in Section 4.

We begin the proof of Theorem 1.3 with the case k = 3.

Lemma 2.4. Let n > 4. Let A € M,(R) be 3-positive. Then Ss(diag(A)) > S3(A).
Moreover, equality holds if and only if A is diagonal.

Proof. Fix j € [n]. Since A is 3-positive, we can apply Theorem 2.3 twice to find that if
i # j, then A[{i,j}¢] is 1-positive. Thus

Z are = S1(diag(A[{7, j}])) > 0. (2.1)

ke{ij}e

From Lemma 2.2, we have

S3(A) < S3(A[{7}) + a555:2(A[{T}))-

Adding these inequalities, and noting that
n
(n— Z Al{51])
we find

355(A) < Za”SQ = 3953 (diag(A 2": aii Z ?k
i=1 i#jFkFAL
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:353(diag(A))fZ a?j Z akk

i<j ke{i,j}e
< 383(diag(A))

where we used (2.1) in the last inequality. Clearly, equality occurs if and only if a;; =0
for all ¢ # j or if A is diagonal. O

We are now ready to prove Theorem 1.3.

Proof of Theorem 1.3. As remarked in the introduction, we have Sz(diag(A)) > S2(A)
for any symmetric matrix A € M, (R) with equality holding if and only if A is diagonal.
We only consider the case k < n since the case k = n is the classical Hadamard inequality.

The proof of the theorem is by induction on k& > 3, the base case being Lemma 2.4.
Suppose that the theorem is true up to k > 3. We prove it for £k + 1 < n.

Assume A € M, (R) is (k+1)-positive. Then, by Theorem 2.3, A[{i}¢] is k-positive for
all i € [n]. If § # 4, then again by Theorem 2.3, we have that A[{i,j}¢] is (k— 1)-positive.
It follows from the induction hypothesis together with Remark 1.2 that for 1 <m < k

Sm—1(diag(A[{i, j}])) = Sm-1(A[{,j}])) > 0. (2.2)

For each j € [n], let A7? be the matrix obtained from A by replacing all entries in the
Jj-th row and column by 0, except a;; being kept unchanged.

Step 1. We show that A™° is (k + 1)-positive. Indeed, from (2.2), we find that the
hypothesis of Lemma 2.2 is satisfied where & there being replaced by (m + 1) here. We
can then apply Lemma 2.2 to find that, for 1 < m < k, we have

Sm+1(A™0) = Spi1(A[{n}])) + ann S (A[{n}°])) = Sms1(4) > 0

with equality if and only if a;, = 0 for all i < n. This combined with S;(A™?) = S;(A) >
0 shows that A™° is (k + 1)-positive.

Step 2. Next, for each ¢ € [n—1], we replace the non-diagonal term in the é-th row and
column of A™? by 0, we obtain a new (k + 1)-positive matrix with no less Sy value.
Repeating this process, we obtain the conclusion of the theorem for k + 1 with equality
if and only if A is diagonal. O

3. Proof of Theorem 1.5

In this section, we prove Theorem 1.5. The proof uses ideas from Harvey-Lawson [3]
to interpret A\(A)(,) as eigenvalues of a suitable matrix associated with A. We recall this
formalism.

Let Sym?(R™) be the space of symmetric endomorphisms of R™. Fix an orthonormal
basis (e1,--- ,e,) of R™. For p € [n], let APR™ be the space of p-vectors vq A --- A vy
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where v; € R™ for 1 < ¢ < p. The inner product on R™ induces an inner product on
APR™. Then, an induced orthonormal basis for APR™ is {e;, A---Ae;, } where (i1, ,ip)
runs over all increasing p-tuples which are ordered lexicographically.

For each symmetric matrix A € M, (R), we can view its as a member of Sym?(R").
We define the linear derivation D4 of A on APR™ by assigning each p-vector vi A---Av, €
APR™ another p-vector

DA(vl/\-~-/\vp) =Au AN Avp v ANAv A Avp oo A A Ay, € APRT
Clearly, D4 € Sym?(APR™), and D4 has a matrix representation with respect to the

induced basis {e;, A---Ae;, } with matrix entries being linear combinations of the entries
of A. Moreover,

diag(Da) = Ddiag(A) = diag (am'l + -+ aiPiP)1§i1<--~<ip§n . (3.1)

