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We establish Hadamard-type inequalities for a class of 
symmetric matrices called k-positive matrices for which the 
m-th elementary symmetric functions of their eigenvalues 
are positive for all m ≤ k. These matrices arise naturally 
in the study of k-Hessian equations in Partial Differential 
Equations. For each k-positive matrix, we show that the sum 
of its principal minors of size k is not larger than the k-th 
elementary symmetric function of their diagonal entries. The 
case k = n corresponds to the classical Hadamard inequality 
for positive definite matrices. Some consequences are also 
obtained.
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1. Introduction

Let n ≥ 2 and 1 ≤ k ≤ n. We denote the k-th symmetric function of n variables 
λ = (λ1, · · · , λn) ∈ Rn by

Sk(λ) :=
∑

1≤i1<···<ik≤n

λi1 · · ·λik .
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It is convenient to set

S0(λ) = 1.

Let Γk(n) be an open symmetric convex cone in Rn, with vertex at the origin, given by

Γk(n) = {λ = (λ1, · · · , λn) ∈ Rn | Sj(λ) > 0 ∀j = 1, · · · , k}.

The convexity of Γk(n) is a consequence of Gårding’s theory of hyperbolic polynomials; 
see Example 5.2.

Let Mn(R) be the set of n ×n matrices with real entries. If A = (aij)1≤i,j≤n ∈ Mn(R)
is an n × n symmetric matrix, we use λ(A) = (λ1, · · · , λn) to denote its eigenvalues. For 
A ∈ Mn(R), let diag(A) be its diagonal matrix:

diag(A) = diag(a11, · · · , ann).

Notation. We use the following notation:

Sk(A) = Sk(λ(A));

[n] = {1, · · · , n}; Jc = [n] \ J for J ⊂ [n].

For J ⊂ [n], we denote by A[J ] the principal submatrix of A of size |J | obtained by 
deleting the ith row and column of A, for each i /∈ J .

Let Ek(A) be the sum of the principal minors of size k of A ∈ Mn(R). Then, by [4, 
Theorem 1.2.16], we have

Sk(A) = Ek(A). (1.1)

If A = (aij)1≤i,j≤n ∈ Mn(R) is positive definite, or equivalently, λ(A) ∈ Γn(n), then 
Hadamard’s determinant inequality (see, for example, [4, Theorem 7.8.1]) gives

Sn(diag(A)) = a11 · · · ann ≥ detA = Sn(A). (1.2)

When A ∈ Mn(R) is positive definite, and 1 ≤ k ≤ n is fixed, each principal submatrix 
of size k of A is also positive definite; thus, we can apply the Hadamard inequality to 
each of these principal submatrices of A and use (1.1) to conclude that

Sk(diag(A)) ≥ Sk(A). (1.3)

In analogy with the classical Hadamard inequality (1.2), we call (1.3) a Hadamard-type 
inequality.

In this note, we show that (1.3) holds for a larger class of symmetric matrices, called 
k-positive.
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Definition 1.1 (k-positive matrices). Let 1 ≤ k ≤ n. A symmetric n ×n matrix A ∈ Mn(R)
is call k-positive if λ(A) ∈ Γk(n).

As will be seen in Example 5.3, the set of k-positive matrices is a convex cone. This 
is again a consequence of Gårding’s theory of hyperbolic polynomials.

Note that the class of n-positive matrices is equal to the class of positive definite 
matrices. The class of k-positive matrices arises naturally in the study of k-Hessian 
equations

Sk(D2u) = f

in Partial Differential Equations where D2u denotes the Hessian matrix of u; see [5] for 
a survey.

Due to the following remark, we will focus on the case k ≥ 3.

Remark 1.2. Let A = (aij)1≤i,j≤n ∈ Mn(R) be symmetric.

(i) If k = 1, then

S1(A) =
n∑

i=1
λi(A) =

n∑
i=1

aii = S1(diag(A)).

(ii) If k = 2, then

S2(A) = E2(A) =
∑

1≤i<j≤n

aiiajj −
∑

1≤i<j≤n

a2
ij

= S2(diag(A)) −
∑

1≤i<j≤n

a2
ij ≤ S2(diag(A)).

Equality holds if and only if A is diagonal.

