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Abstract
Threshold concepts are transformative elements of domain knowledge that enable those 
who attain them to engage domain tasks in a more sophisticated way. Existing research 
tends to focus on the identification of threshold concepts within undergraduate curricula 
as challenging concepts that prevent attainment of subsequent content until mastered. 
Recently, threshold concepts have likewise become a research focus at the level of doctoral 
studies. However, such research faces several limitations. First, the generalizability of find-
ings in past research has been limited due to the relatively small numbers of participants in 
available studies. Second, it is not clear which specific skills are contingent upon mastery 
of identified threshold concepts, making it difficult to identify appropriate times for pos-
sible intervention. Third, threshold concepts observed across disciplines may or may not 
mask important nuances that apply within specific disciplinary contexts. The current study 
therefore employs a novel Bayesian knowledge tracing (BKT) approach to identify pos-
sible threshold concepts using a large data set from the biological sciences. Using rubric-
scored samples of doctoral students’ sole-authored scholarly writing, we apply BKT as a 
strategy to identify potential threshold concepts by examining the ability of performance 
scores for specific research skills to predict score gains on other research skills. Findings 
demonstrate the effectiveness of this strategy, as well as convergence between results of the 
current study and more conventional, qualitative results identifying threshold concepts at 
the doctoral level.
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Introduction

Transformation from disciplinary novices to independent researchers is a primary objec-
tive of doctoral education (Kiley & Wisker, 2009; Lovitts, 2008). A common experience 
for doctoral students during their academic journeys is the feeling of being “stuck” at 
certain points in their developmental trajectories as they acquire new research concepts 
and skills (Keefer, 2015; Land et al., 2005). These points represent both obstacles and 
significant opportunities for developing proficiency in conducting research (Feldon 
et al., 2017). These points, known as threshold concepts (Meyer et al., 2010), represent 
key knowledge elements that are challenging to attain and, once mastered, transform 
doctoral students’ subsequent perspectives, enabling the further development of exper-
tise. Thus, threshold concepts “can be akin to a portal, opening up a new and previously 
inaccessible way of thinking about something” (Meyer & Land, 2006, p. 3).

Previous research to identify threshold concepts in doctoral education has often 
focused on those that typically emerge across disciplines and from the perspective of 
faculty. For example, Kiley and Wisker (Kiley, 2009; Kiley & Wisker, 2009) found that 
faculty supervisors perceived fundamental transition points for doctoral students around 
the concepts of developing and supporting a scholarly argument, situating work within 
a theory, and applying a conceptual framework to structure the development of a study. 
Subsequent work, based on interviews with students, supported and elaborated on the 
theory and framework threshold concepts as especially challenging, but transformative 
to research knowledge, once attained (Kiley, 2015).

Other research has focused on threshold concepts within specific disciplines. For 
example, through interviews and focus groups with advanced and recently completed 
doctoral students in the biological sciences, Feldon and colleagues (2017) identified two 
basic threshold concepts: (1) the ability to effectively engage primary literature in a crit-
ical and constructive manner and (2) the ability to conceptualize appropriate controls 
when designing and interpreting experiments. While the former is a common barrier 
faced by students in many disciplines (e.g., Boote & Beile, 2005; Lovitts, 2007), the 
specific nature of controls in the design of biology experiments is unique in some ways 
and an essential concept to master to become an independent scholar in the discipline 
(Gross & Mantel, 1967).

At a practical level, identifying threshold concepts is a valuable activity. Doing so 
provides a means of identifying core competencies or necessary interim benchmarks. 
Further, because threshold concepts are recognized as being transformative and espe-
cially challenging to master, identifying them provides guidance for faculty mentors 
who may need to offer students additional instruction and support. However, research on 
threshold concepts at the doctoral level faces several limitations. First, the generalizabil-
ity of past findings has been limited due to the relatively small numbers of participants 
in available studies. Second, it is not clear which specific skills are prerequisite to or 
contingent upon mastery of identified threshold concepts, making it difficult to identify 
appropriate times for possible intervention. Third, the observed commonalities across 
disciplines may or may not mask important nuances that apply within specific discipli-
nary contexts (e.g., Feldon et al., 2017).

For these reasons, the current study employs a novel approach to identifying pos-
sible threshold concepts on the basis of a large data set specific to the discipline of 
laboratory-based biological sciences (e.g., cellular and molecular biology, microbi-
ology, developmental biology). Using rubric-scored samples of doctoral students’ 
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sole-authored scholarly writing, we apply Bayesian Knowledge Tracing as a strategy to 
identify potential threshold concepts by examining the ability of performance scores for 
target research skills to predict score gains on other research skills.

Review of literature

The study of research skill development in the context of graduate education has histori-
cally relied on two discrete traditions: situated studies of academic development focused 
on graduate students and other early career researchers (e.g., Delamont & Atkinson, 2001; 
Lovitts, 2005; McAlpine & McKinnon, 2013), and cognitively oriented studies conceptu-
alizing research proficiency as the acquisition of complex skills (e.g., Feldon et al., 2019; 
Schraagen, 1993; Schunn & Anderson, 1999). The purpose of the current study, to identify 
threshold concepts through the application of skill modeling strategies, represents an inte-
gration of these two traditions. Research skills and potential threshold concepts are situated 
within the authentic context of participants’ scholarly writing generated as part of their 
ongoing pursuit of a Ph.D. in the biological sciences. At the same time, the skills examined 
are narrowly defined and scored according to performance criteria. Accordingly, in this 
section, we review central tenets and findings from both traditions in the following para-
graphs and characterize the ways in which they can be reflected in a Bayesian Knowledge 
Tracing format.

Threshold concepts

Threshold concepts are typically described as essential knowledge for a domain that, once 
mastered, irreversibly transform an individual’s perspective and enable performance and 
understanding that were not previously possible. They are often likewise characterized as 
being transformative, irreversible, integrated, bounded, and troublesome (Meyer & Land, 
2003), though a comprehensive set of definitional criteria is still a topic of debate (Salwën, 
2019). Threshold concepts reflect barriers to the attainment of expertise until they are mas-
tered, because their attainment catalyzes a reorganization of knowledge that permits more 
sophisticated engagement with a broader array of tasks and concepts than is typical of an 
encapsulated concept (Roberts, 2016). Kiley and Wisker (2009) suggest that the mastery 
of threshold concepts, which are different from discipline-specific “core concepts” due to 
their transformative impact on subsequent understanding, will equip a learner with a quali-
tatively different view of oneself and the domain to which it is relevant. Further, until a 
threshold concept is attained, learners experience a liminal lack of progress during which 
broader progress in the domain stalls (Keefer, 2015). Accordingly, the process of develop-
ing into an independent scholar with a specific field of expertise is often experienced as a 
process of advancing from one liminal space to the next (Kiley, 2015; Leshem, 2020).

