Clamor: Extending Functional Cluster Computing
Frameworks with Fine-Grained Remote Memory Access

Pratiksha Thaker Hudson Ayers Deepti Raghavan
Stanford University Stanford University Stanford University
prthaker@stanford.edu hayers@stanford.edu deeptir@stanford.edu
Ning Niu Philip Levis Matei Zaharia
Stanford University Stanford University Stanford University

nniu@stanford.edu

Abstract

We propose Clamor, a functional cluster computing frame-
work that adds support for fine-grained, transparent access
to global variables for distributed, data-parallel tasks. Clamor
targets workloads that perform sparse accesses and updates
within the bulk synchronous parallel execution model, a set-
ting where the standard technique of broadcasting global
variables is highly inefficient. Clamor implements a novel
dynamic replication mechanism in order to enable efficient
access to popular data regions on the fly, and tracks fine-
grained dependencies in order to retain the lineage-based
fault tolerance model of systems like Spark. Clamor can in-
tegrate with existing Rust and C++ libraries to transparently
distribute programs on the cluster. We show that Clamor is
competitive with Spark in simple functional workloads and
can improve performance significantly compared to custom
systems on workloads that sparsely access large global vari-
ables: from 5x for sparse logistic regression to over 100X on
distributed geospatial queries.

CCS Concepts

«Computer systems organization — Processors and mem-

ory architectures; Distributed architectures.

Keywords

data analytics, remote memory, fault tolerance

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SoCC 21, November 1-4, 2021, Seattle, WA, USA

© 2021 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACMISBN 978-1-4503-8638-8/21/11.
https://doi.org/10.1145/3472883.3486996

pal@stanford.edu

matei@cs.stanford.edu

ACM Reference Format:

Pratiksha Thaker, Hudson Ayers, Deepti Raghavan, Ning Niu, Philip
Levis, and Matei Zaharia. 2021. Clamor: Extending Functional Clus-
ter Computing Frameworks with Fine-Grained Remote Memory
Access. In ACM Symposium on Cloud Computing (SoCC "21), Novem-
ber 14, 2021, Seattle, WA, USA. ACM, New York, NY, USA, 16 pages.
https://doi.org/10.1145/3472883.3486996

1 Introduction

In frameworks such as MapReduce [29], Spark [78], and Dask
[66], programmers write single-node “driver” programs that
periodically launch parallel functional operations such as
maps and reduces. The framework automatically ships func-
tion closures (a piece of code and variables it depends on) to
the workers to run in parallel. This bulk synchronous parallel
(BSP) computation model has made large-scale distributed
computing accessible to data analytics and machine learning
programmers who are not distributed systems experts.

The tasks in BSP programs may depend on global variables
constructed in-memory in the driver program, such as indexes,
search trees, or lookup tables. Access to these structures is
data-dependent, so the framework cannot easily partition
them across workers. Instead, workers access these global
variables using broadcast [26]: the driver ships the entire
variable with the task closure to each worker machine.

In some modern applications, these global variables are
large enough to make broadcast inefficient to impossible. For
example, training machine learning models requires random
access to global arrays of billions or trillions of parameters [48,
56]. Similarly, analyzing scientific datasets requires comput-
ing indexes over terabytes of data: some astrophysics applica-
tions compute a k-d tree over an entire astronomical dataset
in order to perform nearest neighbors searches efficiently [62,
63]. These applications express a common programming pat-
tern: they construct a large, global index that workers read,
and possibly make intermediate updates based on the results
of that computation. For variables that are gigabytes in size,
this incurs both the communication overhead of broadcast as
well as the memory overhead of storing the variables.

One common workaround to address this overhead is to
make calls to an external application-specific index (such as

https://doi.org/10.1145/3472883.3486996
https://doi.org/10.1145/3472883.3486996

SoCC 21, November 1-4, 2021, Seattle, WA, USA

a key-value store) [6, 19, 49, 62, 72, 76, 77]. This strategy has
two major problems. First, each application has to develop
a custom approach to manage data models between the BSP
framework and the data store. Second, an external data store
loses the fine-grained fault tolerance of a BSP system: an ex-
ternal store like Redis, for example, does not integrate with
Spark’s lineage-based tracking.

In real-world settings, however, accesses to these large
global variables are often sparse. Broadcasting the variable
is both inefficient and unnecessary, because each task only
accesses a small portion of the variable [48]. Sending only the
parts of the index that are actually accessed would conserve
both communication and RAM.

The key insight of this paper is that the constrained data
access model between driver programs and workers in the
BSP model enables efficient fine-grained state sharing when
accesses are sparse. Shared variables are only writeable by the
driver program, and only in between stages of cluster compu-
tation (that is, after a barrier). This access model is sufficient
to express many practical workloads. While these workloads
are also amenable to a solution based on distributed shared
memory (DSM), the BSP execution model enables caching
optimizations, fine-grained fault tolerance, and straggler mit-
igation that are not possible in generic DSM systems.

This paper presents Clamor, a cluster computing frame-
work that integrates a BSP programming model with efficient
random access to global variables. In order to provide finer-
grained access to arbitrary global variables, Clamor allows
workers to access the variable at the granularity of pages.
Clamor’s page abstraction enables accessing and caching just
the relevant parts of the variable in local memory, at a granu-
larity suitable to the structure of the underlying data structure.

Integrating fine-grained data access into a BSP comput-
ing system requires solving two challenges to reconcile their
different access patterns and failure models efficiently.

The first problemis providing lineage-based fault-tolerance,
a key feature of Spark. Spark constructs a task dependency
graph from a program and uses it to reconstruct failed tasks.
Integrating lineage-based fault tolerance with global shared
variables is difficult for two reasons. First, Spark tracks coarse-
grained lineage for broadcast variables, serializing the entire
variable when any part is modified, which results in pro-
hibitive time and storage overhead for the large variables
that Clamor targets. Instead, Clamor must incorporate fine-
grained history for parts of global variables, not just parti-
tioned datasets. Second, a traditional BSP system can statically
construct a lineage graph when a job is submitted because
the access pattern is known in advance, while a system sup-
porting fine-grained global variable access must construct the
dependency graph on the fly as tasks make random accesses.

The second problem is that page-based access can bottle-
neck at the driver if it serves “hot” pages accessed by many

Pratiksha Thaker, Hudson Ayers, Deepti Raghavan, Ning Niu, Philip Levis, and Matei Zaharia

workers simultaneously. The access pattern is not known
until runtime, so replicating pages in advance is not possible.
Clamor implements a dynamic replication mechanism that
allows workers to serve requests for pages they have cached.
This replication leverages the fact that global variables do
not change during a BSP stage: workers can freely cache and
serve cached pages within a stage.

We implement Clamor in Rust and C++ and provide a C++
APIto express programs in the BSP model. Moreover, Clamor’s
memory allocator is a drop-in replacement for malloc, which
allows us to use existing third-party libraries, such as the Rust
kdtree-rs library [42], unmodified in our benchmarks.

We evaluate Clamor on several random-access workloads,
including a geographic lookup benchmark and distributed
sparse logistic regression training. We show that Clamor can
outperform custom systems designed to support these queries
in the BSP model, performing up to 5X better on sparse lo-
gistic regression and over 100X better on geospatial queries.
We also show that Clamor’s performance is within 2-3x of
hand-optimized MPI on standard batch workloads including
distributed k-means clustering.

In summary, our contributions are:

o Weidentify a class of workloads that require sparse random
access to large global variables within the BSP execution
model;

e We implement an efficient remote memory system, Clamor,
to serve this access pattern, taking advantage of the re-
stricted execution model to implement efficient caching for
hot pages;

e We integrate Clamor with lineage-based fault tolerance
by tracking fine-grained lineage within large global vari-
ables, as well as straggler mitigation made possible by the
restricted execution model, and

o We evaluate Clamor on three random-access workloads,
as well as standard functional data-parallel workloads, and
show that it can outperform custom solutions for these
workloads when accesses and updates are sparse.

2 Motivation

Clamor is motivated by large scale data-processing workloads
that rely on sparse, data-dependent access to large global vari-
ables. Because accesses to these structures are data-dependent,
a driver cannot know a priori which part of the index a given
worker will need and so cannot partition it. As the index
structure grows, broadcasting it in entirety to every worker re-
quires too much RAM or takes too long. This section describes
three common workload examples that fit this pattern: geo-
graphic lookups, parameter servers, and streaming updates.
Existing BSP systems cannot efficiently express their sparse
random access patterns, and significant developer effort has
gone into building custom solutions to scale these workloads.

Clamor: Extending Functional Cluster Computing Frameworks with Fine-Grained Remote Memory Access SoCC *21, November 1-4, 2021, Seattle, WA, USA

Geographic lookups. A common geometric computation
is k-nearest neighbors (k-NN): examples include lookups on
2D geographic coordinates [70] and querying massive 3D
datasets in astrophysics [62, 63]. k-nearest neighbors queries
are efficiently supported by k-d trees!, a space-partitioning
data structure [18]. A k-d tree’s key benefit of geometric local-
ity, however, is directly in conflict with how key-value pairs
spread data across keys. As a result, cluster frameworks can-
not efficiently support queries to a k-d tree. Naive solutions [5]
build the k-d tree on the driver and broadcast it to workers.
Other approaches include storing reference locations using
the geospatial API of an external Redis server [70] and imple-
menting a custom partitioner for k-d tree-like functionality
within a Spark RDD [62].

Parameter servers. Modern machine learning workloads
train models with billions or trillions of parameters [48, 56].
Having every worker store every parameter requires huge
amounts of RAM and is therefore prohibitively expensive. The
parameter server architecture [48] addresses this problem and
improves model training efficiency by allowing workers to
pull only the parameters they need from an external key-value
store and push gradient updates. Each worker executes the
same gradient update computation on its local training data.
The architecture’s ability to scale up to huge models has made
it the dominant paradigm for distributed training.