Our main result on Hadamard-type inequalities for k-positive matrices states as fol-
lows.

Theorem 1.3 (Hadamard-type inequalities for k-positive matrices). Let n ≥ k ≥ 3. Let 
A ∈ Mn(R) be k-positive. Then Sk(diag(A)) ≥ Sk(A). Moreover, equality holds if and 
only if A is diagonal.

A simple corollary of Theorem 1.3 and Remark 1.2 is the following.

Corollary 1.4. Let n ≥ k ≥ 1. Let A = (aij)1≤i,j≤n ∈ Mn(R) be k-positive. Then diag(A)
is k-positive. In other words, (a11, · · · , ann) ∈ Γk(n). Moreover, Sk(diag(A)) ≥ Sk(A).
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For p ∈ [n] and λ = (λ1, · · · , λn) ≡ (λi)1≤i≤n ∈ Rn, let us denote the following point 
in R(np):

λ[p] =
(
λi1 + · · · + λip

)
1≤i1<···<ip≤n

.

Note that λ[1] = λ. We now state an interesting consequence of Corollary 1.4.

Theorem 1.5. Let A = (aij)1≤i,j≤n ∈ Mn(R) be symmetric. Let p ∈ [n] and 1 ≤ k ≤(
n
p

)
. If λ(A)[p] ∈ Γk(

(
n
p

)
) then (a11, · · · , ann)[p] ∈ Γk(

(
n
p

)
) and Sk((a11, · · · , ann)[p]) ≥

Sk(λ(A)[p]).

We deduce from Theorem 1.3 the following result.

Corollary 1.6. Let n ≥ k ≥ 2. Let A = (aij)1≤i,j≤n, and B = (bij)1≤i,j≤n ∈ Mn(R) be 
two k-positive matrices. Then

n∑
i=1

biiSk−1(A[{i}c]) ≥ k[Sk(A)]
k−1
k [Sk(B)] 1

k .

The rest of this note is organized as follows. In Section 2, we prove Theorem 1.3. In 
Section 3, we prove Theorem 1.5. The proof of Corollary 1.6 will be given in Section 4. 
The final Section 5 relates the main results and concepts of this note with hyperbolic 
polynomials.

2. Proof of Theorem 1.3

In this section, the entries of A ∈ Mn(R) will be denoted by aij so A = (aij)1≤i,j≤n.
We start with the following useful expansion.

Lemma 2.1. Let A ∈ Mn(R) be symmetric. If A[{n}c] is diagonal, then for k ≥ 2, we 
have

Sk(A) = Sk(diag(A)) −
∑
i<n

a2
in

⎛
⎝ ∑

i1<···<ik−2∈{i,n}c

ai1i1 · · · aik−2ik−2

⎞
⎠

≡ Sk(diag(A)) −
∑
i<n

a2
inSk−2(diag(A[{i, n}c])).

Proof. Recall that Sk(A) is the sum of the principle minors of size k of A. Using the 
definition of determinant of k×k matrices together with the fact that A[{n}c] is diagonal, 
we find
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Sk(A) = Sk(diag(A))

+
∑
i<n

a2
in

⎛
⎝ ∑

i1<···<ik−2∈{i,n}c

sign
(
i n i1 · · · ik−2
n i i1 · · · ik−2

)
ai1i1 · · · aik−2ik−2

⎞
⎠

= Sk(diag(A)) −
∑
i<n

a2
in

⎛
⎝ ∑

i1<···<ik−2∈{i,n}c

ai1i1 · · · aik−2ik−2

⎞
⎠ .

Here

sign
(
i n i1 · · · ik−2
n i i1 · · · ik−2

)
= −1

is the sign of the permutation of k numbers i, n, i1, · · · , ik−2. �
Our key lemma in the proof of Theorem 1.3 is the following.

Lemma 2.2. Let n > k ≥ 2 and let A ∈ Mn(R) be symmetric. Let j ∈ [n]. Assume that 
Sk−2(diag(A[{i, j}c])) > 0 for all i �= j. Then

Sk(A) ≤ Sk(A[{j}c]) + ajjSk−1(A[{j}c]).

Moreover, the equality holds if and only if aij = 0 for all i �= j.

Proof. We can assume that j = n. Then, for all i < n, we have

Sk−2(diag(A[{i, j}c])) > 0.