Based on interviews and surveys with experienced Ph.D. supervisors, Kiley (Kiley 
2009; Kiley & Wisker, 2009) identified six generic threshold concepts addressing develop-
mental trajectories of research concepts and skills: argument, the ability to mount a defen-
sible argument; theorizing, the ability to generate theoretical models that make sense of 
findings and results; framework, the ability to explain and articulate based on a theoretical 
framework and methodological position; knowledge creation and originality, the ability to 
make original contributions to the field of academia; analysis, the ability to conduct rigor-
ous analysis; paradigms, the ability to appreciate and understand the existing paradigm 
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and appropriate methodological approach. Consistent with these broad perspectives, which 
emphasize central facets of building a comprehensive scholarly argument, Chatterjee-Pad-
manabhan et al. (2018) argue that critically engaging in primary literature and developing 
a scholarly voice remained a major threshold concept for graduate students. Similarly, Fel-
don and colleagues  (2017) identified through interviews and focus groups with graduate 
students and early career researchers that the ability to take a balanced perspective when 
evaluating scholarly literature was a notable threshold concept, preceded first by accept-
ance of published claims at face value and then by overly critical analysis that was coun-
terproductive to understanding the state of developing knowledge in a given field. Wisker 
(2015) also suggested that the ability to write a good literature review can be regarded as 
the crossing of conceptual threshold, which demonstrates their interpretation of theoretical 
perspectives in the domain.

These prospective threshold concepts tend to be consistent across disciplines. However, 
the nature of learning during doctoral study—and in the development of expertise gener-
ally—is domain-specific, with epistemic framing, argumentation, understanding of relevant 
theory, and relevant problem-solving strategies unique to individual disciplines (Ericsson 
et al., 1993; Knorr-Cetina, 1999; Kuhn, 1962, 1977; Thagard, 2003). Accordingly, Feldon 
and colleagues (2017) also identified a threshold concept specific to laboratory biology, 
the design of experimental controls. The specific understanding and approach to design 
of these controls are unique to the building of disciplinary arguments in biology, so they 
reflect a fundamentally different scope than more generic thresholds described above.

Research skill development

In contrast to the identification of threshold concepts which are commonly identified on 
the basis of individuals’ reports of transformative knowledge that is difficult to attain, the 
cognitive tradition of research in scientific problem solving identifies key research skills 
through the observation or measurement of their application to specific problems. For 
example, the use of think-aloud protocols has identified differences between expert and 
novice problem-solving strategies related to reasoning through analogy (Nersessian & 
Chandrasekharan, 2009) and use of mental models to visualize likely outcomes (Chris-
tensen & Schunn, 2009). Likewise, performance in simulated experimental design and 
analysis problems has identified specific skills such as selection of the number of variables 
manipulated or measured that can reflect varied levels of expertise (Feldon, 2010; Hmelo-
Silver et al., 2002; Schraagen, 1993; Schunn & Anderson, 1999; Tschirgi, 1980). In more 
naturalistic contexts, studies have analyzed written artifacts such as research proposals or 
reports of empirical findings to assess the level of skill manifested in different aspects of 
the arguments presented (e.g., Feldon et al., 2011, 2019; Hackett & Rhoten, 2009; Timmer-
man, et al., 2011).

Studies examining sole-authored, written scholarly artifacts offer several advantages for 
evaluating manifestations of relevant skills. First, they are generated as an authentic task 
central to the work of scholars, which avoids concerns about the potential biasing of per-
formance during simulated tasks (Feldon et al., 2010; Seashore Louis et al., 2007). Second, 
they do not rely on supervisors’ reports or self-reports of scholarly skill, as each source 
rarely aligns with the other or with independently scored performance-based assessments 
(Cox & Andriot, 2009; Feldon et al., 2015; Goldstein et al., 2014; Kardash, 2000). Third, 
the structure and use of validated performance rubrics have proven effective in identify-
ing both individual skills reflected in assessed writing samples and trajectories of skill 
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development over time (Feldon et al., 2019; Timmerman et al., 2013), including potential 
threshold concepts (Urquhart et al., 2016).

In their application of this strategy, Feldon and colleagues (2019) assessed 12 specific 
research skills over a period of four years of doctoral study in the biological sciences. 
These included: setting the study in context, integration of primary literature, establish-
ing testable hypotheses, using appropriate controls and replication strategies, experimen-
tal design, selection of data for analysis, data analysis, presentation of results, basing con-
clusions on results, identifying potential alternative explanations for findings, identifying 
the limitations of the study, and generating implications from the conclusions generated. 
Longitudinal analysis of these skills did yield insights into the patterns of skill develop-
ment evident over time in the form of latent profiles reflecting patterns of relative strengths 
amongst skills and latent growth models indicating common trajectories of skill growth. 
However, those statistical analyses were unable to determine the extent to which any spe-
cific skills acted as threshold concepts, limiting growth in other skills until mastered.

Understanding the relationship between prerequisite skills and threshold concepts is an 
underdeveloped aspect of the literature, largely due to the different methodological and the-
oretical traditions applied to their study. For the current research, we posit that a threshold 
concept would have multiple prerequisite skills that could also hold prerequisite relation-
ships with one another. If a threshold concept had few or no prerequisite skills, it would 
be likely to demonstrate rapid early improvement, consistent with models of single skill 
development (Ackerman & Beier, 2018; Murre, 2014). However, attainment of threshold 
concepts typically requires both extended periods of time for mastery and reliance upon 
requisite prior knowledge (Shanahan et al., 2006). Threshold concepts differ from complex 
core concepts in their ability to transform learners’ overall understanding or perspective 
(Meyer & Land, 2003), for which experiential or reflective data from learners or instructors 
would be required.

Synthesizing research skill through Bayesian knowledge tracing

Bayesian knowledge tracing (BKT; Corbett & Anderson, 1995) has been successfully 
applied to model students’ knowledge in adaptive learning environments such as intelligent 
tutoring systems (Koedinger & Corbett, 2006) and simulation-based learning environments 
(Sao Pedro et al., 2013). BKT is widely used in a variety of learning systems, because it 
offers both a reasonably good fit to data and interpretable parameters. In particular, BKT’s 
extensibility has enabled it to be used to answer a variety of research questions around 
the effectiveness of learning system features and content (Sao Pedro et  al., 2014, Baker 
et al., 2018; Beck et al., 2008; Yudelson et al., 2008).