While developers have built custom systems for parameter
serving, there is nevertheless significant interest in build-
ing parameter servers on top of existing systems like Spark,
reusing familiar infrastructure that users expect to scale [19,
38, 49, 76, 77]. Existing solutions include broadcasting all
of the parameters [49, 76] or implementing custom partial
broadcast mechanisms [77]. Glint [38] integrates Spark with
a key-value store, but sacrifices Spark’s lineage-based fault
tolerance to do so.

Streaming updates. Many streaming applications require
periodic updates to broadcast variables: for example, to up-
date lookup tables based on time-series data ingested from an
external queue [14, 20, 65, 69, 73] or update a global machine
learning model as new data arrives [21]. Broadcast variables,
however, are immutable, so the only way to update the work-
ers is to copy and re-broadcast the whole variable [73]. Broad-
casting the entire data structure to workers after a sparse
update is extremely wasteful and imposes a high cost. The in-
efficiency of this solution has led some users to rely on custom
solutions based on an external key-value store, which loses
both the fault tolerance guarantees as well as the optimized
broadcast implementation of Spark [65].

1k-d means k-dimensional; the k in k-d is distinct from the k in k-nearest
neighbors.

Scheduler

Driver @ Scheduler
<

d
\ \
\ \
\ \
\ \
\ \
\ \
\ \
\ \,
N \
N \
\ \
\

/' Memory-mapped

Yt
./ remote data

90 | %

Worker 1 Worker 2 Worker n Worker i

Figure 1: The execution of a Clamor stage. (1) The user
provides a driver program that executes on the primary. The
driver program submits stages for execution to the scheduler,
which (2) dispatches tasks to the workers. (3) The workers
may load data from remote storage, and make requests for
driver pages to the scheduler while executing tasks. (4) When
a worker completes, it registers the completion with the
scheduler, sending its result along with the pages it read
during execution.

This access pattern is common, and occurs in many other
modern data analytics and machine learning workloads, such
as lookups into word or graph embeddings for recommenda-
tion systems [2, 56, 57], similarity search via locality-sensitive
hashing [24], and evaluating large decision forests [1].

2.1 The Case for Fine-Grained Sharing

These three workloads share a common pattern: the central-
ized driver program builds a large data structure that workers
sparsely access. Because these accesses are data-dependent,
the program cannot easily partition and ship only the relevant
parts of the data structure with the task. Instead, the driver
must broadcast the entire variable every time a computation
updates it. As a workload is parallelized over more workers,
the constant cost of this broadcast takes a larger fraction of
execution time. As a result, applications scale by using spe-
cialized systems or extensions, such as external services or
custom partitioners, costing significant developer effort.

A system that integrates fine-grained global variable access
into a BSP programming model could replace all of these sys-
tems. While the solution of a key-value store is appropriate for
some workloads, such as the parameter server, we aim to sup-
port a generic set of variables including the k-d tree and other
data structures, such as decision trees, that are not effectively
supported by a flat key-value layout. Additionally, since these
global variables are constructed on the driver, the driver can
become a bottleneck in serving data; thus, the system must
implement fine-grained replication that additionally scales
with the access pattern of the workload. Finally, we aim to
support the fine-grained fault tolerance benefits of systems
like Spark while also supporting in-place updates to global
variables, which Spark does not support. The key challenge

SoCC 21, November 1-4, 2021, Seattle, WA, USA

in doing so is implementing lineage for global variables at a
fine granularity rather than serializing and storing the entire
variable each time it is updated.

3 Overview

Clamor enables random access to global variables within the
restrictions of the BSP computation model. In this section, we
review the computational model, describe how we implement
random addressing into global variables, and describe the
Clamor programming model.

3.1 Cluster and computation model

Figure 1 provides an overview of the Clamor cluster model.
Clamor programs run in a cluster consisting of a primary
node that launches the driver program and worker nodes that
run parallel computation.? The primary additionally runs
the scheduler that schedules computation on the cluster. The
scheduler and driver run on the same node by default, al-
though these functionalities are not coupled and can run on
independent nodes. In Clamor, the scheduler handles task
scheduling, but also serves requests for parts of driver mem-
ory, which we elaborate on in the next subsection.

In the bulk synchronous parallel computation model [71],
workers execute computation in parallel in between global
synchronization barriers. In this paper, we refer to the com-
putation between two barriers as a stage, divided into data-
parallel, functional tasks of work. Results of a task are only
globally visible after the corresponding synchronization bar-
rier.

Within stages, Clamor executes functional and data-parallel
tasks, a common model for modern data-parallel computa-
tion [29, 61, 66, 78]. Thus, global variables passed to a task are
immutable during the execution of a stage, and can only be
updated by the driver in between stages (i.e., they cannot be
directly written to by tasks on workers).

3.2 Enabling global variable access

In order to efficiently enable random access to global variables,
Clamor equips the driver with a globally-addressable static
array and a transparent memory allocator to use for construct-
ing variables on the global array. Rather than broadcasting an
entire global variable to each task, the scheduler ships only
the address of the variable in the global array. Workers can use
this memory address to randomly access this global variable
while executing tasks. The global memory region is divided
into contiguous segments which we refer to as pages, which
we discuss further in Section 4.

When a worker accesses the global array, it makes a re-
quest to the scheduler to for the page corresponding to that
address, copying the data into the same address region in

2The assumption of a centralized driver is standard in comparable
frameworks such as Spark [78], Hadoop [68], or Dryad [37].

Pratiksha Thaker, Hudson Ayers, Deepti Raghavan, Ning Niu, Philip Levis, and Matei Zaharia

Initialize Aggregate
and update
Read Invalidate
ages
pag Barrier
Worker 1 — 1 3
Worker 2 1 3
Worker 3 -_—

Compute (stage 1) Compute (stage 2)

Figure 2: Diagram of Clamor execution. The driver initializes
global variables in the shared array. Workers compute in
parallel, reading and caching pages as the program accesses
addresses in the shared array (requests only shown for
worker 1). The driver waits for all workers to complete before
aggregating results and writing updates to the global variable.
When the driver makes a write to a page, it invalidates any
existing readers of the page. The unmodified pages (blue) can
remain cached for both stages 1 and 2.

its local memory (analogous to OS demand paging). Impor-
tantly, the scheduler handles both task scheduling as well
as page requests, because it must track the pages associated
with a particular worker and task in order to track the lin-
eage (dependency graph) of data dependencies for a task as
the task executes. The lineage can later be used to rerun the
task deterministically if the worker fails. We elaborate on this
functionality in Section 5.

The solution of a globally addressable array has a close re-
lationship to DSM, which also aims to provide random access
to memory across a cluster. In contrast to general DSM, the
functional data-parallel execution model ensures that only
the driver writes to the shared address space in Clamor, and
updates to the variable happen only after barriers. These guar-
antees allow for a number of communication and caching
optimizations that make Clamor both generic and efficient for
the workloads and execution model it targets. This restricted
write model additionally allows Clamor to implement lineage-
based fault tolerance, where most DSM systems must rely on
coarse-grained checkpointing that is too expensive for short-
lived data analytics workloads. Existing BSP systems can only
implement lineage for global variables at the granularity of the
entire variable, serializing and storing it even when it is large.

We note that although Clamor enables partial broadcast
via remote memory, this solution is not mutually exclusive
with existing mechanisms to share variables. For instance,
when variables are smaller than the page size, it can be more
efficient to ship the variable along with the task closure (if
the variable is accessed by all tasks) because the page access

Clamor: Extending Functional Cluster Computing Frameworks with Fine-Grained Remote Memory Access SoCC *21, November 1-4, 2021, Seattle, WA, USA

val hm = new HashMap(input_data)
val bhm = hm.broadcast()
val input = sc.textFile("s3://input-file")
val values = input.map(x =
> bhm.get(x)) // Expensive: broadcast entire hash map
val sum = inputs.reduce(_+_)
values.map(x => x / sum)

HBWN

o v

Listing 1: Pseudocode to look up values in a hash table
and then normalize the resulting vector, in Spark. The large
table is shipped to all workers in the call to input.map(), even
though the workers may only make lookups to a few keys.

1 // Hash map lookup function

2 int64 hash_map_lookup(int64_t key, hash_map* hm) {
3 return hm->lookup(key);

4 1

1 // Construct the hash map in the driver.

2 hash_map* hm = clamor_hash_map(input_data);

3

4 DataCollection<int64> inputs("s3://input-file");
5

6 // Look up the keys in the hash map.

7 DataCollection<int64> values

8 = inputs->map(hash_map_lookup, hm);

9
10 // Sum the values and materialize the result.
11 int64 sum = values->sum()
12 ->execute();
13
14 // Normalize the values in a second stage.
15 // The resulting vector remains on the cluster
16 // when the stage completes.
17 auto result = values->map(divide_by, sum);

Listing 2: Pseudocode of a Clamor driver program that
looks up values in a hash table and then normalizes the
resulting vector. The driver program initializes the hash
table using the Clamor memory allocator. This program
performs a distributed map (bottom) that calls a user-defined
function (top) to call the hash table’s get function using the
input keys. Unlike the Spark example, no explicit broadcast
is performed. The pages corresponding to the lookup keys
are retrieved on the fly.

patternis completely predictable. While we focus in this paper
on Clamor’s performance on large variables, these strategies
can be useful for keeping communication overheads low for
smaller dependencies.

In the remainder of the paper, we will discuss the details of
serving these pages efficiently, including caching and updat-
ing pages (§4.1), replication (§4.2), and tracking lineage for
fault tolerance (§5).

3.3 Programming model

Clamor provides a simple user-facing C++ API for writing
distributed tasks that conform to the functional BSP model.
The API includes common operations on vectors such as map,
filter, reduce, join,and lookup. Operations that acceptlambda

arguments, such as map, can be called using user-defined func-
tions. Users instantiate a distributed dataset, bataCollection<
T>, either from data already located on the driver or from data
located in remote storage, e.g., an Amazon S3 bucket. They
can then call API functions on the DataCollection, as shown
in Listing 2.

