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VARIATIONAL ASYMPTOTIC PRESERVING SCHEME FOR THE
VLASOV--POISSON--FOKKER--PLANCK SYSTEM\ast 

JOSE A. CARRILLO\dagger , LI WANG\ddagger , WUZHE XU\ddagger , AND MING YAN\S 

Abstract. We design a variational asymptotic preserving scheme for the Vlasov--Poisson--
Fokker--Planck system with the high field scaling, which describes the Brownian motion of a large
system of particles in a surrounding bath. Our scheme builds on an implicit-explicit framework,
wherein the stiff terms coming from the collision and field effects are solved implicitly while the
convection terms are solved explicitly. To treat the implicit part, we propose a variational approach
by viewing it as a Wasserstein gradient flow of the relative entropy, and solve it via a proximal quasi-
Newton method. In so doing we get positivity and asymptotic preservation for free. The method
is also massively parallelizable and thus suitable for high dimensional problems. We further show
that the convergence of our implicit solver is uniform across different scales. A suite of numerical
examples are presented at the end to validate the performance of the proposed scheme.
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1. Introduction. The kinetic description of a gas of charged particles interact-
ing through a mean electrostatic field created by their spatial distribution can be
described by the Vlasov--Poisson--Fokker--Planck (VPFP) system:

\partial tf + v \cdot \nabla xf  - q

me
\nabla x\phi \cdot \nabla vf =

1

\tau e
\nabla v \cdot (vf + \mu e\nabla vf) ,(1.1a)

 - \bigtriangleup x\phi =
q

\epsilon 0
(\rho  - h).(1.1b)

Here f(t, x, v) is the distribution function of particles at t \in R+, position x \in Rd, and
with velocity v \in Rd. \rho (t, x) is the density of electrons

\rho (t, x) =

\int 
Rd

f(t, x, v)dv,(1.2)

and \phi (t, x) is the potential of electrostatic field obtained self-consistently through
the Poisson equation (1.1b). h(x) is the density of positive background charges that
satisfies global neutrality relation\int 

Rd

\int 
Rd

f(0, x, v)dxdv =

\int 
Rd

h(x)dx.
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VARIATIONAL AP SCHEME FOR THE VPFP SYSTEM 479

The constants q, me, \epsilon 0, and \tau e represent the elementary charge, electron mass, vac-

uum permittivity, and relaxation time, respectively.
\surd 
\mu e =

\sqrt{} 
kBTth

me
is the thermal

velocity, with kB being the Boltzmann constant and Tth the temperature of the bath.
The Fokker--Planck term on the right-hand side of (1.1) represents the interaction of
particles with background as a thermal bath.

There has been a vast literature on the analytical aspect of the VPFP system.
Existence and uniqueness results have been obtained in several frameworks: the ex-
istence of classical solutions was obtained by Victory and O'Dwyer in [36] locally in
time and Rein and Weckler [32] globally in time. Bouchut [3, 4] also gave an existence
and uniqueness result in three dimensions for strong and global in time solution. In
the more general setting of weak solutions, Carrillo and Soler allowed initial data
in Lp space [10] and Morrey space [11] and proved the existence of locally in time
weak solution. Zheng and Majda obtained the existence of global measure solutions
in one dimension [38]. The investigation of the quantitative properties of this system,
especially its long time behavior, has also been adequate. Among works, we refer to
the paper by Bouchut and Dolbeault [5] and references therein for the strong conver-
gence to the unique stationary solution of the Cauchy problem via the compactness
argument, the one by Carrillo, Soler, and Vazquez [12] on the asymptotic behavior of
the frictionless case by the similarity argument, and the one by Bonilla, Carrillo, and
Soler [35] for the initial boundary value problem.

To study the physical behavior of the VPFP system, two important quantities
are considered. One is the mean free path le =

\surd 
\mu e\tau e, which is the average distance

traveled by a particle between two successive collisions, and the other is the Debye

length \Lambda =
\sqrt{} 

\epsilon 0kBTth

q2\scrN , where \scrN denotes the concentration of the particles. When the

mean free path of the electrons is much smaller than the Debye length, (1.1) can be
rewritten in the following dimensionless form:

\partial tf + v \cdot \nabla xf  - 1

\varepsilon 
\nabla x\phi \cdot \nabla vf =

1

\varepsilon 
\nabla v \cdot (vf +\nabla vf) ,(1.3a)

 - \bigtriangleup x\phi = \rho  - h ,(1.3b)

where \varepsilon = ( le\Lambda )2. See [1] for more details about the asymptotic limits. Sending \varepsilon \rightarrow 0,
we arrive at the so-called high field limit

\partial t\rho  - \nabla x \cdot (\rho \nabla x\phi ) = 0,(1.4)

 - \bigtriangleup x\phi = \rho  - h ,

which is a nonlinear convection equation for mass density \rho . Indeed, one can first
integrate (1.1a) w.r.t. v to get

\partial t\rho +\nabla x \cdot J = 0,(1.5)

where J =
\int 
Rd vf(t, x, v)dv. Then multiplying (1.1a) by v and integrating w.r.t. v,

one obtains

\varepsilon (\partial tJ +\nabla x \cdot Q) + \rho \nabla x\phi + J = 0,(1.6)

where Q =
\int 
Rd v \otimes vf(t, x, v)dv. In the limit of \varepsilon \rightarrow 0, (1.6) leads to J =  - \rho \nabla x\phi .

Then (1.4) comes from plugging the above relation into (1.5). See [13, 29, 17, 31] for
a physical and rigorous derivation of this limit, as well as the well-posedness of the
limiting system.

D
ow

nl
oa

de
d 

05
/1

5/
21

 to
 1

34
.8

4.
19

2.
10

1.
 R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

480 JOSE A. CARRILLO, LI WANG, WUZHE XU, AND MING YAN

Numerically solving the VPFP system (1.1) shares the same difficulty as most of
the kinetic equation: high dimensionality. Several methods have been developed, such
as [19, 20, 37, 15], to name a few. These methods are either deterministic or stochastic,
with an effort to capture some physical phenomena associated with the Vlasov--Poisson
system such as Landau damping when the diffusion effect is rather weak. However, in
the high field scaling we consider here, additional challenge comes from the stiffness of
the field and collision terms, which generally calls for a resolved spatial and temporal
discretization that can be very expensive. The asymptotic preserving method, which
aims at treating the stiff system and preserving its corresponding asymptotic limit
at the discrete level, provides a unified solver to mutiscale problems. See [23, 22]
for a review. In the specific context of a VPFP system with high field scaling, we
mention two particular methods. One was developed by Jin and Wang [24] based on
an implicit-explicit time discretization with a finite difference method in space and
velocity, and the other is a quadrature-based moment closure method by Cheng and
Rossmanith [14].

In this paper, we intend to design a new asymptotic preserving method for the
VPFP system in the same vein as [24] but with a marked difference. In particular,
similar to [24], we group the stiff field and collision terms into one spatially depen-
dent Fokker--Planck type operator and solve it implicitly, while treating the rest of the
nonstiff terms explicitly. However, unlike the direct iterative solver (e.g., conjugate
gradient or GMRES) employed in [24] for the implicit part, here we propose a varia-
tional approach. This is hinted at by the fact that the stiff term can be viewed as a
Wasserstein gradient flow of the relative entropy with respect to the local Maxwellian
and therefore can be solved with the Jordan--Kinderlehrer--Otto (JKO) scheme [25].
It then remains to solve the resulting optimization problem, for which we propose a
proximal quasi-Newton method. The reason is that, when \varepsilon is small or the magnitude
of f varies significantly, the gradient type optimization methods experience a deteri-
orative convergence. Therefore, we design a preconditioner that uses partial second
order information. As a result, not only is our method asymptotic preserving in the
sense that we allow for unresolved spatial, temporal, and velocity discretization to
capture the correct high field limit, but also the resulting implicit system solver en-
joys a uniform convergence. This is an important issue that has not been emphasized
in the literature. We also point out that the variational formulation together with
the JKO scheme offers a natural implicit treatment for the collision term that also
mimics the real physical process (i.e., entropy decrease) and therefore provides a de-
sirable addition to the current family of asymptotic preserving schemes for the kinetic
equation. Moreover, its parallelizability makes it very appealing for high dimensional
problems.

The rest of the paper is organized as follows. In the next section, we recall the
implicit-explicit treatment for (1.3), which can be split into three steps: an explicit
convection step, a Poisson solver, and an implicit collision step. We then empha-
size the implicit collision solver by first introducing the variational formulation and
then proposing the corresponding Newton type optimization solver. In section 3,
we examine the properties of the proposed method, including positivity, asymptotic
preservation, and uniform convergence. Section 4 is devoted to numerous numerical
examples, which validate the efficiency of our method as well as the aforementioned
properties. The paper is concluded in section 5.

2. Numerical method. In this section, we provide a detailed derivation of
our numerical scheme, including temporal and spatial discretization, along with the
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optimization algorithm for inverting the implicit algebraic system. Throughout the
paper, we consider one dimension in space and d-dimension (d = 1, 2, 3) in velocity.
We also restrict ourselves to the periodic boundary condition in x, and the Fourier
spectral method is adopted in solving the Poisson equation. As will be explained
below, the spatial and velocity treatments are decoupled in the Vlasov--Fokker--Planck
equation, therefore extending to higher dimension in space is straightforward and will
not introduce substantial additional computational cost if the algorithm is parallelized.

To be more specific, let \Omega x = [ - Lx, Lx] be the spatial domain, and we partition it
into Nx uniform cells with \Delta x = 2Lx

Nx
and denote each grid point by xi =  - Lx + i\Delta x,

1 \leq i \leq Nx. Likewise, we denote \Omega v = [ - Lv, Lv]
d as the velocity domain and evenly

partition it into Nv pieces in each dimension with \Delta v = 2Lv

Nv
. Then the velocity grid

point is denoted as vjk =  - Lv + (jk  - 1
2 )\Delta v with 1 \leq jk \leq Nv , 1 \leq k \leq d. Let \tau 

be the time step; then tn = n\tau , n \geq 0. Hence fn
i,\bfitj represents the approximation of

f(tn, xi,\bfitv \bfitj ), where \bfitj = \{ j1, . . . , jd\} . We always use the zero flux boundary condition
in v, i.e., ((v +\nabla x\phi )f +\nabla vf) \cdot \nu = 0, where \nu is the outer normal direction for \Omega v.

