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TOWARD UNDERSTANDING THE BOUNDARY PROPAGATION
SPEEDS IN TUMOR GROWTH MODELS∗

JIAN-GUO LIU† , MIN TANG‡ , LI WANG§ , AND ZHENNAN ZHOU¶

Abstract. At the continuous level, we consider two types of tumor growth models: the cell
density model, based on the fluid mechanical construction, is more favorable for scientific interpre-
tation and numerical simulations, and the free boundary model, as the incompressible limit of the
former, is more tractable when investigating the boundary propagation. In this work, we aim to
investigate the boundary propagation speeds in those models based on asymptotic analysis of the
free boundary model and efficient numerical simulations of the cell density model. We derive, for
the first time, some analytical solutions for the free boundary model with pressure jumps across the
tumor boundary in multidimensions with finite tumor sizes. We further show that in the large radius
limit, the analytical solutions to the free boundary model in one and multiple spatial dimensions
converge to traveling wave solutions. The convergence rate in the propagation speeds are algebraic
in multidimensions as opposed to the exponential convergence in one dimension. We also propose an
accurate front capturing numerical scheme for the cell density model, and extensive numerical tests
are provided to illustrate the analytical findings.

Key words. tumor growth models, Brinkman model, free boundary model, front capturing
scheme
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1. Introduction. The invasion of solid tumors into a host tissue has been one
of the most active areas for mathematical modeling. The tumor density can be influ-
enced by concentration of nutrients, cell division, the extracellular matrix, as well as
other environmental factors. There are numerous models, including individual-based
models, fluid mechanical models, and free boundary models, for tumors in different
scenarios [4, 6, 9, 12, 13, 20, 26]. The individual-based model is more accurate for
small-scale problems while the latter two types of models are built from continuum
mechanics [9, 12]. One common question is to understand the propagation speed of
tumor boundaries [10, 14, 13], and it is also one of the most popular research topics
for reaction diffusion equations in general [5].

Tumor expansion with a constant speed has been observed and studied in previous
literature [10, 24]; however, such a phenomenon could only be observed for large-scale
tumors, which leaves a natural open question: when the tumor size is not large enough,
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BOUNDARY PROPAGATION SPEEDS IN TUMOR GROWTH MODELS 1053

how does the tumor boundary propagate with time? More specifically, this consists of
two levels of investigation. One is to figure out the dependence of the limiting constant
speed on the model parameters, and the other one is to explore the convergence rate
of the propagation speed toward the limit. In particular, it involves a subtler question,
whether or not the convergence rate depends on the dimension, as is pointed out in
[25].

In this paper, we investigate two types of continuous models: the cell density
model, which is based on a fluid mechanical construction (see, e.g., [20, 21, 23]),
and the free boundary model, which describes the geometric motion of solid tumor
borders (see [13] and references therein). The cell density models carry the biggest
capacity for scientific interpretations. However, due to the nonlinearity and the lack of
analytical solutions, it seems impossible to find the analytical formula of the associated
boundary propagation speed. Previously, the convergence of the cell density model to
its incompressible limit, which is the free boundary model, has been rigorously justified
[21, 23], but despite the vast interest from both the mathematics and the science
community, analyzing the consistency of the propagation speeds from these models
remains at the intuitive level. In this work, we aim to investigate the connections
of the propagation speeds, based on numerical implementations of the cell density
model, and asymptotic analysis of the free boundary model.

We specify the cell density model in the following, which is derived mainly from
the assumptions that the expansion of tumor cells is driven by the cell division and
the mechanical pressure [20, 25]. More precisely, we consider the following advection-
reaction model as in [21, 23, 24]:

∂

∂t
ρ− CS∇ · (ρ∇W ) = Φ(Σ, ρ), x ∈ Rn, t ∈ R+,(1.1)

where ρ(x, t) is the density function of tumor cells, Σ(ρ) is the elastic pressure, and Φ
is the growth function. The potential W is related to the pressure Σ via the Brinkman
model

−Cz∆W +W = Σ, ∇W (x, t)→ 0 (|x| → +∞).(1.2)

Here, CS and Cz are parameters, relating respectively to the elasticity of cells and
the bulk viscosity that models the friction between cells [24]. One can write (1.1) into
the following equation:

∂

∂t
ρ+∇ · (ρv) = Φ(Σ, ρ) ,

where v = −CS∇W is the velocity field field. The velocity field is curl free and
the Brinkman model (1.2) is rewritten −Cz∆v + v = −CS∇Σ. When Cz = 0, the
Brinkman model recovers the Darcy’s law, which says cells move in the direction of
the negative pressure gradient. A lot of works have been dedicated to the case of
Darcy’s law; see [2, 21, 28] and the references therein. When Cz 6= 0, the dissipation
in velocity due to the internal cell friction is analyzed in [23], and the authors have
pointed out the theory of mixtures which allows for a general formalism combining
both the Darcy’s law and the Brinkman’s law. Similar systems with nonlocal cell
interactions and cell growth can be found in [1, 11].

To complete the cell density model, one has to specify the state equation Σ(ρ)
and the growth function Φ(Σ, ρ). We assume that the tumor cells are modeled as
viscoelastic balls and the elastic pressure is an increasing function of the population
density. After neglecting cell adhesion and assuming that Σ(ρ) = 0 when cells are not
in contact, one possible choice of the state equation reads
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1054 JIAN-GUO LIU, MIN TANG, LI WANG, AND ZHENNAN ZHOU

Σ =

{
0, ρ ≤ 1 ,

Cν ln ρ, ρ ≥ 1.
(1.3)

The biophysical derivation of (1.3) can be found in [24]. It is worth mentioning that
other forms of state equations, such as Σ(ρ) = ρm, have been proposed and studied
as well [21, 22]. Letting H denote the Heaviside function, i.e., H(v) = 0 for v < 0
and H(v) = 1 for v > 0, the growth term is chosen to be

Φ(ρ) = ρH
(
Cp − Σ(ρ)

)
.(1.4)

This indicates that when the pressure is less than a threshold denoted by Cp, i.e.,
Σ(ρ) < Cp, the cell density grows exponentially, while the cell division stops when the
process exceeds the threshold, Σ(ρ) > Cp. Though the state equation in (1.3) and
the growth function (1.4) are not yet experimentally verified, they are qualitatively
reasonable and allow for analytical formulations of the front speed.

Similar to [21, 22, 23, 24], the fluid mechanical model (1.1) (1.2) relates to a
free boundary model in the incompressible limit (Cν → ∞). The derivation of the
corresponding free boundary model from (1.1) can be seen in a heuristic way as follows.
Multiplying (1.1) by Σ′ = Cν

ρ in the support of Σ, we get

∂

∂t
Σ− CS∇Σ · ∇W − CSCν∆W = CνH.(1.5)

Formally, sending Cν → ∞ yields the relation −CS∆W = H within the support of
Σ. Thus, in the incompressible limit, we obtain the complementary relation

Σ = 0 or − CS∆W = H.(1.6)

Formally, one sees from (1.5) that if the initial density is compactly supported, then
it remains compactly supported with boundary moving with velocity v = −CS∇W ,
and this completes (1.6), the free boundary model. In a similar model, such a limit
was proved rigorously [23].