In Clamor, stages are constructed implicitly: execution pro-
ceeds on workers in parallel until an aggregation or a local
update on the driver, which runs only once the preceding
stage completes. As an example, Listing 2 shows the Clamor
code to normalize a distributed vector. The code first com-
putes the sum of the vector; the workers compute local sums
and then return those to the driver, which performs the final
aggregation. The second stage divides the vector by the sum
in parallel on the cluster.

4 Efficiently serving global variables

Clamor targets sparse accesses to global variables, but does
not put further restrictions on the variables themselves. In
order to enable efficient but generic memory access, Clamor
serves memory at the granularity of pages (a contiguous mem-
ory region that may be larger than a standard OS page; we
discuss page sizing further in Sections 6 and 7). The page ab-
straction allows for more efficient caching, updating, and fault
handling at the cost of added communication overhead for
accesses that have lower locality. We discuss these tradeoffs
further in Section 6.

4.1 Caching and updates

The functional BSP model allows workers to cache driver
pages for the duration of a stage, and possibly beyond. Global
variables are immutable while workers execute tasks, and can
only be written by the driver after a barrier.

The driver program can make updates to global variables af-
ter a barrier, in between stages. In the parameter server, for ex-
ample, the driver updates the weights in between stages of syn-
chronous SGD before launching the next iteration on the clus-
ter. When the driver updates a memory address in the global
address space, the scheduler first makes an invalidation RPC
to all workers caching the corresponding page to clear their lo-
cal caches. On the next access to the page, the worker retrieves
the most recent version of the page from the driver memory.

Figure 2 illustrates task execution and caching in Clamor.
The driver initializes a global variable that the workers read
in parallel while executing tasks. The driver must wait for
workers to complete the parallel tasks before writing to the
global array again or performing an aggregation. While up-
dating the global array, the driver invalidates any readers of
the pages that are updated, but pages that are never updated
can stay cached at the workers for later stages.

SoCC 21, November 1-4, 2021, Seattle, WA, USA

40
No replication ™ Dynamic replication Ideal

30

Time (s)

10

o Hm m m] m
10 20 30 40 50

Workers

Figure 3: Performance of the dynamic replication mech-
anism, which improves performance by over 11X on a
network-intensive sparse lookup workload.

4.2 Replicating hot pages

As the number of workers grows, the primary can become a
bottleneck in serving pages. Static replication is not possible
because the access pattern is not known in advance, and the
global variables that Clamor supports are too large to replicate
in their entirety.

In order to resolve this problem, we introduce a simple but
novel dynamic replication mechanism, that takes advantage
of the caching enabled by the BSP model to efficiently serve
pages from multiple machines: the scheduler simply redirects
requests to a random worker that has previously requested
the page. While the mechanism is simple, it is enabled by the
fact that workers can cache pages for the entirety of a stage,
and is fast enough to load balance for stages that complete
in seconds. This is analogous to the peer-to-peer mechanism
implemented to efficiently broadcast entire variables [26], but
our fine-grained access model improves over broadcast be-
cause only the parts of the variable actually accessed need to
be communicated. Moreover, broadcast requires serializing
and deserializing the entire variable, while Clamor transpar-
ently sends pages.

In Figure 3 we run a simple microbenchmark to illustrate
the benefit of dynamic replication, on clusters of machines
with 10 Gbit/s Ethernet each and a page size of 256 KB. The
microbenchmark makes 10 million Zipf-distributed lookups
to a 1 GB hash table on the driver. Because the lookups are
Zipf-distributed, most workers request the same pages, but
which pages are not known in advance, so they cannot be
trivially replicated. We plot the time to execute this workload
with dynamic replication against the baselines of no replica-
tion and the ideal runtime possible if all of the aggregated
bandwidth in the cluster were utilized. Without replication,
the workload takes 17 seconds on a 10-node cluster and 35 sec-
onds ona 50-node cluster, slowing down as the driver becomes
a bottleneck in serving pages. With dynamic replication, the
runtime is near constant at 3 seconds, while the ideal runtime
is 1.6 seconds on 10 nodes and 0.65 seconds on 50 nodes.

We note that well-known results on the “power of two
choices” [54] suggest, in a slightly different service model,

Pratiksha Thaker, Hudson Ayers, Deepti Raghavan, Ning Niu, Philip Levis, and Matei Zaharia

that the uniform random strategy would result in load skew
at the servers as the cluster size increases; although Figure 3
shows that this skew is not significant for the cluster sizes in
our experiments, exploring an implementation of the power
of two choices in our dynamic setting would be an interesting
direction for future work.

5 Fault tolerance and straggler mitigation

Frameworks that enable remote memory access, including
most systems that implement some form of DSM, rely on
coarse-grained or whole-system checkpointing for fault toler-
ance. These approaches work well in a high-performance com-
puting setting, because they can be carefully tuned to super-
computer reliability and highly engineered applications that
are developed over years and run for days. For dynamic data
analytics workloads, however, their coarse-grained behavior
greatly increases tail latencies. Clamor integrates with the
fine-grained lineage-based fault tolerance model that users
have come to expect from popular functional frameworks
like Spark that target short-lived batch analytics workloads.
In this section, we review the lineage-based fault tolerance
model, describe the challenges of integrating Clamor’s global
variables with this model, and describe how we address them.

5.1 Lineage-based fault tolerance

Lineage-based fault tolerance tracks the sequence of opera-
tions used to construct a result rather than logging the inter-
mediate data itself. When a worker fails, a backup can deter-
ministically reconstruct the lost data from the sequence of op-
erations. Systems like Spark [78] can efficiently implement lin-
eage because of the functional programming model that imple-
ments transformations on coarse partitions of a dataset. The
coarse-grained access model, however, limits Spark’s ability
to implement lineage for global variables: it must serialize and
store the entire variable in order to include itin a task’s lineage,
even if the task only accesses a small part of the variable, and
if the variable is updated, it must be re-serialized and stored
separately, even if the update is very sparse. Clamor aims to
preserve the benefits of lineage-based fault tolerance while
reducing the overheads that result from variable updates.

5.2 Trackinglineage in Clamor

Because Spark only tracks coarse-grained lineage, the pro-
gram is sufficient to statically determine the lineage before
the program executes. In contrast, Clamor tracks lineage at
page granularity, and must do so on the fly as the program
executes because the access pattern is not known in advance.

One subtlety that arises in reconstructing tasks in Clamor
is if a worker fails in the middle of executing some task ¢. The
lineage of that task is incomplete because it did not finish
executing. Thus, we must wait for all lost data to be recovered
- not just the known dependencies — before relaunching task ¢

Clamor: Extending Functional Cluster Computing Frameworks with Fine-Grained Remote Memory Access SoCC *21, November 1-4, 2021, Seattle, WA, USA

1 KDTree* kd = construct_kdtree(old_locations);
2
3 DataCollection<double[2]> queries("s3://input-file");
4 DataCollection
<double> distances = queries->map(kdtree_lookup, kd);

5

6 kd.erase(old_locations[0]);
7 kd.insert(new_location);
8

9 DataCollection

10 <double> new_distances = locs->map(kdtree_lookup, kd);
11

12 DataCollection<int32> preferences =

13 distances->zip(new_distances)

14 ->map(argmin) ;

Listing 3: Pseudocode for a program that computes
distances in a k-d tree, updates the k-d tree in place
with new locations, recomputes the distances, and then
determines which of the two location sets has the closer
distances. If a worker fails after the update to the k-d tree,
a new worker needs both the old and new versions of the
k-d tree in order to re-execute and complete the task.

Dri Worke
river orker s3://input-file

‘ KDTree kd ‘ ‘ queries ‘

distances

new_distances

Figure 4: Lineage graph for the query in Listing 3. The
colored boxes on the left side represent pages of the global
memory region, where the k-d tree is located. The driver
updates one page after the first stage completes. If a worker
fails and loses its partitions of distances and new_distances,
a new worker needs the version of the k-d tree both from
stage 1 (to recompute distances) and stage 2 (to recompute
new_distances) in order to complete the task.

in case task t depends on some of that data. (An optimization,
which we implement, is to speculatively launch ¢ when its
known dependencies are available, and abort if some future
dependency is still missing.) This subtlety does not arise in
Spark because dependencies can be statically computed from
the program.

5.3 Page versioning

In contrast to standard BSP systems where broadcast variables
are immutable, in Clamor, the driver program makes in-place
updates to global variables. In order for backup workers to
deterministically reconstruct old stages, they may need ac-
cess to previous versions of a driver page that have since been

modified.

We illustrate this problem using the simplified example in
Listing 3. This program executes distributed lookups into a
k-d tree constructed on the driver. The driver then updates the
k-d tree, and then queries the updated k-d tree using the same
query set, aggregating the results with an argmin between
the two queries. (For instance, this query could be used to
determine the best set of locations for public water fountains
based on their proximity to a query set of foot traffic data.)

Figure 4 shows the lineage graph for this query. The driver
updates the k-d tree in between the computation of distances
and new_distances, but preferences is computed last and de-
pends on both of these results. If a worker fails after the dri-
ver update, a backup cannot recompute the lost data from
distances without having access to the previous version of
the k-d tree.

In order to remedy this, Clamor tracks versions of pages
when they are updated. When the driver submits a new stage,
all pages in the global address space are marked as copy-on-
write. When the driver next writes the page, the previous ver-
sion of the page islogged alongside the sequential index of the
stage prior to the barrier. When a worker reconstructing a task
from stage i accesses a page, the driver returns the latest ver-
sion of the page with stage ID less than or equal to i. This proto-
col allows Clamor to track changes to the global variable at an
intermediate granularity between recording every update in-
dependently and serializing the entire variable at each update.

In the example in Figure 4, only a single driver page is up-
dated, so only that page needs to be versioned in order to
support failure recovery.

In the current implementation, the versions are recorded
in the scheduler RAM, as scheduler failures are not in scope
for our fault tolerance model; however, page versions can
trivially also be written to and retrieved from stable storage.

