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Abstract

Experiments have shown that external mechanical loading plays an important role in bone
development and remodeling. In fact, recent research has provided evidence that osteocytes
can sense such loading and respond by releasing biochemical signals (mechanotransduction,
MT) that initiate bone degradation or growth. Many aspects on MT remain unclear especially
at the cellular level. Because of the extreme hardness of the bone matrix and complexity of
the microenvironment an osteocyte lives in, in vivo studies are difficult; in contrast, modeling
and simulation are viable approaches. Although many computational studies have been
carried out, the complex geometry that can involve 60+ irregular canaliculi is often
simplified to a select few straight tubes or channels. In addition, the pericellular matrix (PCM)
is usually not considered. To better understand the effects of these frequently neglected
aspects, we use the lattice Boltzmann equations (LBE) to model fluid flow over an osteocyte
in a lacuno-canalicular (LC) network in two dimensions. We focus on the influences of the
number/geometry of the canaliculi and the effects of the PCM on the fluid wall shear stress
(WSS) and normal stress (WNS) on an osteocyte surface. We consider 16, 32, and 64
canaliculi using one randomly generated geometry for each of the 16 and 32 canaliculi cases
and three geometries for the 64 canaliculi case. We also consider 0%, 5%, 10%, 20%, and
40% pericellular matrix density. Numerical results on the WSS and WNS distributions and
on the velocity field are visualized, compared, and analyzed. Our major results are: 1) the
fluid flow generates significantly greater force on the surface of the osteocyte if the model
includes the pericellular matrix (PCM); and 2) in the absence of PCM, the average
magnitudes of the stresses on the osteocyte surface are not significantly altered by the
number and geometry of the canaliculi despite some quantitative influence of the latter on
overall variation and distribution of those stresses; 3) the dimensionless stress (stress after
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non-dimensionalization) on the osteocyte surface scales approximately as the reciprocal of
the Reynolds number and increasing PCM density in the canaliculi reduces the range of
Reynolds number values for which the scaling law holds.

Key words: interstitial flow, viscous incompressible flow, porous media, osteocyte, lacuno-
canalicular network, mechanotransduction, pericellular matrix, lattice Boltzmann equations,
modeling and simulation, wall shear stress, scaling laws

1 INTRODUCTION

As one of the most important human organs, bone serves multiple functions through its
complex external and internal structures. Understanding how bone works at all levels is
crucial to our health. For example, osteoporosis and bone fracture due to a lack of physical
activity (in seniors, the bedridden, and even inactive youth) have become increasingly
severe, worldwide healthcare problems [1]. Bone remodeling is due to responses to
mechanical signals (e.g., from physical exercise) that regulate critical processes such as bone
growth, decay, and healing. Osteocytes [2], which reside in the mineralized bone matrix,
play a particularly important role in remodeling as they are responsible for
mechanotransduction (MT): the conversion of mechanical stimuli into biochemical signals.
In this context MT can lead to either bone formation or degradation.

The main cellular bodies of osteocytes reside in cavities or lacunae that are nested deep
within hard calcified bone. A complex network of canaliculi (small canals) radiating
outwards from each lacuna connects the encased lacunae to each other. Further connecting
the network are osteocyte processes or arms that extend through each of the canaliculi to
connect with other osteocyte processes via gap junctions. The osteocytes and their
connecting processes are surrounded by a layer of interstitial fluid that separates the cell’s
membrane from the surrounding bone matrix material (lacuno-canalicular wall). That fluid
is filled with cell-associated proteins (pericellular matrix) that can affect flow in the region
and resulting stresses on the osteocytes.

Recent studies [3-7] support the following paradigm regarding force-induced bone
remodeling. Applying a mechanical stimulus or loading (e.g., walking or running) generates
strain on the lacuno-canalicular network (LC; composed of the extracellular matrix that
encloses, but does not include, the osteocytes and their surrounding fluid). The strain
generates interstitial fluid flow around the osteocytes and through the lacuno-canalicular
network and PCM. That pericellular flow exerts forces (e.g., fluid shear stress and normal
stress) on the osteocytes. The osteocytes sense (mechanosensation) and respond
(mechanoresponse) by converting those mechanical forces into biochemical signals. Those
signals can cause osteoclasts to stop degrading bone [8], osteoblasts to form new bone [9],
or other bone remodeling activities.

Despite extensive studies, the process by which macroscale forces are eventually sensed is
still not fully understood. For instance, studies found that the level of stress that can induce
responses in osteocytes in vitro is approximately 10 times greater than the typical macroscale
stresses experienced by the bone [6, 10]. Somehow the macroscale stress experienced in vivo
is amplified tenfold at the cellular level by the fluid and osteocyte lacuno-canalicular system
(FOLC; includes fluid, osteocytes, and the surrounding extracellular matrix). It is not
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completely clear how this stress amplification takes place and which part of the cell actually
perceives the amplified mechanical stimuli [1, 4, 7, 8, 11-17]. You et al. [10] and Han ef al.
[18] developed models showing that elements that tether (tethering elements) the process
membrane to the nearby lacuno-canalicular wall and traverse the pericellular space could
significantly multiply the strain on the osteocyte process membrane, which offers an
explanation for how force amplification could occur. Studies from Weinbaum and Jiang
further suggest that the dendritic processes are the primary mechanosensing site [19-21]. At
the same time, many other major mechanosensors have also been reported by in vitro and in
vivo studies including cytoskeletal components, focal adhesions, intercellular junctions,
primary cilia, ion channels, and the extracellular matrix (see a recent review [8] for details).
With many mechanosensors identified, there is not yet a clear consensus on exactly how all
these potential mechanisms may work together in different scenarios [22]. To help better
characterize osteocyte MT, here we consider one potential mechanosensor, the osteocyte
cell’s main body that lies in the lacuna and is subject to mechanical forces exerted by the
interstitial fluid flow in the region.

Because osteocytes live in complex lacuno-canalicular networks encased in hard bone, in
vivo studies are intractable. Although in vitro experiments have been conducted extensively
[12, 23-26], they are also limited as they have not yet been able to directly measure desired
mechanical forces, such as fluid wall shear stress (WSS) or force distribution on the
osteocyte surface. In contrast, mathematical modeling (e.g. [27]) and computational studies
have become an indispensable alternative, complementing experiments.

There have been extensive computational studies relevant to the FOLC system in literature.
Weinbaum [28] and Klein-Nulend [23] first reported that the fluid flow past an osteocyte
process in a narrow canaliculus could produce hydrodynamic stresses of approximately 1.0
Pa. This suggested that the osteocyte processes were responsible for mechanosensing. You
et al. [10] and Han et al. [18] speculated the existence of tethering elements and showed
such attachments could significantly amplify the stress on the process membrane. Similarly,
Yokoyama et al.’s [29] simulations using high-resolution images revealed that tethering
elements could cause strain concentration on the process membrane. Kamioka et al. [30]
proposed that the inhomogeneous flows induced by the surface roughness of the highly
irregular canalicular wall may be an alternative source of stress amplification. Along these
lines, Verbbruggen et al. [31] found that the tissue level strain could be significantly
amplified if a physiologically realistic computational domain based on real imaging (vs. the
simpler domains that are frequently used in other studies, see below) was used. While fluid
shear stress (FSS) is believed to be the predominant mechanical stimulus recognized by
osteocytes [8, 11, 22], computational results from Anderson et al. [32] suggested that
osteocytes are exposed to relatively large fluid wall normal stresses (WNS, i.e., pressure, vs.
WSS) in the lacuna in addition to relatively large fluid shear stress in the canaliculi. The
potential importance of fluid WNS in the lacuna was later verified by in vitro experiment
[33].

Other studies considered larger scale effects of the FOLC system. For instance, Steck and
Tate [34] developed a stochastic model for investigating molecular sieving of bone. The
model consisted of multiple osteocytes interconnected by a lacuno-canalicular network
modelled by randomly distributed cylindrical pores of different diameters. The flow was
driven by prescribed pressure gradients, calculated using Darcy’s law, and averaged over
20 different random networks. They found that while larger molecules diffuse slower in
general, in the networks larger molecules could actually move faster as they are confined
to the larger network channels. Their work has implications for the effectiveness of
molecules that could either enhance or result from MT.