This free boundary model has been comprehensively studied in [24] by explic-
itly constructing the 1D traveling wave solutions, which implies constant propagation
speed of the tumor borders. However, in principle, the one-dimensional (1D) traveling
wave solution is relevant only when the tumor radius is approaching infinity, and there-
fore it is unable to quantify the dynamics for finite size tumors. It is worth mentioning
that the traveling wave solutions are also available for some multispecies models (see,
e.g., [19]), which sheds light on the understanding of the tumor boundary instability.

In this paper, we construct closed-form radially symmetric solutions of the free
boundary model in various dimensions. The derivation follows techniques similar to
those in [17], but to the best of our knowledge, the results with exact quantification of
the pressure jumps are obtained for the first time. In addition, the expressions provide
strong evidence for the conjecture that the pressure jump relates to the tumor border
curvature. We further carry out asymptotic analysis of the closed-form solutions in
the large tumor radius regime and are able to identify the traveling wave solutions
in the large radius limit. Besides, the asymptotic analysis manifests the effect of the
dimension in the large radius limit. We show that in contrast to the exponential
convergence of the speed toward the limit in one dimension, the convergence rate in
multidimensional cases is at most algebraic.

For the cell density model, direct analysis of the boundary moving speed still
seems inaccessible at this stage. Instead, we provide some a priori analysis and propose
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a novel numerical scheme to simulate its dynamics. The numerical method is an
improved version of our previous work [18], wherein only the Darcy’s law is considered.
When Cν is large, though we could only show at a formal level the convergence of the
cell density model to the free boundary model, the numerical results show that the
boundary moving speed and pressure jump across the tumor borders agree well with
the analytical results from the free boundary model.

The rest of the paper is outlined as follows. We give an a priori L2 estimate for
the fluid mechanical model in section 2, and then in section 3, based on the limiting
free boundary model, we derive explicitly the velocity and structure of the tumor
boundary for 1D symmetric, 2D radial symmetric, and 3D spherical symmetric cases.
A new numerical scheme that captures the correct border velocity for a wide range of
Cν is proposed in section 4, and in section 5 we carry out extensive numerical tests
to exemplify the analytical observations.

2. A priori analysis of the cell density model. In this section, we aim to
derive some a priori estimates of the cell density model. Note that although quanti-
fying the boundary propagation speed at this level seems unreachable, the stability
results we obtain below give access to the design of reliable numerical schemes. For
simplicity, we assume hereinafter all the boundary terms vanish when carrying out
integration by parts due to the decaying property of the solutions at infinity.

For convenience, we recall that

∂

∂t
ρ− CS∇ · (ρ∇W ) = ρH(Cp − Σ), x ∈ Rn, t ∈ R+,(2.1)

−Cz∆W +W = Σ, x ∈ Rn.(2.2)

For simplicity of analysis, we assume that ∀t ≥ 0, we have Σ(x, t) is continuous in
x ∈ Rn, and 0 ≤ Σ(x, t) ≤ Cp. Thus, by the maximum principle, we also have

0 ≤ W (x, t) ≤ Cp, and from (2.2), it implies ∆W ∈
[
−CpCz ,

Cp
Cz

]
. Note that ∆W may

change signs in the whole space.
Next, we check the L2 stability of the density ρ. Assuming ρ(x, 0) is compactly

supported and ‖ρ(·, 0)‖L2 is finite, multiplying (2.1) by ρ and integrating over Rn, we
get

1

2

d

dt

∫
Rd
|ρ|2dx = CS

∫
Rd
ρ∇ · (ρ∇W )dx +

∫
Rd
|ρ|2H(1− Σ)dx

=
CS
2

∫
Rn
|ρ|2∆Wdx +

∫
Rd
|ρ|2H(1− Σ)dx,

which implies that
d

dt
‖ρ‖2L2 ≤

(
CSCp
Cz

+ 2

)
‖ρ‖2L2 ,

and therefore an upper bound for the relative growth rate of ‖ρ‖L2 is guaranteed.
We now analyze the L2 stability of the pressure function Σ. We denote by D(t) =

{x : Σ(x, t) > 0} and assume that D(t) ∈ Rn is compact, then

∂

∂t
Σ− CS∇Σ · ∇W − CSCν∆W = CνH, x ∈ D(t).

Multiply each side by Σ and integrate over Rn, we have

1

2

d

dt

∫
Rn
|Σ|2dx− CS

∫
Rn

Σ∇Σ · ∇Wdx− CSCν
∫
Rn

Σ∆Wdx = Cν

∫
D(t)

ΣHdx.
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By (2.2) and the boundedness of W and ∆W above, we get∫
Rn

Σ∇Σ · ∇Wdx = −1

2

∫
Rn

(Σ)2∆Wdx

= −1

2

∫
Rn

(−Cz∆W +W )2∆Wdx

= −1

2

∫
Rn

[
(Cz)

2|∆W |2∆W − 2Cz|∆W |2W +W 2∆W
]
dx

= −1

2

∫
Rn

[
Cz|∆W |2(Cz∆W −W )− Cz|∆W |2W − 2W |∇W |2

]
dx

= −1

2

∫
Rn

[
−Cz|∆W |2Σ− Cz|∆W |2W − 2W |∇W |2

]
dx

≤ CpCz

∫
Rn
|∆W |2dx + Cp

∫
Rn
|∇W |2dx,

and ∫
Rn

Σ∆Wdx =

∫
Rn

(−Cz∆W +W )∆Wdx = −
∫
Rn
Cz|∆W |2 + |∇W |2 dx.

Denote V (t) = Vol(D(t)), then clearly we obtain Cν
∫
D(t)

ΣHdx ≤ CpCνV (t). Alto-

gether, we have the following estimate:

1

2

d

dt

∫
Rn
|Σ|2dx ≤ CSCz (Cp − Cν)

∫
Rn
|∆W |2dx + CS(Cp − Cν)

∫
Rn
|∇W |2dx + CpCνV (t).

(2.3)

Clearly, when Cν > Cp the diffusion dominates the convection and results in an overall
stabilizing effect.

3. The free boundary model. In this section, we construct analytical solutions
to the free boundary problem based on the three-zone ansatz, which was originally
proposed in [24] for the construction of traveling wave solutions. However, unlike
the traveling wave solution where the inner layer is infinite, here we assume that the
inner layer has a finite size. We shall show that, with the specific choice of solution
ansatz described below, the free boundary model reduces to a differential-algebraic
system of equations, where the differential equation of the radius determines the
border expansion speed and the algebraic equation governs the thicknesses of the
inner and outer layers of the tumor.

We will also investigate the large radius limit when the thickness of the inner
layer becomes infinity. In such limits, the radial symmetric solutions to the free
boundary model always converge to a traveling wave solution, regardless of the spatial
dimensions, but with different convergence rates. In multidimensions the convergence
rates are algebraic with respect to the radius of the inner layer, which gives hints to
the dependence of the curvature (the reciprocal of the radius in this case) in the first
order correction of the front moving speed.

In the incompressible limit, we consider the Hele–Shaw type complementary equa-
tion and the Brinkman model{

Σ = 0 or − CS∆W = H
(
Cp − Σ

)
, x ∈ Rn.(3.1a)

−Cz∆W +W = Σ, x ∈ Rn.(3.1b)
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Fig. 3.1. Schematic plot of the solution ansatz. The support of the tumor consists of two layers:
Ω1 and Ω2, which define the inner boundary Γ1 and the outer boundary Γ2, respectively. Note that
there is a possible pressure jump across Γ2.