5.4 Straggler mitigation

The BSP model additionally allows Clamor to integrate specu-
lative execution to mitigate slowdown from stragglers during
a stage. Since global variables are immutable while the stage
executes, and results of a stage are not globally visible until
the end of the stage, the scheduler is free to launch replicas
of tasks without causing write conflicts. Execution on the
workers is deterministic, so once any one replica returns a
result for a given task, the scheduler can abort the remaining
replicas. We evaluate the performance of straggler mitigation
in Section 7.4.

6 Implementation

We implemented a prototype of Clamor in C++ and Rust.
Clamor’s task manager and client library are implemented
in 6850 lines of C++, and enabling integration with Weld [61]
(described in § 6.1) required an additional 1400 lines of Rust

SoCC 21, November 1-4, 2021, Seattle, WA, USA

to implement the compiler pass that parallelizes Weld IR ex-
pressions across distributed workers. Clamor uses the gRPC
library [36] for communication between nodes.

6.1 Weld compiler pass

Clamor represents parallel and functional programs using the
Weld intermediate representation [61], alow-level representa-
tion of data-parallel computation that is expressive enough to
capture parallel, functional, relational, and linear algebra com-
putations. The Weld IR can support standard map and reduce
operators, but provides a more general API to express data-
parallel for loops and a compiler that performs optimizations
such as loop fusion that Clamor can also take advantage of.
Although Weld is a relatively low-level representation, it is
versatile and expressive enough to allow for higher-level APIs
to be built on top of it. We envision users ultimately inter-
facing with Clamor through such APIs and through Weld’s
integration with existing, popular data science libraries.

In order to support distributed computation in Weld, we
introduce a compiler pass to the Weld compiler that looks for
top-level for loops over vectors and transforms them into a
loop that partitions data and distributes data-parallel tasks
across workers. This also allows Clamor to take advantage of
Weld’s loop fusion optimizations to automatically reduce the
number of stages between aggregations on the driver.

We note that while Weld provides an expressive and general
representation for the data-parallel computation that Clamor
targets, it is not a fundamental part of Clamor’s architecture
and could also be replaced by other representations that ex-
press a subset of these computations (such as simpler map and
reduce operators).

6.2 Shared address space

Clamor implements a shared address space as a static C array.
Workers use mprotect to raise segmentation faults when ac-
cessing pages in the shared buffer and handle segmentation
faults by requesting the corresponding page permission from
the task manager via RPC.

In order to ensure that addresses are consistent across ma-
chines, Clamor requires ASLR to be disabled; however, to
mitigate security concerns, address translation can be imple-
mented with minimal overhead: when a worker traps a page
fault corresponding to an absolute address, it can compute
the offset of the address relative to the start of the shared
buffer and request the page using the relative address (which
is consistent across workers) rather than the absolute address.

6.3 Page size and metadata overhead

Clamor stores about 400 bytes of metadata per page (including
locks, page state, reads and writes for lineage tracking, and
source data information for pages backed by data files).

Pratiksha Thaker, Hudson Ayers, Deepti Raghavan, Ning Niu, Philip Levis, and Matei Zaharia

—— Max slowdown

—*— Mean slowdown

Slowdown

913 915 917 919 921 923 925

Page size (bytes)

Figure 5: Mean and maximum slowdown relative to optimal
page size for arange of transfer sizes between 4 KB and 32 MB.

In order to determine a reasonable default page size for
Clamor, we measured the time required to make data transfers
for arange of page sizes using gRPC, the RPC framework used
in Clamor. Specifically, we measured total transfer sizes (on
nodes with 10 Gbit/s bandwidth) logarithmically distributed
between 4 KB (the size of a typical OS page) and 32 MB, and
varied the page size in the same range. For example, a transfer
of 16 MB with a page size of 1 MB would require 16 RPCs to
complete. The optimal page size for that transfer should be
16 MB, which requires only one RPC. For each page size, we
measured the mean and maximum slowdown across transfer
sizes, relative to the page size that would be optimal for that
transfer size (i.e. page size equal to transfer size). The result
is in Figure 5. In this range of transfer sizes, a page size of
128 KB minimizes the mean slowdown (1.37X), while 65 KB
minimizes the maximum slowdown (1.83%). While this exper-
iment suggests that 65 or 128 KB are reasonable default page
sizes, we note that it does not take into account the effects
of dynamic replication. The hit rate for dynamic replication
improves as the page size increases, and we find in our eval-
uation that this time can often dominate the runtime, making
larger pages more effective for many workloads.

7 Evaluation

Experimental setup. Unless otherwise stated, our experi-
ments ran on m5. 8xlarge Amazon EC2 machines with 16 phys-
ical cores, 128 GB of RAM, and 10 Gbit/s of bandwidth. Spark
was configured to run one executor per node with 8 cores per
executor, and Clamor runs 8 parallel workers per node. We
compare against Spark version 2.4.3 and OpenMPI version
2.1.1. Clamor uses Weld version 0.3.0 compiled with LLVM
6.0 and Rust 1.43.0. For measurements that include data down-
load time, data is downloaded from an Amazon S3 bucket
located in the same region as the cluster (us-east-1, N. Vir-
ginia). (Measurements do not include data download time
unless otherwise stated.)

Clamor: Extending Functional Cluster Computing Frameworks with Fine-Grained Remote Memory Access SoCC *21, November 1-4, 2021, Seattle, WA, USA

Aggregation Compute M Peerreq Driver req
X:}

30 24.381
20041 18763 1g07

N I N
10 20 30 40 50
Workers

(a) Scaling for k-d tree lookups with 1 MB pages. Compute time
decreases linearly, but the time to aggregate results increases as
the number of workers increases. “Peer req” refers to time spent
retrieving pages from peers, while “Driver req” refers to time spent
retrieving pages directly from the driver.

Aggregation Compute ™ Peerreq Driver req

24.844

25

19.866
18.027 19.339

0.25MB 0.5MB 1MB 2MB
Page size

N
S

Runtime (s)
o B @

o

(b) k-d tree performance on 50 workers varying the page size. As
the page size increases, the hit rate of dynamic replication increases
and more pages can be retrieved from peers, but when the page
size is larger than necessary, the excess communication overhead
of page retrieval limits scaling.

Figure 6: Scaling for k-d tree lookup workload with varying
page size.
7.1 Random access workloads

In this section, we evaluate three workloads involving trans-
parent random access to a global variable constructed in the
driver to show the performance benefits of Clamor in its target
setting: sparse random access to large global variables.

7.1.1 k-dtree We constructed a k-d tree of 7 million nodes
of locations across the United States downloaded from Open-
StreetMap [7] and equip each with metadata of 2048 bytes (ap-
proximately the size of the metadata provided for businesses
in the Yelp open dataset [8]) and a numeric rating 1-5. The re-
sulting k-d tree is about 15 GB in size. We use the Rust library
kdtree-rs [42] unmodified except for the Clamor memory al-
locator to construct the k-d tree. Serializing the entire tree
using Rust’s serde library takes 89 seconds, and deserializing
takes 40 seconds, an overhead that Clamor bypasses. The total
time required to run the workload in our experiments was not
greater than 38 seconds, which is faster than the 89 seconds
required just to serialize the k-d tree for a broadcast solution.

We evaluate a read-only workload of 1 billion queries to the
k-d tree that computes the 10 nearest neighbors of each query
point, sorts by rating, and finds the average distance to the
top-rated neighbor across all query points. The query points
are localized to the San Francisco bay area, a small region

roughly between 36 and 39 degrees latitude and -123 and -120
degrees longitude.

Scaling. To understand the scale-out behavior of Clamor, in
Figure 6 we plot the runtime of this workload on clusters of
sizes between 10 and 50 nodes each running 8 worker pro-
cesses.

In Figure 6a, we plot the runtime of this workload with large
1 MB pages. “Peer req” refers to time spent retrieving pages
from other workers, while “Driver req” refers to time spent re-
trieving pages from the driver directly. The computation time
decreases linearly as we increase the number of workers, and
the network overhead of retrieving pages stays approximately
constant as the number of workers increases due to dynamic
replication. As the number of workers increases to 50 nodes,
the benefits of scaling out decrease as the computation time
approximately equals the network overhead of retrieving k-d
tree pages.

In Figure 6b, we explore the effects of varying page size on
the workload performance. We fix the cluster size at 50 work-
ers and measure the runtime as the page size varies between
0.25 MB and 2 MB. At the small page size of 0.25 MB, the hit
rate for dynamic replication is low and most requests must be
served by the driver, creating a bottleneck. As the page size
increases, the hit rate improves, but when the page size is too
large at 2 MB, the workers incur an excess communication
cost that limits scaling.

Comparison to Redis. Redis features an API specialized to
geospatial queries [3], where users can add locations associ-
ated with values. We evaluated the benefit of Clamor over a
custom Redis solution, by storing the 7 million input nodes in
a Redis server using the geospatial API. We then ran a subset
of the queries from 1 or more Redis clients (each running 8
threads). We found that Redis was too slow to complete the
entire 1 billion point workload in a reasonable amount of
time, and instead benchmarked a very small subset of the full
benchmark. To complete only 10,000 queries, 1/1000 of the
queries in the Clamor benchmark, a single Redis client takes
about 50 minutes — 125x slower than the time to run Clamor
on the full query set. Moreover, the Redis implementation
does not benefit from scale-out: running this small benchmark
on cluster sizes between 10 and 50 nodes results in a roughly
constant runtime between 43 and 50 minutes.

We note two main differences that improve Clamor’s perfor-
mance compared to Redis. First, Redis does not build an actual
k-d tree index over the points, instead storing them as a sorted
set. Redis does not natively support nearest-neighbor queries:
queries must provide a manual bounding box hint in order for
nearest-neighbor searches to be efficient. In order to match
Clamor’s top-10 workload, we manually found the minimum
size of bounding box such that all queries in the workload re-
turned 10 results. Importantly, because Clamor builds a spatial

SoCC 21, November 1-4, 2021, Seattle, WA, USA

index over the queries, it does not need any manual hints and
still achieves orders of magnitude better performance. Second,
in Clamor, the nearest neighbor search is performed on the
workers. In contrast, the single-node Redis server has to serve
all of the client’s bounding-box queries, limiting scalability.