Case 1. Consider the case A[{n}c] := (aij)1≤i,j≤n−1 is diagonal. Then, from Lemma 2.1, 
we have

Sk(A[{n}c]) + annSk−1(A[{n}c]) − Sk(A) = Sk(diag(A)) − Sk(A)

=
∑
i<n

Sk−2(diag(A[{i, n}c]))a2
in ≥ 0.

Moreover, the equality holds if and only if ain = 0 for all i < n.

Case 2. General case. We can find an orthogonal matrix U ∈ O(n − 1) such that 
U tA[{n}c]U is diagonal. Let

W = U
⊕

1 :=
(
U 0
0 1

)
∈ O(n)

and B = (ain)1≤i≤n−1. Then
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W tAW =
(
U tA[{n}c]U U tB

BtU ann

)

has the form considered in Case 1. Note that Sm(W tAW ) = Sm(A) > 0 for 1 ≤ m ≤ k. 
Therefore, from Case 1, we have

Sk(A) = Sk(W tAW ) ≤ Sk(U tA[{n}c]U) + annSk−1(U tA[{n}c]U)

= Sk(A[{n}c]) + annSk−1(A[{n}c]).

The equality occurs if and only if U tB = 0, or equivalently, ain = 0 for all i < n. �
The key assumption in Lemma 2.2 can be deduced, in many cases, from the following 

result which is a consequence of Sylvestre’s criterion established in [5, Theorem 2.1].

Theorem 2.3 (Theorem 2.1 in [5]). Let A ∈ Mn(R) be k-positive where k ≥ 2. Then for 
all i ∈ [n], we have that A[{i}c] is (k − 1)-positive.

For reader’s convenience, we provide a different proof of Theorem 2.3 using Gårding’s 
inequality in Section 4.

We begin the proof of Theorem 1.3 with the case k = 3.

Lemma 2.4. Let n ≥ 4. Let A ∈ Mn(R) be 3-positive. Then S3(diag(A)) ≥ S3(A). 
Moreover, equality holds if and only if A is diagonal.

Proof. Fix j ∈ [n]. Since A is 3-positive, we can apply Theorem 2.3 twice to find that if 
i �= j, then A[{i, j}c] is 1-positive. Thus

∑
k∈{i,j}c

akk = S1(diag(A[{i, j}c])) > 0. (2.1)

From Lemma 2.2, we have

S3(A) ≤ S3(A[{j}c]) + ajjS2(A[{j}c]).

Adding these inequalities, and noting that

(n− 3)S3(A) =
n∑

j=1
S3(A[{j}c]),

we find

3S3(A) ≤
n∑

i=1
aiiS2(A[{i}c]) = 3S3(diag(A)) −

n∑
i=1

⎛
⎝aii

∑
a2
jk

⎞
⎠

i�=j �=k �=i
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= 3S3(diag(A)) −
∑
i<j

⎛
⎝a2

ij

∑
k∈{i,j}c

akk

⎞
⎠

≤ 3S3(diag(A))

where we used (2.1) in the last inequality. Clearly, equality occurs if and only if aij = 0
for all i �= j or if A is diagonal. �

We are now ready to prove Theorem 1.3.

Proof of Theorem 1.3. As remarked in the introduction, we have S2(diag(A)) ≥ S2(A)
for any symmetric matrix A ∈ Mn(R) with equality holding if and only if A is diagonal. 
We only consider the case k < n since the case k = n is the classical Hadamard inequality.

The proof of the theorem is by induction on k ≥ 3, the base case being Lemma 2.4. 
Suppose that the theorem is true up to k ≥ 3. We prove it for k + 1 < n.

Assume A ∈ Mn(R) is (k+1)-positive. Then, by Theorem 2.3, A[{i}c] is k-positive for 
all i ∈ [n]. If j �= i, then again by Theorem 2.3, we have that A[{i, j}c] is (k−1)-positive. 
It follows from the induction hypothesis together with Remark 1.2 that for 1 ≤ m ≤ k

Sm−1(diag(A[{i, j}c])) ≥ Sm−1(A[{i, j}c])) > 0. (2.2)

For each j ∈ [n], let Aj,0 be the matrix obtained from A by replacing all entries in the 
j-th row and column by 0, except ajj being kept unchanged.