BKT is a distinct variation of a Hidden Markov Model—known as a two-state Hidden 
Markov Model. The key mechanism is to iteratively estimate the probability of skill acqui-
sition based on the observed performance of that skill. To capture students’ knowledge 
status, BKT is guided by four parameters in the model:

•	 L0 is the initial probability that a student already learned the skill prior to practicing it.
•	 T is the probability that a student will learn the skill after practicing it.
•	 S is the probability that a student makes a mistake in regard to the skill despite possess-

ing it.
•	 G is the probability that a student demonstrates the skill by chance despite actually not 

possessing it.
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Basic BKT regards the relationship between skills as complete transfer (where perfor-
mance on one skill predicts increases in performance on another skill equal to the extent 
that the latter skill predicts itself across time) or complete skill independence (where 
performance on one skill does not predict any increase in performance on another skill). 
Accordingly, it ignores the possibility of a partial transfer of skills (Singley & Anderson, 
1989; Speelman & Kirsner, 1997) across different tasks (where performance on one skill 
predicts performance on another skill, but to a lesser extent than the latter skill predicts 
itself across time). In the current study, partial transfer manifests as (1) the dependence on 
attainment of a threshold concept to enable the development or improvement of a separate, 
new skill or (2) the dependence of threshold concept attainment for a given skill on the 
prior mastery of other skills. To address this, Sao Pedro and colleagues (2014) proposed 
Bayesian Knowledge Tracing-Partial Skill Transfer (BKT-PST), as an extension to basic 
BKT. This approach accounts for partial transfer between two states of mastery learning. 
Compared to basic BKT, BKT-PST adds the parameter k, which is the likelihood of main-
taining skills when switching between topics or time points. It can therefore capture how 
competency in a latent skill might be transferable to another latent skill through the value k.

Despite this advantage of capturing the partial transfer of skills, established BKT-
PST strategies assume that a skill is a binary variable (e.g., known and unknown), so it is 
constrained in detecting non-binary trajectories of transfer, which can be often found in 
advanced cognitive skills. To address such limitations, the current paper redefines skills 
as continuous variables rather than binary categorical values within the BKT framework. 
It does so by specifying the degree of observable competence that students actually dem-
onstrate in a certain task (i.e., continuous numerical scores). Thus, the new model imple-
mented in the current study is an extension of BKT-PST, which we label Bayesian Knowl-
edge Tracing-Partial Skill Transfer as Continuous (BKT-PSTC). This model’s goal is to 
capture the nuanced developmental process of acquisition and transfer across sets of differ-
ent research skills. More details of BKT-PSTC are provided in the methods section.

Although BKT is most frequently applied within computer-based training or intelligent 
tutoring systems, its ability to model skill acquisition and performance can be applied in 
any learning context. Accordingly, we consider the BKT framework to be promising for 
the analysis of students’ research skill development in authentic contexts, such as scholarly 
writing (e.g., Florence & Yore, 2004). Thus, the application of BKT-PSTC to performance 
data from authentic tasks in this area of research permits more detailed analyses of the 
relationships amongst skills as they develop than either performance on simulated research 
tasks (e.g., Hmelo-Silver et al., 2002) or in-depth interviews (e.g., Kiley, 2009; McAlpine 
& McKinnon, 2013).

Specifically, as this model attempts to capture the degree to which transfer of a latent 
skill is dependent on the observed performance of skills in an earlier stage, tracing stu-
dents’ research skills allows us to determine the extent to which the acquisition of a spe-
cific research skill (i.e., source skill) can contribute to the acquisition of another skill (i.e., 
destination skill). The BKT model can quantify the degree of transition from a source skill 
to a destination skill through a parameter value, k, and can be analyzed to examine the sta-
tistical significance of transfer from one research skill to other skills over time. In this way, 
we can examine which research skills act as precursors of the attainment of a threshold 
concept or demonstrate faster growth after attainment of a threshold concept. The param-
eter values of each source skill can provide a precise estimate of these relationships.

This work is related to—but not quite the same as—work that attempts to capture pre-
requisite structure among a set of skills (e.g., Chen et  al., 2016; Scheines et  al., 2014). 
Such prerequisite structures posit that a post-requisite skill cannot be learned without first 
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acquiring the prerequisite skill. The structure we instead posit in this paper is one where 
a threshold concept assists in the acquisition of another skill, but is not strictly required. 
Several papers have attempted to represent and leverage prerequisite connections between 
skills, using approaches ranging from modifications of BKT, to knowledge spaces, to neu-
ral networks (e.g., Adjei et al., 2014; Botelho et al., 2015; Chen et al., 2018; Doignon & 
Falmagne, 2012). In general, these studies have investigated whether prediction of stu-
dent performance could be enhanced by using information on prerequisite relationships 
between skills, again with the operational definition that prerequisites imply the fact that 
a specific skill cannot be acquired without first acquiring another skill. Perhaps the clos-
est to our approach (aside from Sao Pedro et al., 2014) is Botelho et al. (2015). Botelho 
and his colleagues proposed a prerequisite binning extension to BKT where students are 
grouped according to their mastery speed on prerequisite skills, and the prerequisite infor-
mation is utilized to improve prediction of students’ initial response on subsequent skills. 
Although this approach was referred to as involving prerequisites, it shared our paradigm 
where acquiring one skill is facilitated by having another skill, but that earlier skill is not 
seen as absolutely necessary.

In this paper, we therefore capitalize on the BKT framework as a vehicle to identify 
the contingent structure of research skills over time as an indicator of prospective thresh-
old concepts, based on written scholarly artifacts. To capture the moments when transfer 
occurs among skills, we apply the BKT-PSTC as a new strategy to compute the probability 
of transfer from source skills to target skills. To the extent that many skills collectively 
transfer to one subsequent skill or a single skill transfers to many subsequent skills—espe-
cially when the subsequent skill(s) evidence no improvement until substantial gains are 
demonstrated for its predictor(s)—this framework enables the detection of prospective 
threshold concepts. To test this approach, we address the following research questions: 

1.	 What are the sequential dependencies between individual research skills detected by 
BKT-PSTC in samples of students’ scholarly writing?

2.	 Do detected dependencies reflect patterns consistent with threshold concepts identified 
through prior research?

Method

Participants

As part of a 4-year longitudinal study, we recruited 336 doctoral students in the labora-
tory-based biological sciences from 53 institutions across the United States. Forty-two 
institutions were classified as R1 (highest research activity), seven as R2 (higher research 
activity) institutions, and four as other Carnegie Foundation categories. All participants 
consisted of incoming Ph.D. students in Fall 2014, of whom a majority were female (n = 
183), domestic students (n = 237), continuing-generation (n = 210), and from racial/ethnic 
majority groups (n = 240). Mean age was 24.9 years (SD = 3.6) at the outset of the study. 
Four participants did not provide their racial/ethnic information, and four participants did 
not provide information on their status as domestic or international students. All partici-
pants provided informed consent to participate in the research and received a participation 
incentive of $400 USD per year. Not all participants contributed data in every year of the 
study. 297 students provided at least one writing sample. However, the current study only 
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included the participants with data every year, which yielded a total of 84 students (see 
more details in ’Data source’).

Data source

To measure individuals’ research skills, we collected each participant’s sole-authored writ-
ing sample (e.g., draft manuscripts, qualifying or comprehensive examinations, disserta-
tion proposals) written between February and June of each year. These artifacts were writ-
ten without contributions (e.g., co-authorship or editing) from others. The writing samples 
were all unpublished at the time they were submitted for the study.