7.1.2 Parameter server We constructed synthetic data
sets following the schema for the Criteo ad click prediction
benchmark [4] to benchmark sparse logistic regression. Each
data point has 39 features with values uniformly generated
according to the number of unique values in each integer
valued Criteo data feature (bucketing the domain of integer
values into 5 million buckets). We do not replicate the categor-
ical values in the criteo dataset. For sparse logistic regression,
the data points are one-hot encoded, resulting in extremely
sparse accesses to the 1 billion global parameters.

We perform 10 iterations of synchronous stochastic gradi-
ent descent (SGD) in each system and measure the average
runtime per iteration. We compare Clamor’s implementation
of sparse logistic regression to two existing implementations
of the parameter server in a BSP system: a naive Spark imple-
mentation for which all updates to the global weights array
are made by collecting to the driver node using broadcast, and
a Spark implementation that uses Glint [38] as a parameter
server to store the global weights.

Scalability. We first evaluate the behavior of these systems
on a 50 node cluster, performing SGD with a 1 billion weight
parameter vector and increasing numbers of data points. We
start with a small 96 million data point set, and use it to gen-
erate larger synthetic datasets, as realistic workloads will
have many more data points than parameters. The naive
Spark implementation using broadcast failed to complete
after 7 hours on even the smallest dataset. (This is consistent
with observations by the Spark MLIib developers that logistic
regression fails to scale beyond tens of millions of parame-
ters [52]). Therefore our evaluation compares Clamor and
Glint. Figure 7a shows the performance of Glint and Clamor
for increasing dataset sizes. This evaluation uses a 2 MB page
size for Clamor, based on some tuning. Notably, Glint fails to
scale to 5 billion data points because of an out of memory error.
We were able to reduce this memory overhead by reducing
the partition size, but a run with smaller partitions failed to
complete in over 10 hours. Although Clamor performs worse
than Glint for very small datasets (smaller than the number
of parameters), it scales much better than Glint for realistic
dataset sizes, performing 3.3X better on 1 billion points and
4.5X better on 2.5 billion points.

In order to understand this scaling behavior, we plot a break-
down of the Clamor runtimes in Figure 7b. As the data size
increases, the compute time scales up linearly, while the ag-
gregation time remains roughly constant because the features

Pratiksha Thaker, Hudson Ayers, Deepti Raghavan, Ning Niu, Philip Levis, and Matei Zaharia

Glint ™ Clamor 953

1000

750

w
£ 500 414 364
€ 210
B0 5623 . .
0 - || l
0.1 1 25 5

Data size (billions)

(a) Performance of Glint and Clamor as the data size increases on
a cluster of 50 nodes. For a workload of 5 billion data points, Glint
fails to complete with an out of memory error while Clamor still
runs in 6 minutes per iteration.

Aggregation Compute M Peerreq Driverreq
400
78.05
__300
L 28595
[}
E200 66.487
€
=
100 63.855 14405
58.74
0
1 2.5 5

Data size (billions)

(b) Breakdown of runtime for Clamor varying data size on 50 nodes.
As the data size increases, the aggregation time remains roughly
constant and the compute time dominates, reducing the relative
overhead of aggregation.

238.9 Glint ® Clamor
250

200

3 150 1182
100.4

£
€ 100 727
= 509 588 w65 623
i L L ‘ L
0 —
5 10 25 50
Workers

(c) Scaling for logistic regression on Glint and Clamor with 1 billion
weights and a small number of data points (96 million).

Figure 7: Performance of Glint and Clamor on sparse logistic
regression workloads.

are sparse and only the final weight update, aggregated over
the batch, is returned to the driver.

Finally, we evaluate the per-iteration runtime of these im-
plementations on clusters between 5 and 50 nodes with a 1
billion weight parameter vector using only the small dataset of
96 million points, as using the larger dataset is impractical for
smaller numbers of nodes and Glint fails to complete on very
large datasets. The results are in Figure 7c. As the number of
nodes increases, the performance of Clamor degrades due to
the weight aggregation on the driver, both due to the increas-
ing network overhead of retrieving weights from workers as
well as lock contention on weights.

Clamor: Extending Functional Cluster Computing Frameworks with Fine-Grained Remote Memory Access SoCC *21, November 1-4, 2021, Seattle, WA, USA

2;0\'\,\‘

242 236 231

Runtime (s)
N
8

=}
S

0.25MB 0.5MB 1MB 2MB
Page size

Figure 8: Clamor page size variation for parameter server.
Because feautres vary uniformly in their domain, larger
page sizes have a higher peer hit rate; however, because
the features are sparse, the relative performance gains are
negligible after 0.5 MB.

m Spark ® Clamor 13934

150 125.27

100

50

Execution time (s)

5 10 25
Machines

Figure 9: Hash table update scaling for 10 iterations of
lookups, with one update in between each iteration.

Performance tuning. Performing this evaluation also high-
lighted some of the usability advantages of Clamor. We first
wrote a naive Glint implementation that pulled from the pa-
rameter server on every read to a weight. This naive imple-
mentation was very slow, with a workload of just 40 thousand
data points and 1 million weights taking over 10 minutes per
iteration. To speed it up, we implemented optimizations that
included manually caching weights on each node, an optimiza-
tion not required in Clamor because Clamor naturally caches
and replicates weights during execution. We also found that
data partition sizes had a significant impact on performance
of our Glint implementation, so we manually optimized the
partition size for each experiment run and compared against
the fastest time.

We ran Clamor in these experiments with a page size of 2
MB. In order to determine the page size, we ran an experiment
with 1 billion weights and a 2.5 billion point synthetic dataset
on a fixed size cluster of 50 workers, varying the page size
between 0.25 MB and 2 MB. In Figure 8, we plot these results.
A very small page size of 0.25 MB is inefficient because it has a
low hit rate for dynamic replication, and above 0.5 MB a larger
page size is beneficial but the marginal gain of a larger page
size decreases as the features are too sparse for this workload
to benefit from additional locality. We set the page size to the
optimal 2 MB based on this experiment.

Spark ® Clamor 1 MB
800

Clamor 0.25MB ™ MPI

10 20 30 40 50
Workers

Figure 10: End-to-end runtime for 10 iterations of k-means
on 100 GB of data.

7.1.3 Streaming updates In systems such as Spark and
Dask, global variables cannot be updated once they have been
broadcast to workers [79]. Clamor naturally supports this
functionality by allowing the driver to update shared vari-
ables, and workers download just the updated pages when
they are accessed.

In figure 9, we simulate a streaming updates workload by
performing iterations of 10 million Zipf-distributed hash table
lookups interspersed with updates to a single key between
each iteration. Clamor is up to 44X faster than Spark in this
workload, even compared to a Java hash map specialized to
long pairs, because Spark must re-broadcast a 1 GB variable on
each iteration while Clamor workers only update a 1 MB page.

7.2 Batch processing workloads

We additionally evaluate Clamor on a representative batch
data-parallel analytics workload that is supported by existing
BSP frameworks: k-means clustering. This workload does not
perform sparse random access, and our goal is to demonstrate
that Clamor’s performance is reasonable compared to sys-
tems (such as Spark) that primarily target these “dense” access
patterns. We compared Clamor with Spark and MPI running
k-means for 10 iterations on 100 GB of data on clusters be-
tween 10 and 50 machines each running 8 worker processes.
This dataset was generated using Gaussian-distributed points
around 100 ground truth cluster means with dimension 10
(k =10, d = 10). In this experiment, we compared against the
same program implemented in Spark and MPI. Spark was
configured to have one executor with 8 cores per machine,
with the executor allotted the entire machine RAM; MPI was
configured to run 8 processes per machine. We run Clamor
with both 1 MB and 0.25 MB pages to compare the effect of
page sizes on this workload.

The results are in Figure 10. Clamor with a page size of 0.25
MB outperforms the page size of 1 MB by up to 2%, largely be-
cause the workload does not make accesses to a global shared
variable and thus the main communication bottleneck lies in
the aggregation of means (which is a small 10-dimensional
vector). With a page size of 0.25 MB, Clamor performs up
to 5.8% better than Spark (on the largest cluster size, where

SoCC 21, November 1-4, 2021, Seattle, WA, USA

Spark requires 367 seconds and Clamor takes 63 seconds). On
the other hand, Clamor is between 1.8X and 3.4X slower than
MPI across cluster sizes.

The slowdown relative to MPI came from two places: first,
the compute time per iteration in Clamor was 2 seconds slower
than MPT’s iteration time, which is likely due to a slightly sub-
optimal Clamor implementation that assigns clusters to points
and then makes a second pass over the cluster assignments
to compute means; this can be resolved by optimizing the
implementation. Second, aggregates on the driver in Clamor
happen in serial rather than in parallel, resulting in higher
latency when aggregating the results of work on the cluster.
Again, this slowdown is not fundamental, and further imple-
mentation work to add parallel or tree-structured aggregation
would reduce this aggregation overhead.

7.3 Faultrecovery

A key feature of modern BSP frameworks is the ability to re-
cover gracefully from worker failures. In this section, we show
that, in spite of the more complex memory model, Clamor re-
tains the fault recovery guarantees of frameworks like Spark.

In Figure 11, we run 10 iterations of k-means on 100 GB
of data, on a 25-node cluster, and compare normal execution
times to execution times under a failure in the 4th iteration.
Each iteration consisted of 250 tasks. The iteration times in-
clude the time required to fetch data from S3.