Due to the complexity of the FOLC system, all mathematical models of the FOLC system
have made assumptions and idealizations, including the works previously mentioned. Most
models take a coarse-grained approach by representing the 60+ processes/canaliculi with
just a few straight tubes or channels. This can fail to capture the effects that a high number
of canaliculi may bring to these systems. It can also fail to capture the effects due to the
highly irregular geometries that processes and canaliculi can take on in vivo including
curving and tapering. For instance, Marsh et al. [35] used molecular dynamic simulations to
show that velocity profiles were significantly affected by the shape of a microchannel wall.
Anderson and Knothe Tate [36] similarly found that the fluid stresses were significantly
underestimated using smooth idealized pericellular geometries vs rougher and more realistic
lacuno-canalicular walls. Most works also ignore the PCM because of its complex structure
and the lack of laboratory data for its properties. The PCM, however, is relatively densely
packed into the salt-water-like fluid that lies between the osteocyte’s membrane and the
lacunar wall (~ 1 um thick) and between the process membrane and the canalicular wall (~
0.3 pm). Fluid mechanics suggests that these omitted components should have some
influence on the flows and flow-generated osteocyte forces.

To study how such assumptions may affect study results, we build a two-dimensional model
of the FOLC system that incorporates the number and geometry of the canaliculi and the
PCM. In our model we consider domains using 16, 32, and 64 canaliculi and randomly
chosen geometries that include curved channels. The PCM is modeled using fixed rigid
“particles”. The “particles” are uniformly and randomly distributed in the lacuna (space
between the osteocyte’s main body membrane and the lacunar wall) and canaliculi with
prescribed density (0, 5, 10, 20, and 40%). The canalicular inlets and outlets are chosen at
random because in reality the corresponding boundary conditions are loading and time-
dependent and are unknown beforehand. Our focus is on the flow-induced forces on the
surface of the osteocyte main body and possible influences of canalicular number/geometry
and PCM density on the fluid WSS and WNS and their distributions on the osteocyte body.

The advantage of our modeling framework is its ability to relatively efficiently simulate the
complex boundaries of the 60+ canaliculi and model the PCM effect. The modeling
framework solves the lattice Boltzmann equations to obtain the fluid flow. An image file in
bitmap format generated by Microsoft Paint is utilized to create the complicated flow domain
and its boundaries. The novel features of our model include: 1) the canaliculi are modelled
as channels of random size and geometry (more physiologically realistic compared to other
studies); 2) the PCM is modelled as randomly distributed particles; 3) the canalicular inlets
and outlets are chosen at random.

While strong evidence suggests an important role for the process membrane, we only include
the osteocyte’s main body in this version of the model. This is because it is considered to be
one of many potential mechanosensors and is therefore of interest, it is simpler to develop
and validate the model without processes (before adding processes in the future), and this
version of the model can be used to consider the possible influences of the number and
geometry of canaliculi and PCM on flow in the lacuno-canalicular regions. Using this model
we can begin to understand the potential effects of these frequently neglected factors and the
forces that typically arise on the osteocyte’s main body. To the best of our knowledge, such
a study has not yet been performed.

The remainder of the paper is organized as follows. Section 2 introduces the mathematical
models. Section 3 discusses numerical methods (lattice Boltzmann equations) used for
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computer simulation of the models. Section 4 discusses the verification and validation of the
numerical methods and their implementations. Section 5 presents the major computational
results. Section 6 concludes the article with a summary and discussions.

2. COMPUTATIONAL MODEL

Our computational model in two dimensions of the FOLC system is illustrated in Fig. 1
including 20% PCM. The left panel in Fig.1 shows the model without any PCM. The middle
panel shows the model with PCM in the lacuna only; and the right one shows the model with
PCM in both the lacuna and the canaliculi. All lacuno-canalicular geometries used in this
study are shown in Fig. 2 without any PCM. In lattice Boltzmann (LB) units, the domain
[0.5,1024.5]%[0.5,1024.5] is represented by the model by using lattice points placed on the
grid points with coordinates [1,2,3,...,1024]x[1,2,3...,1024] along the x and y directions,
respectively. The osteocyte is idealized as a rigid ellipse (black ellipse centered at (x,,y,)
= (512,512) with semi-major and semi-minor axes lengths 7, =150.4 and r,, = 90.855 in
the x and y directions, respectively. The lacuna is situated as another larger concentric
ellipse with semi-major and semi-minor axes lengths that are 30 units greater than the

osteocyte’s (lacuna thickness I, = 30).
J' A_

—

——— ]
|

Fig.1. 2D models without PCM (a), with 20% PCM in lacuna (b), and with 20% PCM in
both lacuna and canaliculi (¢).

The PCM is modelled as many uniformly randomly distributed fixed rigid “particles” (black
dots in the lacuna in Fig. 1) in the interstice between the osteocyte surface and lacuna-
canalicular outer wall. The particle density ranges between 0% (corresponding to the case
when no PCM is considered) and 40% (20% for canaliculi). The particles are chosen as
follows. Using a two-dimensional uniform distribution (C++’s rand function), points with
coordinates x = (x;,y;) in the original non-PCM fluid computational domain are selected
at random as candidates for becoming PCM points. To test if they are in the lacuna region
Ci=x0)? | (%)
()2 (ry+1,)°
osteocyte, and are more than 2 units away from the osteocyte boundary (i.e. they are not an
(%7, yr) or an (x¢f, Yrr) needed by the Bouzidi boundary conditions addressed below), we
change the material at that location from fluid to solid. The algorithm is stopped when the
desired PCM density is obtained (to within 0.01%). To encourage better comparisons, any
lattice points that are made into PCM in the lower percentage regimes are also made into
PCM in the higher percentage regimes.

we use the condition that < 1. If they are in the lacuna, not in the

Some simulations additionally included PCM in the canaliculi regions (right panel in Fig. 1).
As done previously, random points were chosen. This time if the particle was outside the
(im0, (j=%0)’
(rx+1e)? (ry+l,;)2

lacunar region > 1, a fluid node, and more than 20 lattice units away
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from the outer boundary, the node was changed from fluid to solid. The latter condition
simplifies and facilitates code implementation and does not significantly affect our results.
The algorithm was stopped when the desired PCM density in the canaliculi region is obtained
(to within 0.01%).

The numerous canaliculi of an osteocyte in vivo are represented by a number of (64 in Fig.
1 and 16, 32, and 64 in Fig. 2) curved channels (in white) with varying widths and geometries
that are chosen randomly. A random canalicular width is chosen for each canaliculus and its
corresponding path (geometry) is hand-drawn in MS Paint (details provided below). For the
64 canaliculi case, we consider three different geometric configurations that vary in the
canalicular widths and directions of travel (geometry) as they head towards the boundaries
of the computational domain. The PCM points are the same for all three geometries for a
given PCM fraction. Again, to simplify and facilitate the code implementation, the canaliculi
are straightened at their intersection with the computational domain for the last 20 lattice
points as they head towards the outer boundary. This straightening does not significantly
affect any of our results.

W’ZJ.&\W!)& WIECN 2R\
BORZINE T i

Fig. 2. The 2D geometries used in this study, no PCM included. The (a) and (b) are the 16
and 32 canaliculi cases. For the 64 canaliculi cases we have configurations A (c), B (d), and
C (e).

The interstitial fluid filling the lacuna and canaliculi is simplified by representing it with a
viscous incompressible fluid (pure water; white in Figs. 1-2). The bone matrix enclosing the
FOLC system is modelled as a rigid, stationary solid (gray in Figs. 1-2). Note that cell
processes inside the canaliculi are not included explicitly but their effect on flow near the
osteocyte is captured to some extent by the PCM “particles” introduced. Inlet and outlet
canaliculi are chosen at random (using a coin-flip) to reflect the fact that the flow into or out
of a canaliculus depends on the loading process, can vary with time, and is not known
beforehand. Fluid velocity is prescribed at the inlets, free outflow conditions are used at the
outlets, and a no-slip boundary condition is applied on the surface of the osteocyte, the walls
of the lacuna and the canaliculi, and the PCM particles when present (more details below).

The entire white region in Fig. 1 is the flow domain and is relatively complex. Let that
domain be denoted by Q and its boundary by 6. The partial differential equations governing
the motion of a viscous incompressible fluid on Q are the Navier-Stokes equations:

9
p(a—ltl+u-Vu)=—Vp+ VT +f 1)
V-u=0 (2)

where u is the fluid velocity, p is the pressure, p is the mass density, t is the time, and
T is the deviatoric stress tensor which is defined as T = 21D, in which D is the rate of
deformation tensor and 7 is the fluid dynamic viscosity. Here f represents external forces
such as gravity which are not considered here (f=0). Velocity u =0 is applied on the portions



of the domain boundary 0Q corresponding to the lacuno-canalicular walls. At the inlets the
velocity is set to u;, = (k, 0) or u;,= (0, k). The choice for k is discussed below.