Step 1. We show that An,0 is (k + 1)-positive. Indeed, from (2.2), we find that the 
hypothesis of Lemma 2.2 is satisfied where k there being replaced by (m + 1) here. We 
can then apply Lemma 2.2 to find that, for 1 ≤ m ≤ k, we have

Sm+1(An,0) = Sm+1(A[{n}c])) + annSm(A[{n}c])) ≥ Sm+1(A) > 0

with equality if and only if ain = 0 for all i < n. This combined with S1(An,0) = S1(A) >
0 shows that An,0 is (k + 1)-positive.

Step 2. Next, for each i ∈ [n −1], we replace the non-diagonal term in the i-th row and 
column of An,0 by 0, we obtain a new (k + 1)-positive matrix with no less Sk+1 value. 
Repeating this process, we obtain the conclusion of the theorem for k + 1 with equality 
if and only if A is diagonal. �
3. Proof of Theorem 1.5

In this section, we prove Theorem 1.5. The proof uses ideas from Harvey-Lawson [3]
to interpret λ(A)[p] as eigenvalues of a suitable matrix associated with A. We recall this 
formalism.

Let Sym2(Rn) be the space of symmetric endomorphisms of Rn. Fix an orthonormal 
basis (e1, · · · , en) of Rn. For p ∈ [n], let ΛpRn be the space of p-vectors v1 ∧ · · · ∧ vp
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where vi ∈ Rn for 1 ≤ i ≤ p. The inner product on Rn induces an inner product on 
ΛpRn. Then, an induced orthonormal basis for ΛpRn is {ei1 ∧· · ·∧eip} where (i1, · · · , ip)
runs over all increasing p-tuples which are ordered lexicographically.

For each symmetric matrix A ∈ Mn(R), we can view its as a member of Sym2(Rn). 
We define the linear derivation DA of A on ΛpRn by assigning each p-vector v1∧· · ·∧vp ∈
ΛpRn another p-vector

DA(v1 ∧ · · · ∧ vp) = Av1 ∧ · · · ∧ vp + v1 ∧Av2 ∧ · · · ∧ vp + · · · + v1 ∧ · · · ∧Avp ∈ ΛpRn.

Clearly, DA ∈ Sym2(ΛpRn), and DA has a matrix representation with respect to the 
induced basis {ei1 ∧· · ·∧eip} with matrix entries being linear combinations of the entries 
of A. Moreover,

diag(DA) = Ddiag(A) = diag
(
ai1i1 + · · · + aipip

)
1≤i1<···<ip≤n

. (3.1)

In [3, Lemma 2.5], Harvey and Lawson showed that if A has eigenvalues λ(A) =
(λ1, · · · , λn) with corresponding eigenvectors (v1, · · · vn), then DA has eigenvalues

{λi1 + · · · + λip : 1 ≤ i1 < · · · < ip ≤ n},

with corresponding eigenvectors

{vi1 ∧ · · · ∧ vip : 1 ≤ i1 < · · · < ip ≤ n}.

Thus, in our notation,

λ(DA) = λ(A)[p] and Sk(λ(A)[p]) = Sk(DA). (3.2)

Proof of Theorem 1.5. We use the above setup and notation. If λ(A)[p] ∈ Γk(
(
n
p

)
), then 

λ(DA) ∈ Γk

((
n
p

))
. By Corollary 1.4, we then have diag(DA) ∈ Γk

((
n
p

))
and

Sk(diag(DA)) ≥ Sk(DA).

In view of (3.1) and (3.2), we obtain the conclusion of the theorem. �
4. Proofs of Theorem 2.3 and Corollary 1.6 via Gårding’s inequality

In the proofs of Theorem 2.3 and Corollary 1.6, we will use the following form of 
Gårding’s inequality [1].