2.1. Implicit-explicit scheme. As is done in [24], we group the stiff terms
in (1.3) into one spatially dependent Fokker--Planck type operator, treat it implicitly,
and solve the rest of the nonstiff parts explicitly. Therefore, we have the following
semi-discrete scheme:

fn+1  - fn

\tau 
+ v \cdot \nabla xf

n =
1

\varepsilon 
\nabla v \cdot ((v +\nabla x\phi )f +\nabla vf)

n+1
,

 - \bigtriangleup x\phi 
n+1 = \rho n+1  - h.

To implement, we note that the above semidiscretization scheme can be split into
three steps without introducing the splitting error.

Step 1: Explicit transport step. We first get an intermediate stage f\ast from
the transport step f\ast = fn  - \tau v \cdot \nabla xf

n, where the spatial discretization is conducted
via the MUSCL scheme:

f\ast 
i,\bfitj = fn

i,\bfitj +
\tau 

\Delta x
v\bfitj (fi+ 1

2 ,\bfitj 
 - fi - 1

2 ,\bfitj 
) .

Here the flux is taken as

fi+ 1
2 ,\bfitj 

=max(v\bfitj , 0)

\biggl( 
fi,\bfitj +

1

2
\phi 
\Bigl( 
\theta i+ 1

2 ,\bfitj 

\Bigr) 
(fi+1,\bfitj  - fi,\bfitj )

\biggr) 
+min(v\bfitj , 0)

\biggl( 
fi+1,\bfitj +

1

2
\phi 
\Bigl( 
\theta i+ 1

2 ,\bfitj 

\Bigr) 
(fi+1,\bfitj  - fi,\bfitj )

\biggr) 
,

where \theta i+ 1
2 ,\bfitj 

=
fi,\bfitj  - fi - 1,\bfitj 

fi+1,\bfitj  - fi,\bfitj 
is the smoothness indicator function, and we choose the

minmod slope limiter \phi (\theta ) = max\{ 0,min\{ 1, \theta \} \} .
Step 2: Poisson step. After obtaining f\ast , we get \rho \ast by integrating f\ast over \bfitv ,

for which we can use a simple midpoint rule: \rho \ast i =
\sum 

\bfitj f
\ast 
i,\bfitj (\Delta v)d. We then solve for

\phi \ast via the Fourier based spectral method, and then get \nabla x\phi 
\ast .

Step 3: Implicit collision step. First note that the mass is conserved in the
collision step, thus \rho n+1 = \rho \ast and \phi n+1 = \phi \ast . Then for each xi, we have

fn+1
i  - f\ast 

i

\tau 
=

1

\varepsilon 
\nabla v \cdot ((v +\nabla x\phi 

\ast 
i )f

n+1
i +\nabla vf

n+1
i ) ,(2.1)

which will be solved by the variational method described blow.
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2.2. Variational formulation. This section is devoted to the development of
a variational numerical scheme for the implicit collision step. First, we would like
to mention that there exist quite a few methods for discretizing the Fokker--Planck
operator, such as the Chang--Cooper scheme [7], Scharfetter--Gummel discretization
[34], and square root approximation [21]. Among them, some are known to preserve
positivity and dissipate entropy, two properties for the continuum equation that are
desirable to be preserved at the discrete level. Here we intend to provide a different
approach to address the stiffness issue. In particular, when \varepsilon is small, a generic time
implicit scheme would lead to a linear system that is ill-conditioned. Our variational
scheme induces a natural way of building preconditioners arising from an optimization
method and efficiently resolves the ill-conditioning issue. As a result, our method
not only enjoys positivity preserving and entropy dissipating, but also is asymptotic
preserving and uniformly efficient. Other smart preconditioners can also be devised
for classical methods to avoid stiffness.

Let

M\ast 
i =

\rho \ast i
(
\surd 
2\pi )d

e - 
| v+(\nabla x\phi )\ast i | 2

2(2.2)

be the local Maxwellian; then (2.1) can be rewritten as

fn+1
i  - f\ast 

i

\tau 
=

1

\varepsilon 
\nabla v \cdot 
\biggl( 
fn+1
i \nabla v ln

\biggl( 
fn+1
i

M\ast 
i

\biggr) \biggr) 
=

1

\varepsilon 
\nabla v \cdot 
\biggl( 
fn+1
i \nabla v

\delta E(fn+1
i | M\ast )

\delta fn+1
i

\biggr) 
,

(2.3)

where E(f | M) =
\int 
Rd f ln( f

M )dv is the relative entropy of f with respect to M , and
\delta E
\delta f denotes the first variation of E in f . In view of (2.3), it can be considered as the
gradient flow of the relative entropy in the Wasserstein metric, i.e.,

fn+1
i  - f\ast 

i

\tau 
=  - 1

\varepsilon 
\nabla d\scrW E(fn+1

i | M\ast 
i ) ,

which can be solved via the celebrated JKO scheme [25]. That is, fn+1
i is obtained

to minimize the functional

fn+1
i \in argmin

fi\in \scrP ac(\Omega v)

\biggl\{ 
1

2
d\scrW (fi, f

\ast 
i )

2 +
\tau 

\varepsilon 
E(fi| M\ast 

i )

\biggr\} 
,(2.4)

where d\scrW (fi, f
\ast 
i ) is the Wasserstein distance between fi and f\ast 

i , and \scrP ac(\Omega v) is the
set of probability measures on \Omega v that are absolutely continuous with respect to
Lebesgue measure. The formulation (2.4) has attracted a lot of attention on the
analytical level as it provides a natural choice for fn+1 that decreases the relative
entropy, i.e., E(fn+1

i | M\ast 
i ) \leq E(fn

i | M\ast 
i ). However, when it comes to numerical imple-

mentation, the computation of the Wasserstein distance constitutes a major obstacle.
Only recent advances in this regard have helped to make this formulation numerically
accessible; see [30] and reference therein. In this paper, we will adopt the dynamic
formulation by Benamou and Brenier [2] and its fully discrete version [9]. In partic-
ular, we can reframe the Wasserstein distance into a convex optimization subject to
linear constraints:

d\scrW (f0, f1)
2 = min

(f,m)\in \scrC 1

\int 1

0

\int 
\Omega v

\Phi (f(t, v), \| m(t, v)\| )dvdt,(2.5)
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where

\Phi (f, \| m\| ) =

\left\{   
\| m\| 2

f if f > 0,

0 if (f,m) = (0, 0),
+\infty otherwise,

and the constraint set \scrC 1 consists of

\partial tf +\nabla v \cdot m = 0 on \Omega v \times [0, 1], m \cdot \nu = 0 on \partial \Omega v \times [0, 1],

f(\cdot , 0) = f0, f(\cdot , 1) = f1 on \Omega v ,

where \nu is the outer normal direction of \Omega v.
Plugging (2.5) into (2.4), we arrive at the following constrained optimization

problem: given M\ast (v) and f\ast (v), one obtains fn+1(v) = f(1, v) with f(t, v) solving

min
(f,m)\in \scrC 

\biggl\{ 
\varepsilon 

\int 1

0

\int 
\Omega v

\Phi (f, \| m\| )dvdt+ 2\tau E(f(1, v)| M(v))

\biggr\} 
,(2.6)

where the constraint set \scrC is

\partial tf +\nabla v \cdot m = 0 on \Omega v \times [0, 1], m \cdot \nu = 0 on \partial \Omega v \times [0, 1], f(0, v) = f\ast (v) on \Omega v.
(2.7)

Here the subscript i is omitted as this step is independent of x. Note the difference
between constraints \scrC and \scrC 1 is that in \scrC 1, we do not know f(1, v) a priori, and it
is in fact coming from solving the optimization (2.6), which is similar to an optimal
control problem.

We further write down the fully discrete form for (2.6) and (2.7). Denote f =
[f\bfitj ]

\intercal \in RdNv and m = [m1; . . . ;md] \in RdNv\times d, where ml = [ml,\bfitj ]
\intercal \in RdNv . Then

\| m\| 2\bfitj =
\sum d

l=1 m
2
l,\bfitj . The fully discrete JKO scheme now reads

fn+1
\bfitj \in argmin

f,m

\left\{   \sum 
\bfitj 

\Biggl( 
\varepsilon \Phi (f\bfitj , \| m\| \bfitj ) + 2\tau f\bfitj ln

\Biggl( 
f\bfitj 
M\ast 

\bfitj 

\Biggr) \Biggr) 
\Delta vd

\right\}   (2.8)

s.t. f\bfitj  - f\ast 
\bfitj +

d\sum 
l=1

\sansD \bfitv ,lml,\bfitj = 0, ml,\bfitj \cdot \nu | \partial \Omega = 0 ,(2.9)

where \sansD \bfitv ,l is a discrete representation of the divergence that will be detailed later.
Note that the PDE constraint in (2.9) is discretized in one time step, and it has been
pointed out in [27, Theorem 3] that it will significantly reduce the dimension of the
problem while maintaining the first order accuracy in \tau . Indeed, if we discretize the
auxiliary inner time derivative in (2.7) with Nt nodes, then the unknown f would be
of size dNv \times Nt, and m is of size dNv \times Nt \times d. Here we choose Nt = 1 and thus
keep the size of f and m to a minimum.