3. NUMERICAL METHODS

Although the 2D model appears to be simple, numerically solving the viscous
incompressible flow on such a complex domain as in our problem (i.e, finding numerical
solutions of Egs. 1 and 2) is challenging due to the highly complex boundary 0Q. A
traditional numerical method for solutions of partial differential equations on a complex
domain is the finite element method (FEM), which has been frequently used to model bone
in the past (see [37-39] for example). A relatively novel alternative, however, is to use the
lattice Boltzmann equations (LBE) [40-47] approach. In general, both methods tend to be
equally accurate and efficient and both are able to handle complex boundaries. In this
particular context, however, the finite element method tends to use an overly fine finite
element mesh to resolve the boundary (especially the PCM), which can result in relatively
long running solution times. In addition, the LBE has other advantages compared to
conventional numerical methods for solving Navier-Stokes equations (including the FEM),
because it is relatively easy to implement and parallelize.

Lattice Boltzmann Equations We therefore adopt a lattice Boltzmann model [43, 46], the
D2Q9 model, to numerically solve the fluid flow in this complex domain. The D2Q9 model
assumes lattice Boltzmann particles reside at each fluid node on a square lattice grid and that
they move along nine different directions including a “stationary” direction where they stay
motionless at the node. The moving directions of these particles are denoted by &;, j= 0, 1,

2,3,...8 and are given by &, = (0,0), & = (1,0), & = (0,1), & = (—1,0), & = (0,—1),
ES = (111), 26 = (_lal) P 27 = (_1'_1)’ 28 = (1'_1)

For a specific moving direction §;, j = 0,1,2,3,...,8, the distribution function for a single
particle velocity, g;, is evolved via the lattice Boltzmann equation along this direction:

gi(x+E,t+1) = g;x ) -1 (g, ) — g/ (x, 1)) = §;(x.) 3)

where x denotes the spatial position/lattice location, t the time instant, T = ,/3/16 + 0.5
is the particle relaxation time (see below for more), and g;-) the equilibrium distribution
function which is given as follows:

gu o (gu) ,
g3 (x,t) =W]-p<1+’c—sz+ ’——E> (4)

2cg 2c2

where ¢ = c/+/3 (cis the lattice speed defined as the ratio of the lattice spacing Ax = Ay
and time step At, which are both set to be 1 in the simulation), and w; = 4/9 for j = 0;
w; =1/9 for j =1,2,3,4;, and w; = 1/36 for j =5,6,7,8. Note that the right-hand side
of Eq (3), denoted by §;(x,t), gives what are called the post-collision distribution functions.

Initial Conditions At the initial time, all distribution functions are given by their equilibrium
values at all fluid grid nodes where velocity is set as zero (g;(x,0) = g}’ xt;u=0,p=
1)) except at the inlets (g;(x,0) = g}) (x,t;u = u;,, p = 1)) and mass density (p = 1) and
kinematic viscosity (v = (2t —1)/6) are set to be constant. At all later times, the
distributions for all fluid nodes are updated using Eq. (3) once per time step until the



simulation termination time. At any given time, the fluid velocities and densities can be
recovered using standard lattice Boltzmann formulas involving the particle distributions:

8 8
p =Zgj, pu=zgj€j-
j=0 j=0

While density can vary in the LBE method, when using the LBE method to describe
incompressible flow, the density remains approximately constant. For instance, in our
simulations involving incompressible flow, p =1 £+ 0.1%.

Boundary Representations For a complex boundary that includes curved canaliculi walls,
as in Fig. 1 and 2, we need a convenient way to generate and describe random geometries.
While there are different approaches, here we use Microsoft Paint because it provides a
number of tools in its palette for bitmap/domain generation. To generate a given
configuration/geometry, we set the canvas size in MS Paint to 1024 x 1024, which
corresponds to the desired grid size in LB units for our computational domain. When
constructing the original geometry, we use white pixels to denote fluid nodes while black
pixels denote solid nodes (osteocyte or bone matrix). (In Figs. 1 and 2, we have introduced
gray nodes to more easily delineate osteocyte (black) vs bone matrix (gray) material, but
all solid nodes are black during our mesh generation procedures.) To generate a simple shape
like the osteocyte ellipse, we use the ellipse and fill tool to generate the ellipse and fill its
interior with black pixels. The canaliculi are generated using the paintbrush tool whose size
can be specified to create thinner or thicker canaliculi. An additional advantage of this
approach is that if a more complex boundary is desired, one can use the zoom feature in MS
Paint to magnify and work on the region of interest. After describing the domain, the image
issaved asa 1024 x 1024 bitmap (BMP format). When the simulator is launched, the image
file is read using EasyBMP (v. 1.06, Macklin, EasyBMP, http://easybmp.sourceforge.net)
and the corresponding lattice Boltzmann mesh generated.

Boundary Conditions The no-slip boundary condition on the rigid lacuno-canalicular walls
and the PCM-fluid boundaries is modelled by the half-way bounce-back scheme, which
conserves mass at those boundaries. For this boundary condition, when a lattice Boltzmann
particle at a fluid node moving along a specific direction hits a rigid wall, it reverses its
direction and moves back to the node it originally came from. The corresponding distribution
function along that direction at the original node is updated accordingly. When we applied
half-way bounce-back boundary conditions to the osteocyte surface (inner boundary of the
lacuna), our estimated osteocyte WSS (see estimation procedures below) experienced
numerical fluctuations on the order of 50% of the average magnitude of the WSS. Using
linear Bouzidi boundary conditions [48], however, changed the variations in our estimates
to less than approximately 5% (see Fig. 3).

To understand linear Bouzidi boundary conditions, consider two neighboring nodes in the
Lattice-Boltzmann mesh that lie on opposite sides of a curved solid boundary, a fluid node,
X; = (x¢,Yr) andasolidnode, x; = (xs,ys). Assume also that the line segment connecting
the two nodes (which is parallel to x = constant, y = constant, y = x, or y = —X)
intersects at a point on the curve, x;. Define the relative distance from the fluid node to the
|xo—2/|
|xs—xf|
opposite direction from x; to x; as @. Let xgf be the node that is “one node further”
from the fluid node in the @ direction, x;r = xy — (x; — x¢). Then the “bounced-back”
distribution is given by:

boundary curve as q = Denote the direction from node x; to xg as a with the



1- zq)ga(xff; t) + 2q9Gq (x5, 1), q <05
ga(x,t +1) = 1\ 1
a(%f ) (1 — Z> ga(xst) + Zga(xf' t), q=>0.5

Note that when q = 1/2, we get halfway bounce-back boundary conditions. Also notice the
closer we are to the boundary, the more we borrow information from x;; while when we
are farther, we borrow some information at x; regarding the @ direction from the previous
time step to use in the next time step.

Inlets and Outlets At inlets and outlets, the Zou-He (nonequilibrium bounce-back)
boundary conditions [49] were employed. At the inlet, the incoming velocity magnitude was
specified to be u;, =4.811e-5 in LB units. This corresponds to a relaxation coefficient 7 =

+/3/16 + 1/2, a characteristic length of 30 lattice units (width of the lacuna), and a Reynolds
number of 0.01. The choice of t makes the LBM flow profile in channel flow match up
exactly with Poiseuille flow when the wall is assumed to be halfway between lattice nodes

[50]. At outlets a small adjustment is applied to the Zou-He boundary conditions (see details
below).

At any inlet or outlet, there are three unknown incoming lattice Boltzmann distribution
functions to be determined. For inlets, prescribing the velocities gives us two conditions.
The third condition is that the nonequilibrium portion of the outgoing distribution
corresponding to the direction that is perpendicular to the wall is reflected back at the
boundary, gz(x,t+1)—g3(x,t+1) = G,(x,t) — §o(x,t) where § corresponds to
the distributions after the collision step takes place and a corresponds to the lattice
Boltzmann direction opposite of «. The inlet velocity is assumed to be perpendicular to the
boundary and its magnitude is specified to be u;, (see above).

At outlets, we instead prescribe x and y components of the momentum. To estimate and
prescribe the momentum at the next time step at the outlet, we use the momentum at the
nodes adjacent to the nodes at the boundary (for a left node we set p;, o jaile ol =

Pirose+1, jﬁile e+, ;)- For the third condition, we again ask for reflection of the nonequilibrium

portion of the outgoing distribution. Preliminary results showed use of these boundary
conditions conserved mass relatively well over smaller time spans (thousands of time steps)
but not over larger time spans (hundreds of thousands of time steps). Given some of our
simulations with large PCM percentages were taking on the order of hundreds of thousands
of time steps to converge, we adjusted our approach. In particular, we added a correction to
the prescribed outgoing flux: pileftrjﬁileftrj = pileftﬂ’jﬁl-leﬂﬂ'j + K(Meyrr — Myes)
where m,,,,- and mg . are the current and desired mass in the system, respectively, and
K is an adjustable factor that depends on the geometry of the system. If mass is exactly
conserved, the correction term is zero. Due to the fact that our original method conserved
mass well on smaller time scales, the correction term was relatively small in all simulations.
The value of K, however, does depend somewhat on the FOLC system being considered. In
most of our simulations K = 10 was used. In Fig. 3 (for LBM and FlexPDE comparison),
K =1 was used (K=10 caused numerical instability in this case). In addition to better mass
conservation, the change also sped convergence to steady state by at least tenfold in most
simulations.