Written scholarly artifacts, as a common research practice, represent how researchers 
can build scientific arguments, which is a key competency for successful research. Accord-
ingly, capturing research skills through writing samples can allow us to determine whether 
individuals acquired the research skills and successfully applied them in an authentic 
research context. The following specific skills were assessed according to a rubric fully 
reported by Feldon et al. (2019): 

•	 Data analysis (ANA; 0).
•	 Selecting data for analysis (SEL; 1).
•	 Basing conclusions on results (CON; 2).
•	 Identifying limitations of the study (LIM; 3).
•	 Identifying alternative explanations of findings (ALT; 4).
•	 Discussing the implications of the findings (IMP; 5).
•	 Establishing testable hypotheses (HYP; 6).
•	 Introducing/setting the study in context (INT; 7).
•	 Using appropriate experimental controls and replication (CTR; 8).
•	 Experimental design (EXP; 9).
•	 Presenting results (PRE; 10).
•	 Appropriately integrating primary literature (LIT; 11).
•	 Writing quality (WRT; 12).

Two blind raters scored each writing sample on these thirteen research skills originally 
identified from a thorough review of literature on the development of scientific arguments 
generally and from the biological sciences in particular (Timmerman et  al., 2011). Each 
research skill had a scored range of 0 to 3.25, with 0 meaning ‘Not Addressed’ or provid-
ing a completely irrelevant statement (0 + 0.25), and 3 ± 0.25 meaning ‘Proficient’. Scores 
were averaged across two raters and then used as a composite measure for each research 
skill. Interrater reliability as measured by intraclass correlations (ICCs; two-way random 
effects) was good (0.818 ≤ ICC ≤ 0.969; see exact ICC values in Feldon et al., 2019).

Of the students (n = 297) who were scored at any point from Year 1 to Year 4, 21.9% 
were missing data in Year 1, 22.9% were missing data in Year 2, 33.3% were missing data 
in Year 3, and 50.8% were missing data in Year 4. 28.3% of students (n = 84) were scored 
at all four time points. To handle missing data, we applied listwise deletion (Peugh & End-
ers, 2004) and removed any students that had one or more missing data from the entire 
dataset. This yielded a total of 84 students. According to Little’s (1988) test, data were 
missing completely at random (χ2[312] = 346.41, p = 0.09), indicating that missingness 
should not have introduced bias into the analyses. Table 1 shows the means and standard 
deviations for each research skill score across time.
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Data analysis

After rescaling scores from 0 to 1 for easier application within BKT, we created models to 
estimate the probability of students transferring one research skill to another research skill 
using BKT-PSTC, an extended version of BKT-PST model. Like BKT-PST, the proposed 
BKT-PSTC also added a k parameter [0.01–0.99] in the model to adjust the probability of 
the skill acquisition, in addition to the four parameters (i.e., L0, G, S, T) of the basic BKT 
model. A k parameter indicated the percentage of a skill learned at one time point (i.e., 
source skill) that was transferred to another skill at the next available time point (i.e., des-
tination skill).1 That is, each BKT-PSTC model predicted a student’s score on the destina-
tion skill by allowing a portion of its prediction to come from the probability of the student 
knowing the source skill at the previous time point. This portion was multiplied by the k 
parameter where a larger k indicates that the model weights the past source skill more in 
calculating the current destination skill.

We created 13 models for each skill. Each model investigates the transfer from a single 
skill to another single skill. Were we to fit all skill transfer simultaneously, it would be dif-
ficult to tease out the transfer between specific pairs of skills. In addition, given the limited 
amount of data available there would be significant concerns around over-fitting and identi-
fiability, making it difficult to ascertain whether a specific skill–skill relationship improved 
model fit to a statistically significant degree.

For each combination of source skill and destination skill, the model finds the k param-
eter that maximizes the predictive accuracy of the BKT-PSTC model (using the sum of 

Table 1   Means and standard deviations for research skills

Skills Year 1 (n = 84) Year 2 (n = 84) Year 3 (n = 84) Year 4 (n = 84)

M SD M SD M SD M SD 

0 (ANA) 0.51 0.71 0.84 0.89 1.03 1.02 1.14 0.77
1 (SEL) 0.78 0.80 1.21 0.86 1.39 0.95 1.53 0.82
2 (CON) 1.12 0.94 1.18 0.89 1.38 0.92 1.53 0.89
3 (LIM) 0.92 0.93 1.19 1.00 0.90 0.80 1.06 0.98
4 (ALT) 0.87 0.91 1.07 0.95 0.98 0.90 1.06 0.96
5 (IMP) 1.36 0.93 1.45 0.86 1.29 0.81 1.47 0.90
6 (HYP) 1.48 0.92 1.73 0.89 1.53 0.86 1.53 0.85
7 (INT) 1.90 0.75 2.03 0.71 1.79 0.70 1.82 0.87
8 (CTR) 1.30 0.83 1.63 0.82 1.32 0.86 1.43 0.79
9 (EXP) 1.92 0.75 2.10 0.62 1.88 0.66 1.98 0.66
10 (PRE) 0.39 0.74 0.98 1.06 1.15 1.11 1.22 1.14
11 (LIT) 1.73 1.05 1.84 1.02 1.42 1.11 1.54 1.18
12 (WRT) 2.08 0.60 2.26 0.51 2.17 0.38 2.27 0.52

1  In our implementation of BKT-PSTC, we treat time as an ordinal value rather than continuous. For exam-
ple, if a participant was missing data at the second time point, then data from the third time point was 
treated as if it were collected at the second time point within the model. This choice may have resulted in 
overestimation of the degree of learning per time point, but probably only to a small degree, given the lim-
ited amount of data missing. The alternative strategy, imputing estimated correctness and inputting it into 
the model, can produce extreme and unreliable estimates (cf., Author, in press).
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squared residuals as the goodness criterion during training). Figure 1 shows the example of 
our BKTC-PSTC models. When predicting the destination skill at a time point y = n, the 
probability of the student knowing the source skill at time y = n − 1 is used. When predict-
ing the destination skill at y = 1, no source skill score is applied; this is to say that, when 
predicting the destination skill at y = 1, the model has no PSTC component (k). Each BKT-
PSTC model was evaluated using fourfold cross validation at the student level. Specifically, 
each fold has a different set of students; that is, the same set of students are in a specific 
fold for each skill. The models were trained on three groups of students and tested on a 
fourth group of students. The values for the five parameters are the average values across 
the four folds. Student-level cross-validation attempts to estimate the model’s goodness for 
unseen students (within the overall population), which is important if we want to under-
stand how the model might generalize to students beyond our training sample. Fourfold 
cross-validation was selected in order to achieve a balance between having relatively large 
proportions of the sample included in training (compared to, say, twofold cross-validation), 
and overlap between training sets that is further from 100% (compared to, say, 10-fold 
cross-validation). It also had the benefit of tractable model training time (compared to, say, 
10-fold cross-validation).