To facilitate the explanation later, we let u = [f ;m] and rewrite (2.8)--(2.9) into

min
u

F (u) :=
\sum 
\bfitj 

\Biggl( 
\varepsilon \Phi (f\bfitj , \| m\| \bfitj ) + 2\tau f\bfitj ln

\Biggl( 
f\bfitj 
M\ast 

\bfitj 

\Biggr) \Biggr) 
\Delta vd s.t. \sansA u = b,(2.10)

where \sansA :=
\bigl( 
\sansI dNv\times dNv

\sansA m

\bigr) 
and b := f\ast . Note that all the operations here are

elementwise. Here \sansA m gives a discretized divergence \sansD \bfitv ,lml,\bfitj , which satisfies the zero
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flux boundary condition. For instance, we use the center difference here. Then in
one dimension, the boundary grid points are v 1

2
=  - Lv and vNv+

1
2
= Lv, and the

boundary condition becomes 0 = m 1
2
= m0+m1

2 , which implies m0 =  - m1. Then

Dvm1 = m2 - m0

2\Delta v = m2+m1

2\Delta v . Extension to higher dimensions is straightforward. As an
example, we give \sansA for d = 3. We denote

\sansA =
\bigl( 
\sansI \sansA 1 \sansA 2 \sansA 3,

\bigr) 
,

where \sansA 1, \sansA 2, \sansA 3 represent the discritizations of Dv1
, Dv2

, Dv3
, respectively. Define

\sansD v =
1

2\Delta v

\left(       
1 1
 - 1 0 1

. . .
. . .

. . .

 - 1 0 1
 - 1  - 1

\right)       \in RNv\times Nv .

Denote the Kronecker tensor product as \otimes ; then we have

\sansA 1 = \sansI N2
v
\otimes \sansD v, \sansA 2 = \sansI Nv

\otimes (\sansD v \otimes \sansI Nv
) , \sansA 3 = \sansD v \otimes \sansI N2

v
.

2.3. Proximal quasi-Newton method. In this subsection, we introduce the
proximal quasi-Newton type method. First of all, we rewrite (2.10) as an uncon-
strained problem by using the following indicator function:

\chi (u) =

\biggl\{ 
0 if \sansA u = b,

+\infty otherwise.

Then (2.10) becomes

min
u

F (u) + \chi (u) ,(2.11)

where F (u) is defined in (2.10). As written, F (u) is a convex but nonsmooth function
of u, and therefore a proximal type of algorithm is needed, as stated in [9]. However,
in our specific case considered here, a simplification can be made. In fact, as shown
in [25, Theorem 5.1], the minimizer of (2.10) converges to the unique positive solution
of the equation

\partial tf =
1

\varepsilon 
\nabla v \cdot ((v +\nabla x\phi )f +\nabla vf)(2.12)

when \tau \rightarrow 0. Moreover, thanks to Lemma 8.6 in [33] and mass conservation, the strict
positivity of fn

\bfitj can be established as long as initially f0 is nonnegative f0
\bfitj \geq 0 and

has strictly positive initial mass, i.e.,
\sum 

\bfitj f
0
\bfitj > 0. Therefore, we can simplify F (u) as

F (u) =
\sum 
\bfitj 

\biggl( 
\varepsilon 
\| m\bfitj \| 2

f\bfitj 
+ 2\tau f\bfitj ln

\biggl( 
f\bfitj 
M\bfitj 

\biggr) \biggr) 
\Delta vd ,

which is now a smooth function in u, and hence gives access to the second order
information that could significantly accelerate the convergence.

Below we first state our algorithm, and then we explain the reasons for this choice.
Here the step size \gamma > 0 is chosen such that fk \succ 0 for every iteration.
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Algorithm 2.1 Proximal quasi-Newton algorithm for (2.4).

Require: u(0) = [f\ast ;m\ast ] with m\ast \equiv 0, the maximum iteration number (Nmax), step
size \gamma > 0
while k \leq Nmax do
repeat

1. Compute (\sansH k)i,j =

\Biggl\{ 
(\nabla 2F (u(k))i,i if i = j

0 otherwise.

2. Update u(k+1) = prox\sansH 
k

\chi (u(k)  - \gamma (\sansH k) - 1\nabla F (u(k))).
until stopping criteria achieved
u(\infty ) = u(k+1).

end while
return un+1 = u(\infty ) = [f (\infty );m(\infty )].

There are two reasons for choosing this algorithm. One reason is due to the
appearance of \varepsilon and small values of fn

i,\bfitj . When \varepsilon is small or the magnitude of fn
i,\bfitj 

varies largely, the convergence of any optimization algorithm that only uses first order
information will converge very slowly. This is because the Hessian of F (u) becomes
ill-conditioned in these scenarios. Therefore, using the second order information as in
our algorithm would significantly improve the convergence rate (see Theorem 3.2 and
Remarks 3.3 and 3.4). More importantly, although the stiffness introduced by small \varepsilon 
has been handled by the implicit JKO scheme and therefore enjoys the AP property---
it allows for underresolved mesh sizes and captures the correct asymptotic limit---it
still comes with another difficulty which renders a direct implicit solver converging
nonuniformly. The proximal quasi-Newton method we proposed here overcomes this
difficulty. Another reason is that it is well-known that computing the Hessian is ex-
pensive and often results in a dense matrix, which poses additional computational cost
especially when the dimension is high. Instead, we only use the diagonal information
of the Hessian as a surrogate, which is shown to still serve the purpose of accelerating
the convergence while maintaining the sparsity of the matrix.

Next we show how to compute the scaled proximal operator z = prox\sansH \chi (u), which
can be obtained from a closed-form formula in our specific case. First, the definition
of the scaled proximal operator is

z = prox\sansH \chi (u) \in argmin
z

\chi (z) +
1

2
\| z  - u\| 2\sansH = argmin

z:\sansA z=b

1

2
\| z  - u\| 2\sansH .

Its corresponding Lagrangian is L(z, \lambda ) = 1
2\| z - u\| 2\sansH +\lambda \intercal (b - \sansA z). Then the optimality

condition gives \partial L
\partial z = \sansH (z  - u) - \sansA \intercal \lambda = 0. Hence

z = u+ \sansH  - 1\sansA \intercal \lambda .(2.13)

By the primal feasibility, i.e., \sansA z = b, and (2.13), we get

\lambda = (\sansA \sansH  - 1\sansA \intercal ) - 1(b - \sansA u),

which gives the closed-form formula for prox\sansH \chi :

z = prox\sansH \chi (u) = u+ \sansH  - 1\sansA \intercal (\sansA \sansH  - 1\sansA \intercal ) - 1(b - \sansA u).(2.14)

In practice, computing the inverse of a matrix can be expensive. In our formula (2.14),
there are two inverse matrices \sansH  - 1 and (\sansA \sansH  - 1\sansA \intercal ) - 1. Computing \sansH  - 1 is trivial as
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it is diagonal, whereas computing (\sansA \sansH  - 1\sansA \intercal ) - 1 might be time-consuming. However,
due to the special structure of \sansA and \sansH , there exist fast methods. Indeed, to clearly
illustrate the idea, consider the one-dimensional case and the diagonal matrix \sansH of
the form

\sansH =

\biggl( 
\sansH 1 0
0 \sansH 2

\biggr) 
.

By definition of \sansA = [\sansI \sansD ], we get \sansA \sansH  - 1\sansA \intercal = \sansH  - 1
1 +\sansD \sansH  - 1

2 \sansD \intercal . Note that \sansH 2 is diagonal
and hence \sansD \sansH 2\sansD 

\intercal is just a weighted Laplacian, which can be efficiently inverted by
fast algorithms such as the multigrid method; see, for instance, [8].

Alternately, instead of fixing the step size \gamma in Algorithm 2.1, we can also use a
line search technique, and the algorithm is summarized in Algorithm 2.2.

Algorithm 2.2 Proximal quasi-Newton algorithm with line search for (2.4).

Require: u(0) = [f\ast ;m\ast ] with m\ast \equiv 0, 0 < \theta < 1
2 , the maximum iteration number

(Nmax)
Let k = 0
while k \leq Nmax do
repeat

1. Compute (\sansH k)i,j =

\Biggl\{ 
(\nabla 2F (u(k)))i,i if i = j

0 otherwise.

2. Line search: let tl = 1, vk = prox\sansH 
k

\chi (u(k)  - (\sansH k) - 1\nabla F (u(k))) - u(k).

while F (u(k) + tlvk) > F (u(k)) + tl\theta (\nabla F (u(k)))\intercal vk and minj f
(k)
j < 0 do

tl = 1
2 t

l.
end while
u(k+1) = u(k) + tlvk.

until stopping criteria achieved
u(\infty ) = u(k+1).

end while
return un+1 = u(\infty ) = [f (\infty );m(\infty )].

The advantages of the line search are obvious. First, the search step automatically

preserves the positivity of f
(k)
j . Second, it often needs fewer steps to converge; see the

numerical examples in section 4. In addition, Algorithm 2.2 falls into the category
of proximal Newton type methods in [26], for which it is proven that if \{ \sansH k\} are
uniformly positive definite, i.e., s\sansI \preceq \sansH k uniformly for s > 0, then for a closed, convex
objective function whose infimum can be attained, \{ u(k)\} generated by Algorithm
2.2 is guaranteed to converge to the optimal point. In our numerical examples, we
observe that tl = 1 after sufficiently many iterations, and therefore we see superlinear
convergence at the neighborhood of the optimal point (see Figure 1).

3. Properties. In this section, we study some properties of the numerical scheme.
We first focus on the convergence behavior of the Newton type method, and then
examine the properties of the entire solver, including positivity and asymptotic pre-
serving property.

3.1. Convergence of the proximal Newton type method. We mainly focus
on the convergence behavior of Algorithm 2.1 in this subsection. We first examine
the convexity of F in the following lemma.
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Lemma 3.1. F (u) is strictly convex, i.e., \nabla 2F (u) \succ 0 if f \succ 0 for any d = 1, 2, 3.

Proof. We only prove the d = 3 case as the other two cases can be easily reduced
from the d = 3 case. Recall u = [f ;m]; then the Hessian \nabla 2F \in R4Nv\times 4Nv reads

\nabla 2F :=

\left(    
\sansM \sansC 1 \sansC 2 \sansC 3

\sansC 1 \sansB 0 0
\sansC 2 0 \sansB 0
\sansC 3 0 0 \sansB 

\right)    ,

where \sansM ,\sansB ,\sansC l \in RNv\times Nv are all diagonal matrices defined as

(\sansM )p,q =

\left\{     
\Biggl( 
2\varepsilon 

\sum 3
l=1 m

2
l

f3
+

2\tau 

f

\Biggr) 
q

\Delta v3 if p = q,

0 otherwise,

(\sansB )p,q =

\left\{   
\biggl( 
2\varepsilon 

f

\biggr) 
q

\Delta v3 if p = q,

0 otherwise,

(\sansC l)p,q =

\left\{   
\biggl( 
 - 2\varepsilon ml

f2

\biggr) 
q

\Delta v3 if p = q,

0 otherwise.