Computing WNS and WSS Mechanical variables of particular interest are the forces
exerted by flow on the osteocyte surface, including wall normal stress (WNS) and wall shear
stress (WSS). After exploring several available methods for calculating stresses, we found
that using finite differences and interpolation on the calculated velocities and pressures
produced results most consistent with the finite element results in Fig. 3. In that method,
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stress estimates are made during post-processing after lattice Boltzmann simulations finish.
Finite differences are used to produce estimates of velocity derivatives along the y =
constant

R I 5 _Yri TV
x,b,j Xr — Xp ' Yx,b,j Xr — X
and x = constant
U U — Ujp v _Vif —Vip
y,iLb — ' Yyib —
Yr—Yp Yr—Yp

directions. Here, as before, f corresponds to values at a lattice point adjacent to the
boundary, b corresponds to values/estimates at the boundary along either the x = constant
or y = constant directions, as delineated above.

The above procedure provides estimates for the derivatives at points on the boundary but the
set of locations where we know the x derivatives are not the same as the set of locations
where we know the y derivatives. We use interpolation with respect to 8 = atan2(y —
Yo, X — X,), the polar angle along the ellipse, to obtain estimates of both derivatives
whenever the lines x =x;, y=y;, y—y; =x—x;, and y —y; = —(x — x;) cross the
ellipse boundary (i.e. all points on the boundary, x;, that lie between two horizontally,
vertically, or diagonally adjacent lattice points). We use two-dimensional extrapolation to
obtain values of the pressure (p = p/3) at the same locations on the boundary. This is done
by forming a triangularization using the fluid lattice points and using linear functions on
triangles near the boundary to extrapolate pressure values to the boundary (Matlab’s function
scatteredInterpolant). Having obtained estimates of these variables, we then use the standard
formula for the stress tensor to obtain estimates for that tensor on the boundary:

o= ,u(Vu + (Vu)T)/Z — (D — Posteo) ]

Here p,steo 1S an estimate for the pressure inside the osteocyte that tends to balance external
pressure pushing in on the osteocyte. Because we are not modeling fluid flow inside the
osteocyte, we estimate p,ge, DY setting it equal to the average external fluid pressure acting
on the osteocyte. On the osteocyte surface/membrane, we calculate stress using unit normal
vectors that point out of the membrane (vs into) as well as unit tangent vectors that point
counterclockwise along the membrane. This means that a positive normal component of the
stress vector (1 - 6 - n), subsequently referred to as “normal stress” or WNS, corresponds to
the fluid pulling outward on the membrane (under tension) while a positive tangential
component of the stress vector (t - o - n), subsequently referred to as “tangential stress” or
WSS, corresponds to fluid pulling the membrane in a counterclockwise direction.

4. VERIFICATION AND VALIDATION

For the purposes of verification and validation of the numerical methods and their
implementations, we consider a simpler situation: flow past an osteocyte with 4 straight
canaliculi (one on each of the 4 sides of the computational domain, Fig. 3). Fluid flows into
the domain through the north and south canaliculi and out of the domain using the east and
west canaliculi. The problem is numerically solved by our code implementing the lattice
Boltzmann methods and by a commercial software FlexPDE [51]. We should note that the
finite element mesh uses curved finite elements to resolve the mesh at the corner to within
approximately 0.01 lattice Boltzmann units of accuracy while the LBE mesh effectively
rounds such intersections to the nearest integer or half integer depending on the feature. To
make the finite element mesh align better with the LBE mesh, we smoothed the corners
where the lacuna and outlet canaliculi (east and west) intersect using arcs with an
approximately 1 pixel radius. The results (flow and force fields) can be seen in Fig. 3.
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Panel A) plots the flow speed in the lacuna and canaliculi from the LB method. The units on
the x and y axes are lattice Boltzmann length units. The color represents the speed in
lattice Boltzmann units (the color bar is on the right hand side). Panel B) plots the relative
speed difference between LB methods and FlexPDE in the lacuna region as measured by
(LB method speed — FlexPDE speed)/(maximum speed by FlexPDE). The largest differences
(<7%) can be seen near the corners where the flow enters and exits the lacuna region. Near
the osteocyte, however, differences are < 1%. This is our region of interest. Panel C) plots
the normal stress on the wall of the osteocyte as predicted by the LBM (blue) and FlexPDE
(red). Panel D) plots the shear stress on the wall of the osteocyte as predicted by LBM (blue)
and FPDE (red). In both figures 8 represents the angle, in radians, between the positive
direction of the x-axis and the line segment connecting a point on the ellipse to the center of
the ellipse, measured from the x-axis. The angle is positive if counter-clockwise and
negative if clockwise. 8 = 0 corresponds to the center of the eastern canaliculus and 6 =
+m corresponds to the center of the western canaliculus. The y-axis represents the normal
or shear stress in lattice Boltzmann units, as labeled. One can see that the LBM and FlexPDE
methods agree with each other reasonably well.

LBM Speed x107 . :
1000 Relative speed difference
(a) 6 (b) 0.05
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- -m/2 0 w2 T

Angle (9)

Fig. 3: Comparison of our results and results from the commercial software FlexPDE. (a)
Flow speed (in LB units) in the lacuna and canaliculi. (b) Relative speed difference (in
percentage) in the region between the two methods. The largest differences, < 7%, can be
seen at the corners where the flow enters and exits the lacuna region. Near the osteocyte,
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differences are < 1%. (c) Normal and (d) shear stress (in LB units) on the wall of the
osteocyte as predicted by LBM (blue) and FlexPDE (red). In both figures 6 represents the
angle, in radians, between the positive direction of the x-axis and the line segment connecting
a point on the ellipse to the center of the ellipse, measured from the x-axis. The angle is
positive if counter-clockwise and negative if clockwise. The angle 6 has the same meaning
in all the subsequent figures. The figure serves as verification and validation of our
computational results by the commercial software FlexPDE.

The stress on the osteocyte membranes is difficult to measure directly in vivo and in vitro
due to the complexity of the flow-osteocyte-lacuno-canalicular network. Instead, they are
evaluated by theoretical or computational studies (sometimes in conjuction with laboratory
experiments). This results in a wide range of stress level estimates (0.01-100 Pa) [6, 11, 32,
37, 39, 52-56]). There is additional uncertainty in these systems as the typical lacuna width
can vary from 0.5-8 um [57, 58] which may change over time/age [59, 60] and the
canalicular flow speed can vary between 0.02 and 1000 um/s [11, 30, 32, 39, 53, 55, 57, 61,
62]. Due to this high level of variability, we present our results here (in particular force and
stress) in dimensionless form. Given any specific values of the parameters, our results given
below can be converted to their dimensional counterparts in SI units. At the same time, we
note that using typical literature values for the lacuna width (1 um), canalicular flow speed
(100 um/s), and fluid mass density (103 kg m3) as well as 10% PCM produces stress
estimates in SI units (O (3 Pa)) that lie in the 0.01-100 Pa range.

5. MAJOR COMPUTATIONAL RESULTS

An osteocyte in vivo may possess 60+ canaliculi with complex geometries and be surrounded
by the PCM. The lattice Boltzmann method has not yet been used with such complex
osteocyte-based geometries and low Reynolds number flow. In the first part of our results,
we discuss the method’s rate of convergence to steady state and how results depend on the
Reynolds number. In general, the canaliculi are difficult to incorporate into a computational
model because the highly complex geometry can vary greatly. In our model, we consider
them by using three different canaliculi numbers, 16, 32, and 64, by using curved channels
of variable width, and by using randomly chosen inlets/outlets. These results are presented
in the second part of our results section below. Similarly, the effects of the PCM near the
osteocyte are not regularly explored due to the complexity of these proteins. Here, we
consider the proteins by using the approach previously mentioned and five different PCM
percentages in lacuna: 0%, 5%, 10%, 20%, and 40% (the first four in canaliculi). This is
presented in the third part of our results below.

The annulus representing the lacuna that surrounds the osteocyte is 30 fluid grid nodes thick
in the radial direction. The canaliculi vary in size typically occupying 5 to 15 fluid grid nodes
in width. Flow and force fields, in particular, the wall shear and normal forces (WSS and
WNS, or tangent and normal forces) applied by the flow on the osteocyte surface, are
computed, nondimensionalized, visualized, and compared. Stresses and forces are
nondimensionalized by dividing the quantities in LB units by pcpertting and
PeharWenarLenar» respectively. Here pepar = 1, Ucnar = Uin, the inlet velocity, and the
characteristic length L.y, = 30, the width of the lacuna region in LB units. Besides the
stresses and forces in this section, all other quantities are in LB units.