Specifically, the BKT-PSTC model works as follows:

1.	 Take a source skill and destination skill.
2.	 For each fold.

a.	 Find 4 standard parameters (P(L0), G, S, T) for the source skill in fold.
b.	 Apply the source skill model to the source skill, producing P

(

Ly_source
)

 for the source 
skill at each step, and P

(

Ly_source
)

− P
(

Ly−1_source
)

 for one time point earlier.
c.	 Find 5 parameters for the destination skill: P(L0) , G, S, T, and k.
d.	 Where k can take value [0.01, 0.99] with a step of 0.01.
e.	 After computing formula, P(Ly_destination

)

= P
(

Ly−1_destination
)

+
(

1 − P
(

Ly−1_destination
))

× T

	   Use formula, P
(

Ly_destination
)∗

= P
(

Ly_destination
)

+
((

1 − P
(

Ly_destination
))

× P
(

Ly−1_source
)

× k
)

Fig. 1   Example of BKT-PSTC model
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	   And then use formula, P
(

Ly_destination
)∗ , for knowledge going forward.

3.	 Repeat for each possible source skill and destination skill.

a.	 Where a source skill is not equal to a destination skill.

We employed a brute force grid search approach to find the best fitting parameters 
(Baker et al., 2010), using a modified version of Baker’s BKT-BF software package, for 
which open source was available. The values of G and S parameters were bounded to be 
below 0.3 to avoid model degeneracy issues (e.g., model’s estimation of a lower proba-
bility of a student’s knowing of each skill, P(Ly), after observing the student’s skill dem-
onstration; Baker et al., 2008). All other parameters were allowed to range from 0.01 to 
0.99. Within these bounds, we tried every set of parameters at a grain size of 0.01, using a 
brute force grid search approach (Baker et al., 2010). Brute force grid search was chosen 
as the fitting algorithm, due to speed limitations with other approaches (Thai-Nghe et al., 
2012), and due to its ability to achieve comparable or better fit than other commonly used 
approaches, such as Expectation Maximization (Beck & Chang, 2007) and Iterative Gradi-
ent Descent (Baker et al., 2008). For each of the four folds of cross-validation, a k value 
was produced, and the overall estimate of the k value for the source and destination skills 
was computed from the average of the four values.

Findings

Table  2 shows the average k-value for each combination of destination skill and source 
skill. A higher value of k indicates that the model weights the past source skill scores more 
in calculating the current destination skill scores. We then used a Spearman’s correlation 
(denoted by ρ) to investigate the predictive power of BKT-PSTC models (see the results 
in Appendix) in comparison with a non-PSTC BKT model. While the non-PSTC BKT 
assumes no transfer occurs among skills (equivalent to BKT-PSTC with k = 0), a BKT-
PSTC model empirically estimates partial transfer (BKT-PSTC with k > 0). Specifically, 
in each pair of source skill and destination skill, we examined: (1) the correlation between 
students’ actual skill scores and BKT-PSTC models’ predicted scores, (2) the correlation 
between students’ actual skill scores and non-PSTC BKT models’ predicted scores, and (3) 
the correlation of predicted scores between the BKT-PSTC models and non-PSTC BKT 
models.

The BKT-PSTC models predict a student’s score for a certain skill (a destination skill 
at one time point) by using the student’s score on a source skill (at the previous time 
point) as an input. By comparison, the non-PSTC BKT model predicts a student’s skill 
score (at one time point) using the students’ same skill score at the previous time point. 
As shown in Appendix, for the non-PSTC model, the correlation coefficients (predictive 
performance) are the same for each destination skill since no transfer is occurring. We then 
used Hotelling’s t-tests (Cohen et al., 2013) to compare the correlation coefficients of the 
BKT-PSTC and non-PSTC BKT, to determine if any cases had a statistically significant 
difference of the predictive power between the BKT-PSTC model and non-PSTC BKT 
model. If the BKT-PSTC models fit student skill scores better than the non-PSTC BKT 
models, it implies that partial transfer occurred among skills. For example, including Skill 
9 as a source skill significantly improved our predictions of Skill 8 as a destination skill, 
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compared to when we predicted Skill 8 without using any source skill (ρ_PSTC = 0.084, 
ρ_non−PSTC = 0.014, t(333) = 3.373, p < 0.01).

Interestingly, all the combinations of skills that returned p-values less than 0.05 are 
found only for the destination skill, CTR (8: Using appropriate experimental controls and 
replication). Nine source skills improved the model for this skill at a significant level, with 
most p values below 0.01. The nine source skills are.

•	 CON (2: Basing conclusions on results, k = 0.353; t(333) = 2.862, p = 0.004),
•	 LIM (3: Identifying limitations of the study, k = 0.443; t(333) = 3.192, p = 0.002),
•	 ALT (4: Identifying alternative explanations of findings, k = 0.465; t(333) = 3.078, p = 

0.002),
•	 IMP (5: Discussing the implications of the findings, k = 0.343, t(333) = 3.400, p = 

0.001),
•	 HYP (6: Establishing testable hypotheses, k = 0.298, t(333) = 3.109, p = 0.002),
•	 INT (7: Introducing/setting the study in context, k = 0.255; t(333) = 3.327, p = 0.001),
•	 EXP (9: Experimental design, k = 0.253; t(333) = 3.373, p = 0.001),
•	 LIT (11: Appropriately integrating primary literature, k = 0.280; t(333) = 3.114, p = 

0.002), and
•	 WRT (12: Writing quality, k = 0.223; t(333) = 3.617, p <0.001).

Individually, many of these tests would become non-significant, if subjected to a post-
hoc test that treats tests as independent from one another, such as Bonferroni or Benjamini-
Hochberg. However, the pattern seen here suggests that the tests are related—all of the sig-
nificant tests involve CTR (8). To see if this pattern could have been due to chance, we ran 
a Monte Carlo simulation, where we assumed the null hypothesis that only chance p values 
were obtained, and that all tests were independent. We then ran the same number/structure 
of chance tests as in Table 2, asking the question of how often at least one destination skill 
(any of the 13 destination skills) has statistically significant results for at least 9 of the 12 
tests. We ran 100,000 simulations, and obtained this pattern 0 times, suggesting that the 
pattern seen in this paper is highly unlikely (p < 0.00001) if due to chance.

This suggests that development of the CTR skill is dependent on development on a large 
range of other skills attained previously. For example, in the combination of CON (source 
skill) and CTR (destination skill), the average k value is 0.3525. BKT-PSTC assumes when 
predicting a CTR skill score at each time point a student has a certain amount of potential 
improvement in their knowledge of the skill (or, to be more precise, a certain amount of 
greater confidence that the model could have as to whether they know the skill). Consider-
ing how much of CTR skill still remains to be learned, the student gains 35.25% of their 
degree of knowledge of CON skill. In other words, assuming that a student has a 40% 
chance of knowing CTR skill, the model could still become 60% more confident in the stu-
dent’s knowledge. If the student showed 70% knowledge of CON skill gained at a previous 
time point, then the student gains 14.8% (60% × 70% × 35.25%), yielding a new estimate 
of 54.8% (40% + 14.8%) that they have attained the CTR skill.