To obtain the eigenvalues \zeta of \nabla 2F , note that each entry in \nabla 2F is a diagonal matrix,
and thus they are pairwise multiplication commutative; we then have

| \nabla 2F  - \zeta \sansI | =  - | \sansC 3| 

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\sansC 1 \sansC 2 \sansC 3

\sansB  - \zeta \sansI 0 0
0 \sansB  - \zeta \sansI 0

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| + | \sansB  - \zeta \sansI | 

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\sansM  - \zeta \sansI \sansC 1 \sansC 2

\sansC 1 \sansB  - \zeta \sansI 0
\sansC 2 0 \sansB  - \zeta \sansI 

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
=  - | \sansC 3| | (\sansB  - \zeta \sansI )2\sansC 3| + | \sansB  - \zeta \sansI | | (\sansM  - \zeta \sansI )(\sansB  - \zeta \sansI )2  - (\sansB  - \zeta \sansI )\sansC 2

2  - (\sansB  - \zeta \sansI )\sansC 2
1| 

= | \sansB  - \zeta \sansI | 2| (\sansM  - \zeta \sansI )(\sansB  - \zeta \sansI ) - \sansC 2
1  - \sansC 2

2  - \sansC 2
3| .

After calculation, eigenvalues of \nabla 2F are

\zeta 1,q =

\biggl( 
2\varepsilon 

f

\biggr) 
q

\Delta v3 ;

(3.1)

\zeta 2,q =

\left(  \varepsilon 
\sum 3

l=1 m
2
l

f3
+

\tau + \varepsilon 

f
+

\sqrt{} 
(
\varepsilon 
\sum 3

l=1 m
2
l

f3
)2 +

2\varepsilon 
\sum 3

l=1 m
2
l (\tau + \varepsilon )

f4
+ (

\tau  - \varepsilon 

f
)2

\right)  
q

\Delta v3 ;

(3.2)

\zeta 3,q =

\left(  \varepsilon 
\sum 3

l=1 m
2
l

f3
+

\tau + \varepsilon 

f
 - 

\sqrt{} 
(
\varepsilon 
\sum 3

l=1 m
2
l

f3
)2 +

2\varepsilon 
\sum 3

l=1 m
2
l (\tau + \varepsilon )

f4
+ (

\tau  - \varepsilon 

f
)2

\right)  
q

\Delta v3 ,

(3.3)

which can be easily shown to be positive given f > 0.

This lemma ensures that \nabla 2F (u(k)) are positive definite provided f (k) > 0. More-
over, we can easily see that \sansH k, which only ensures the diagonal elements of \nabla 2F (u(k))
are positive definite as well, and therefore guarantees the executability of our algo-
rithm.

Similar to the result in [27], we have the following local convergence estimate,
which indicates the role of \sansH k.
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Theorem 3.2. Denote u\ast the unique minimizer of (2.11). Let Gk =
\int 1
0
\nabla 2F (u\ast +

s(u(k) - u\ast ))ds and suppose that there exists 0 < \alpha < \beta such that \alpha \sansI \preceq (\sansH k) - 1Gk \preceq \beta \sansI ;
then for Algorithm 2.1 we have \| u(k+1)  - u\ast \| \sansH k \leq C\| u(k)  - u\ast \| \sansH k , where C =
max(| 1  - \gamma \alpha | , | \gamma \beta  - 1| ). In particular, if we choose \gamma = 2

\alpha +\beta , we have the optimal

convergence rate with C = \beta  - \alpha 
\beta +\alpha .

Proof. First notice that u\ast = prox\sansH \chi (u
\ast  - \gamma \sansH  - 1\nabla F (u\ast )) for \sansH = \sansH k; then we have

\| u(k+1)  - u\ast \| \sansH k

= \| prox\sansH 
k

\gamma \chi (u
(k)  - \gamma (\sansH k) - 1\nabla F (u(k))) - prox\sansH 

k

\gamma \chi (u
\ast  - \gamma (\sansH k) - 1\nabla F (u\ast ))\| \sansH k

\leq \| (u(k)  - u\ast ) - \gamma (\sansH k) - 1\nabla (F (u(k)) - F (u\ast ))\| \sansH k

= \| (\sansI  - \gamma (\sansH k) - 1Gk)(u(k)  - u\ast )\| \sansH k

= \| (\sansH k)
1
2 (\sansI  - \gamma (\sansH k) - 1Gk)(u(k)  - u\ast )\| 

= \| (\sansI  - \gamma (\sansH k) - 
1
2Gk(\sansH k) - 

1
2 )(\sansH k)

1
2 (u(k)  - u\ast )\| 

\leq \| \sansI  - \gamma (\sansH k) - 
1
2Gk(\sansH k) - 

1
2 \| \| u(k)  - u\ast \| \sansH k .

Here the first inequality uses the fact that prox\sansH 
k

\gamma \chi is a nonexpansive operator un-

der the \sansH k norm, i.e., \| prox\sansH k

\gamma \chi (u)  - prox\sansH 
k

\gamma \chi (v)\| \sansH k \leq \| u  - v\| \sansH k (see, for instance,

[26] for a proof), and the second equation uses the fact that F (u(k))  - F (u\ast ) =

Gk(u(k)  - u\ast ). Now since (\sansH k) - 
1
2Gk(\sansH k) - 

1
2 is similar to (\sansH k) - 1Gk, we have C =

\| \sansI  - \gamma (\sansH k) - 
1
2Gk(\sansH k) - 

1
2 \| = max(| 1 - \gamma \alpha | , | \gamma \beta  - 1| ).

Remark 3.3. Adapting Theorem 3.2 to our case, we know that the convergence
rate highly depends on the structure of (\sansH k) - 1Gk. Note that when \sansH k = \sansI , our method
reduces to the projected gradient method. According to (3.1), (3.2), and (3.3), the
eigenvalue \zeta 1,q \rightarrow 0 when \varepsilon \rightarrow 0, which implies that \alpha in the above theorem goes to
zero, hence C \rightarrow 1. This explains why the gradient type methods converge slowly
when \varepsilon is close to 0. On the contrary, with the preconditioner (\sansH k) - 1, the diagonal
entries of (\sansH k) - 1Gk all approximately equal to 1 in the neighborhood of optimal point
u\ast ; thus we can approximate the eigenvalues \sigma of (\sansH k) - 1Gk by solving (here we adopt
the notation in Lemma 1):\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 

\sansI  - \sigma \sansI \sansM  - 1\sansC 1 \sansM  - 1\sansC 2 \sansM  - 1\sansC 3

\sansB  - 1\sansC 1 \sansI  - \sigma \sansI 0 0
\sansB  - 1\sansC 2 0 \sansI  - \sigma \sansI 0
\sansB  - 1\sansC 3 0 0 \sansI  - \sigma \sansI 

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| = 0.

This implies

(1 - \sigma )2\sansI \cdot | (1 - \sigma )2\sansI  - \sansM  - 1\sansB  - 1(\sansC 2
1 + \sansC 2

2 + \sansC 2
3)| = 0.

Thus

\sigma = 1 or 1\pm 

\Biggl( \sqrt{} 
2\varepsilon 
\sum 3

l=1 m
2
l

2\varepsilon 
\sum 3

l=1 m
2
l + 2\tau f2

\Biggr) 
i

\Delta v3 ,(3.4)

which indicates that \sigma \rightarrow 1 when \varepsilon \rightarrow 0. Therefore the condition number is close to
1 and hence gives much faster linear convergence (C \ll 1).
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Remark 3.4. Another case that may render the condition number of Gk big is
when the magnitude of f varies largely. We will see in the following that the precon-
ditioner \sansH k also helps in this case. Let j1, j2 be two indexes such that fj1 = O(\eta )
where \eta \ll 1 and fj2 = O(1). In the gradient type method when \sansH k = \sansI , according
to (3.1), we have max \zeta \geq 2\varepsilon 

fmin
and min \zeta \leq 2\varepsilon 

fmax
, which implies that the conditional

number \kappa of Gk has \kappa \geq fmax

fmin
= O( 1\eta ). Immediately according to Theorem 3.2, the

convergence rate C \rightarrow 1 when \kappa \rightarrow \infty .
On the other hand, from the expression of the eigenvalues (3.4) for (\sansH k) - 1Gk,

one sees \sqrt{} 
2\varepsilon 
\sum 3

l=1 m
2
l

2\varepsilon 
\sum 3

l=1 m
2
l + 2\tau f2

=

\sqrt{}     2\varepsilon 
\sum 3

l=1 m2
l

f2

2\varepsilon 
\sum 3

l=1 m2
l

f2 + 2\tau 
=

\sqrt{}      \varepsilon 
\Bigl( 

\| m\| 
f

\Bigr) 2
\varepsilon 
\Bigl( 

\| m\| 
f

\Bigr) 2
+ \tau 

.

Therefore, if the speed \| m\| 
f to the continuity equation (2.7) is bounded above by C1

and below by C2, then the above quantity is bounded between \varepsilon C2

\varepsilon C2+\tau and \varepsilon C1

\varepsilon C1+\tau ,
which readily gives a uniform bound on the condition number. Here we do not have a
rigorous proof to show the existence of C1 and C2, but from the numerical examples,

we do observe a uniform bound on \| m\| 
f .

Similarly, we have the local convergence estimate for Algorithm 2.2 with line
search as follows.

Theorem 3.5. Suppose that there exists r, r\prime , R\prime > 0, such that r\prime I \prec Hk \prec R\prime I
and rI \prec \nabla 2F (u(k)) for all k \geq 0. Assume also that \nabla 2F is Lipschitz continuous with
constant L2. Let \{ u(k)\} be the sequence generated by Algorithm 2.2 after a sufficiently
large number of iterations; then

\| u(k+1)  - u\ast \| \sansH k \leq C\| u(k)  - u\ast \| 2\sansH k + (1 - (1 - q)tl)\| u(k)  - u\ast \| \sansH k ,

where C = L2

\surd 
R\prime 

2r
\surd 
r\prime 
(2 - tl + qtl) and q = \| I  - (\sansH k) - 1/2\nabla 2F (u(k))(\sansH k) - 1/2| | .