The free boundary model is completed by the boundary moving velocity v = −CS∇W .
Particularly, we are interested in solutions with density ρ evolving as a characteristic
function on a changing domain and pressure Σ may vary within the support of ρ.

To this end, we assume that the whole domain can be divided into three parts:
in Ω1, Σ = Cp, ρ = 1, and its boundary is denoted by Γ1; in Ω2, Σ ∈ (0, Cp),
ρ = 1, its inner and outer boundary are Γ1 and Γ2 respectively, and Ω1 ∩ Ω2 = ∅;
Ω3 = (Ω1 ∪ Ω2)c, where Σ = 0, and ρ = 0. Γ2 is evolving in time with the normal
velocity −∇W · n̂, where n is the outer unit normal vector to Γ2. Please see Figure 3.1
for an illustration.

Note specifically that the support of Σ may not coincide with that of ρ in general,
but we are only interested in deriving the analytical solutions when they do share the
same support. We also expect that W and ∇W are continuous across both Γ1 and
Γ2, whereas pressure Σ remains continuous across Γ1 but has a jump across Γ2. We
also note that W is not supported in Ω1 ∪ Ω2, but rather W > 0 everywhere.

Since the Heaviside function H is hard to deal with, we adopt the following
regularization as in [24]:

Hη(u) =


0, u ≤ 0;
u

η
, 0 ≤ u ≤ η;

1, u ≥ η ,

(3.2)

where η ∈ (0, Cp). As a result, the decomposition of the domain is modified accord-
ingly. In Ωη1 , Σ ∈ (Cp − η, Cp] and ρ = 1; in Ωη2 , Σ ∈ (0, Cp − η) and ρ = 1; finally in
Ωη3 , Σ = 0 and ρ = 0. The continuity of W , ∇W , and Σ through the boundaries Γη1
and Γη2 stays unchanged. It is expected that the regularized solution converges to the
original one in the limit η → 0+.

In the rest of the section, we derive explicit solutions to the incompressible limit
model using the above ansatz in various dimensions. We also investigate the solvability
conditions, in order for the ansatz to be valid, and its connection to the traveling wave
solution.
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3.1. 1D case. We start with the regularized problem. For simplicity, we as-
sume the problem is symmetric in space and denote Ωη

1 = [−Rη1(t), Rη1(t)],Ωη1 ∪Ωη2 =
[−Rη(t), Rη(t)] with Rη(0) = R0 being the initial condition. We first derive the
equation that links Rη and Rη1 , and then the evolution equation for Rη.

In Ωη1 , (3.1) along with (3.2) reads

−CSWxx =
Cp − Σ

η
, −CzWxx +W = Σ ,

which readily leads to
−(ηCS + Cz)Wxx +W = Cp ,

after eliminating Σ. Note from the symmetric assumption that W ′(0) = 0, the general
solution of W in Ωη1 is given by

W (x) = Cp +Aη cosh

(
x√

ηCS + Cz

)
, x ∈ Ωη1 .

Consequently, the general solution of Σ in Ωη
1 is given by

Σ = −CzWxx +W = Cp +
AηηCS
ηCS + Cz

cosh

(
x√

ηCS + Cz

)
, x ∈ Ωη1 .

Since Σ equals Cp − η at the boundary of Ωη1 , i.e., Σ(Rη1) = Cp − η, we have

Aη = − ηCS + Cz

CS cosh
(

Rη1√
ηCS+Cz

) .(3.3)

In Ωη2 , the model (3.1) becomes

−CSWxx = 1, −CzWxx +W = Σ ,

and one can immediately write down the general solution for W as

W (x) = − 1

2CS
x2 + aηx+ bη, x ∈ Ωη2 .

By continuity of W and Wx at x = Rη1 , we get

aη =
Rη1
CS
−
√
ηCS + Cz
CS

tanh

(
Rη1√

ηCS + Cz

)
,(3.4)

bη = Cp − η −
Cz
CS
− (Rη1)2

2CS
+Rη1

√
ηCS + Cz
CS

tanh

(
Rη1√

ηCS + Cz

)
.(3.5)

And the general solution of Σ in Ωη
2 is given by

Σ(x) = −CzWxx +W = − 1

2CS
x2 + aηx+ bη +

Cz
CS

.

Finally, in Ωη3 , (3.1) simplifies to

Σ = 0, −CzWxx +W = Σ.
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By assuming the decaying behavior of W at infinity, the general solution of W in Ωη3
can be written as

W (x) = dηe
− x−R

η
√
Cz , x ∈ Ωh3 .

Then the continuity of W at Rη implies

dη = − 1

2CS
(Rη)2 + aηRη + bη.(3.6)

To summarize, we have the following analytical representation of Σ and W in different
domains:

W (x) =


Cp +Aη cosh

(
x√

ηCS + Cz

)
, x ∈ Ωη1 ,

− 1

2CS
x2 + aηx+ bη, x ∈ Ωη2 ,

dηe
− x−R

η
√
Cz , x ∈ Ωη3 .

(3.7)

Σ(x) =


Cp +

AηηCS
ηCS + Cz

cosh

(
x√

ηCS + Cz

)
, x ∈ Ωη1 ,

− 1

2CS
x2 + aηx+ bη +

Cz
CS

, x ∈ Ωη2 ,

0, x ∈ Ωη3 ,

(3.8)

where aη, bη, dη, and Aη are given by (3.4), (3.5), (3.6), and (3.3), respectively.
Thus, the regularized problem has been completely solved. We take the limit

η → 0, and the solution becomes

W (x) =


Cp +A cosh

(
x√
Cz

)
, x ∈ Ω1 ,

− 1

2CS
x2 + ax+ b, x ∈ Ω2 ,

de
− x−R√

Cz , x ∈ Ω3 ;

(3.9)

Σ(x) =


Cp, x ∈ Ω1 ,

− 1

2CS
x2 + ax+ b+

Cz
CS

, x ∈ Ω2 ,

0, x ∈ Ω3 ,

(3.10)

where the parameters are listed below:

a =
R1

CS
−
√
Cz
CS

tanh

(
R1√
Cz

)
, b = Cp −

Cz
CS
− (R1)2

2CS
+R1

√
Cz
CS

tanh

(
R1√
Cz

)
,

A = − Cz

CS cosh
(
R1√
Cz

) , d = − 1

2CS
(R)2 + aR+ b .

Next, we examine the relationship between two boundaries R and R1. Again by
continuity of Wx at R, one has

− R

CS
+ a = − d√

Cz
.(3.11)
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If we denote the difference between those two by R2, namely R = R1 +R2, then (3.11)
becomes
√
Cz
CS

R2 +
Cz
CS

tanh

(
R1√
Cz

)
= − 1

2CS
(R2)2 −R2

√
Cz
CS

tanh

(
R1√
Cz

)
+ Cp −

Cz
CS

,

which simplifies to a quadratic equation in R2,

(R2)2 + 2
√
Cz

(
1 + tanh

(
R1√
Cz

))
R2 + 2Cz

(
1 + tanh

(
R1√
Cz

))
− 2CpCS = 0.