The other source skills (ANA, SEL, and PRE) did not improve the CTR skill model at a 
significant level. As shown in Table 3, the models show a higher learning rate (T > 0.01), 
but overall a lower k value than the significant models. Despite such a higher probability 
that the CTR skill will be learned at each opportunity to use it, the relatively lower k val-
ues indicate that students may not readily transfer their competency of these source skills 
attained at a previous time point to the CTR skill.



	 J. Kang et al.

1 3

Beyond this destination skill, the highest k value (k = 0.6675) was found for the com-
bination of the source skill, ANA (0: Data analysis) and the destination skill, PRE (10: 
Presenting results). However, the associated BKT-PSTC models were not statistically sig-
nificantly more predictive than the non-PSTC BKT model. It is worth asking why a high k 
may not be associated with a statistically significant finding. It may be that some non-sig-
nificant findings, including this one, would have become significant with a larger sample. 
However, if the students’ scores for these skills had a very high correlation, then a higher 
k value would do little to change the predictions because the source skill scores would 
not add much new information to the model. This is the more likely explanation for this 
case, as the scores for PRE and ANA have a fairly sizable correlation (ρ = 0.5703). Another 
possibility is that the non-PSTC BKT model had low predictive power to begin with, and 
adding information from the source skill did marginally improve the model, but not to a 
meaningful degree. This could happen if student performance is not stable across years. 
Indeed, even though the correlation between the non-PSTC BKT model and the students’ 
actual scores for PRE is among the highest in the set (ρnon-PSTC = 0.251), this correlation 
is fairly weak overall. We also note that for this ANA → PRE case, when k was included 
in the model (i.e., BKT-PSTC model) the model correlation was 0.2525, and when k was 
excluded (i.e., non-PSTC BKT) the model correlation was 0.2511. Because the predictions 
were almost identical (ρ = 0.9791), the value of k had limited impact on the actual predic-
tions of the model, even though k was high. This can happen if performance of either skill 
is at floor or ceiling or if the two skills are highly correlated.

Discussion

The purpose of this study was to detect sequential dependencies between individual 
research skills in samples of students’ scholarly writing using BKT-PSTC and deter-
mine if those identified dependencies were consistent with known threshold concepts. 
Our findings demonstrate the effectiveness of capturing the moments when the partial 
transfer occurs among a certain skill set (i.e., a source skill and destination skill) by 

Table 3   Parameter values for 
BKT-PSTC models for the 
destination skill, CTR​

Significant results (Hotelling’s two-tailed t-test) are boldfaced (*p < 
0.05, **p < 0.01)

Source skill P (L0) G S T k 

0 (ANA) 0.35 0.29 0.29 0.05 0.10
1 (SEL) 0.36 0.29 0.29 0.04 0.18
2 (CON)* 0.37 0.29 0.29 0.01 0.35
3 (LIM)** 0.36 0.29 0.29 0.01 0.44
4 (ALT)** 0.36 0.29 0.29 0.01 0.47
5 (IMP)** 0.36 0.29 0.29 0.01 0.34
6 (HYP)** 0.36 0.29 0.29 0.01 0.30
7 (INT)** 0.36 0.29 0.29 0.01 0.26
9 (EXP)** 0.35 0.29 0.29 0.01 0.25
10 (PRE) 0.35 0.29 0.29 0.06 0.02
11 (LIT)** 0.36 0.29 0.29 0.01 0.28
12 (WRT)** 0.36 0.29 0.29 0.01 0.22
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identifying explicit growth of research skill development over time through doctoral 
training experiences. Specifically, the identification of the control and replication skill 
was the only skill significantly predicted by any other skill acquired at previous time 
points. This pattern of data suggests that control and replication skills are highly con-
tingent on the prior development of other skills necessary to conduct research in the 
biological sciences. The large number of contingencies further highlights the position-
ing of control and replication as a demanding concept that may not be attainable without 
prior mastery of other elements of research skill, consistent with the structure of thresh-
old concepts. Coupled with results from previous qualitative research that identified the 
effective development and application of experimental controls as a key threshold con-
cept in the biological sciences (Feldon et  al., 2017), the findings of the current study 
point to control and replication as a threshold concept. This provides supporting evi-
dence of the viability of BKT-PSTC as a means for detecting threshold concepts using 
quantified data at scale.

The identification of threshold concepts generally can be challenging, because their 
development is currently undertheorized. Despite extensive research, the field has yet to 
define clear indicators of progress during liminality that suggest a threshold concept might 
soon be attained. Likewise, the observable consequences of mastering a threshold concept 
are typically described in relation to the concept itself and not subsequent development that 
hinged upon its mastery (Nicola-Richmond et al., 2018; Salwën, 2019). However, based on 
the understanding that a threshold concept is both challenging to master and transforma-
tive (Meyer & Land, 2003), it likely relies on the development of a number of prerequisite 
skills and concepts before it can be attained. Thus, identifying a skill for which growth is 
predicted concurrently by prior growth in multiple other skills is generally consistent with 
an understanding of threshold concepts.

In the BKT-PSTC models, partial transfer between research skills was captured by the 
linear transfer factor, k. A high value of k suggests more transfer between a source skill and 
a destination skill, indicating specifically that the model weights the past source skill more 
in calculating the current destination skill. Our findings showed not all high k values were 
statistically significant in the comparison of the non-PSTC BKT models (e.g., k = 0.6675 
between a source skill [data analysis] and a destination skill [presenting results]). Compar-
ing coefficients of BKT-PSTC and non-PSTC BKT reveals a statistically significant differ-
ence in the predictive power between the models and further determines if high values of 
the parameter k actually implies that partial transfer occurred among skills. That is, com-
paring the predictive power between BKT-PSTC and non-PSTC BKT models, combined 
with observing high values obtained for the partial transfer parameter k can support the 
detection of threshold concept acquisition in a rigorous way.

It is worth noting that BKT-PSTC treats the degree of transfer between two skills (k) 
as being constant over time. It is possible that the transfer between skills may be higher at 
specific points in a student’s academic career—for specific skill combinations, perhaps at 
the beginning of graduate study, or after the dissertation proposal. It may be a valuable area 
of future work to consider models where k is allowed to vary over time or by context, an 
extension of the contextual approach to parameter estimation seen in Baker et al. (2008).

Many studies of learning transfer typically use post-hoc tests to show any significant dif-
ference in performance scores between a treatment group and a control group. However, such 
tests only demonstrate the degree of transfer by using aggregated performance scores (e.g., 
pre-/post-test scores), instead of capturing the process of learning transfer. Drawing on edu-
cational data mining models such as BKT-PSTC in capturing transfer, this study suggests 
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that there may be benefits of the application of educational data mining models such as BKT-
PSTC to yield a nuanced mechanism of how skills transfer dynamically to other skills.