In the first iteration, workers download data from S3 in par-
allel. Subsequent iterations take about 21s each in the normal
case. When a worker fails in iteration 4, the tasks required
to reconstruct the data on that worker, including the initial
download, are reassigned to other workers. The 112-second
execution time for iteration 4 includes the time for workers to
complete their assigned tasks from iteration 4 and then down-
load and recompute the data lost from the failed worker. Once
the data is reconstructed, iteration time returns to 21s. We
can compare these numbers to a comparable experiment in
the Spark paper [78]: each iteration in that experiment takes
60s, and the execution time increases to 81s after a failure.
The primary reason for this relatively larger slowdown is that
Clamor must retrieve lost input data from Amazon S3, while
Spark inputs were stored near the executors in a distributed
file system. Qualitatively, the recovery behavior of both sys-
tems is similar; executors return to normal execution times
on the iteration following the failure and recovery.

These results demonstrate that fine-grained, lineage-based
recovery is possible even in a relaxed setting in which depen-
dencies are not known in advance, aslong as the dependencies
can be expressed as a DAG.

7.4 Straggler mitigation

Clamor implements straggler mitigation by launching repli-
cas for tasks within a stage that are lagging behind the median

Pratiksha Thaker, Hudson Ayers, Deepti Raghavan, Ning Niu, Philip Levis, and Matei Zaharia

1500

125 ©1000
@100 ™ No failure ® Failure g
g =
£ 75 =
c =
S 50 3 500
g g
S 25 [}

o

Spec. off Spec.on Normal
exec.

1 2 3 4 5 6 7 8 9 10
Iteration

Figure 11: Fault recovery in Figure 12: Straggler

Clamor. A worker fails in the mitigation for 10 iterations

4th iteration. of k-means on 100 GB of
data and 10 nodes.

observed time to return a result. This feature is difficult to
implement in generic DSM systems, but is possible in Clamor
because of the write restrictions in the BSP model. Figure 12
shows Clamor performance with and without speculation
enabled in a setting where one node in a 10-node cluster is ex-
periencing heavy CPU contention while running 10 iterations
of k-means over 100 GB of data. Each node runs 8 workers, and
eachiteration has 80 partitions. With no contention, execution
takes roughly 3.5 minutes; with this contention and no specu-
lation enabled, execution slows down over 6X to 22 minutes.

With speculation enabled, the overall execution time re-
duces to roughly 9 minutes (less than 3x slower than execut-
ing under no contention). The remaining slowdown comes
from two sources: first, the delay in observing that a node is
slow and launching replicas, and second, the additional delay
incurred from moving data from the slow node to the replicas.
Because there are exactly as many partitions as workers, a
worker must completely finish executing its assigned task
before taking on the work of a straggler, so a slowdown of 2x
is inevitable in this experiment.

8 Related Work

Cluster programming models. A number of frameworks
in recent years provide users with access to distributed com-
putation via restricted dataflow models. MapReduce [29] and
Dryad [37] provide an abstraction for massively parallel and
distributed computation over datasets located in stable stor-
age. Other frameworks similarly restrict the dataflow model,
for example for graph computation [16, 35, 50] and stream
processing [22, 33]. Spark [78] extends the abstractions of
MapReduce and Dryad for fault-tolerant computation over
in-memory datasets, providing a restricted form of DSM. A
number of cluster computing frameworks aim to provide
transparent access to distributed computation for non-expert
users. Dask [66] provides a distributed interface for compu-
tations supported by the Pandas [51] data analysis library.

Clamor: Extending Functional Cluster Computing Frameworks with Fine-Grained Remote Memory Access SoCC *21, November 1-4, 2021, Seattle, WA, USA

Ray [55] primarily targets fine-grained, low-latency computa-
tion for machine learning workloads. PyWren [41] massively
parallelizes work using serverless computation.

Like Clamor, Piccolo [64] offers a MapReduce-like inter-
face for parallel workloads. Clamor allows for transparent
global addressing, while Piccolo requires code modifications
to use a shared key-value table API; and Piccolo uses global
checkpointing for fault tolerance rather than fine-grained
lineage. Similarly, Jet [34] provides a distributed key-value
store abstraction for streaming workloads, but cannot imple-
ment the caching optimizations possible in Clamor with the
BSP programming model. Some distributed workloads, such
as k-means, have distributed algorithms that may perform
better than our BSP implementation but would lose the fault
tolerance and caching benefits [15, 32, 39].

Clamor builds on these models, retaining the best of the
performance and fault tolerance enabled by coarse-grained
data dependencies while enabling fine-grained data access in
key use cases.

Distributed shared memory. The Clamor global address
space is partly inspired by a long line of research [59] that
aims to make the memory of a cluster transparently available
to applications, starting with classic work including IVY [46],
Munin [17],and TreadMarks [13] and extending to the present
[13, 40, 43, 47]. Co-arrays [60] and partitioned global address
spaces (PGAS) [16, 23, 25,27, 28,31,45,74,75,80] are examples
of DSM abstractions that leverage independence assumptions
on data to reduce synchronization overheads. These systems
largely aim to support transparent distriubted shared mem-
ory for generic programs. In contrast, Clamor focuses on a
subset of applications that require fine-grained data access
in a restricted programming model, which allows it to imple-
ment beneficial features of functional analytics frameworks
that are difficult to implement in general DSM. For exam-
ple, DSM frameworks typically rely on checkpointing-based
fault tolerance (if they implement fault tolerance at all), while
Clamor’s restricted programming model enables fine-grained,
lineage-based fault tolerance as well as straggler mitigation.
More recent models of DSM restrict the workloads they
support in order to simplify synchronization, programming,
and performance optimization. Grappa [58] takes the position
that many common data analytics tasks have poor locality,
and argues that workload parallelism can be used to hide
the communication overhead of such workloads. However,
Grappa does not implement fault tolerance as they determine
that restarting a job entirely is cheaper for their target work-
loads, and Grappa cannot easily integrate straggler mitigation.
Pocket [44] provides facilities for sharing ephemeral data be-
tween serverless tasks. While Pocket enables a form of dis-
tributed shared memory, it does not provide a shared address
space or transparent random addressing as Clamor does.

Other systems [11, 12, 30, 53] take advantage of increasing
network throughput to implement fine-grained remote mem-
ory accesses using RDMA. Clamor’s functional task model
could also be implemented using RDMA and is not funda-
mentally in conflict with these systems, although functional
tasks enable reasoning about data locality that are difficult in
general-purpose RDMA-based systems.

Load balancing and replication. Replication is a common
problem for load balancing in distributed systems, and sys-
tems implement different replication strategies depending
on their target workload. Orchestra [26] is a heavily opti-
mized peer-to-peer mechanism to broadcast global variables
in Spark, but does not need to support dynamic load balanc-
ing as in Clamor. Slicer [10] supports dynamic sharding, but
on time scales of hours rather than minutes or seconds. Cen-
trifuge [9] uses consistent hashing, which in Clamor would
incur the overhead of copying each page to several replicas
in order to load balance even when those pages may not be
accessed. Clay [67] solves a complex optimization problem
in order to plan database migrations, again based on statistics
over time.

9 Conclusion

We have presented Clamor, a system that enables fine-grained
remote memory access for large, sparsely-accessed global vari-
ables in data-parallel functional analytics workloads. Clamor
takes advantage of sparse access patterns and the restricted
BSP execution model to make remote memory access efficient
by caching hot pages, and tracks fine-grained lineage within
global variables for efficient fault tolerance. Overall, Clamor
is able to outperform custom systems that use remote key-
value stores for fine-grained access and performs on par with
frameworks like Spark on traditional data-parallel workloads,
making fine-grained, generic global variable access practical
for many relevant modern workloads.

10 Acknowledgements

We thank Shoumik Palkar, Dan Ports, and Shivaram Venkataraman
for valuable conversations regarding applications of Clamor. Alex
Aiken, Peter Kraft, Deepak Narayanan, John Ousterhout, Keshav
Santhanam, Keith Winstein, Gina Yuan, and Irene Zhang provided
helpful feedback on previous drafts of our work. We also thank our
shepherd, Yu Hua, and the anonymous SoCC reviewers for their
detailed comments. This research was supported in part by affili-
ate members and other supporters of the Stanford DAWN project—
Ant Financial, Facebook, Google, and VMware—as well as Toyota
Research Institute, Cisco, SAP, and the NSF under CAREER grant
CNS-1651570. Any opinions, findings, and conclusions or recom-
mendations expressed in this material are those of the authors and do
not necessarily reflect the views of the National Science Foundation.
Toyota Research Institute (“TRI”) provided funds to assist the authors
with their research but this article solely reflects the opinions and
conclusions of its authors and not TRI or any other Toyota entity.

SoCC 21, November 1-4, 2021, Seattle, WA, USA

References

[1] [md].

[t

—
O
—

[11

[12

[13

(14

(15

(16

(17

(18

[19

[20

[21

[22

—

—

—_

=

=

[l

—

—_ =

[t

—

—

Distributed XGBoost with Dask.
readthedocs.io/en/latest/tutorials/dask.html.

[n.d.]. Faiss. https://github.com/facebookresearch/faiss
[n.d.]. Geospatial. https://redislabs.com/redis-best-
practices/indexing-patterns/geospatial/.

2015. Download Criteo 1TB Click Logs dataset. https://ailab.

criteo.com/download-criteo-1tb-click-logs-dataset/.

2017. Using KDTrees in Apache Spark. http://www.trailofpapers.

net/2017/01/using-kdtrees-in-apache-spark.html.

2018. Parameter Server. https://github.com/dask/dask-
ml/issues/171.

2021. OpenStreetMap. https://openstreetmap.org.

2021. Yelp open dataset. https://www.yelp.com/dataset.

Atul Adya, John Dunagan, and Alec Wolman. 2010. Centrifuge:
Integrated Lease Management and Partitioning for Cloud Services..
In NSDI, Vol. 10. 1-16.