(3.12)

We remark that, given the parameters Cp, Cz, and CS (note that Cν → ∞), the
necessary condition for the above solution to make sense is that R ≥ R1 ≥ 0. This
implies that, in the algebraic equation (3.12), given the value for the outer boundary,
R = R1 + R2, there exist solutions with R1 ≥ 0 and R2 ≥ 0. Although one cannot
get explicit constraints from such solvability conditions, it is easy check the condition
numerically; see Figure 3.2 on the left. The other two plots in Figure 3.2 indicate that
if we choose R and R1 satisfying the relation (3.12), then W has a smooth transition
from Ω1 to Ω2 (middle plot), and a kink otherwise (right plot).

To make a connection to the traveling wave solutions, we consider the limit R1 →
∞. Then (3.12) reduces to

(R2)2 + 4
√
CzR2 + 4Cz − 2CpCS = 0,

which has the following two solutions: R2 = ±
√

2CpCS − 2
√
Cz. Therefore, when√

2CpCS > 2
√
Cz, R2 has a positive solution, which means in the traveling wave

limit, i.e., R1 →∞, Ω2 persists with width
√

2CpCS − 2
√
Cz.

In this case, we can further calculate the pressure jump at R, which is given by
Σ(R) = d+ Cz

CS
. With (3.11), it becomes

Σ(R) =

√
Cz
CS

R2 +

√
Cz
√
Cz

CS
tanh

(
R1√
Cz

)
+
Cz
CS

.

If we take R1 →∞, the pressure at Γ2 simplifies to

Σ(R) =

√
Cz
CS

R2 + 2
Cz
CS

.

Fig. 3.2. Left: relationship between R1 and R. Middle: plot of W (x) using (3.9) with R = 1.5
and R1 = 1.2781, satisfying the relation (3.12). Right: plot of W (x) using (3.9) with R = 1.5 and
R1 = 0.8, not satisfying the relation (3.12). Here CS = 1, Cz = 2, Cp = 4, Cν = 200, η = 0.001.
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When
√

2CpCS > 2
√
Cz, we substitute R2 with

√
2CpCS−2

√
Cz and get the pressure

jump

Σ(R) =

√
2CzCp
CS

.

This recovers traveling wave solutions found in [24].
When R1 is finite, there is no explicit analytical solution; instead we numerically

solve (3.12) for R1. Here R(t) satisfies

Ṙ = −CSWx(R) = R− CS
(
R1

CS
−
√
Cz
CS

tanh

(
R1√
Cz

))
= R−R1 +

√
Cz tanh

(
R1√
Cz

)
.

When
√

2CpCS > 2
√
Cz, in the traveling wave limit, R1 →∞, we obtain

Ṙ =
√

2CpCS −
√
Cz.

3.2. 2D radial symmetric case. Similar to the 1D case, with the radial sym-
metric assumption, we can explicitly solve for the ansatz solution to the regularized
impressible model. The interested readers may refer to Appendix A.1 for details. In
the following, Im(r) denotes the modified Bessel function of the first kind, and Km(r)
denotes the modified Bessel function of the second kind. By taking the limit η → 0,
we obtain the solution to the incompressible limit model

W (r) =


Cp +AI0

(
r√
Cz

)
, r ∈ Ω1

− 1

4CS
r2 + a ln r + b, r ∈ Ω2,

dK0

(
r√
Cz

)
, r ∈ Ω3,

(3.13)

Σ(r) =


Cp, r ∈ Ω1,

− 1

4CS
r2 + a ln r + b+

Cz
CS

, r ∈ Ω2,

0, r ∈ Ω3 ,

(3.14)

where the parameters are listed below:

a =
1

2CS
R2

1 −R1

√
Cz
CS

I1

(
R1√
Cz

)
I0

(
R1√
Cz

) ,
b = Cp −

Cz
CS

+
(R1)2

4CS
− (R1)2 lnR1

2CS
+R1 lnR1

√
Cz
CS

I1

(
R1√
Cz

)
I0

(
R1√
Cz

) ,
A = − Cz

CSI0

(
R1√
Cz

) , dK0

(
R√
Cz

)
= − 1

4CS
R2 + a lnR+ b .

Next, we examine the relationship between two boundaries R and R1. Again by
continuity of Wr at R, one has

− d√
Cz
K1

(
R√
Cz

)
= − 1

2CS
R+

a

R
.
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If we denote the difference between those two by R2, namely R = R1 +R2, then

√
Cz
K0

(
R√
Cz

)
K1

(
R√
Cz

) ( 1

2CS
R− a

R

)
= − 1

4CS
R2 + a lnR+ b.(3.15)

To see the connection to the traveling wave model, we consider the case with
R1 � 1, R2 = O(1). Asymptotically expanding (3.15), we get

L.H.S.

=
√
Cz

(
1−
√
Cz

2R

) 1

CS
R2 +

√
Cz
CS

I1
(
R1√
Cz

)
I0
(
R1√
Cz

) +
1

R1

 R2
2

2CS
−R2

√
Cz
CS

I1
(
R1√
Cz

)
I0
(
R1√
Cz

)


+ o

(
1

R1

)
=
√
Cz

(
1−
√
Cz

2R1

)(
1

CS
R2 +

√
Cz
CS

+
1

R1

(
R2

2

2CS
−R2

√
Cz
CS

− Cz
2CS

))
+ o

(
1

R1

)
.

Here, we have used the fact that when z � 1

I1(z)

I0(z)
= 1− 1

2z
+ o

(
1

z

)
,

K0(z)

K1(z)
= 1− 1

2z
+ o

(
1

z

)
.

Similarly, on the right-hand side, we have

R.H.S.

= − 1

2CS
R2

2 −R2

√
Cz
CS

I1

(
R1√
Cz

)
I0

(
R1√
Cz

) + Cp −
Cz
CS

+
1

R1

 R3
2

6CS
+
R2

2

2

√
Cz
CS

I1

(
R1√
Cz

)
I0

(
R1√
Cz

)


+ o

(
1

R1

)
= − 1

2CS
R2

2 −R2

√
Cz
CS

+ Cp −
Cz
CS

+
1

R1

(
R3

2

6CS
+
R2

2

2

√
Cz
CS

+
R2Cz
2CS

)
+ o

(
1

R1

)
.

To match the terms by order, we assume that when R1 � 1,

R2 = α0 +
α1

R1
+ o

(
1

R1

)
.

Then to the leading order, we have

(α0)2 + 4
√
Czα0 + 4Cz − 2CpCS = 0 ,

which implies α±0 = ±
√

2CpCS−2
√
Cz. α1 is determined via the next order equation.

If we consider the traveling wave limit, namely R1 →∞, then clearly R2 → α0 with
an algebraic convergence rate. And if α+

0 > 0, or equivalently CpCS > 2Cz, then Ω2

persists with width α+
0 .

The pressure at Γ2 in the limit R1 → ∞ simplifies to Σ(R) =
√
Cz
CS

R2 + 2CzCS .

When α+
0 > 0, substituting R2 with α+

0 leads to the following pressure jump:

Σ(R) =

√
2CzCp
CS

.
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Fig. 3.3. Left: relationship between R1 and R. Middle: plot of W (x) using (3.13) with R = 2.71
and R1 = 0.0151, satisfying the relation (3.15). Right: plot of W (x) using (3.13) with R = 2.71 and
R1 = 0.9, not satisfying the relation (3.15). Here CS = 1, Cz = 0.02, Cp = 2, Cν = 100, η = 0.01.