See the proof in Appendix A.

Remark 3.6. As with Algorithm 2.1, the convergence behavior of Algorithm 2.2
depends on the structure of (\sansH k) - 1\nabla 2F (u(k)) (note that here we have \nabla 2F (u(k))
instead of Gk in Theorem 3.2). From Remark 3.3, we see that eigenvalues \sigma of
(\sansH k) - 1\nabla 2F (u(k)) satisfy \sigma \in (0, 2) when \Delta v \leq 1, thus q \in (0, 1), which ensures the
local linear convergence. In the case of \varepsilon \rightarrow 0, from (3.4) we have q \rightarrow 0, and therefore

\| u(k+1)  - u\ast \| \sansH k \leq C\| u(k)  - u\ast \| 2Hk + (1 - tl)\| u(k)  - u\ast \| Hk .

Moreover, when \varepsilon \ll 1, \| \sansH k  - \nabla 2F (uk)\| \rightarrow 0 as k \rightarrow \infty , thus \{ \sansH k\} k satisfies the
Dennis--Mor\'e criterion, i.e., \| (\sansH k  - \nabla 2F (u\ast ))(uk+1  - uk)\| /\| uk+1  - uk\| \rightarrow 0, and Al-
gorithm 2.2 accepts unit step length after a sufficiently large number of iterations, i.e.,
tl = 1 (See Lemma 3.5 in [26]). Therefore, a superlinear convergence is obtained after
a sufficiently large number of iterations, which agrees with our numerical experiments
(see Figure 3).

We state the following global sublinear convergence of Algorithm 2.2.

Theorem 3.7. Let \{ u(k)\} +\infty 
k=1 be a sequence generated by Algorithm 2.2; then

min
k=0,...,K - 1

\{ \| u(k+1)  - u(k)\| 2\sansH k\} \leq \theta 

K
F (u(0)).
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Proof. According to the search direction property (Proposition 2.4 in [26]), we
have

(\nabla F (u(k)))\intercal vk + \| vk\| 2\sansH k \leq 0.

Thus by the sufficient descent requirement in the line search and the above inequality,
we have

F (u(k+1)) = F (u(k) + tlvk) \leq F (u(k)) + tl\theta (\nabla F (u(k)))\intercal vk

\leq F (u(k)) - tl\theta \| vk\| 2\sansH k

= F (u(k)) - \theta 

tl
\| u(k+1)  - u(k)\| 2\sansH k

\leq F (u(k)) - \theta \| u(k+1)  - u(k)\| 2\sansH k .

Summing up all the inequalities for k = 0, . . . ,K  - 1, we get

F (u(K)) \leq F (u(0)) - \theta 
K - 1\sum 
k=0

\| u(k+1)  - u(k)\| 2\sansH k ,

which readily implies the result.

3.2. Positivity. Note first that the MUSCL scheme we used in the transport
step preserves the positivity. Also, the proximal quasi-Newton method for the collision
step is positivity preserving as long as the iteration step size \gamma is properly chosen (in
practice, this is done either by line search as explained in Algorithm 2.2 or by trial and
error as used in Algorithm 2.1). Therefore, the full scheme is positivity preserving.
It then remains to show that the step \gamma can indeed be chosen properly, that is, its
magnitude does not go to zero when \varepsilon vanishes. For simplicity, we consider d = 1 in
the rest of this subsection.

To start, we write the update rule explicitly, using Algorithm 2.1 or 2.2 with
(2.14):

u(k+1) = u(k)  - \gamma \sansH  - 1\nabla F (u(k)) + \sansH  - 1\sansA \intercal (\sansA \sansH  - 1\sansA \intercal ) - 1[b - \sansA (u(k)  - \gamma \sansH  - 1\nabla F (u(k)))]

= u(k)  - \gamma [\sansI  - \sansH  - 1\sansA \intercal (\sansA \sansH  - 1\sansA \intercal ) - 1\sansA ]\sansH  - 1\nabla F (u(k)).

Here we omit the superscript (k) in \sansH for notational simplicity. Recall that \sansA = [\sansI \sansD ],
\sansH  - 1\nabla F = [e(f,m) m]\intercal , where

e(f,m) =
 - \varepsilon m2

f2 + 2\tau (log f
M ) + 1

2m2

f3 + 2\tau 
f

and \sansH :=

\biggl( 
\sansH 1 0
0 \sansH 2

\biggr) 
with \sansH 1,\sansH 2 \in RNv\times Nv and

(\sansH 1)i,j =

\Biggl\{ 
(2\varepsilon 

m2
i

f3
i
+ 2\tau 

fi
)\Delta v if i = j,

0 otherwise,

(\sansH 2)i,j =

\biggl\{ 
( 2\varepsilon fi )\Delta v if i = j,

0 otherwise.

Then we have

\sansH  - 1\sansA \intercal (\sansA \sansH  - 1\sansA \intercal ) - 1\sansA =

\biggl( 
\sansP \sansP \sansD 
\cdot \cdot 

\biggr) 
,

where \sansP = \sansH  - 1
1 (\sansH  - 1

1 + \sansD \sansH  - 1
2 \sansD \intercal ) - 1 = (\sansI + \sansD \sansH  - 1

2 \sansD \intercal \sansH 1)
 - 1. Thus

f (k+1) = f (k)  - \gamma [e(f (k),m(k)) - (\sansP e(f (k),m(k)) + \sansP \sansD m(k))].
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Since \sansD m(k) = f (0)  - f (k) = f\ast  - f (k) from the constraint, one sees

f (k+1) = f (k)  - \gamma [e(f (k),m(k)) - (\sansP e(f (k),m(k)) + \sansP (f\ast  - f (k)))]

= f (k)  - \gamma [(\sansI  - \sansP )e(f (k),m(k)) + \sansP f (k)] + \gamma \sansP f\ast 

= (1 - \gamma \sansP )f (k) + \gamma \sansP f\ast  - \gamma (\sansI  - \sansP )e(f (k),m(k)) .(3.5)

To proceed, we study the \varepsilon dependence of matrix \sansP when \varepsilon vanishes in the following
proposition. Note that when \varepsilon \ll 0, (\sansH 1)i,i \approx 2\tau 

fi
\Delta v and (\sansH  - 1

2 )i,i \approx fi
2\varepsilon \Delta v.

Proposition 3.8. For \sansP = (\sansI + \sansD \sansH  - 1
2 \sansD \intercal \sansH 1)

 - 1, there exists an invertible matrix
\sansU and a diagonal matrix \Lambda , both of which are independent of \varepsilon , such that \sansP = U( 1\varepsilon \Lambda +
\sansI ) - 1U - 1.

Proof. First, we note that \sansD has exactly one zero eigenvalue, where \sansD is

\sansD =

\left(       
1 1
 - 1 0 1

. . .
. . .

. . .

 - 1 0 1
 - 1  - 1

\right)       \in RNv\times Nv .

Next we define the diagonal matrix (\^\sansH 2)i,i :=
2

fi\Delta v , then \sansH  - 1
2 = 1

\varepsilon 
\^\sansH  - 1
2 and \sansD \sansH  - 1

2 \sansD \intercal \sansH 1

= 1
\varepsilon \sansD 

\^\sansH  - 1
2 \sansD \intercal \sansH 1. Consequently, along with the fact that both \sansH 1 and \^\sansH 2 are invertible,

Rank(\sansD \^\sansH  - 1
2 \sansD \intercal \sansH 1) = Rank((\sansD \^\sansH 

 - 1/2
2 )(\sansD \^\sansH 

 - 1/2
2 )\intercal \sansH 1) = Nv  - 1. Also note that since

\sansD \^\sansH  - 1
2 \sansD \intercal is symmetric and \sansH 1 is positive definite, we have

\sansH 
1
2
1 \sansD 

\^\sansH  - 1
2 \sansD \intercal \sansH 1\sansH 

 - 1
2

1 = \sansH 
1
2
1 \sansD 

\^\sansH  - 1
2 \sansD \intercal \sansH 

1
2
1 ,

and therefore \sansD \^\sansH  - 1
2 \sansD \intercal \sansH 1 is similar to a symmetric matrix and thus diagonalizable.

Moreover, since both \sansD \^\sansH  - 1
2 \sansD \intercal and \sansH 1 are positive semidefinite, we conclude that

\sansD \^\sansH  - 1
2 \sansD \intercal \sansH 1 has exactly one zero eigenvalue and all the rest are positive. So there

exists invertible matrix U independent of \varepsilon , s.t.

\sansD \^\sansH  - 1
2 \sansD \intercal \sansH 1 = U\Lambda U - 1,

where \Lambda is a diagonal matrix with nonnegative entries and likewise

\sansD \sansH  - 1
2 \sansD \intercal \sansH 1 =

1

\varepsilon 
U\Lambda U - 1.

As a result,

K = \sansI + \sansD \sansH  - 1
2 \sansD \intercal \sansH 1 = U

\biggl( 
1

\varepsilon 
\Lambda + \sansI 

\biggr) 
U - 1

is invertible. Thus

P = K - 1 = U

\biggl( 
1

\varepsilon 
\Lambda + \sansI 

\biggr)  - 1

U - 1.

From the above proposition, we see that when \varepsilon \rightarrow 0, the matrix \sansP \rightarrow 0, and (3.5)
becomes

f (k+1) = f (k)  - \gamma e(f (k),m(k)).