Limitations

As a first effort at applying BKT-PSTC to detect threshold concepts at scale, the findings from 
the current study offer useful insight. However, the study as conducted has certain limitations. 
First, it is important to note that the sample was drawn from a single country and a single dis-
cipline. Accordingly, it is impossible to assert with confidence that the same results or patterns 
of performance would be obtained if either feature were different. The structure of Ph.D. train-
ing differs substantially across countries, with programs of study in the United States typi-
cally including at least one year of coursework, an emphasis on early publication, and interim 
benchmark assessments required for continuation to the dissertation phase of study (Gardner, 
2009; Nerad & Heggelund, 2008). Accordingly, the type and sequencing of skills developed 
during graduate training may differ as a function of either or both of these features.

Second, despite the fact that the sample size is relatively large for the type of data collected 
in typical studies of graduate education, for the purpose of statistical analysis, it is somewhat 
small. Likewise, use of listwise deletion for missing data further reduced the operational data 
set. Accordingly, it is possible that lack of statistical significance for certain relationships 
might be due to limited statistical power to detect effects when standard errors are large. Lim-
ited sample size also prevented the disaggregation of data by gender or other demographic 
variables, as well as specialized subfields of the biological sciences (e.g., cellular and molecu-
lar biology, developmental biology, neurobiology). Therefore, it is possible that heterogene-
ity in relationships between skills differed in some way that was unobserved. However, other 
analyses of these data have not detected such effects (e.g., Feldon et  al., 2019). Similarly, 
although our missing data meets Little’s (1988) standard for missing completely at random 
(MCAR), it is possible that an undetected regularity in missingness across participants could 
introduce undetected bias into the current analyses.

Third, although the types of academic writing accepted for this study were constrained to 
either research proposals with discussion of anticipated findings or reports of obtained empir-
ical findings, it is possible that the specific type of submission could introduce differences 
undetected during analysis. Even without systematic differences in mean score values between 
writing sample types, it is possible that standard errors or the magnitude of specific relation-
ships between pairs of skills were impacted.

Lastly, the analytic strategy reported here employed only pairwise analyses of skills—
i.e., whether a single source skill influenced later performance on a single destination skill. 
Thus, the analyses presented here could not detect unique contributions to destination skills 
by multiple source skills in combination (e.g., partial correlations). Likewise, it is possible 
that observed correlations could be affected by more complex multi-year skill development 
patterns. Our current data set and modeling approach could not investigate these questions but 
they represent relevant research questions for future research.
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Implications

The results of this study hold several implications for both future research and practice in 
graduate education. First, the identification of a discipline-specific threshold concept that is 
robust across studies suggests that such research is both viable and necessary to understand 
the specific ways in which scholarly skills develop within individual disciplines. Most cur-
rent research on threshold concepts in graduate education has focused on pan-disciplinary 
concepts that often link to scholarly identity as well as the broader ability to frame general 
scholarly arguments (e.g., Keefer, 2015; Kiley, 2009, 2015).

Second, the ability to detect threshold concepts using quantitative analysis permits stud-
ies that engage larger samples which can be randomly selected, rather than the small, pur-
poseful samples typical of qualitative threshold concept studies. In contrast to the few prior 
quantitative studies to detect threshold concepts, which relied on student responses to mul-
tiple-choice exam questions (e.g., Shanahan et al., 2006; Vidal et al., 2015), the strategy 
employed here permits a deeper and more extensive examination of the knowledge used. 
Further, the use of large, randomly selected samples will be better positioned to establish 
broadly generalizable conclusions and permit better estimation of population parameters. 
Likewise, such analyses can be conducted using data sets compiled through institutional 
data, as well as independent research. For example, a number of universities have taken 
steps toward more systematic scoring of dissertations, theses, and other major benchmarks 
within graduate degree programs (Lovitts, 2007; Williams & Kemp, 2019). Accordingly, 
such data might be used to understand the development and subsequent impacts of thresh-
old concepts in relation to the structure of training at the intersection of disciplines and 
academic programs.

Third, calling upon some of the well-established practical uses of BKT, universities 
might explore the use of such analyses to monitor the development of graduate students 
as they progress toward their degrees and alert appropriate faculty or staff if early warn-
ing signs emerge (cf., Milliron et al., 2014). If individual students do not demonstrate the 
attainment of identified threshold concepts on a normative timeline for a given discipline 
and program, it would be possible to identify them and offer additional programmatic sup-
ports tailored to the specific skills predictive of threshold concept attainment.

Lastly, the identification of experimental control and replication skills as a threshold 
concept has concrete applications for both the sequencing of instruction and the focal 
efforts of faculty mentors in supporting developing Ph.D. students. As a skill area that 
relies on partial transfer from multiple other skills, it is intuitive that focused instruction 
intended to support students’ research skill development would introduce and facilitate 
mastery of the contributing skills prior to focusing on control and replication. Doing so 
would be likely to reduce the duration or severity of liminality prior to students crossing 
that threshold to mastery of the concept by ensuring that the necessary contributing skills 
were developed prior. Likewise, individualized support of doctoral students by supervisors 
or other faculty mentors might prioritize focused interactions to bolster the development 
of control and replication skills as a threshold concept following the perceived attainment 
of contributing skills. Because learning in Ph.D. programs is often solitary (Keefer, 2015) 
and student access to supervisors can be limited as a function of the time-consuming and 
diverse responsibilities of research faculty (Gappa et  al., 2007; Jones et  al., 2008), evi-
dence-supported principles of which transitions during learning are most challenging could 
guide the strategic engagement of Ph.D. supervisors in the allocation of their time as a 
limited resource.
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Conclusions

This study employed a novel approach based on Bayesian knowledge tracing (BKT), 
BKT-PSTC, to identify sequential dependencies between individual research skills in 
samples of students’ scholarly writing. Analysis of the dependencies identified indicate 
that one specific skill was dependent upon growth in most others over time. This pat-
tern of dependency is consistent with the relationships expected of a threshold concept, 
because the integrative nature of threshold concepts (Meyer & Land, 2003) and the 
common delays in acquiring threshold concepts (Keefer, 2015) indicate a synthesis of 
multiple facets of prior knowledge (Shanahan et al., 2006).

Specific to the discipline of biological sciences, the current findings indicated that 
the control and replication skills in the design of biology experiments is highly contin-
gent on the prior development of other research skills. Further, these findings converge 
robustly with qualitative findings from prior research (i.e., Feldon et  al., 2017), pro-
viding evidence of convergent validity. The ability to identify dependency patterns that 
are consistent with the identification of a threshold concept articulated through inter-
views with an independent sample provides strong supporting evidence of the viabil-
ity of BKT-PSTC as a means for detecting threshold concepts using quantified data at 
scale. We highlight implications for future research and practice in graduate education 
including the benefits of the identification of disciplinary-specific threshold concepts 
using quantitative analyses, which expands our understanding of students’ research skill 
development and facilitates mentoring Ph.D. students.

Appendix

Spearman’s Correlations between students’ actual performance and predicted perfor-
mance for the two BKT models.