When R1 is finite, there is no explicit solution for R2; instead we consider the
evolution equation for R(t)

Ṙ = −CSWr(R) =
R

2
− 1

R

1

2
(R1)2 −R1

√
Cz
I1

(
R1√
Cz

)
I0

(
R1√
Cz

)
 .(3.16)

Therefore, (3.16) and (3.15) can be viewed as a differential-algebraic system of equa-
tions, and we can numerically solve for R1 and R. Like before, the solvability calls
for R ≥ R1 ≥ 0. We display the relationship between R and R1 from (3.15) in Figure
3.3, where a monotone relation is observed.

Further, when α+
0 > 0, in the traveling wave limit R1 →∞, we obtain

Ṙ = α+
0 +

√
Cz =

√
2CpCS −

√
Cz ,

which is the same speed as we obtained in 1D case.
We want to point out that the significant difference between the 1D and 2D

cases is that in two dimensions the effect of curvatures becomes manifest. Indeed,
in two dimensions, when R1 � 1, as the asymptotic analysis above shows, the free
boundary limit converges to the traveling wave solution only with an algebraic rate.
In particular, when R1 � 1, we have R2 ∼ α0 + κα1, where κ = 1/R is the curvature
of the tumor front, which asymptotically determines the first order correction of the
front propagation speed and the pressure jump. On the contrary, in one dimension,
the free boundary limit converges to the traveling wave limit exponentially.

3.3. 3D spherical symmetric case. Similar to the 1D case, with the radial
symmetric assumption, we can explicitly solve for the ansatz solution to the regu-
larized impressible model. Here we only list the results, and interested readers can
refer to Appendix A.2 for details. In the following, im(r) denotes the modified spher-
ical Bessel function of the first kind and km(r) denotes the modified spherical Bessel
function of the second kind. The solution to the incompressible limit model takes the
following form:

W (r) =



Cp + A i0

(
r√
Cz

)
, r ∈ Ω1,

− 1

6CS
r2 + a

1

r
+ b, r ∈ Ω2,

dk0

(
r√
Cz

)
, r ∈ Ω3,

Σ(r) =


Cp, r ∈ Ω1,

− 1

6CS
r2 + a

1

r
+ b +

Cz
CS

, r ∈ Ω2,

0, r ∈ Ω3 ,
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where the parameters are listed below:

a = − 1

3CS
(R1)3 + (R1)2

√
Cz
CS

i1

(
R1√
Cz

)
i0

(
R1√
Cz

) , b = Cp −
Cz
CS

+
(R1)2

2CS
−R1

√
Cz
CS

i1

(
R1√
Cz

)
i0

(
R1√
Cz

) ,
A = − Cz

CSi0

(
R1√
Cz

) , dk0

(
R√
Cz

)
= − 1

6CS
R2 + a

1

R
+ b.

To get the relationship between two boundaries R and R1, again by continuity of
Wr at R, one has

− d√
Cz
k1

(
R√
Cz

)
= − 1

3CS
R− a

R2
.(3.17)

Using R = R1 +R2, it becomes

√
Cz
k0

(
R√
Cz

)
k1

(
R√
Cz

) ( 1

3CS
R+

a

R2

)
= − 1

6CS
R2 + a

1

R
+ b.(3.18)

Now we consider the case when

R1 � 1, R2 = O(1).

By asymptotically expanding each side of (3.18), we get

L.H.S. =
√
Cz

(
1−
√
Cz
R1

)(
1

CS
R2 +

√
Cz
CS

+
1

R1

(
−R

2
2

CS
−R2

2
√
Cz

CS
− Cz
CS

))
+ o

(
1

R1

)
.

Here, we have used the fact that when z � 1

i1(z)

i0(z)
= 1− 1

z
+ o

(
1

z

)
,

k0(z)

k1(z)
= 1− 1

z
+ o

(
1

z

)
.

Similarly, on the right-hand side, we have

R.H.S. =− 1

2CS
R2

2 −R2

√
Cz
CS

+ Cp −
Cz
CS

+
1

R1

(
R3

2

3CS
+ R2

2

√
Cz
CS

+
R2Cz
CS

)
+ o

(
1

R1

)
.

To match the terms order by order, we assume when R1 � 1,

R2 = α0 +
α1

R1
+ o

(
1

R1

)
;

then the leading order terms read

(α0)2 + 4
√
Czα0 + 4Cz − 2CpCS = 0,

which implies α±0 = ±
√

2CpCS − 2
√
Cz.

In the traveling wave limit, namely R1 → ∞, then clearly R2 → α0 with an
algebraic convergence rate. If further α+

0 > 0, or equivalently CpCS > 2Cz, then Ω2

persists with width α+
0 in the limit.
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As R1 → ∞, the pressure at Γ2 simplifies to Σ(R) =
√
Cz
CS

R2 + 2CzCS . When

α+
0 > 0, we substitute R2 with α+

0 , and we obtain the following pressure jump:

Σ(R) =

√
2CzCp
CS

.

Next, we check the front moving speed. When, R1 is finite, there is no direct
explicit solution for R2. Observe that the R(t) satisfies

Ṙ = −CSWr(R) =
R

3
+

1

R2

−1

3
(R1)3 + (R1)2

√
Cz
i1

(
R1√
Cz

)
i0

(
R1√
Cz

)
 .(3.19)

Thus, (3.19) and (3.18) can be viewed as a differential-algebraic system of equations,
and we can numerically solve for R1 and R from this system. When α+

0 > 0, in the
traveling wave limit, R1 →∞, (3.19) reduces to

Ṙ = α+
0 +

√
Cz =

√
2CpCS −

√
Cz.

4. Numerical scheme. In this section, we introduce a numerical scheme for
solving the cell density model (1.1)–(1.2). Our goal is to design a scheme that works
for a wide range of Cν and thus can simulate solutions to the free boundary model
when Cν →∞.

When Cν is large, from the definition of Σ in (1.3), the dependence of Σ on ρ
becomes intractable. More precisely, a small error in ρ induces a big change in Σ.
On the other hand, to find the correct front speed numerically, Σ has to be accurate
enough. Therefore it is not an easy task to design numerical schemes that can capture
the right solution behavior when Cν is large. Other numerical methods developed for
the degenerate diffusion equation [3, 7, 8, 15] only work for Cν of O(1).

Since the incompressible limit (3.1) is obtained directly from the evolution equa-
tion for pressure Σ (1.5), we propose a three-stage prediction-correction-projection
method that gives the correct border velocity for Cν = O(1) and also for Cν � 1.
This method is essentially inspired by [18], but the prediction-projection object is
changed to the potential W . In order not to obscure the focus of the current work,
we avoid numerical analysis for the method and save it for future works.