In [3, Lemma 2.5], Harvey and Lawson showed that if A has eigenvalues A(4) =
(A1, -+, Ap) with corresponding eigenvectors (vy, - - - v,), then Dy has eigenvalues

i+ A, 1< < -0 < <nj,y
with corresponding eigenvectors
{viy, Ao Ay, 1 1<y <o < iy <nd
Thus, in our notation,
A(Da) = MA)y and Sp(A(A)) = Sk(Da). (3.2)

Proof of Theorem 1.5. We use the above setup and notation. If A(4), € Fk((z))7 then
ADa) €Ty ((Z)) By Corollary 1.4, we then have diag(D4) € T ((Z)) and

Sk(diag(D4)) > Sk(Da).
In view of (3.1) and (3.2), we obtain the conclusion of the theorem. O
4. Proofs of Theorem 2.3 and Corollary 1.6 via Garding’s inequality

In the proofs of Theorem 2.3 and Corollary 1.6, we will use the following form of
Gérding’s inequality [1].

Lemma 4.1 (Gdrding’s inequality). Suppose that A = (aij)1<i j<n, and D = (di;j)1<i j<n €
M, (R) are two k-positive matrices. Then
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0

0aij

i dijSlij(A) 2 k[sk(A)]%[Sk(D)]% where Slij(A)

i,7=1

Se(A4).  (4.1)

Lemma 4.1 follows from the polarization inequality in [1, Theorem 5] for the polyno-
mial Sy (A); see also [6, inequality (3.2)] for a related version when A and D are Hessian
matrices of two real-valued functions. Note that

S (A) = Se-1(A[{i})). (4.2)

Proof of Theorem 2.3 using Garding’s inequality. If A € M,,(R) is k-positive then A is
m-positive for all 1 < m < k. Thus, by an induction argument, it suffices to prove that
if A e M,(R) is k-positive then Si_1(A[{i}¢]) > 0 for all i € [n].

Indeed, if §; > 0, then D = diag(d1,- - ,d,) is k-positive, and we deduce from (4.1)

e

Z&Sk—l(x‘l[{i}c])) > k[Sk(A)]F [Se(D)]F. (4.3)

For a fixed ¢ € [n], letting §; = 1 and §; — 0 for j # ¢ in (4.3), we discover
Sk-1(A[{i}]) = 0.

It remains to prove that Sk_1(A[{i}¢])) # 0 for all i € [n]. Assume that Sx_1(A[{1}])) =

0. In this case, consider 61 =1, d; =e¢ > 0fori=2,---  k and §; = 0, otherwise. Then

D is still k-positive since S, (D) > e™~1 > 0 for all 1 < m < k. Now, (4.3) and the

assumption Si_1(A[{1}])) = 0 give

k—1 k—1

k
ey Sk (A[i}]) > k[Sk(A)] F e F . (4.4)
i=2
Since Si(A) > 0, by dividing both sides of (4.4) by € and letting ¢ — 0%, we obtain

k
> Se-a(Ali}) = .

a contradiction. O

Proof of Corollary 1.6. Suppose A, B € M, (R) are k-positive. By Corollary 1.4, D :=
diag(B) is k-positive. Applying (4.1) to A and D = diag(B), and recalling (4.2), we find

D biSkoa(A[{)]) 2 K[Sk(A)] T [Sk(diag(B))]F > K[Sk(A)] T [Su(B)]*

where we used Theorem 1.3 in the last inequality. O
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5. Hyperbolic polynomials and a conjectural inequality

In this section, we state a generalization of Theorem 1.3 for hyperbolic polynomials.
Using the theory of hyperbolic polynomials, we prove the convexity of I'y(n) and the
convexity of the set of k-positive matrices.

First, we recall the concept of hyperbolic polynomials [1] (see also [2] for a self-
contained account of Garding’s theory).

Let P be a homogeneous real polynomial of degree k on R™. Given a € R", we say
that P is a-hyperbolic if P(a) > 0, and for each € R™, P(ta + x) can be factored as

k
P(ta+x) = P(a) H(t + Xi(P;a,x)) forallteR
i=1

where A\;(P;a,x)’s (i =1,--- , k) are real numbers, called a-eigenvalues of x.
We recall the following fundamental theorem of hyperbolic polynomials; see [1, The-
orem 2].