Atul Adya, Daniel Myers, Jon Howell, Jeremy Elson, Colin Meek,
Vishesh Khemani, Stefan Fulger, Pan Gu, Lakshminath Bhuvanagiri,
Jason Hunter, et al. 2016. Slicer: Auto-sharding for datacenter
applications. In 12th {USENIX} Symposium on Operating Systems
Design and Implementation ({ OSDI} 16). 739-753.

Marcos K Aguilera, Nadav Amit, Irina Calciu, Xavier Deguillard,
Jayneel Gandhi, Stanko Novakovic, Arun Ramanathan, Pratap
Subrahmanyam, Lalith Suresh, Kiran Tati, et al. 2018. Remote regions:
a simple abstraction for remote memory. In 2018 USENIX Annual
Technical Conference (USENLX ATC) 18). 775-787.

Marcos K Aguilera, Nadav Amit, Irina Calciu, Xavier Deguillard,
Jayneel Gandhi, Pratap Subrahmanyam, Lalith Suresh, Kiran Tati,
Rajesh Venkatasubramanian, and Michael Wei. 2017. Remote memory
in the age of fast networks. In Proceedings of the 2017 Symposium on
Cloud Computing. ACM, 121-127.

Cristiana Amza, Alan L Cox, Sandhya Dwarkadas, Pete Keleher,
Honghui Lu, Ramakrishnan Rajamony, Weimin Yu, and Willy
Zwaenepoel. 1996. Treadmarks: Shared memory computing on
networks of workstations. Computer 29, 2 (1996), 18-28.

Carlos Azevedo. 2019. Broadcasting updates on spark jobs.
https://stackoverflow.com/q/57860398.

Maria Florina Balcan, Steven Ehrlich, and Yingyu Liang. 2013.
Distributed k-means and k-median clustering on general topologies.
arXiv preprint arXiv:1306.0604 (2013).

Michael Bauer, Sean Treichler, Elliott Slaughter, and Alex Aiken. 2012.
Legion: Expressing locality and independence with logical regions. In
SC’12: Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis. IEEE, 1-11.

John K Bennett, John B Carter, and Willy Zwaenepoel. 1990. Munin:
Distributed shared memory based on type-specific memory coherence.
Vol. 25. ACM.

Jon Louis Bentley. 1975. Multidimensional binary search trees used
for associative searching. Commun. ACM 18, 9 (1975), 509-517.

Badri Bhaskar. 2016. Scaling machine learning to billions of param-
eters. https://databricks.com/session/scaling-machine-
learning-to-billions-of-parameters.

broadcast-gist [n.d.]. Spark streaming broadcast vari-
able wrapper. https://gist.github.com/mcnamaras/
040a362ca8100347elab.

Clement Carreau. 2017. How to update a ML model dur-
ing a spark streaming job without restarting the application?
https://stackoverflow.com/q/43387114

Craig Chambers, Ashish Raniwala, Frances Perry, Stephen Adams,
Robert R Henry, Robert Bradshaw, and Nathan Weizenbaum. 2010.

https://xgboost.

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]
[37]

[38]

[39]

Pratiksha Thaker, Hudson Ayers, Deepti Raghavan, Ning Niu, Philip Levis, and Matei Zaharia

FlumeJava: easy, efficient data-parallel pipelines. In ACM Sigplan
Notices, Vol. 45. ACM, 363-375.

Barbara Chapman, Tony Curtis, Swaroop Pophale, Stephen Poole, Jeff
Kuehn, Chuck Koelbel, and Lauren Smith. 2010. Introducing OpenSH-
MEM: SHMEM for the PGAS community. In Proceedings of the Fourth
Conference on Partitioned Global Address Space Programming Model. 1-3.
Moses S Charikar. 2002. Similarity estimation techniques from
rounding algorithms. In Proceedings of the thiry-fourth annual ACM
symposium on Theory of computing. 380-388.

Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher
Donawa, Allan Kielstra, Kemal Ebcioglu, Christoph Von Praun, and
Vivek Sarkar. 2005. X10: an object-oriented approach to non-uniform
cluster computing. Acm Sigplan Notices 40, 10 (2005), 519-538.
Mosharaf Chowdhury, Matei Zaharia, Justin Ma, Michael I Jordan, and
Ion Stoica. 2011. Managing data transfers in computer clusters with
orchestra. ACM SIGCOMM Computer Communication Review 41, 4
(2011), 98-109.

Cristian Coarfa, Yuri Dotsenko, John Mellor-Crummey, Francois
Cantonnet, Tarek El-Ghazawi, Ashrujit Mohanti, Yiyi Yao, and Daniel
Chavarria-Miranda. 2005. An evaluation of global address space
languages: co-array fortran and unified parallel C. In Proceedings of the
tenth ACM SIGPLAN symposium on Principles and practice of parallel
programming. 36-47.

Mattias De Wael, Stefan Marr, Bruno De Fraine, Tom Van Cutsem, and
Wolfgang De Meuter. 2015. Partitioned global address space languages.
ACM Computing Surveys (CSUR) 47, 4 (2015), 62.

Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: simplified data
processing on large clusters. Commun. ACM 51, 1 (2008), 107-113.
Aleksandar Dragojevi¢, Dushyanth Narayanan, Orion Hodson, and
Miguel Castro. 2014. FaRM: Fast remote memory. In Proceedings
of the 11th USENIX Conference on Networked Systems Design and
Implementation. 401-414.

Tarek El-Ghazawi and Lauren Smith. 2006. UPC: unified parallel C. In
Proceedings of the 2006 ACM/IEEE conference on Supercomputing. 27-es.
Dan Feldman, Melanie Schmidt, and Christian Sohler. 2020. Turning
big data into tiny data: Constant-size coresets for k-means, PCA, and
projective clustering. SIAM J. Comput. 49, 3 (2020), 601-657.

Yuan Yu Michael Isard Dennis Fetterly, Mihai Budiu, Ulfar Erlingsson,
and Pradeep Kumar Gunda Jon Currey. 2009. DryadLINQ: A system for
general-purpose distributed data-parallel computing using a high-level
language. Proc. LSDS-IR 8 (2009).

Can Gencer, Marko Topolnik, Viliam Durina, Emin Demirci, Ensar B
Kahveci, Ali Giirbiiz Ondfej Lukas, Jozsef Bartok, Grzegorz Gierlach,
FrantiSek Hartman, Ufuk Yilmaz, et al. 2021. Hazelcast Jet: Low-
latency Stream Processing at the 99.99 th Percentile. arXiv preprint
arXiv:2103.10169 (2021).

Joseph E Gonzalez, Reynold S Xin, Ankur Dave, Daniel Crankshaw,
Michael J Franklin, and Ion Stoica. 2014. Graphx: Graph processing
in a distributed dataflow framework. In 11¢th {USENIX} Symposium on
Operating Systems Design and Implementation ({OSDI} 14). 599-613.
grpc [n.d.]. gRPC. https://grpc.io/

Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis
Fetterly. 2007. Dryad: distributed data-parallel programs from
sequential building blocks. In ACM SIGOPS operating systems review,
Vol. 41. ACM, 59-72.

Rolf Jagerman, Carsten Eickhoff, and Maarten de Rijke. 2017. Comput-
ing web-scale topic models using an asynchronous parameter server. In
Proceedings of the 40th International ACM SIGIR Conference on Research
and Development in Information Retrieval. 1337-1340.

Ruoming Jin, Anjan Goswami, and Gagan Agrawal. 2006. Fast and
exact out-of-core and distributed k-means clustering. Knowledge and
Information Systems 10, 1 (2006), 17-40.

https://xgboost.readthedocs.io/en/latest/tutorials/dask.html
https://xgboost.readthedocs.io/en/latest/tutorials/dask.html
https://github.com/facebookresearch/faiss
https://redislabs.com/redis-best-practices/indexing-patterns/geospatial/
https://redislabs.com/redis-best-practices/indexing-patterns/geospatial/
https://ailab.criteo.com/download-criteo-1tb-click-logs-dataset/
https://ailab.criteo.com/download-criteo-1tb-click-logs-dataset/
http://www.trailofpapers.net/2017/01/using-kdtrees-in-apache-spark.html
http://www.trailofpapers.net/2017/01/using-kdtrees-in-apache-spark.html
https://github.com/dask/dask-ml/issues/171
https://github.com/dask/dask-ml/issues/171
https://openstreetmap.org
https://www.yelp.com/dataset
https://stackoverflow.com/q/57860398
https://databricks.com/session/scaling-machine-learning-to-billions-of-parameters
https://databricks.com/session/scaling-machine-learning-to-billions-of-parameters
https://gist.github.com/mcnamaras/040a362ca8100347e1a6
https://gist.github.com/mcnamaras/040a362ca8100347e1a6
https://stackoverflow.com/q/43387114
https://grpc.io/

Clamor: Extending Functional Cluster Computing Frameworks with Fine-Grained Remote Memory Access SoCC *21, November 1-4, 2021, Seattle, WA, USA

(40]

[41]

[42

—

[43]

[44]

[45]

[46

=

(47

—

(48]

(49

[

[50

=

[51]

(52

—

(53

—_

[54

=

[55

—

[56]

(57]

(58]

Kirk Lauritz Johnson. 1996. High-performance all-software distributed
shared memory. (1996).

Eric Jonas, Qifan Pu, Shivaram Venkataraman, Ion Stoica, and Benjamin
Recht. 2017. Occupy the cloud: Distributed computing for the 99%. In
Proceedings of the 2017 Symposium on Cloud Computing. ACM, 445-451.
kdtree [n.d.]. kdtree-rs. https://github.com/mrhooray/kdtree-
rs.

Pete Keleher, Alan L Cox, and Willy Zwaenepoel. 1992. Lazy release
consistency for software distributed shared memory. Vol. 20. ACM.

Ana Klimovic, Yawen Wang, Patrick Stuedi, Animesh Trivedi, Jonas
Pfefferle, and Christos Kozyrakis. 2018. Pocket: Elastic ephemeral
storage for serverless analytics. In 13th {USENIX} Symposium on
Operating Systems Design and Implementation ({OSDI} 18). 427-444.
Vivek Kumar, Yili Zheng, Vincent Cavé, Zoran Budimli¢, and Vivek
Sarkar. 2014. HabaneroUPC++: a Compiler-free PGAS Library. In
Proceedings of the 8th International Conference on Partitioned Global
Address Space Programming Models. 1-10.