4.1. The semidiscrete method. In this part, we introduce the semidiscrete
scheme by considering the following augmented system:{

∂tρ− CS∇ · (ρ∇W ) = Φ(Σ, ρ) ,(4.1a)

−Cz∆W +W = Σ ,(4.1b)

∂tΣ− CS∇Σ · ∇W − CSCν∆W = CνH ,(4.2)

where Σ relates to ρ through the constitution relation (1.3). Recall that (4.2) is an
auxiliary equation derived from (4.1a) and (1.3). Since ∇W is important in driving
ρ forward in time, we combine (4.1b) and (4.2) to derive the following evolution
equation:

∂

∂t
(W − Cz∆W )− CS∇Σ · ∇W − CSCν∆W = CνH.(4.3)
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Then our semidiscrete predictor-corrector scheme reads as follows. Given Wn, ρn,
and Σn, we have

(W ∗ − Cz∆W ∗)− (Wn − Cz∆Wn)

∆t
− CS∇Σn · ∇Wn

−CSCν∆W ∗ = CνH
n ,(4.4a)

ρn+1 − ρn

∆t
− CS∇ · (ρn∇W ∗) = ρn+1Hn ,(4.4b)

−Cz∆Wn+1 +Wn+1 = Σ(ρn+1) ,(4.4c)

where we have used
Σn = Σ(ρn), Hn = H(Cp − Σn).

Notice that when Cν →∞, (4.4a) formally reduces to

−CS∆W ∗ = Hn

and therefore captures the free boundary limit. The use of (4.4c) is to dynamically
reinforce the constitutive relation between ρ and W , which also turns out to be im-
portant for stability purpose.

4.2. Fully discrete scheme in one dimension. In this part, we elucidate the
spatial discretization and form a fully discrete scheme for the 1D case. The 1D version
of (4.4) reduces to

(W ∗ − Cz∂xxW ∗)− (Wn − Cz∂xxWn)

∆t
− CS∂xΣn∂xW

n

−CSCν∂xxW ∗ = CνH
n,(4.5a)

ρn+1 − ρn

∆t
− CS∂x(ρn∂xW

∗) = ρn+1Hn ,(4.5b)

−Cz∂xxWn+1 +Wn+1 = Σ(ρn+1) .(4.5c)

Then to update W ∗ from (4.5a), we have

(1− Cz∂xx − CSCν∆t∂xx)W ∗ = Wn − Cz∂xxWn + ∆tCS∂xΣn∂xW
n + ∆tCνH

n .

To discretize in space, let [−Lx, Lx] be our computational domain and denote xj =
−Lx+(j− 1

2 )∆x, j = 1, 2, . . . Nx, with ∆x = 2Lx/Nx; then ρj , Σj andWj approximate
ρ(x), Σ(x), and W (x) at position rj , respectively. Then we approximate the spatial
derivatives in the above equation via the central difference, i.e.,

(∂xxW )j =
Wj−1 − 2Wj +Wj+1

∆x2
, (∂xW )j =

Wj+1 −Wj−1

2∆x
, (∂xΣ)j =

Σj+1 − Σj−1

2∆x
,

and we use zero boundary condition for both Σ and W .
To propagate ρ in time, we use the central scheme to treat the convection term

in (4.5b) [16]. More specifically, let

unj+ 1
2

= CS
W ∗j+1 −W ∗j

∆x
,

then (4.5b) is discretized as

(1 + ∆tHn)ρn+1
j = ρnj +

∆t

2∆x

[
unj+ 1

2

(
ρn,Rj + ρn,Lj+1

)
−
∣∣∣unj+ 1

2

∣∣∣ (ρn,Rj − ρn,Lj+1

)(4.6)

−unj− 1
2

(
ρn,Rj−1 + ρn,Lj

)
+
∣∣∣unj− 1

2

∣∣∣ (ρn,Rj−1 − ρ
n,L
j

)]
,(4.7)
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where

ρn,Rj = ρnj +
1

2
σnj , ρn,Lj = ρnj −

1

2
σnj ,

and

σnj =


0 if

(
ρnj+1 − ρnj

) (
ρnj − ρnj−1

)
< 0,

ρnj − ρnj−1 else if |ρnj+1 − ρnj | > |ρnj − ρnj−1|,
ρnj+1 − ρnj else.

We’d like to mention that the central scheme (see [16] for a broad discussion) is not
the only choice here for spatial discretization. In fact, any shock capturing scheme
should serve the purpose. This is because ρ will develop a sharp moving front that
resembles a shock, then a shock capturing scheme will pick up this front with minimum
diffusion.

4.3. Fully discrete 2D radial symmetric case. In the same line of (4.1), we
first write down the augmented system for the 2D radial symmetric case

∂tρ− CS
1

r
∂r(rρ∂rW ) = Φ(Σ, ρ) ,

−Cz
1

r
∂r(r∂rW ) +W = Σ ,

∂tΣ− CS∂rΣ∂rW − CSCν
1

r
∂r(r∂rW ) = CνH ,

and semidiscretize it in the same manner as in (4.5) to get

(
W ∗ − Cz 1

r∂r(r∂rW
∗)
)
−
(
Wn − Cz 1

r∂r(r∂rW
n)
)

∆t

−CS∂rΣn∂rWn − CSCν
1

r
∂r(r∂rW

∗) = CνH
n,(4.8a)

ρn+1 − ρn

∆t
− CS

1

r
∂r(rρ

n∂rW
∗) = ρn+1Hn ,(4.8b)

−Cz
1

r
∂r(r∂rW

n+1) +Wn+1 = Σ(ρn+1) .(4.8c)

To discretize in space, let [0, Lr] be our computational domain, and denote rj =
∆r
2 + (j − 1)∆r, j = 1, 2, . . . Nr, then ρj , Σj and Wj approximate ρ(x), Σ(x), and
W (x) at position rj , respectively. Then the spatial discretization for W reads as[

1

r
∂r
(
r∂rW

n+1
)]
j

=
1

rj

[
(r∂rW )j+ 1

2
− (r∂rW )j− 1

2

] 1

∆r

=
1

rj

1

∆r2

[
rj+ 1

2
Wj+1−

(
rj+ 1

2
+ rj− 1

2

)
Wj+rj− 1

2
Wj−1

]
, j = 2, . . . , Nr − 1 ,

and the Neumann boundary condition implies[
1

r
∂r
(
r∂rW

n+1
)]

1

=
1

r1

[
(r∂rW ) 3

2
− (r∂rW ) 1

2

] 1

∆r
=

1

r1

r 3
2

∆r2
(W2 −W1) ,[

1

r
∂r
(
r∂rW

n+1
)]
Nr

=
1

rNr

[
(r∂rW )Nr+ 1

2
− (r∂rW )Nr− 1

2

] 1

∆r

=
1

rNr

rNr− 1
2

∆r2
(WNr−1 −WNr ) .
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Likewise

(∂rW )j =
1

2∆r
(Wj+1 −Wj−1), j = 2, . . . , Nr − 1 ,

and

(∂rW )1 =
1

2∆r
(W2 −W1), (∂rW )Nr =

1

2∆r
(WNr −WNr−1) .

To update ρ, let g(t, r) = rρ(t, r) and u = CS∂rW , then (4.5b) is reformulated as

gn+1 − gn

∆t
− ∂r(gn+1u∗) = gn+1Hn .

Denoting un
j+ 1

2

= CS
W∗j+1−W

∗
j

∆r , the above equation can be discretized via the central

scheme similarly as in (4.6).