Lemma 4.1 (Gårding’s inequality). Suppose that A = (aij)1≤i,j≤n, and D = (dij)1≤i,j≤n ∈
Mn(R) are two k-positive matrices. Then
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n∑
i,j=1

dijS
ij
k (A) ≥ k[Sk(A)]

k−1
k [Sk(D)] 1

k where Sij
k (A) = ∂

∂aij
Sk(A). (4.1)

Lemma 4.1 follows from the polarization inequality in [1, Theorem 5] for the polyno-
mial Sk(A); see also [6, inequality (3.2)] for a related version when A and D are Hessian 
matrices of two real-valued functions. Note that

Sii
k (A) = Sk−1(A[{i}c]). (4.2)

Proof of Theorem 2.3 using Gårding’s inequality. If A ∈ Mn(R) is k-positive then A is 
m-positive for all 1 ≤ m ≤ k. Thus, by an induction argument, it suffices to prove that 
if A ∈ Mn(R) is k-positive then Sk−1(A[{i}c]) > 0 for all i ∈ [n].

Indeed, if δi > 0, then D = diag(δ1, · · · , δn) is k-positive, and we deduce from (4.1)

n∑
i=1

δiSk−1(A[{i}c])) ≥ k[Sk(A)]
k−1
k [Sk(D)] 1

k . (4.3)

For a fixed i ∈ [n], letting δi = 1 and δj → 0 for j �= i in (4.3), we discover

Sk−1(A[{i}c]) ≥ 0.

It remains to prove that Sk−1(A[{i}c])) �= 0 for all i ∈ [n]. Assume that Sk−1(A[{1}c])) =
0. In this case, consider δ1 = 1, δi = ε > 0 for i = 2, · · · , k and δi = 0, otherwise. Then 
D is still k-positive since Sm(D) ≥ εm−1 > 0 for all 1 ≤ m ≤ k. Now, (4.3) and the 
assumption Sk−1(A[{1}c])) = 0 give

ε

k∑
i=2

Sk−1(A[{i}c]) ≥ k[Sk(A)]
k−1
k ε

k−1
k . (4.4)

Since Sk(A) > 0, by dividing both sides of (4.4) by ε and letting ε → 0+, we obtain

k∑
i=2

Sk−1(A[{i}c]) = ∞,

a contradiction. �
Proof of Corollary 1.6. Suppose A, B ∈ Mn(R) are k-positive. By Corollary 1.4, D :=
diag(B) is k-positive. Applying (4.1) to A and D = diag(B), and recalling (4.2), we find

n∑
i=1

biiSk−1(A[{i}c])) ≥ k[Sk(A)]
k−1
k [Sk(diag(B))] 1

k ≥ k[Sk(A)]
k−1
k [Sk(B)] 1

k

where we used Theorem 1.3 in the last inequality. �
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5. Hyperbolic polynomials and a conjectural inequality

In this section, we state a generalization of Theorem 1.3 for hyperbolic polynomials. 
Using the theory of hyperbolic polynomials, we prove the convexity of Γk(n) and the 
convexity of the set of k-positive matrices.

First, we recall the concept of hyperbolic polynomials [1] (see also [2] for a self-
contained account of Gårding’s theory).

Let P be a homogeneous real polynomial of degree k on Rn. Given a ∈ Rn, we say 
that P is a-hyperbolic if P (a) > 0, and for each x ∈ Rn, P (ta + x) can be factored as

P (ta + x) = P (a)
k∏

i=1
(t + λi(P ; a, x)) for all t ∈ R

where λi(P ; a, x)’s (i = 1, · · · , k) are real numbers, called a-eigenvalues of x.
We recall the following fundamental theorem of hyperbolic polynomials; see [1, The-

orem 2].

Theorem 5.1 (Gårding). Let P be a homogeneous real polynomial of degree k on Rn. 
Assume that P is a-hyperbolic. Denote the Gårding cone of P at a to be the set

Γa(P ) = {x ∈ Rn : λi(P ; a, x) > 0 for all i = 1, · · · , k}.

Then the following hold:

(i) If b ∈ Γa(P ), then P is b-hyperbolic and Γa(P ) = Γb(P ).
(ii) Γa(P ) is convex.

A self-contained proof of this theorem of Gårding can also be found in [2] which 
consists of Theorems 3.6 and 5.1 there.

Suppose now P is a-hyperbolic. By Gårding’s theorem, we can define the Gårding 
cone of P to be

Γ(P ) = {x ∈ Rn : λi(P ; a, x) > 0 for all i = 1, · · · , k},

and Γ(P ) is independent of a.