Therefore the selection of step size \gamma that guarantees positivity doesn't vanish with
\varepsilon ; instead its magnitude only depends on the initial data f (0).
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3.3. Asymptotic property. First we look at the implicit collision step. Con-
sider (2.8)--(2.9) for any fixed xi, and let \varepsilon \rightarrow 0; we have the following constrained
optimization:

fn+1
\bfitj \in argmin

f

\left\{   \sum 
\bfitj 

f\bfitj ln

\Biggl( 
f\bfitj 
M\ast 

\bfitj 

\Biggr) 
\Delta vd

\right\}   s.t.
\sum 
\bfitj 

f\bfitj =
\sum 
\bfitj 

M\ast 
\bfitj ,(3.6)

where the constraint is obtained by summing over \bfitj in (2.9). To make this limit of the
variational problems (2.8)--(2.9) toward (3.6) as \epsilon \rightarrow 0 fully rigorous, one can make a
direct use of the theory of \Gamma -convergence; see [6]. Let us denote by F\epsilon (u) the functional
defining the variational problems (2.8)--(2.9) and F0(u) the functional for (3.6). In
fact, it is very easy to check that in this finite dimensional setting, the sequence of
functionals F\epsilon (u) is monotone with respect to \epsilon and thus the \Gamma -convergence of the
\epsilon -regularized problems (2.8)--(2.9) to (3.6) follows from [6, Chapter 2]. This shows
that the infimum value of the functional F\epsilon (u) converges to the infimum value of the
functional F0(u) as \epsilon \rightarrow 0. Moreover, any cluster point of approximating sequences
in \epsilon will converge to a point where the infimum of F0(u) is achieved. Therefore,
this shows our claim above on the right limiting optimization problem. Since further
discussion of this point is not needed for the purposes of this work, we leave to the
reader to check that we have \epsilon -equicoercivity of the minimizing sequences in the f
variables and in the scaled

\surd 
\epsilon m variables, this together with the previous statement

of convergence of the infimum values and the constraint (2.9) lead to the convergence
of the minimizers of F\epsilon to the minimizer of F0.

Coming back to limiting collisional step (3.6), the corresponding Lagrangian reads

L(f, \lambda ) =
\sum 
\bfitj 

f\bfitj ln

\Biggl( 
f\bfitj 
M\ast 

\bfitj 

\Biggr) 
\Delta vd + \lambda 

\left(  \sum 
\bfitj 

f\bfitj  - 
\sum 
\bfitj 

M\ast 
\bfitj 

\right)  ,

which leads to the following optimality condition:

\delta L

\delta f\bfitj 
= ln

\Biggl( 
f\bfitj 
M\ast 

\bfitj 

\Biggr) 
\Delta vd + (\lambda +\Delta vd)1 = 0.

Therefore, one sees that f\bfitj differs from M\ast 
\bfitj by one constant multiplier exp( - \lambda +\Delta vd

\Delta vd )

for all \bfitj . Along with mass conservation, we then have fn+1 = M\ast . Recall the
definition of M\ast in (2.2), and since \rho \ast = \rho n+1, we have

fn+1
\bfitj \rightarrow \rho n+1

(
\surd 
2\pi )d

e - 
| v\bfitj +\nabla x\phi n+1| 2

2 for all n > 0 .

This allows us now to connect to the transport step in order to obtain the limiting
scheme and check for consistency with the limiting equation (1.4), i.e., showing the
asymptotic property of the scheme. Plugging it into the transport step and summing
over \bfitj , we have

\rho n+1  - \rho n

\tau 
+
\sum 
\bfitj 

v\bfitj \cdot \nabla xf
n
\bfitj = 0 ,(3.7)
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where

\sum 
\bfitj 

v\bfitj \cdot \nabla xf
n
\bfitj = \nabla x \cdot 

\left[  \sum 
\bfitj 

(v\bfitj +\nabla x\phi 
n  - \nabla x\phi 

n) e - 
| vj+\nabla x\phi n| 2

2
\rho n

(
\surd 
2\pi )d

\right]  
=  - \nabla x \cdot 

\left[  \sum 
\bfitj 

\nabla x\phi 
ne - 

| v\bfitj +\nabla x\phi n| 2
2

\rho n

(
\surd 
2\pi )d

\right]  
=  - \nabla x \cdot (\rho n\nabla x\phi 

n)
\sum 
\bfitj 

1

(
\surd 
2\pi )d

e - 
| v\bfitj +\nabla x\phi n| 2

2 .

It is obvious that
\sum 

\bfitj 
1

(
\surd 
2\pi )d

e - 
| v\bfitj +\nabla x\phi n| 2

2 approximates one with at least second or-

der accuracy in v. Therefore (3.7) gives a consistent semidiscretization for the limit
equation (1.4), which concludes the asymptotic property of our scheme.

4. Numerical examples. In this section, we provide several examples demon-
strating the efficiency and accuracy of our algorithms. The examples are presented in
the order of increasing dimensions in v. The stopping criteria is chosen as

| F (u(k+1)) - F (u(k))| 
| F (u(k))| 

< \delta ,
\| u(k+1)  - u(k)\| 1

\| u(k)\| 1
< \delta ,

where \delta = 10 - 7 for all examples. Throughout the examples, we use Algorithm 2.2
with \theta = 0.01 unless otherwise specified.

4.1. One dimension in velocity.

4.1.1. Convergence. We first show that the convergence of our optimization
algorithm is uniform in \varepsilon . As this step matters only in the v direction, we consider
the spatially homogeneous case:\Biggl\{ 

\partial tf = 1
\varepsilon \nabla v \cdot (vf +\nabla vf),

f(0, v) = 2e - 
(v - 1.5)2

1.2 + 1
2e

 - (v+1.5)2

1.5 .
(4.1)

The computational domain is chosen as v \in [ - 5, 5], and time step \tau = 0.05. For the
one-step JKO scheme, we show convergence behavior with varying \varepsilon by computing
the relative error

errork =
\| u(k)  - u\ast \| 1

\| u\ast \| 1
(4.2)

in Figure 1 for both fixed step size and adaptive step size with line search. Here u\ast is
obtained by using Algorithm 1 with 160 iterations. It is seen that with fixed step size,
a linear convergence is observed, while with line search, an initial linear convergence is
followed by a superlinear convergence, which happens when the step size approaches
one.

We also record the real simulation time of two methods in one outer time step
when \delta = 1e  - 7 and \tau = 0.05. Results are shown in Table 1, where one sees that
these two approaches are comparable in terms of efficiency.

Next, we check the dependence of convergence on the mesh size \Delta v and time
step \tau with the same setting as above. Two cases with \varepsilon = 1 and \varepsilon = 1e  - 5 are
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Fig. 1. Convergence of one-step JKO scheme with respect to \epsilon . Left: Proximal quasi-Newton
with fixed step size: \gamma = 0.5, 0.5, 0.5, 0.4, 0.4, 0.4 for \varepsilon = 1, 1e  - 1, 1e  - 2, 1e  - 3, 1e  - 4, 1e  - 5,
respectively. Right: Proximal quasi-Newton with line search. In both cases, \Delta v = 10/64, \tau = 0.05.

Table 1
Run time of one outer time step. For the fixed step size method, we use \gamma = 0.5, 0.5, 0.5, 0.4,

0.4, 0.4 for \varepsilon = 1, 1e - 1, 1e - 2, 1e - 3, 1e - 4, 1e - 5, respectively. In both cases, \Delta v = 10/64, \tau = 0.05.

Method Fixed step size Line search

\varepsilon = 1 0.017s 0.008s
\varepsilon = 1e - 1 0.011s 0.008s
\varepsilon = 1e - 2 0.013s 0.015s
\varepsilon = 1e - 3 0.02s 0.007s
\varepsilon = 1e - 4 0.013s 0.011s
\varepsilon = 1e - 5 0.013s 0.030s

considered. u\ast is again obtained by running Algorithm 1 with 160 iterations. The
results are collected in Figures 2 and 3, where an almost uniform convergence behavior
is observed with different \Delta v, which indicates the independency of our algorithm on
the mesh size.

We also show convergence behavior at different time steps. In Figure 4, in the case
when \varepsilon is large, it converges more slowly at the beginning for both the fixed step size
method and the line search method. As f approaches the equilibrium, fewer iterations
are required to converge. And in the case when \varepsilon is small, it reaches equilibrium in
merely one time step, thus we see a flat curve after first several time steps, which
implies it stays at equilibrium.

4.1.2. Accuracy. In this subsection, we test the order of accuracy of our vari-
ational scheme with distinct \varepsilon . For accuracy in v, we consider the spatially homoge-
neous case (4.1) with fixed \tau = 0.0063 and compute the following relative error with
decreasing \Delta v:

e\Delta v = \| f\Delta v(v, T ) - f\Delta v
2
(v, T )\| 1 :=

Nv\sum 
j=1

| (f\Delta v)j(T ) - (f\Delta v
2
)j(T )| \Delta v.

The results are gathered in Figure 5, where a uniform second order accuracy is ob-
served.

To check the accuracy in x and t, we consider the spatially inhomogeneous VPFP
system (1.3) with the initial condition

\rho 0(x) =
\surd 
2\pi (2 + cos(2\pi x)), f0(x, v) =

\rho 0(x)

2
\surd 
2\pi 

\biggl( 
e - 

| v+1.5| 2
2 + e - 

| v - 1.5| 2
2

\biggr) 
,(4.3)

h(x) =
5.0132

1.2661
ecos(2\pi x)
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Fig. 2. Convergence of Algorithm 1 with different \Delta v (top) or different \tau (bottom). Top left:
\varepsilon = 1, step size \gamma = 0.5 and \tau = 0.05. Top right: \varepsilon = 1e - 5, step size \gamma = 0.4 and \tau = 0.05. Bottom
left: \varepsilon = 1, step size \gamma = 0.5 and \Delta v = 10/64. Bottom right: \varepsilon = 1e  - 5, step size \gamma = 0.4 and
\Delta v = 10/64.
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Fig. 3. Convergence of Algorithm 2 with different \Delta v (top) or different \tau (bottom). Top left:
\varepsilon = 1, \tau = 0.05. Top right: \varepsilon = 1e  - 5, \tau = 0.05. Bottom left: \varepsilon = 1, Nv = 64. Bottom right:
\varepsilon = 1e - 5, Nv = 64.

and compute the relative error:

e\tau = \| f\tau (T, x, v) - f \tau 
2
(T, x, v)\| 1 :=

Nx\sum 
i=1

Nv\sum 
j=1

| (f\tau )i,j(T ) - (f \tau 
2
)i,j(T )| \Delta v\Delta x
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Fig. 4. Convergence behavior at different time steps with \tau = 0.05, \Delta v = 10/64 and stopping
criterion \delta = 1e  - 7. Left figure is generated by Algorithm 1 with \gamma = 0.5, 0.5, 0.5, 0.4, 0.4, 0.4 for
\varepsilon = 1, 1e - 1, 1e - 2, 1e - 3, 1e - 4, 1e - 5, respectively. Right figure is generated by Algorithm 2.
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Fig. 5. Relative error e\Delta v with \Delta v = 10/64, 10/128, 10/256, 10/512, 10/1024 and fixed \tau =
0.0063, T = 0.1, and Nmax = 1000. The black line indicates second order accuracy.
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\Delta x/8,\Delta x/16,\Delta x/32,\Delta x/64,\Delta x/128. The black line indicates first order accuracy. Right: Relative
error e\Delta x with fixed \Delta v = 10/64, and varying \Delta x = 1/16, 1/32, 1/64, 1/128, 1/256 and \tau = \Delta x/8.
The black line indicates second order accuracy. In both cases, T = 0.1, Nmax = 1000.

and

e\Delta x = \| f\Delta x(T, x, v) - f\Delta x
2
(T, x, v)\| 1 :=

Nx\sum 
i=1

Nv\sum 
j=1

| (f\Delta x)i,j(T ) - (f\Delta x
2
)i,j(T )| \Delta v\Delta x.