A drawback of using lattice Boltzmann methods for low Reynolds number flows is the
slow convergence of the solution to its steady state. Typically, the lower the Reynolds
number is, the slower the convergence. To make sure solutions are convergent before
simulations are terminated, we compare the stesses on the osteocyte surface at every 100,000

12



steps up to 1M steps for 0% (Fig. 4; starting at 100k) and 20% (Fig. 5; starting at 400k) PCM
for Re = 107°. Curves start from light gray (100k) and move towards darker gray and
eventually black (IM). The top rows in the figures show the dimensionless stresses along
the x-axis, y-axis, normal, and tangential directions on the osteocyte surface, from left to
right. The curves in the top rows overlap and no differences can be seen by eye. In the lower
rows, the relative difference is defined as ((stress( t = 100 k)-stress( t =
tiater ))/mean(|stress( t = 100k )[)) for Fig. 4 and ((stress(t = 400 k)-stress( t =
tiater))/mean(|stress(t = 400k)|)) and are less than about 0.04% in Fig. 4 and 0.03% in Fig.
5 showing little shift in stresses as more time steps are taken. In both cases, waiting 1M LB
time steps should be sufficient to assess the stresses at or near steady state.
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0 0 0 0
Fig. 4 Stress (dimensionless) at different time steps (first row) and relative differences in
percentage (second row). Columns from left to right correspond to stresses along x-axis, y-
axis, normal, and tangential directions on osteocyte surface, respectively. The figure shows
the convergence of stress in time for models without PCM. Re = 107°.
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Fig. 5 Stress (dimensionless) at different time steps (first row) and relative differences in
percentage (second row) for the case with 20% PCM at time steps 400K, 500K,..., 1M.
Columns from left to right correspond to stresses along x-axis, y-axis, normal, and tangential
directions on osteocyte surface, respectively. The figure shows the convergence of stress in
time for models with PCM. Re = 1076,

To get the small differences in Fig. 5’s bottom row, which exhibit similar convergence
behavior to those in Fig. 4, we had to wait until ¢t = 400k before performing comparisons.
This suggests increasing the PCM density increases the time required to reach steady state,
by fourfold in this case when PCM goes from 0 to 20%. Based on this trend and other results,
using 100,000 LB time steps is sufficient to assess the stresses at or near steady state when
dealing with low PCM densities as in Figs. 6 - 9 while 1M is sufficient for the high PCM
densities shown in the other following figures and plots.

Scaling laws are abundant in Nature [63-68]. For flow around an object at small Reynolds
number, the drag coefficient scales as the reciprocal of the Reynolds number [69]. The
Reynolds number of the interstitial flow in the FOLC system is small and may vary between
1073 to 1079 [30]. It is not immediately clear whether the stress on the osteocyte surface
1s subject to the same scaling. To investigate the stress scaling, we compute the stresses on
the osteocyte surface for 5 different Reynolds numbers (Re=10", n= -2,-3,-4,-5,-6) using 64
canaliculi. We plot the scaled stress (dimensionless stresses multipled by Reynolds number)
in Fig. 6: Re - X,/pu?, where X, is the stress along the direction a = x, y, normal, or
tangential direction. Colors vary from light gray (Re = 0.01) to black (Re = 107) in top row.
Colors vary from light gray (Re = 0.001) to black (Re = 10°°) in bottom row. As in Fig. 4-5 ,
it is difficult to discern by eye differences between these scaled stresses (first row). In the
second row, we look at the relative difference between the Re = 0.01 case and the other
cases, which is defined as ((stress(Re = 0.01)-stress(Re = Rejoyerr))/mean(|stress(Re =
0.01)|)). This difference is less than 0.3%, which indicates the dimensionless stress indeed
scales with the reciprocal of the Reynolds number for Re <0.01.
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Fig. 6 Scaled stress (dimensionless stress multiplied by Re) for different Reynolds numbers
(first row) and relative differences in percentage (second row). Columns from left to right
correspond to stresses along the x-axis, y-axis, normal, and tangential directions on the
osteocyte surface, respectively. Colors vary from light gray (Re = 0.01) to black (Re = 10°°).
The figure shows stress scales as 1/Re for Re <0.01.
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We point out that all the simulations for Figs. 4 through 6 use configuration A for 64
canaliculi and the same random set of inlets and outlets. Based on other results (to be
discussed below) using hundreds of realizations with different sets of randomly chosen inlets
and outlets, we believe the above trends are typical even when inlet and outlet choice is
varied. In the remaining account, we use the results with Re = 0.01 as examples.

Fig. 7 plots the WSS and WNS on the osteocyte surface for 16, 32, and 64 canaliculi. In Fig.
7 the geometry and the inlet/outlet of the canaliculi in each case are chosen randomly. The
first, second, and third columns plot the cases with 16, 32, and 64 canaliculi, respectively.
The first, second, and third rows plot the WNS, WSS, and total force along the x (blue) and
y (red) directions on the osteocyte surface, respectively. We see that the quantitative
distributions of WNS and WSS on the osteocyte surface do look different for the three cases
and the total force even more so (both magnitude and direction). In each case, the total force
converges with respect to time quickly. The WNS magnitude is significantly greater than
that of the WSS magnitude in each case. This result seems to indicate that the number and
geometry of canaliculi do have quantitative influence on the WSS and WNS and their
distribution on the osteocyte. Notice that the observed differences may be attributed to a
combination of the number, the geometry, and the choice for inlets/outlets of the canaliculi.
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Fig. 7 Dimensionless WNS (first row vs. 6), dimensionless WSS (second row vs. 8), and
dimensionless total force (third row vs. t in 10,000s of time steps, 100k time steps total
were used) on the osteocyte surface for three cases with 16, 32, and 64 canaliculi (left,
middle, and right columns, respectively). The figure shows quantitative differences can
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occur when the number and geometry of the canaliculi are varied including WSS and WNS
distribution differences.

Fig. 8 plots the WSS and WNS on the osteocyte surface for the case of 64 canaliculi with
three different configurations. Note that both the geometry and the inlets/outlets of the
canaliculi in each case are chosen randomly. The first, second, and third columns plot the
cases with different configurations (the first, second, and third 64 canaliculi cases pictured
in Fig. 2), respectively. The first, second, and third rows plot the WNS, WSS, and total force
along x (blue) and y (red) directions on the osteocyte surface, respectively. Again one sees
that the quantitative distributions of WNS, WSS, and total force on the osteocyte surface are
different for the three cases. In each case, the total force converges with respect to time
quickly. Also, the magnitude of the WNS is significantly greater than that of the WSS in
each case. This seems to indicate that the canaliculi configuration has influence on the WSS
and WNS and their distributions on the osteocyte. Notice that the observed differences may
be attributed to a combination of the geometry differences and differences in the choice for
the inlets/outlets of the canaliculi.
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Fig. 8 Dimensionless WNS (first row vs. 0), dimensionless WSS (second row vs. 8), and
dimensionless total force on osteocyte surface (third row vs. t in 10,000s of time steps,
100K time steps were used) for the 64 canaliculi cases for three different
configurations/geometries (left column A, middle column B, and right column C). The
figure shows quantitative differences can occur when the geometry of the canaliculi differ
including WSS and WNS distribution differences.

To further understand the above observed potential influences of the number, geometry, and
inlets/outlets of the canaliculi on the force field, we perform simulations of 100 realizations
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with different randomly chosen inlets and outlets for each of the five cases considered above
in Figs. 7 and 8. The mean and standard deviation of the force distributions on the osteocyte
surface are computed and plotted in Fig. 9. The first row plots the dimensionless force
acting on the osteocyte surface along the x-direction (FX, first column), y-direction (FY,
second column), normal direction (WNS, third column)), and the tangential direction (WSS,
last column), respectively, for the case with 16 canaliculi. The remaining rows plot the
corresponding force distributions for the cases with 32 canaliculi and with 64 canaliculi for
each of the three different configurations/geometry. In each panel, the solid red curve
corresponds to the mean value as a function of 8 and the top and bottom of the shaded
region correspond to the standard deviation.