5. Numerical results. In this section, we conduct a few numerical tests to ex-
plore both the model consistency and the numerical scheme’s efficiency and accuracy.
More specifically, we have two major objectives. First, we numerically verify that the
cell density model effectively captures the incompressible limit when Cν � 1, and in
particular, the consistences in the boundary propagation speed and in the pressure
jump are carefully checked. Second, we compare the boundary moving speeds of the
solutions with finite radius with those of the traveling wave solutions in one and two
dimensions, respectively. We shall see the difference in the convergence trends be-
tween the 1D tests and the 2D tests, which confirms our asymptotic analysis results
in section 3.

5.1. 1D case. First, we check the asymptotic property of the scheme (4.5) when
Cν is sufficiently large. Let R(0) = 1.5, and choose R2(0) such that it satisfies
(3.12) with R1(0) = R(0) − R2(0). Then, initial conditions Σ(0, x) and W (0, x) are
chosen of the form (3.8) and (3.7), respectively, where Ω1(t) = [−R1(0), R1(0)] and
Ω2 = [−R(0),−R1(0)] ∪ [R1(0), R(0)]. The constants are Cz = 2, CS = 1, Cp = 4,
Cν = 200. The regularization parameter η = 0.001. We plot the solution in Figure
5.1, where a good match between the numerical solution to model (1.1) (1.2) and the
exact solution to the limit model (3.1) is observed. Here the oscillation in Σ is due to
the amplification by log of the small oscillation in ρ near the interface.

Next, we check the behavior of the jump in Σ, the volume of the tumor, and the
tumor invading front, versus time. The initial data is again chosen to be of the form
(3.8) and (3.7) but with R1 = 1, R = 1.5. The parameters are Cz = 0.2, CS = 1,
Cp = 1, Cν = 50, and η = 0.001, and the results are gathered in Figure 5.2; again,
good agreements between numerical solutions and theoretical predictions are observed.

Fig. 5.1. 1D evolution of ρ, Σ, and W with initial data given by the limit model. Here
∆x = 0.025, ∆t = 0.0011. The parameters used in this example are Cz = 2, CS = 1, Cp = 4,
Cν = 200, and η = 0.001.
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Fig. 5.2. 1D evolution of cell density model with initial data given by the limit model. Here
∆x = 0.0125, ∆t = 9.9829e − 05. Left: plot of ρ, Σ, and W at time t = 1. Middle: volume versus
time. Here volume is

∫
ρdx and the red dashed line represents slope 2(

√
2CpCS −

√
Cz) given by

the analytical formula. Right: jump versus time. The red dotted line is the limit pressure jump√
2CzCp/CS .

Fig. 5.3. Left: plot of the front versus time. The red dashed line indicates slope
√

2CpCS−
√
Cz.

Right: log |Ṙ(t)− (
√

2CpCS−
√
Cz)| versus time, where Ṙ(t) denotes the front speed; the red dashed

line denotes the slope 4(
√

2CpCS −
√
Cz)/

√
Cz, which is indicated by the analytical formula. Here

∆x = 0.0125, ∆t = 9.9829e− 05.

We further check the convergence of propagation speed toward the limit in Figure
5.3. Here on the left, the dashed line is with slope denoted by the constant speed in
the large R1 limit, corresponding to the traveling wave models. One sees that the blue
curve, obtained by evolving the cell density model, approaches the red dashed line,
indicating that it is the correct asymptote. On the right, an exponential convergence
toward the asymptote is displayed.

5.2. 2D radial symmetric case. In this subsection, we consider the 2D radial
symmetric case. Like before, we first check the asymptotic property of the scheme
(4.8) with sufficiently large Cν . To this end, the following parameters are used:
Cν = 50, Cp = 1, Cz = 0.02, CS = 1, and η = 0.01. Initially, let the outer radius
be R(0) = 2.71, and the inner radius R1(0) = 0.0151 is obtained by solving (3.15).
Then initial condition Σ(0, x) and W (0, x) are chosen of the form (3.14) and (3.13),
respectively, where Ω1(t) = [−R1(0), R1(0)] and Ω2 = [−R(0),−R1(0)]∪[R1(0), R(0)].
The solutions are gathered in Figure 5.4. Here a good match is observed between the
numerical solution and the analytical formula.

Next, we check the jump in Σ, the volume of the tumor, and tumor invading front
with respect to time in Figure 5.5. The initial data is again chosen to be of the form
(3.8) and (3.7) but with R1 = 1, R = 1.5. The parameters are Cν = 100, Cp = 2,
Cz = 0.02, CS = 1, and η = 0.0001. We further check the convergence of propagation
speed toward the limit in Figure 5.6. Here the major difference compared to the 1D
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Fig. 5.4. 2D radially symmetric case. Evolution of ρ, Σ, and W with initial data given by
the limit model. Here ∆r = 0.0125, ∆t = 5.3351e − 5. The parameters used in this example are
Cν = 100, Cp = 2, Cz = 0.02, CS = 1, and η = 0.0001.

Fig. 5.5. 2D radially symmetric case with initial data given by the limit model. Here ∆r =
0.0125, ∆t = 1.067e − 5. The parameters used in this example are Cν = 100, Cp = 2, Cz = 0.02,
CS = 1, and η = 0.0001.

Fig. 5.6. Left: plot of the front versus time. The red dashed line represents slope
√

2CpCS −√
Cz. Right: plot of |Ṙ(t) − (

√
2CpCS −

√
Cz) versus front position, where Ṙ(t) denotes the front

speed. Green dashed curve denotes 2/R, where R is the front position. Here ∆r = 0.0125, ∆t =
1.067e − 5. The parameters used in this example are Cν = 100, Cp = 2, Cz = 0.02, CS = 1, and
η = 0.0001.
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case is that we only observed the algebraic convergence, as can be seen on the right
of the plot.

6. Conclusion. In this work, we explore the connections between a series of
macroscopic models of tumor growth from the perspective of boundary propagation
speeds. Prior to this work, only 1D traveling wave solutions have been available, which
yield a constant boundary moving speed. We give reassuring justification of the results
in the traveling wave model since regardless of spatial dimension, the propagation
speeds of radial symmetric solutions of the free boundary model all converge to that of
the 1D traveling wave model. We also offer new observation that in multidimensional
cases, the convergence of the propagation speed is algebraic and the curvature of
the tumor profile, which is the reciprocal of the tumor radius, shows up in the first
order correction to the boundary moving speed. Between the cell density model
and the free boundary model, we have numerically verified the incompressible limit,
which naturally implies the convergence of the propagation speed. But still, the
rigorous convergence analysis is yet to be carried out, since the previous work only
applies to the tumor growth models coupled with the Darcy’s law, but there should
be no essential technical challenges when the Brinkman model is chosen. Besides,
comprehensive numerical analysis and more general multidimensional implementation
of the proposed numerical scheme are also worthy research topics. We shall pursue
those directions in the future.

Appendix A. Computing the regularized incompressible model in multi-
dimensions.

A.1. 2D radial symmetric case. Denote

Ωη1 = BRη1 (t), Ωη1 ∪ Ωη2 = BRη(t),

where Br denotes a ball centered at the origin with radius r, and assume Rη(0) = R0.
Hereafter, we shall first derive the relation between Rη and Rη1 , and then the evolution
equation for Rη. The derivation shares a lot in common with the 1D case, but results
will have some subtle dependence on dimensions.