As expected, we observe first order accuracy in time and second order accuracy in
space, both uniformly in \varepsilon . The results are shown in Figure 6.

4.1.3. The asymptotic preserving property. This section is devoted to
checking the asymptotic property of our scheme. For this purpose, consider the spa-
tially inhomogeneous VPFP system (1.3) with the following initial condition (4.3).
The computational domain is chosen as x \in [0, 1] and v \in [ - 6, 6]. At every time
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Fig. 7. Evolution of distance between our solution f and the local equilibrium M and with
decreasing \varepsilon . Here Nmax = 1000, \Delta x = 1/64, \Delta v = 12/64, and \tau = \Delta x/16.

tn = n \cdot \tau , we consider the l1 distance between our solution fn with the local equilib-
rium Mn as

\| fn  - Mn\| 1 =
\sum 
i,j

| fn(xi, vj) - Mn
i (vj)| \Delta x\Delta v.

Figure 7 shows that this distance decreases at the order of \scrO (\varepsilon ) with decreasing \varepsilon ,
which confirms the asymptotic property.

4.1.4. Entropy decay. In this section, we first consider the Vlasov--Fokker--
Planck system

\partial tf + v\nabla xf  - \nabla x\phi 0 \cdot \nabla vf = \nabla v \cdot (vf +\nabla vf)

with a fix external potential \phi 0(x) and check the entropy decay property. The initial
condition is taken to be

\rho 0(x) =
\surd 
2\pi (2 + cos(2\pi x)), f0(x, v) =

\rho 0(x)

2
\surd 
2\pi 

\biggl( 
e - 

| v+1.5| 2
2 + e - 

| v - 1.5| 2
2

\biggr) 
,

\phi 0(x) =
1

5
sin(2\pi x).

According to [5, 16, 18], f converges exponentially fast to the global equilibrium

f\infty =
2
\surd 
2\pi \int 1

0
e - 

1
5 sin xdx

e - 
v2

2  - 1
5 sin(2\pi x).

To see this, we compute the evolution of the relative entropy

E(f | f\infty ) =

\int \int 
f log

f

f\infty 
dvdx(4.4)

and display the results in Figure 8. As shown, the relative entropy decays in time
with an exponential rate at the beginning. This decay, however, is flattened at around
10 - 2, which indicates a discrepancy between f and f\infty . On the right of Figure 8, we
see that this discrepancy decays with finer grids, which implies that our scheme does
not preserve the global equilibrium exactly, but only up to some numerical error.

Next we consider VPFP system (1.3) with \varepsilon = 1 and check the entropy decay.
The initial data is taken the same as that in section 4.1.3, and the computational
domain is chosen as x \in [0, 1] and v \in [ - 6, 6]. In this case, we do not have an explicit
formula for f\infty , so we compute it numerically by running our scheme for a long enough
time until it converges to a steady state. Figure 9 then displays the exponential decay
of the relative entropy (4.4), as partially predicted in [28].
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Fig. 8. Left: Exponential decay of entropy with Nx = 32. Right: Entropy decay with different
Nx. Here x \in [0, 1], v \in [ - 6, 6], Nmax = 1000, \Delta x = 1/Nx, \Delta v = 12/64, and \tau = \Delta x/15.
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Fig. 9. Exponential decay of the relative entropy E(f | f\infty ) with Nmax = 1000, \Delta x = 1/32,
\Delta v = 12/64, and \tau = \Delta x/16. f\infty is computed at t = 5.

4.1.5. Mixing regime. In this section, we test the performance of our scheme
when \varepsilon has a mixing magnitude:

\epsilon (x) =

\biggl\{ 
\epsilon 0 +

1
2 (tanh(5 - 10x) + tanh(5 + 10x)), x \leq 0.3,

\epsilon 0, x > 0.3,

with \varepsilon 0 = 10 - 3. The initial condition is chosen as

\rho 0(x) =

\surd 
2\pi 

6
(2 + sin(\pi x)), f0(x, v) =

\rho (x)\surd 
2\pi 

e - 
| v+\phi 0

x| 2
2 , h(x) =

1.6711

2.5321
ecos(\pi x).

In Figure 10, we plot the shape of the solution at two different times, t = 0.2 and
t = 0.3, and compare our solution with the reference solution obtained by an ex-
plicit solver, which uses the second order Runge--Kutta discretization in time and
the MUSCL scheme for space discretization. Here a good agreement between two
solutions is observed, which confirms the efficiency of our method.

4.2. Two dimensions in velocity.

4.2.1. Convergence rate. For the two-dimensional case, we start again by
checking the convergence of our proximal quasi-Newton method to the spatially ho-
mogeneous case with varying \varepsilon . Here we consider the initial condition with four
bumps:

f0(v) = e(v2 - 1)2 - (v1 - 1)2 +
1

\pi 
e(v2+1)2 - (v1+1)2 +

2

\pi 
e(v2 - 1)2 - (v1+1)2 +

4

\pi 
e(v2+1)2 - (v1 - 1)2 ,

where v \in [ - 5, 5] \times [ - 5, 5]. In Figure 11, we compute the relative error (4.2) with
respect to k, where u\ast is obtained by running the same algorithm with 110 iterations.
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Fig. 10. Comparison of our solution with the reference solution obtained by explicit solver. Here
we use x \in [0, 1], v \in [ - 6, 6], Nx = 100, \Delta x = 2/Nx, \Delta v = 12/64, and \tau = \Delta x/15 for our method.
We use Nx = 2000, \Delta x = 2/Nx, \Delta v = 12/64, \tau = min\{ \Delta x

max | v| , \varepsilon 0\Delta x, \varepsilon 0\Delta v2\} /5 = 7.0313e  - 6 for

the explicit reference solver.
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Fig. 11. Convergence of Algorithm 2.2 with varying \varepsilon . Here Nv = 40, \tau = 0.05.

4.2.2. Evolution of two semitorus-like initial condition. In this section,
we plot the evolution of VPFP system using Algorithm 2.2 with the initial condition

f0(v) = 1.5

\biggl( 
1 +
\Bigl( \sqrt{} 

(v1  - 2)2 + (v2  - 2)2  - 2
\Bigr) 2\biggr)  - 10

+ 2

\biggl( 
1 +
\Bigl( \sqrt{} 

(v1 + 2)2 + (v2 + 2)2  - 2
\Bigr) 2\biggr)  - 10

in Figure 12. An evolving to the equilibrium and exponential convergence in entropy
is observed.

4.2.3. The asymptotic preserving property. Consider a 1dx \times 2dv VPFP
system with initial condition

f0(v) =
\rho 0(x)

4\pi 
[e(v2 - 2)2 - (v1 - 2)2+e(v2+2)2 - (v1+2)2+e(v2 - 2)2 - (v1+2)2+e(v2+2)2 - (v1 - 2)2 ] ,

where v \in [ - 5, 5]\times [ - 5, 5] and

\rho 0(x) =

\surd 
2\pi 

2
(2 + cos(2\pi x)), h(x) =

5.0132

1.2661
ecos(2\pi x), x \in (0, 1) .

As in the one-dimensional case, we compute the l1 distance between our solution and
the local equilibrium at each time tn as

\| fn  - Mn\| 1 =
\sum 
i,j,k

| fn(xi, vj , vk) - Mn
i (vj , vk)| \Delta x\Delta v2.

In Figure 13, we again observe an order \scrO (\varepsilon ) distance with decreasing \varepsilon , which indi-
cates the asymptotic preserving property of our scheme.
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Fig. 12. Evolution of f(t, v). Top row is initial states in different viewpoints; second and third
rows are the evolution along time; bottom row is equilibrium and evolution of entropy in time. Here
we use v \in [ - 5, 5]\times [ - 5, 5], \tau = 0.05, Nmax = 1000, \Delta v = 0.25, \delta = 10 - 7, and \varepsilon = 0.2.
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Fig. 13. Evolution of the distance between our solution f and local equilibrium M with decreas-
ing \varepsilon . Here \Delta x = 1/16, \Delta v = 10/40, Nmax = 1000, and \tau = 0.0078.

4.3. Three dimensions in velocity. At last, we'd like to emphasize that our
scheme can be easily extended to higher dimensions due to its passive parallelizability.
To this end, we consider one example in three dimensions. The initial data is taken
to be
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Fig. 14. Initial state of f(0, v1, - 2, v3) and f(0, v1, v2, - 2).