Example 5.2 (Gårding cone and Γk(n)). The k-th elementary symmetric function Sk(λ)
is a homogeneous real polynomial of degree k on Rn and it is λ-hyperbolic at any 
λ ∈ Γk(n). Moreover,

Γ(Sk) = Γk(n).

From the convexity of Γ(Sk) due to Gårding’s theorem, we deduce the convexity of Γk(n)
from the above equality.
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Proof of the statements in Example 5.2. By Example 2, p. 959 in [1], we know that Sk

is a-hyperbolic where a = (1, · · · , 1) ∈ Rn. Thus, for any x ∈ Rn, we have from the 
definition of a-hyperbolicity that the a-eigenvalues λi(Sk; a, x) are real numbers, for all 
i = 1, · · · , k.

Assume x ∈ Γk(n). Then, from λi(Sk; a, x) ∈ R,

Sk(ta + x) =
k∑

i=0

(
n− i

k − i

)
tk−iSi(x) = Sk(a)

k∏
i=1

(t + λi(Sk; a, x))

and Si(x) > 0 for all i = 0, 1, · · · , k, we easily find that λi(Sk; a, x) > 0 for all i =
1, · · · , k. Hence x ∈ Γ(Sk) from which we deduce that Γk(n) ⊂ Γ(Sk), and Sk is x-
hyperbolic by Gårding’s theorem. Recall that we use Γ(Sk) to denote the Gårding cone 
of Sk at a = (1, · · · , 1).

Now, assume x ∈ Γ(Sk). Then, by the definition of Γ(Sk) = Γa(Sk), we have 
λi(Sk; a, x) > 0 for all i = 1, · · · , k. Therefore, from the above expansion of Sk(ta + x), 
we obtain Si(x) > 0 for all i = 1, · · · , k which shows that x ∈ Γk(n), or Γ(Sk) ⊂ Γk(n).

Thus, we have Γ(Sk) = Γk(n). �
A different proof of the convexity of Γk(n) can be found in Section 2 of [9].
Example 5.2 shows that k-positive matrices are those having eigenvalues lying in the 

Gårding cone of Sk.

Example 5.3 (Gårding cone and the set of k-positive matrices). Let N = 1
2n(n + 1) and 

let A = (aij)1≤i,j≤n ∈ Mn(R) be symmetric. We can view A as a point in RN . Then 
P (A) = detA is A-hyperbolic for any positive definite matrix A. Let In be the identity 
n × n matrix. Define Pk by

det(tIn + A) = P (tIn + A) =
n∑

k=0

tn−kPk(A) for all t ∈ R.

Then Pk is a homogeneous polynomial of degree k on RN ; moreover, Pk is In-hyperbolic. 
This follows from Example 3 and the discussion at the end of p. 959 in [1].

Note that

Pk(A) = Sk(λ(A)).

Arguing as in the proof of statements in Example 5.2, we have

Γ(Pk) = {A ∈ Mn(R) : λ(A) ∈ Γk(n)};

See also equation (2.10) in [6]. From the convexity of Γ(Pk) due to Gårding’s theorem, 
we deduce from the above equality the convexity of the set of k-positive matrices.
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Example 5.4. In many geometric problems (see, for example [3,7,8]), the Hessian equation 
operators Sk are replaced by other hyperbolic polynomials P . One example is

Pp(λ) =
∏

1≤i1<···<ip≤n

(λi1 + · · · + λip), for λ = (λ1, · · · , λn) ∈ Rn.

Note that P1 = Sn while Pn = S1. Moreover, Pn−1(λ(A)) = det(S1(A)In −A).

We note that the statement of Theorem 1.5, without any appeal to hyperbolic poly-
nomials, is modeled on the hyperbolic polynomial Pp in Example 5.4.

It is of interest to study matrices whose eigenvalues lying in the Gårding cone of a 
hyperbolic polynomial P other than Sk and Pp. In this regard, we state the following 
generalization of Theorem 1.3.

Conjecture 5.5 (Hadamard-type inequalities for hyperbolic polynomials). Let P be a ho-
mogeneous, real, symmetric, hyperbolic polynomial of degree k on Rn. Let A ∈ Mn(R). 
If λ(A) ∈ Γ(P ) then (a11, · · · , ann) ∈ Γ(P ) and

P (a11, · · · , ann) ≥ P (λ(A)).
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