In Ωη1 , (3.1) becomes

−CS
r

(rWr)r =
Cp − Σ

η
, −Cz

r
(rWr)r +W = Σ ,

which, by eliminating Σ, leads to

−(ηCS + Cz)
1

r
(rWr)r +W = Cp.

The symmetric assumption implies Wr(0) = 0, and therefore the general solution of
W in Ωη1 can be written as

W (r) = Cp +AI0

(
r√

ηCS + Cz

)
, r ∈ Ωη1 ,

where Im(r) denotes the modified Bessel function of the first kind. Thus, the general
solution of Σ in Ωη1 is given by

Σ(r) = −Cz
r

(rWr)r +W = Cp +
AηCS

ηCS + Cz
I0

(
r√

ηCS + Cz

)
, r ∈ Ωη1 .
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Note that at the boundary r = Rη1 we have Σ(Rη1) = Cp − η, thus

A = − ηCS + Cz

CSI0

(
Rη1√

ηCS+Cz

) .(A.1)

In Ωη2 , (3.1) reads

−CS
r

(rWr)r = 1, −Cz
r

(rWr)r +W = Σ,

which immediately leads to the general solution of W

W (r) = − 1

4CS
r2 + a ln r + b, r ∈ Ωη2 .

By continuity of W and Wr at r = Rη1 , we get

aη =
1

2CS
(Rη1)2 −Rη1

√
ηCS + Cz
CS

I1

(
Rη1√

ηCS+Cz

)
I0

(
Rη1√

ηCS+Cz

) ,(A.2)

bη = Cp − η −
Cz
CS

+
(Rη1)2

4CS
− (Rη1)2 lnRη1

2CS
+Rη1 lnRη1

√
ηCS + Cz
CS

I1

(
Rη1√

ηCS+Cz

)
I0

(
Rη1√

ηCS+Cz

) .
(A.3)

And the solution of Σ in Ωη
2 is given by

Σ(r) = −Cz
r

(rWr)r +W = − 1

4CS
r2 + a ln r + b+

Cz
CS

, r ∈ Ωη2 .

Finally, in Ωη3 , (3.1) reduces to

Σ = 0, −Cz
r

(rWr)r +W = Σ.

By assuming that W decays at infinity, we have the following expression of W in Ωη3 :

W (r) = dK0

(
r√
Cz

)
, r ∈ Ωη3 ,

where Km(r) denotes the modified Bessel function of the second kind. The continuity
of both W , Wr at Rη implies

dK0

(
Rη√
Cz

)
= − 1

4CS
(Rη)2 + a lnRη + b(A.4)

and

− d√
Cz
K1

(
Rη√
Cz

)
= − 1

2CS
Rη +

a

Rη
.
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In summary, the analytical representation of Σ and W is as follows:

W (r) =


Cp +AI0

(
r√

ηCS + Cz

)
, r ∈ Ωη1 ,

− 1

4CS
r2 + a ln r + b, r ∈ Ωη2 ,

dK0

(
r√
Cz

)
, r ∈ Ωη3 ,

(A.5)

Σ(r) =


Cp +

AηCS
ηCS + Cz

I0

(
r√

ηCS + Cz

)
, r ∈ Ωη1 ,

− 1

4CS
r2 + a ln r + b+

Cz
CS

, r ∈ Ωη2 ,

0, r ∈ Ωη3 ,

(A.6)

where A, a, b, and d are obtained from (A.1), (A.2), (A.3), and (A.4), respectively.

A.2. 3D spherical symmetric case. For simplicity, we assume the problem is
spherically symmetric in space, and we assume

Ωη1 = BRη1 (t), Ωη1 ∪ Ωη2 = BRη(t),

where Br denotes a ball centered at the origin with radius r. And we assume the
initial condition

Rη(0) = R0.

With the radial symmetric assumption, W and Σ are functions of only the radial
variable r. The following calculations are similar to the 1D case, but we shall see
some subtle effects of dimensions.

First, we aim to derive the equations that link Rη and Rη1 , and we plan to derive
an evolution equation that Rη satisfies.

In Ωη1 , the equations are

−CS
r2

(r2Wr)r =
Cp − Σ

η
,

−Cz
r2

(r2Wr)r +W = Σ.

By eliminating Σ, we obtain

−(ηCS + Cz)
1

r2
(r2Wr)r +W = Cp.

The symmetric assumption implies W ′(0) = 0. Therefore, the general solution of
W in Ωη1 is given by

W = Cp +A i0

(
r√

ηCS + Cz

)
,

where im(r) denotes the modified spherical Bessel function of the first kind. Thus,
the general solution of Σ in Ωη

1 is given by

Σ = −Cz
r2

(r2Wr)r +W = Cp +
AηCS

ηCS + Cz
i0

(
r√

ηCS + Cz

)
.
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The boundary condition on at r = Rη1

Σ(Rη1) = Cp − η

leads to

A = − ηCS + Cz

CSi0

(
Rη1√

ηCS+Cz

) .(A.7)

In Ωη2 , the equations are

−CS
r2

(r2Wr)r = 1,

−Cz
r2

(r2Wr)r +W = Σ.

Obviously, the general solution of W in Ωη2 is given by

W = − 1

6CS
r2 + a

1

r
+ b.

By continuity of W and Wr at r = Rη1 , we get

aη = − 1

3CS
(Rη1)3 + (Rη1)2

√
ηCS + Cz
CS

i1

(
Rη1√

ηCS+Cz

)
i0

(
Rη1√

ηCS+Cz

) ,(A.8)

bη = Cp − η −
Cz
CS

+
(Rη1)2

2CS
−Rη1

√
ηCS + Cz
CS

i1

(
Rη1√

ηCS+Cz

)
i0

(
Rη1√

ηCS+Cz

) .(A.9)

And the solution of Σ in Ωη
2 is given by

Σ = −Cz
r

(rWr)r +W = − 1

6CS
r2 + a

1

r
+ b+

Cz
CS

.

Finally, in Ωη3 , the equations are

Σ = 0,

−Cz
r

(rWr)r +W = Σ.

By assuming the decaying behavior at infinity, the general solution of W in Ωη3 is
given by

W = dk0

(
r√
Cz

)
,

where km(r) denotes the modified spherical Bessel function of the second kind.
The continuity of W at Rη implies

dk0

(
Rη√
Cz

)
= − 1

6CS
(Rη)2 + a

1

Rη
+ b.(A.10)
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And the continuity of Wr at Rη imposes a condition between Rη1 and Rη,

− d√
Cz
k1

(
Rη√
Cz

)
= − 1

3CS
Rη − a

(Rη)2
.(A.11)

In summary, the analytical representations of Σ and W are as follows:

W (r) =



Cp +A i0

(
r√

ηCS + Cz

)
, r ∈ Ωη1 ,

− 1

6CS
r2 + a

1

r
+ b, r ∈ Ωη2 ,

dk0

(
r√
Cz

)
, r ∈ Ωη3 ,

(A.12)

Σ(r) =


Cp +

AηCS
ηCS + Cz

i0

(
r√

ηCS + Cz

)
, r ∈ Ωη1 ,

− 1

6CS
r2 + a

1

r
+ b+

Cz
CS

, r ∈ Ωη2 ,

0, r ∈ Ωη3 ,

(A.13)

where A, a, b, and d are obtained from (A.7), (A.8), (A.9), and (A.10), respectively.
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