We can see that the quantitative differences in the force distributions (WNS, WSS) among
the 5 different cases with 16, 32, and 64 canaliculi are still discernable but they are much
less obvious than those in Figs. 7 and 8. This indicates that the major differences observed
in Figs 7 and 8 may be attributed to the choice of which canaliculi are inlets and which are
outlets. The actual flow inlets and outlets of the canaliculi are in fact unknown in vivo and
may depend on loading and vary with time (e.g. an inlet at one time may become an outlet
at another time, and vice versa). Averaging over 100 realizations of the randomly chosen
inlets/outlets may have sufficiently eliminated the inlet/outlet effect. Therefore, it appears
that the number and geometry of the canaliculi may not be a major influencing factor with
the resulting average force distributions on the osteocyte membrane being qualitatively
similar regardless of the number and configuration of the canaliculi. This is consistent with
a recent work [39]. Given that the number and geometry of an osteocyte’s system appear to
be relatively random based on in vivo studies, this seems to make sense; otherwise,
osteocytes would tend towards having some optimal canaliculi number and/or geometry to
maximize mechanotransduction effectiveness.
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Fig. 9 Mean and standard deviation of 100 realizations for each of the cases considered in
Figs 7 and 8. The corresponding dimensionless mean stresses (solid red lines) + their
standard deviations (top and bottom of the shaded region) are plotted. Rows correspond to
the geometries using 16, 32, and 64 (with three configurations A, B, and C) canaliculi, from
top to bottom. The columns correspond to the dimensionless force on the membrane acting
inthe x-direction, y-direction, normal (tension is positive) to the membrane (dimensionless
WNS), and tangential (counterclockwise is positive) to the membrane (dimensionless WSS).
Relatively little trend can be seen when comparing different numbers of canaliculi and
different geometric configurations. The figure shows the number and geometry of canaliculi
has less pronounced influence on the WSS and WNS and their distributions on an osteocyte
in a lacuna when 100 realizations of simulations with randomly chosen inlets and outlets are
averaged.

Now we investigate the possible influence of the PCM. The PCM in vivo is a complex system
of fibrous structures and is primarily composed of glycoproteins, proteoglycans, collagens,
and fibronectin. To model the PCM in vivo is difficult because of its unknown configuration
(geometry and size) and mechanical properties. One approach in 3D is to coarse-grain the
PCM and model it as a family of randomly distributed elastic fibers protruding from the
lacunocanalicular wall and the cell membrane. An alternative 3D approach is to use Biot’s
theory modeling the interstitial region as a poroelastic material [70-73]. In principle, these
approaches can also be used in 2D. These approaches, however, are challenging in practice
because there are 60+ canaliculi each with nontrivial (e.g. curved, tapered, rough-walled)
geometry. Here, we instead introduce a different coarse-grained approach. Many rigid
immobile particles are randomly introduced in the lacuna and canaliculi to model the PCM.
In a 2D simulation, each particle may be regarded as a rigid fiber of infinite length in the
third dimension. From the point of view of fluid mechanics, these particles (to first degree)
should be able to mimic possible effects of the PCM and tethers on the interstitial flow. The
drawback of the 2D part of our approach is that tethers cannot be modelled directly; in 2D
tethers would completely block the flow in the canalicular pericellular space.

We consider the addition of PCM in two stages. First we introduce PCM in just the lacuna
(middle panel in Fig. 1) and then we add PCM to the canaliculi to consider any additional
effects introduced by PCM in that region (right panel in Fig. 1). To verify if the same scaling
holds for stress when PCM is introduced in lacuna, we perform simulations with PCM =20%
in the lacuna only for Re=10" where n=-2,-3,-4,-5,-6. Fig. 10 shows similar results as those
in Fig. 6. Row 1 shows what the typical stress distributions look like while row 2 shows less
than 1.5% relative differences exist for Re < 0.01 (calculated as in Fig. 5 using results at
Re = 0.01 as base value). The results suggest the dimensionless stress scales as 1/Re after
20% PCM is introduced in lacuna only.
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Fig. 10 Scaled stress (dimensionless stress multplied by Re) at different Reynolds numbers
(first row) and relative differences in percentage (second row) for the case with 20% PCM
in lacuna for Re=10", n=-2,-3,-4,-5,-6. Columns from left to right correspond to stresses
along x-axis, y-axis, normal, and tangential directions on osteocyte surface, respectively.
Colors vary from light gray (Re = 0.01) to black (Re = 10®). The figure illustrates the stress
still scales as 1/Re when 20% PCM is introduced in lacuna for Re <0.01.

To check if the same scaling holds for stress when PCM is included in both the lacuna and
the canaliculi, we perform simulations with PCM = 5% and 20% in both regions for Re=10",

=-2,-3,-4,-5,-6. Figs. 11 and 12 show similar results as those in Fig. 6 and 10. Row 1 shows
what the typical stress distributions look like while row 2 shows approximately 2% and 10%
relative differences exist for Re < 0.01 (calculated as in Fig. 6 using results at Re = 0.01
as the base value). Note that the differences among Reynolds numbers among Re=10", n=
-3,-4,-5,-6 are much smaller (0.25% in Fig. 11 and 1.25% in Fig. 12). The results suggest the
stress scales approximately as 1/Re for Re < 0.01 when 5% PCM is introduced in both the
lacuna and the canaliculi and for Re < 0.001when PCM with 20% density is introduced in
both the lacuna and the canaliculi. Interestingly, it appears that increasing the PCM density
in the canaliculi lowers the range of Reynolds numbers for which the stress scaling (1/Re
law) holds.
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Fig. 11 Scaled stress (dimensionless stress multiplied by Re) at different Reynolds numbers
(first row) and relative differences in percentage (second row) for the case with 5% PCM in
both the lacuna and the canaliculi for Re =10", n=-2,-3,-4,-5,-6. Columns from left to right
correspond to stresses along x-axis, y-axis, normal, and tangential directions on the osteocyte
surface, respectively. Colors vary from light gray (Re = 0.01) to black (Re = 10°°). The figure
illustrates the stress approximately scales as 1/Re for Re < 0.01when PCM with 5% density
is introduced in both the lacuna and the canaliculi.
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Fig. 12 Scaled stress (dimensionless stress multiplied by Re) at different Reynolds numbers
(first row) and relative differences in percentage (second row) for the case with 20% PCM
in both the lacuna and the canaliculi for Re=10", n=-2,-3,-4,-5,-6. Columns from left to right
correspond to stresses along x-axis, y-axis, normal, and tangential directions on the osteocyte
surface, respectively. Colors vary from light gray (Re = 0.01) to black (Re = 10°%). The figure
illustrates the stress roughly scales as 1/Re for Re < 0.001when PCM with 20% density is
introduced in both the lacuna and the canaliculi.

Turning to the influence of PCM in the lacuna only on WSS and WNS on the osteocyte, Fig.
13 plots the WNS (the first row), WSS (the second row), and total force (third row) along
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the x (blue) and y (red) directions for the case of 64 canaliculi (configuration B, Fig. 3
middle right) with the density varying from 0% (i.e. without PCM, the first column) to 40%
(the last column) introduced in lacuna only. The columns from left to right correspond to a
density of 0%, 5%, 10%, 20%, and 40%. One can see from the figure that the PCM has a
significant influence on the magnitude and distribution of WSS and WNS on the osteocyte:
the denser the PCM, the greater the WSS/WNS magnitude and the more oscillation/variation
in the distribution. While the rate of convergence of total forces does increase as PCM
density increases, all total force trajectories converge relatively quickly with respect to time
(last row in Fig. 13). In addition, those trajectories further exhibit significant changes in
magnitude as PCM density is increased. We hypothesize the observed difference may be
explained by the altered flow path and decreased flow space which causes increased flow
speed and velocity gradients and induces greater force magnitude and more variations as the
PCM density increases.
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Fig. 13 Dimensionless WSS (first row) and WNS (2" row) for PCM density of 0%,
5%,10%,20% and 40% (from left to right columns) in lacuna only. The x units for total
dimensionless force (last row) corresponds to the number of time steps in ten thousands.
The figure shows that increasing the PCM in the lacuna increases the WNS and WSS on
the osteocyte body.

Table 1 lists the averaged WNS (top) and WSS (bottom) in magnitude as the PCM density
varies from 0 to 40% for the three cases with 16, 32, and 64 canaliculi (averaged over all
three configurations). We see that these quantities only vary slightly as the number of
canaliculi varies, but they increase significantly as the PCM density increases. Again, this
suggests the number/geometry of an osteocyte canalicular structure does not have significant
influence on the force acting on the osteocyte membrane but that the PCM density does have
significant influence.