0
4

0.01

2 4
2

f slice of v
2
=-2 t=0.05

v
3

0

0.02

v
1

0
-2 -2

-4 -4

0
4

0.01

2 4
2

f slice of v
3
=-2 t=0.05

v
2

0

0.02

v
1

0
-2 -2

-4 -4

0
4

0.01

2 4
2

f slice of v
2
=-2 t=0.15

v
3

0

0.02

v
1

0
-2 -2

-4 -4

0
4

0.01

2 4
2

f slice of v
3
=-2 t=0.15

v
2

0

0.02

v
1

0
-2 -2

-4 -4

0
4

0.01

2 4
2

f slice of v
2
=-2 t=2.1

v
3

0

0.02

v
1

0
-2 -2

-4 -4 0  0.2  0.4  0.6 0.8 1

Time

0

0.05

0.1

0.15

0.2

0.25

0.3

E
(f

|M
)

Entropy decay in time

Fig. 15. Evolution of f(t, v1, - 2, v3) and f(t, v1, v2, - 2). Top two are t = 0.05, middle two are
t = 0.15, bottom left is f(2.1, v1, - 2, v3), and bottom right is entropy decay in time.

f0(v1, v2, v3) = (2\pi ) - 3/2(e - (v1 - 1)2 - (v2+1)2 - v2
3/2 + e - (v1+1)2 - (v2 - 1)2 - v2

3/2) ,

as displayed in Figure 14. The computational domain is v \in [ - L,L]\times [ - L,L]\times [ - L,L]
with L = 4 and it is partitioned into 16 cells in each direction, i.e., \Delta v = 0.5. We take
\varepsilon = 0.2, \Delta t = 0.05, and Nmax = 1000. Figure 15 gives the evolution of the initial
profile toward the equilibrium and also the decay of entropy.

5. Conclusion and discussion. In this paper, we propose an asymptotic pre-
serving scheme for the VPFP system with high field scaling. The scheme falls into the
category of implicit-explicit methods, which is often adopted in designing asymptotic
preserving schemes. The major contribution, however, is the treatment of the im-
plicit part, for which we use a variational formulation. Therefore, instead of directly
inverting the implicit system, we solve a minimization problem. The minimizer then
automatically conserves mass and preserves positivity, both of which are desirable fea-
tures of numerical schemes. More importantly, the implicit system is stiff and often
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suffers from ill-conditioning, a problem that has been overlooked in the literature.
The optimization algorithm we developed, on the contrary, includes a preconditioner
that comes from the Hessian of the objective function and therefore enjoys uniform
convergence across different scales. Numerical examples also show that this conver-
gence is insensitive to the dimension of the problem, an important property that is
desired for high dimensional problems. Furthermore, the massive parallelizability of
our scheme also makes it amenable in high dimensions. Although the implicit part
of the VPFP system may be solved efficiently with a more sophisticated algorithm
such as a multigrid method, our method has much better generalizability. In fact,
the variational formulation offers a natural implicit treatment that also mimics the
real physical process (i.e., entropy decrease) for the collision term in many kinetic
equations. And we hope that the variational framework we put forward in this paper,
together with the advanced optimization solver, can provide a new class of asymptotic
preserving schemes for kinetic equations applicable to high dimensions efficiently.

Appendix A. Proof of Theorem 3.5.

Lemma A.1. Suppose \sansH 1 and \sansH 2 are positive definite matrices with bounded ei-
genvalues: m1I \preceq \sansH 1 \preceq M1I and m2I \preceq \sansH 2 \preceq M2I. Let \Delta u1 and \Delta u2 be the search
directions generated using \sansH 1 and \sansH 2, respectively:

\Delta u1 = prox\sansH 1
\chi 

\bigl( 
u - \sansH  - 1

1 \nabla F (u)
\bigr) 
 - u ,

\Delta u2 = prox\sansH 2
\chi 

\bigl( 
u - \sansH  - 1

2 \nabla F (u)
\bigr) 
 - u .

Then these two search directions satisfy

\| \Delta u1  - \Delta u2\| \sansH 1
\leq \| I  - \sansH 

 - 1/2
1 \sansH 2\sansH 

 - 1/2
1 \| \| \Delta u2\| \sansH 1

.

Proof. The main part of the proof is similar to that in [26, proof of Proposition
3.6] with a little alteration except the very last estimate. But we still include the
details for completeness. By the definition of search direction

\Delta u = prox\sansH \chi 
\bigl( 
u - \sansH  - 1\nabla F (u)

\bigr) 
 - u,

we have

\sansH (\sansH  - 1\nabla F (u) - \Delta u) \in \partial \chi (u+\Delta u) ,

thus

\sansH \Delta u \in  - \nabla F (u) - \partial \chi (u+\Delta u).

Then
\Delta u1 = argmin

d
(\nabla F (u))\intercal d+ (1/2)d\intercal \sansH 1d+ \chi (u+ d),

\Delta u2 = argmin
d

(\nabla F (u))\intercal d+ (1/2)d\intercal \sansH 2d+ \chi (u+ d),

which leads to

(\nabla F (u))\intercal \Delta u1 + (1/2)\Delta u\intercal 
1\sansH 1\Delta u1 + \chi (u+\Delta u1)

\leq (\nabla F (u))\intercal \Delta u2 + (1/2)\Delta u\intercal 
2\sansH 1\Delta u2 + \chi (u+\Delta u2)

 - (1/2)(\Delta u1  - \Delta u2)
\intercal \sansH 1(\Delta u1  - \Delta u2),
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which is equivalent to

(\nabla F (u))\intercal \Delta u1 +\Delta u\intercal 
1\sansH 1\Delta u1 + \chi (u+\Delta u1)

\leq (\nabla F (u))\intercal \Delta u2 +\Delta u\intercal 
1\sansH 1\Delta u2 + \chi (u+\Delta u2) .

Similarly, we have

(\nabla F (u))\intercal \Delta u2 +\Delta u\intercal 
2\sansH 2\Delta u2 + \chi (u+\Delta u2)

\leq (\nabla F (u))T\Delta u1 +\Delta u\intercal 
1\sansH 2\Delta u2 + \chi (u+\Delta u1) .

Summing up these two inequalities gets

(\Delta u1)
\intercal \sansH 1\Delta u1  - (\Delta u1)

\intercal (\sansH 1 + \sansH 2)\Delta u2 + (\Delta u2)
\intercal \sansH 2\Delta u2 \leq 0.

By completing the square, we have

(\Delta u1)
\intercal \sansH 1\Delta u1  - 2(\Delta u1)

\intercal \sansH 1\Delta u2 + (\Delta u2)
\intercal \sansH 1\Delta u2

\leq (\Delta u1)
\intercal (\sansH 2  - \sansH 1)\Delta u2 + (\Delta u2)

\intercal (\sansH 1  - \sansH 2)\Delta u2.

Consequently,

\| \Delta u1  - \Delta u2\| 2\sansH 1
\leq (\Delta u1  - \Delta u2)

\intercal (\sansH 2  - \sansH 1)\Delta u2

= (\sansH 
1/2
1 (\Delta u1  - \Delta u2))

\intercal (\sansH 
 - 1/2
1 \sansH 2\sansH 

 - 1/2
1  - I)\sansH 

1/2
1 \Delta u2

\leq \| \Delta u1  - \Delta u2\| \sansH 1
\| \sansH  - 1/2

1 \sansH 2\sansH 
 - 1/2
1  - I\| \| \Delta u2\| \sansH 1

,

which leads to the result.

Lemma A.2. Suppose that there exist constants r, r\prime , R\prime , L2 > 0 such that r\prime I \prec 
\sansH k \prec R\prime I, rI \prec \nabla 2F (u(k)), and \nabla 2F is Lipschitz continuous with constant L2. Let

u
(k+1)
nt := u(k) + \Delta u

(k)
nt , where \Delta u

(k)
nt is the search direction by the proximal Newton

method. Then

\| u(k+1)
nt  - u\ast \| \sansH k \leq R

\surd 
R\prime 

2r
\surd 
r\prime 
\| u(k)  - u\ast \| 2\sansH k .

Proof.

\| u(k+1)
nt  - u\ast \| \sansH k \leq 

\surd 
R\prime \| u(k+1)

nt  - u\ast \| 

\leq 
\surd 
R\prime 

\surd 
r
\| u(k+1)

nt  - u\ast \| \nabla 2F (u(k))

\leq 
\surd 
R\prime 

\surd 
r

L2

2
\surd 
r
\| u(k)  - u\ast \| 2

\leq L2

\surd 
R\prime 

2r
\surd 
r\prime 

\| u(k)  - u\ast \| 2\sansH k .

The third inequality comes from the quadratic convergence of the proximal Newton
method (Theorem 3.4 in [26]).

Proof of Theorem 3.5.

Proof. Let \Delta u
(k)
nt be the search direction generated by the proximal Newton

method and \Delta u(k) generated by Algorithm 2.2. Then we have
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\| u(k+1)  - u\ast \| \sansH k = \| u(k) + tl\Delta u(k)  - u\ast \| \sansH k

= \| u(k) +\Delta u
(k)
nt  - u\ast  - \Delta u

(k)
nt + tl\Delta u(k)\| \sansH k

= \| u(k) +\Delta u
(k)
nt  - u\ast  - tl\Delta u

(k)
nt + tl\Delta u(k)  - (1 - tl)\Delta u

(k)
nt \| \sansH k

\leq \| u(k) +\Delta u
(k)
nt  - u\ast \| \sansH k + tl\| \Delta u(k)  - \Delta u

(k)
nt \| \sansH k + (1 - tl)\| \Delta u

(k)
nt \| \sansH k

\leq C\| u(k)  - u\ast \| 2\sansH k + tlq\| \Delta u
(k)
nt \| \sansH k + (1 - tl)\| \Delta u

(k)
nt \| \sansH k

= C\| u(k)  - u\ast \| 2\sansH k + (1 - tl + qtl)\| \Delta u
(k)
nt \| \sansH k

= C\| u(k)  - u\ast \| 2\sansH k + (1 - tl + qtl)\| u(k) +\Delta u
(k)
nt  - u(k) + u\ast  - u\ast \| \sansH k

\leq C\| u(k)  - u\ast \| 2\sansH k + (1 - tl + qtl)(\| u(k+1)
nt  - u\ast \| \sansH k + \| u(k)  - u\ast \| \sansH k)

\leq C \prime \| u(k)  - u\ast \| 2\sansH k + (1 - tl + qtl)\| u(k)  - u\ast \| \sansH k .

Here C = L2

\surd 
R\prime 

2r
\surd 
r\prime 
, C \prime = L2

\surd 
R\prime 

2r
\surd 
r\prime 
(2 - tl + qtl), and the second and third inequalities use

Lemmas A.1 and A.2.
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