Theorem 5.1 (Garding). Let P be a homogeneous real polynomial of degree k on R™.
Assume that P is a-hyperbolic. Denote the Gdarding cone of P at a to be the set

Io(P)={x € R" : \iy(P;a,z) >0 foralli=1,--- ,k}.
Then the following hold:

(i) If b € Ty (P), then P is b-hyperbolic and To(P) = T'p(P).
(ii) To(P) is conver.

A self-contained proof of this theorem of Garding can also be found in [2] which
consists of Theorems 3.6 and 5.1 there.

Suppose now P is a-hyperbolic. By Garding’s theorem, we can define the Garding
cone of P to be

INP)={xeR": \(P;a,z) >0foralli=1,--- &k},
and ['(P) is independent of a.

Example 5.2 (Garding cone and T'x(n)). The k-th elementary symmetric function Si(\)
is a homogeneous real polynomial of degree &k on R" and it is A-hyperbolic at any
A € 'k (n). Moreover,

F(Sk) = Fk(n)

From the convexity of T'(S%) due to Garding’s theorem, we deduce the convexity of I'y(n)
from the above equality.
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Proof of the statements in Example 5.2. By Example 2, p. 959 in [1], we know that Sy
is a-hyperbolic where a = (1,---,1) € R™. Thus, for any = € R™, we have from the
definition of a-hyperbolicity that the a-eigenvalues \;(Sk; a,x) are real numbers, for all
i=1,--- k.

Assume x € T'y(n). Then, from A;(Sk;a,x) € R,

k k
Sk(ta-l-x):Z(Z_Z)tk ‘Si(x Ht—i—/\ (Sk;a,x))
i=1

=0

and S;(z) > 0 for all i« = 0,1,--- |k, we easily find that \;(Sk;a,z) > 0 for all i =

k. Hence z € T'(Sy) from which we deduce that T'y(n) C T'(Sg), and Sy is -
hyperbolic by Garding’s theorem. Recall that we use I'(S)) to denote the Garding cone
of Spata=(1,---,1).

Now, assume = € I'(Sg). Then, by the definition of I'(Sy) = T'y(Sk), we have
Ai(Sk;a,x) > 0 for all i = 1,--- , k. Therefore, from the above expansion of Si(ta + x),
we obtain S;(z) > 0 for all ¢ = 1,--- , k which shows that x € T'y(n), or T'(Sg) C T'x(n).

Thus, we have I'(S) =T (n). O

A different proof of the convexity of I'y(n) can be found in Section 2 of [9].
Example 5.2 shows that k-positive matrices are those having eigenvalues lying in the
Garding cone of Sy.

Example 5.3 (Gdrding cone and the set of k-positive matrices). Let N = in(n+1) and
let A = (aij)i<ij<n € Mp(R) be symmetric. We can view A as a point in RYN. Then

P(A) = det A is A-hyperbolic for any positive definite matrix A. Let I,, be the identity
n X n matrix. Define Py by

det(tI, + A) = P(tI, + A) = Zt” kPe(A) forall t € R.

Then Pj, is a homogeneous polynomial of degree k on R™V; moreover, Py, is I,,-hyperbolic.
This follows from Example 3 and the discussion at the end of p. 959 in [1].
Note that

Py(A) = Sk(A(4)).
Arguing as in the proof of statements in Example 5.2, we have
['(Py) ={A € M,(R): \(A) e Tx(n)};

See also equation (2.10) in [6]. From the convexity of I'(Py) due to Garding’s theorem,
we deduce from the above equality the convexity of the set of k-positive matrices.
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Example 5.4. In many geometric problems (see, for example [3,7,8]), the Hessian equation
operators Sy are replaced by other hyperbolic polynomials P. One example is

PN = I o+ A) for A= (A, M) €R™.

1<y < <ip<n
Note that P; = S,, while P,, = S;. Moreover, P,,_1(A(A)) = det(S1(A)I, — A).

We note that the statement of Theorem 1.5, without any appeal to hyperbolic poly-
nomials, is modeled on the hyperbolic polynomial P, in Example 5.4.

It is of interest to study matrices whose eigenvalues lying in the Garding cone of a
hyperbolic polynomial P other than Sj and P,. In this regard, we state the following
generalization of Theorem 1.3.

Conjecture 5.5 (Hadamard-type inequalities for hyperbolic polynomials). Let P be a ho-
mogeneous, real, symmetric, hyperbolic polynomial of degree k on R™. Let A € M, (R).
If \(A) e T'(P) then (a11, -+ ,ann) € T(P) and

P(ai1, + ,ann) = P(A(A)).
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