Table 1 Average stress magnitude normal to (top) and tangential to (bottom) the osteocyte
surface as the PCM density is varied for 16, 32, and 64 canaliculi (16, 32, 64)
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Mean(|jnormal 16 Canaliculi 32 Canaliculi 64 Canaliculi
stress)|)

0% PCM 3644.1 2664 2709.8
5% PCM 34975 18543 40891
10% PCM 1.13E+05 64157 67257
20% PCM 1.34E+05 6.44E+05 1.14E+05
40% PCM 1.81E+06 2.97E+05 4.08E+05
Mean(|shear stress|) | 16 Canaliculi 32 Canaliculi 64 Canaliculi
0% PCM 423.22 363.84 410.38
5% PCM 875.51 659.27 1131.7
10% PCM 1650 1750.1 1555.7
20% PCM 2982 7716.4 3031.2
40% PCM 16926 7490.2 7508.5

Fig. 14 plots the WNS (the first row), WSS (the second row), and total force (third row)
along x (blue) and y (red) directions for the case of 64 canaliculi (configuration B) with
the density varying from 0% (i.e. without PCM, the first column) to 20% (the last column)
introduced both lacuna and canaliculi. The columns from left to right correspond to a density
of 0%, 5%, 10%, 20%. One can see from the figure and a comparison with Fig. 13 that the
PCM in canaliculi has a pronounced effect on the magnitude and distribution of WSS and
WNS on the osteocyte body in the lacuna. When PCM is placed in the canaliculi, the
effective resistance in the canaliculi is significantly raised as it takes much more effort to
push fluid through the impeded passage. Before PCM was included in the canaliculi but was
included in the lacuna, flow entering the lacuna had the choice of staying in the lacuna or of
taking the nearest outflow exit. Due to the relatively low resistance in the no-PCM canaliculi,
the nearest outflow exit was taken more frequently than the option of staying in the lacuna.
With the PCM in the canaliculi, however, the fluid tending the path of least resistance can
no longer “easily” get out the nearest outflow canaliculi; thus causing fluid “crowding” in
the lacuna and resulting in greater momentum hence leading to higher forces in general.
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Fig. 14 Dimensionless WNS (frist row) and WSS (2™ row) for PCM in both lacuna and
canaliculi with PCM density of 0%, 5%, 10%, 20% (from left to right columns) . The units
on the horizontal axis in the total dimensionless force plots correspond to the number of
time steps in one hundred thousands. Increasing the PCM in both the lacuna and canaliculi
increases the WSS and WNS magnitudes and variations similar to the trend in Fig . 13.

Fig. 15 shows the flow field via velocity vectors and speed contours for the case without
PCM (top panel), with PCM of density 20% in the lacuna only (middle panel), and in both
the lacuna and the canaliculi (bottom panel). In the three panels, the x and y axis
coordinates are in LB units. The color bar indicates the flow speed (in LB units) and the
arrows denote the velocity directions. We see that the flow in the lacunar region looks more
“chaotic” in both the 20% PCM cases compared to the case without PCM. Similarly the
flow in the canalicular region looks more “chaotic” in the case of 20% PCM in both the
lacuna and the canaliculi (bottom panel) than in the case of 20% PCM in the lacuna only
(middle panel). The flow disturbances are caused by the presence of the PCM which deters
flow and alters its path. This is consistent with the finding in [74] (PCM blocks flow).
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Fig. 15 Flow field of the case without PCM (a), with 20% PCM in the lacuna only (b), and
with 20% PCM in both the lacuna and the canaliculi (¢). The x and y axis coordinates are
in LB units. The color bar gives the velocity magnitude in LB units. The figure shows the

effect of PCM on the flow field. The PCM creates flow disturbances.
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We would like to point out that the effect of PCM on flow and force is consistent with
previous research [36] which found that the geometry and dimension of the pericellular space
within the canaliculi had significant influence on flow and force in the region.

6. SUMMARY AND DISCUSSION

The geometry of the fluid-osteocyte lacuno-canalicular (FOLC) system can be very
complex in vivo. In most computational studies, the numerous canaliculi with varying
geometries are represented by just a few straight tubes or channels with prescribed
inlets/outlets. Similarly, pericellular matrix (PCM) is usually ignored including a failure to
fully discuss the possible errors resulting from such omissions. To investigate the possible
influences of the number and geometry of the canaliculi and the PCM on the forces
generated by the interstitial fluid flow on the cell body in the lacuna, we have introduced a
two-dimensional model that can be used to consider the effects of these factors. In the model,
the canaliculi are modelled using a varying number of curved randomly shaped channels.
The PCM is modelled using fixed rigid “particles” (dots) in the lacuna and canaliculi. The
particles are randomly (uniformly) distributed. The inlets and outlets are chosen at random.
At inlets velocity is prescibed; at outlets a free outflow condition is used. The complicated
interstitial flow in the lacuno-canalicular (LC) network is modelled by the lattice Boltzmann
equations (D2Q9 model). The half-way bounce-back scheme is used to model the no-slip
boundary condition on the rigid walls of the canaliculi and outer boundary of lacuna; The
same boundary condition is used to model the effect of the rigid “particles” that represent
the PCM. Linear Bouzidi boundary conditions are used on the osteocyte surface. The Zou-
He boundary conditions are used at the inlets and outlets. A series of simulations using a
varying number and geometry of canaliculi with and without the PCM being modelled is
designed and run with the corresponding computational results visualized and analyzed.
Our computational results indicate that 1)Without the PCM, the number and geometry of
the canaliculi have some quantitative influence on the WSS and WNS on the osteocyte
surface but that the influence on average is not significant; 2) increased PCM density levels
produces significant increases in the magnitude of the expected WSS and WNS on the
osteocyte’s main body; 3) the dimensionless stress on the osteocyte surface scales
approximately as the reciprocal of the Reynolds number for Re <0.01 and the scaling holds
for smaller Re when PCM of high density is introduced in both the lacuna and the canaliculi.

The actual physiological boundary conditions are difficult to obtain because the inlets and
outlets are loading and time dependent (an inlet may become an outlet and vice versa as
time goes by) and the velocity and pressure magnitudes at the inlets/outlets are also time
dependent. Because of this uncertainty, we chose to select inlets and outlets at random and
use prescribed velocity at inlets and a free outflow condition at outlets. This allows us to
consider typical average behavior in such systems.

We also note that in lattice Boltzmann simulations, the actual velocity or pressure
magnitudes are less important than the Reynolds number for the system being modeled. In
particular, the specific velocity magnitude used in a lattice Boltzmann simulation does not
affect the results of a real world problem if the Reynolds number and flow domain geometry
remain the same. Further, for small enough Reynolds number (<0.01) we have a scaling
law suggesting that the overall typical shapes of the dimensionless WSS and WNS
distributions will not change though their magnitudes will scale as 1/Re. Similarly, the
lattice Boltzmann pressure can differ by a constant and still provide the same results, as is
true for solutions of the Navier-Stokes equations in general. The pressure values used and
presented here may not agree with the physiological values (e.g. the Biot theory predicted
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fluid pressurization) because of that additive constant. Physiological values, however, may
be obtained by comparing the actual value and the computed value at one spatial point. We
did not perform the calibration because our focus is not on the flow and force fields of a
specific osteocyte in a specific LC network; rather we are interested in how forces change
when we change the geometry/number of canaliculi and the PCM of a generic osteocyte in
a generic LC network. The latter can be considered without such a calibration.

Biot’s theory [70-73] has been used for macroscale modeling and simulation of bone tissue.
Applying the theory to an osteocyte in an LC network with PCM at the cellular level would
be challenging because of the complicated boundary conditions on the lacuno-canalicular
wall of 60+ canaliculi. In our work, a different coarse-grained approach we have decided to
use is an alternative approach that has been frequently used by lattice Boltzmann
practitioners interested in porous media [46, 75-77], though not in this context. Rigid
particles are introduced into lacuna and canaliculi at random to model the PCM. This coarse-
gained approach takes into account, to some extent, the effects of PCM, tethers, and even
the processes on flow in the pericellular space. While such an approximation is of relatively
low accuracy, it can yield insight into the effects that solid material near the osteocyte and
in the canaliculi can have on force distributions on the osteocyte’s main body.

Additional motivation for our approach that omits explicit modeling of tethers and processes
is provided by our desire to keep this initial model parsimonious. Including tethers using this
model is not straightforward because in 2D solid material like a tether that connects the
canalicular wall and process membrane would block a large portion of flow in the canaliculi.
In 3D, flow can go around such obstacles and the flow in 2D would not be mimicking typical
3D flow. Including cellular processes is likewise a task more complicated than the current
scope of this work. /n vivo, fluid flows around cellular processes that are typically centered
in each canaliculus. Centering such processes in the canaliculi and connecting such processes
to the osteocyte is particularly difficult when dealing with 60+ canaliculi with nontrivial
geometries, as can occur in vivo [78]. Fortunately, the effect of such solid components is
partially captured by the particles randomly distributed in the canaliculi. These results
suggest that explicitly including processes and tethers would increase force magnitude and
variation experienced at the osteocyte’s surface and decrease the Reynolds numbers for
which the Re scaling law explored here holds. Though we focus here on the osteocyte’s main
body, our results for PCM in the lacuna also suggest elevated shear stress in the canalicular
region in the presence of processes. Schurman ef al. [39] suggest higher shear stress tends to
be associated with healthier bones. Also, healthy processes tend to widen the canalicular
network allowing for better circulation and higher stresses in general. In future work
focusing on the processes instead of the osteocyte’s main body, we plan to consider processes
and tethers more explicitly.