Des-
tina-
tion

Source 0 1 2 3 4 5 6 7 8 9 10 11 12

0 1S-P 0.301 0.299 0.292 0.292 0.290 0.298 0.288 0.289 0.288 0.298 0.296 0.288
2S-NP 0.291 0.291 0.291 0.291 0.291 0.291 0.291 0.291 0.291 0.291 0.291 0.291
3P-NP 0.982 0.978 0.979 0.971 0.968 0.952 0.964 0.975 0.961 0.989 0.954 0.960
4T2 0.950 0.691 0.079 0.030 − 0.111 0.419 − 

0.216
− 
0.166

− 0.183 0.933 0.335 − 0.180

1 S-P 0.296 0.292 0.281 0.290 0.288 0.295 0.288 0.293 0.292 0.297 0.288 0.290
S-NP 0.302 0.302 0.302 0.302 0.302 0.302 0.302 0.302 0.302 0.302 0.302 0.302
P-NP 0.977 0.963 0.965 0.965 0.966 0.957 0.949 0.953 0.963 0.976 0.952 0.963
T2 -0.566 − 0.673 − 1.517 − 0.895 − 0.992 − 0.448 − 

0.808
− 
0.567

− 0.674 − 
0.427

− 0.863 − 0.817

2  S-P 0.162 0.162 0.162 0.162 0.156 0.156 0.156 0.156 0.155 0.162 0.155 0.156
 S-NP 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160
P-NP 0.961 0.964 0.964 0.961 0.957 0.957 0.953 0.957 0.956 0.961 0.953 0.957
T2 0.110 0.132 0.141 0.123 − 0.280 − 0.248 − 

0.266
− 
0.280

− 0.319 0.118 − 0.286 − 0.290

3 S-P 0.133 0.124 0.115 0.111 0.125 0.120 0.122 0.140 0.127 0.120 0.121 0.117
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Des-
tina-
tion

Source 0 1 2 3 4 5 6 7 8 9 10 11 12

S-NP 0.099 0.099 0.099 0.099 0.099 0.099 0.099 0.099 0.099 0.099 0.099 0.099
P-NP 0.911 0.918 0.910 0.902 0.880 0.854 0.854 0.823 0.823 0.922 0.859 0.872
T2 1.498 1.123 0.705 0.494 0.990 0.720 0.785 1.273 0.877 0.961 0.760 0.670

4 S-P 0.122 0.119 0.109 0.113 0.121 0.118 0.118 0.116 0.119 0.119 0.119 0.116
S-NP 0.107 0.107 0.107 0.107 0.107 0.107 0.107 0.107 0.107 0.107 0.107 0.107
P-NP 0.898 0.911 0.902 0.916 0.923 0.912 0.917 0.920 0.908 0.923 0.931 0.915
T2 0.620 0.546 0.097 0.295 0.654 0.481 0.512 0.441 0.547 0.584 0.621 0.426

5 S-P 0.013 0.012 0.010 0.012 0.014 0.011 0.012 0.013 0.013 0.013 0.016 0.011
S-NP 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007
P-NP 0.986 0.986 0.986 0.986 0.979 0.984 0.982 0.985 0.976 0.986 0.978 0.979
T2 0.717 0.633 0.372 0.539 0.649 0.434 0.466 0.625 0.554 0.657 0.818 0.425

6 S-P 0.081 0.080 0.077 0.075 0.079 0.080 0.082 0.078 0.084 0.081 0.080 0.085
S-NP 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077
P-NP 0.966 0.966 0.954 0.949 0.950 0.942 0.936 0.945 0.936 0.966 0.944 0.934
T2 0.250 0.218 0.019 − 0.111 0.095 0.164 0.228 0.047 0.373 0.274 0.141 0.400

7 S-P 0.047 0.047 0.047 0.047 0.047 0.044 0.044 0.044 0.044 0.047 0.044 0.043
S-NP 0.047 0.047 0.047 0.047 0.047 0.047 0.047 0.047 0.047 0.047 0.047 0.047
P-NP 0.944 0.944 0.944 0.945 0.944 0.942 0.941 0.941 0.941 0.944 0.941 0.940
T2 0.015 − 

0.012
− 0.005 − 0.016 0.011 − 0.155 − 0.159 − 

0.142
− 0.173 − 

0.007
− 0.182 − 0.207

8 S-P 0.035 0.038 0.057 0.069 0.066 0.072 0.069 0.082 0.084 0.032 0.068 0.080
S-NP 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014
P-NP 0.979 0.976 0.962 0.950 0.952 0.951 0.947 0.929 0.926 0.980 0.949 0.942
T2 1.904  

2.015*
          
2.862**

          
3.192**

          
3.077**

          
3.399**

          
3.109**

          
3.32**

          
3.373**

1.623           
3.114**

          
3.617**

9 S-P 0.055 0.055 0.050 0.050 0.052 0.052 0.054 0.055 0.055 0.055 0.054 0.053
S-NP 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067
P-NP 0.931 0.931 0.933 0.933 0.932 0.932 0.918 0.917 0.918 0.931 0.918 0.915
T2 − 

0.585
− 
0.586

− 0.878 − 0.857 − 0.737 − 0.768 − 0.569 − 
0.563

− 
0.534

− 
0.582

− 0.585 − 0.626

10 S-P 0.253 0.247 0.247 0.229 0.244 0.230 0.245 0.235 0.234 0.232 0.241 0.234
S-NP 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251
P-NP 0.979 0.987 0.963 0.946 0.971 0.957 0.951 0.961 0.944 0.962 0.948 0.963
T2 0.140 − 

0.530
− 0.310 − 1.295 − 0.556 − 1.339 − 0.370 − 

1.069
− 
0.950

− 1.307 − 0.582 − 1.214

11 S-P 0.077 0.080 0.079 0.080 0.078 0.079 0.078 0.079 0.075 0.076 0.082 0.079
S-NP 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077
P-NP 0.931 0.934 0.931 0.936 0.932 0.931 0.932 0.932 0.940 0.940 0.938 0.932
T2 0.029 0.174 0.091 0.177 0.067 0.093 0.051 0.108 -0.084 -0.044 0.255 0.096

12 S-P 0.082 0.084 0.085 0.085 0.085 0.075 0.076 0.076 0.075 0.076 0.082 0.076
S-NP 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052
P-NP 0.847 0.850 0.849 0.850 0.850 0.848 0.848 0.848 0.848 0.848 0.847 0.848
T2 0.980 1.065 1.099 1.079 1.094 0.756 0.788 0.776 0.759 0.777 0.964 0.768

1 Spearman’s correlations between student scores & BKT-PSTC predictions
2 Spearman’s correlations between student scores & non-PSTC BKT predictions
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3 Spearman’s correlations between BKT-PSTC predictions & non-PSTC BKT predictions
4 Hotelling’s two-tailed t-test
*Significant relationship at p < 0.05
**Significant relationship at p < 0.01
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