Almost all of the computational studies in literature assume that the interstitial fluid is
Newtonian. But the physiologic interstitial fluid may be non-Newtonian [79, 80] since it
contains particles such as nutrients, hormones, and other proteins. Additionally, the
interstitial flows vary significantly including being oscillatory due to periodic motions such
as walking or jogging. In this paper we have investigated the stress on the osteocyte surface
under the assumptions that the fluid is pure water (Newtonian) and the flow is steady. We
refer readers interested in oscillatory flows of non-Newtonian fluids to the works [81-84]
and references therein.

It is well known that the drag coefficient of a rigid body in low Reynolds number flows
scales as 1/Re [65, 69] for Re < 1. It is interesting to see that the stress obeys the same
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scaling law in our case which is significantly more complicated than flow past an object.
This scaling allows one to extrapolate our results that use one Reynolds number to
understand what happens at other Reynolds numbers less than 0.01.

The stress and force are given in dimensionless form in the paper; together with the above
scaling law, one can convert the dimensionless results in our paper to dimensional
counterparts for any given specific configuration of a fluid-osteocyte lanuno-canalicular
(FOLC) network. To do this, given the characteristic lacuna width, canalicular flow speed,
mass density, and kinematic viscosity of the interstitial fluid, one first calculates the
Reynolds number. By the scaling law, one can then obtain the dimensionless force and stress
for the Reynolds number in the setting of interest by using the results given in this paper:
z = Xpaper 5 S paper - The corresponding dimensional force and
anew Repew  a,paper  Répew
stress in SI units can be obtained by multiplying by pnewuizn’new, the characteristic mass

density times the canalicular flow speed squared.

While agreement in terms of both fluid velocities and stress estimates are good in Fig. 3,
some undulations do exist in the lattice Boltzmann stress estimates. Such undulations have
also been seen in other studies (e.g. [85]) that more carefully attempt to take the curved
boundary into account. The size of such undulations, however, remain small allowing us to
make reasonable qualitative observations in our studies. We also note that these undulations
are likely due to both the boundary conditions (linear Bouzidi) and the stress estimation
procedure implemented here with smoother results likely to result if better boundary
conditions and better stress estimation techniques are used.

Lattice Boltzmann methods [45, 86, 87] have been widely used in Computational Fluid
Dynamics including flows through porous media [88]. The D2Q9 model used in our work
revealed a few drawbacks to using lattice Boltzmann methods for low Reynolds numbers
including relatively slow convergence to steady-state solutions and spatial oscillations in
shear stress on the osteocyte surface. To overcome these shortcomings, one may use other
versions of the lattice Boltzmann methods such as [89] or other approaches mentioned in
[90].

The canalicular inlets and outlets of an osteocyte in vivo are unknown and may be time and
loading dependent. However, in models in the literature, the inlets and outlets are typically
prescribed. According to our results, the choice of inlets and outlets may have an influence
on the force and flow fields. In our work we take 100 realizations of the randomly selected
inlets/outlets to annihilate any possible inlet/outlet effects in our simulations. This allows us
to compare results when using different canaliculi number and geometry and see that those
factors have relatively little effect. Nonetheless, given 100 realizations, it is somewhat
surprising that the mean lines are not flatter than they are. This deserves note as it has to do
with inhomogeneity particularly in terms of vessel sizes. Flow in these geometries tends to
be dominated by larger vessels which, as estimated by Poiseuille’s law, have resistances that
are significantly lower than their smaller counterparts (see Fig. 15, top, where larger outlet
canaliculi tend to have higher associated speeds within). In two-dimensional Poiseuille flow,
resistance is proportional to 1/D3 where D is the canaliculi diameter. This can lead to less
homogeneous behavior in the system such as the undulations in the mean stresses seen here.

The significantly increased total force (WSS and WNS) on the osteocyte surface seen when
the PCM density is increased is probably related to our representation of the PCM using
rigid particles in the lacuna and canaliculi. Each particle occupies an effective small region
in the shape of a lattice square (otherwise occupied by one fluid node). These particles
decrease the effective pericellular space through which the fluid may pass. Since the inflow
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velocities are fixed at the inlets in our model, the flow around the osteocyte becomes faster
and the velocity gradients become steeper which both induce additional drag force on the
osteocyte. Our result is consistent with [31, 74], which leads to a hypothesis that the PCM
may amplify the stress on the osteocyte. This phenomenon invites more detailed
investigation in the future.

Most research focuses on the stresses on the process membrane in a canaliculus. Here we
focus on the stresses on the membrane of the osteocyte’s main body. Our stresses, in
particular wall shear stress, lie within the range of data in literature. Without any PCM, our
stress estimates are in the lower end of the range and smaller than similar estimates made
by process models that include no PCM. In that case, the stress on the membrane of the
osteocyte’s main body is smaller than the stress on the membrane of the processes. Since
the lacunar width is considerably wider than the space between the canalicular wall and the
process membrane inside a canaliculus and because the flow in the lacuna is less directed
that the flow in a canaliculi as it is subject to multiple inlets and outlets entering/exiting the
region, it is reasonable to expect that the wall shear stress in the lacuna is typically smaller.

While we have focused here on the stresses on the osteocyte’s main body due to studies that
have shown it is mechanosensitive [19, 91], it is important to discuss the potential role of the
processes, which we have omitted from our study. Multiple computational and experimental
studies suggest that osteocyte processes are primarily responsible for mechanosensing [19-
21, 23, 28]. Other works, however, have questioned the magnitude of that role. For instance,

Yokota et al. [92] reported that the surface area of a process (= 20 ym long and 50 to 400

nm in diameter) was too small (< 10 um?) for a physiologically realistic 1 Pa shear stress to

produce the = 10 pN needed by osteocytes in experiments before they respond. The situation
is further complicated by the fact that force sensing macromolecules typically occupy areas

far smaller than 10 ,urnz. Another study showed that human osteoblasts without processes
are mechanosensitive [93].  Similarly, other cultured cell experiments showed that both the
osteocyte’s main body and its process are mechanosensitive [19, 91]. Some researchers [13,
14] even hypothesised that the osteocyte’s body is responsible for mechanical force
sensation. Others have identified a potential role for the primary cilium [16, 94] during
osteocyte mechanotransduction which, in turn, can be affected by stress on the osteocyte’s
main body.

With potential roles for the processes, cytoskeletal components, focal adhesions,
intercellular junctions, primary cilia, ion channels, and the extracellular matrix [8] and
acknowledgement by others that a consensus on MT in osteocytes has not yet been reached
[22], we believe an accurate picture of MT requires consideration of these multiple factors.
In addition, since many of the potential mechanosensors (e.g. primary cilia and ion channels)
are situated on the cell body, in the current work we have focused on the fluid flow force
and its distribution along the osteocyte’s main body in the lacuna. Our findings here
contribute to a better characterization of overall osteocyte MT and, importantly, do not
require more explicit modeling of processes for the qualitative results presented here and do
not rely on determination of the relative importance of osteocyte’s main body vs the
processes. We look forward to combining these findings with studies that use processes in
the future to help consider such issues.

Our results are obtained from models in two dimensions, in which the cell is modelled as a
cylinder of infinite length rather than the actual shape of a physiological osteocyte that has
a finite dimension along the third direction. The 3D effect may be significant. Therefore, it
is desirable to extend the 2D models to three dimensions to confirm further the findings in
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two dimensions. Nevertheless, like the 2D models have done, the 3D models may similarly
justify the simplified approach used in existing computational works where the 60+
canaliculi of an osteocyte have been coarse-grained and simplified to be represented by just
a few straight tubes.

Like most cells, the osteocyte’s main body is deformable under external forcing. Here, it is
modelled as a rigid body. Since a deformable body may store elastic potential energy in its
body via deformation under external mechanical loading while a rigid body does not, the
forces on the surface of the osteocyte may be overestimated to some extent by any rigid
model. The same holds true for the modeling of the PCM using rigid rather than flexible
proteins.

In the future, we plan to incorporate the cell flexibility in the current model by introducing
a fluid-structure-interaction 2D model for the FOLC system, and then extend the model to
3D and incorporate cell deformability there.
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