Kai Li. 1988. IVY: A Shared Virtual Memory System for Parallel
Computing. ICPP (2) 88 (1988), 94.

Kai Li and Paul Hudak. 1989. Memory coherence in shared virtual
memory systems. ACM Transactions on Computer Systems (TOCS) 7,
4(1989), 321-359.

Mu Li, David G Andersen, Jun Woo Park, Alexander J Smola, Amr
Ahmed, Vanja Josifovski, James Long, Eugene J Shekita, and Bor-Yiing
Su. 2014. Scaling distributed machine learning with the parameter
server. In 11th { USENIX} Symposium on Operating Systems Design and
Implementation ({OSDI} 14). 583-598.

Qiping Li. 2016. A Prototype of Parameter Server.
//issues.apache.org/jira/browse/SPARK-6932.
Grzegorz Malewicz, Matthew H Austern, Aart JC Bik, James C Dehnert,
Ilan Horn, Naty Leiser, and Grzegorz Czajkowski. 2010. Pregel: a system
for large-scale graph processing. In Proceedings of the 2010 ACM SIG-
MOD International Conference on Management of data. ACM, 135-146.
Wes McKinney. 2010. Data Structures for Statistical Computing in
Python . In Proceedings of the 9th Python in Science Conference. 51 — 56.
Xiangrui Meng. 2014. https://issues.apache.org/jira/
browse/SPARK- 4590

Christopher Mitchell, Yifeng Geng, and Jinyang Li. 2013. Using
One-Sided RDMA Reads to Build a Fast, CPU-Efficient Key-Value Store..
In USENIX Annual Technical Conference. 103-114.

Michael Mitzenmacher. 2001. The power of two choices in randomized
load balancing. IEEE Transactions on Parallel and Distributed Systems
12,10 (2001), 1094-1104.

Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov,
Richard Liaw, Eric Liang, William Paul, Michael I Jordan, and Ion Stoica.
2017. Ray: A Distributed Framework for Emerging Al Applications.
arXiv preprint arXiv:1712.05889 (2017).

Dheevatsa Mudigere, Yuchen Hao, Jianyu Huang, Andrew Tulloch,
Srinivas Sridharan, Xing Liu, Mustafa Ozdal, Jade Nie, Jongsoo Park,
Liang Luo, et al. 2021. High-performance, Distributed Training of
Large-scale Deep Learning Recommendation Models. arXiv preprint
arXiv:2104.05158 (2021).

Maxim Naumov, John Kim, Dheevatsa Mudigere, Srinivas Sridharan,
Xiaodong Wang, Whitney Zhao, Serhat Yilmaz, Changkyu Kim, Hector
Yuen, Mustafa Ozdal, et al. 2020. Deep learning training in facebook
data centers: Design of scale-up and scale-out systems. arXiv preprint
arXiv:2003.09518 (2020).

Jacob Nelson, Brandon Holt, Brandon Myers, Preston Briggs, Luis
Ceze, Simon Kahan, and Mark Oskin. 2014. Grappa: A latency-tolerant
runtime for large-scale irregular applications. In International Workshop
on Rack-Scale Computing (WRSC w/EuroSys).

https:

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

Bill Nitzberg and Virginia Lo. 1991. Distributed shared memory: A
survey of issues and algorithms. Computer 24, 8 (1991), 52-60.

Robert W Numrich and John Reid. 1998. Co-Array Fortran for parallel
programming. In ACM Sigplan Fortran Forum, Vol. 17. ACM New York,
NY, USA, 1-31.

Shoumik Palkar, James] Thomas, Anil Shanbhag, Deepak Narayanan,
Holger Pirk, Malte Schwarzkopf, Saman Amarasinghe, Matei Zaharia,
and Stanford InfoLab. 2017. Weld: A common runtime for high
performance data analytics. In Conference on Innovative Data Systems
Research (CIDR).

Julien Peloton. 2019. Accelerating Astronomical Discoveries with
Apache Spark. https://databricks.com/session_eul9/
accelerating-astronomical-discoveries-with-apache-
spark.

S Plaszczynski, J Peloton, C Arnault, and JE Campagne. 2019. Analysing
billion-objects catalogue interactively: Apache Spark for physicists.
Astronomy and Computing 28 (2019), 100305.

Russell Power and Jinyang Li. 2010. Piccolo: Building Fast, Distributed
Programs with Partitioned Tables.. In OSDI, Vol. 10. 1-14.

rebroadcast [n.d.]. Broadcast variables can be rebroadcast?
http://apache-spark-user-1ist.1001560.n3.nabble.com/
Broadcast-variables-can-be-rebroadcast-td22908.html.
Matthew Rocklin. 2015. Dask: Parallel computation with blocked
algorithms and task scheduling. In Proceedings of the 14th Python in
Science Conference. Citeseer.

Marco Serafini, Rebecca Taft, Aaron J Elmore, Andrew Pavlo, Ashraf
Aboulnaga, and Michael Stonebraker. 2016. Clay: Fine-grained adaptive
partitioning for general database schemas. Proceedings of the VLDB
Endowment 10, 4 (2016), 445-456.

Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert
Chansler. 2010. The hadoop distributed file system. In 2010 IEEE 26th
symposium on mass storage systems and technologies (MSST). Ieee, 1-10.
Andrew Stubbs. 2015. How can I update a broadcast variable in spark
streaming? https://stackoverflow.com/q/33372264.

Parthiv Sukumar. 2017. How Spark and Redis help derive geograph-
ical insights about customers. https://build.hoteltonight.
com/how- spark-and- redis-help-derive-geographical-
insights-about- customers-be7e32c1f479.

Leslie G Valiant. 1990. A bridging model for parallel computation.
Commun. ACM 33, 8 (1990), 103-111.
Yeshwanth Vijayakumar. 2020.
lion Records Per Second Using Apache Spark!
//databricks.com/session_na20/how-adobe-does-2-
million- records-per-second-using-apache-spark.
Yifan Wang. 2015. Call broadcast() in each interval for spark streaming
programs. https://issues.apache.org/jira/browse/SPARK-
6404.

Katherine Yelick, Dan Bonachea, Wei-Yu Chen, Phillip Colella, Kaushik
Datta, Jason Duell, Susan L Graham, Paul Hargrove, Paul Hilfinger,
Parry Husbands, et al. 2007. Productivity and performance using
partitioned global address space languages. In Proceedings of the 2007
international workshop on Parallel symbolic computation. ACM, 24-32.
Kathy Yelick, Luigi Semenzato, Geoff Pike, Carleton Miyamoto, Ben
Liblit, Arvind Krishnamurthy, Paul Hilfinger, Susan Graham, David
Gay, Phil Colella, et al. 1998. Titanium: a high-performance Java dialect.
Concurrency and Computation: Practice and Experience 10, 11-13 (1998),
825-836.

Reza Zadeh. 2016. Early investigation of parameter server.
https://issues.apache.org/jira/browse/SPARK-4590.

Reza Zadeh. 2016. Large linear model parallelism via a join and re-
duceByKey. https://issues.apache.org/jira/browse/SPARK-
6567.

How Adobe Does 2 Mil-
https:

https://github.com/mrhooray/kdtree-rs
https://github.com/mrhooray/kdtree-rs
https://issues.apache.org/jira/browse/SPARK-6932
https://issues.apache.org/jira/browse/SPARK-6932
https://issues.apache.org/jira/browse/SPARK-4590
https://issues.apache.org/jira/browse/SPARK-4590
https://databricks.com/session_eu19/accelerating-astronomical-discoveries-with-apache-spark
https://databricks.com/session_eu19/accelerating-astronomical-discoveries-with-apache-spark
https://databricks.com/session_eu19/accelerating-astronomical-discoveries-with-apache-spark
http://apache-spark-user-list.1001560.n3.nabble.com/Broadcast-variables-can-be-rebroadcast-td22908.html
http://apache-spark-user-list.1001560.n3.nabble.com/Broadcast-variables-can-be-rebroadcast-td22908.html
https://stackoverflow.com/q/33372264
https://build.hoteltonight.com/how-spark-and-redis-help-derive-geographical-insights-about-customers-be7e32c1f479
https://build.hoteltonight.com/how-spark-and-redis-help-derive-geographical-insights-about-customers-be7e32c1f479
https://build.hoteltonight.com/how-spark-and-redis-help-derive-geographical-insights-about-customers-be7e32c1f479
https://databricks.com/session_na20/how-adobe-does-2-million-records-per-second-using-apache-spark
https://databricks.com/session_na20/how-adobe-does-2-million-records-per-second-using-apache-spark
https://databricks.com/session_na20/how-adobe-does-2-million-records-per-second-using-apache-spark
https://issues.apache.org/jira/browse/SPARK-6404
https://issues.apache.org/jira/browse/SPARK-6404
https://issues.apache.org/jira/browse/SPARK-4590
https://issues.apache.org/jira/browse/SPARK-6567
https://issues.apache.org/jira/browse/SPARK-6567

SoCC 21, November 1-4, 2021, Seattle, WA, USA Pratiksha Thaker, Hudson Ayers, Deepti Raghavan, Ning Niu, Philip Levis, and Matei Zaharia

[78] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, [79] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott
Justin Ma, Murphy McCauley, Michael J Franklin, Scott Shenker, Shenker, and Ion Stoica. 2010. Spark: Cluster Computing with Working
and Ion Stoica. 2012. Resilient distributed datasets: A fault-tolerant Sets. In HotCloud.
abstraction for in-memory cluster computing. In Proceedings of the 9th
USENIX conference on Networked Systems Design and Implementation.
USENIX Association, 2-2.

[80] Yili Zheng, Amir Kamil, Michael B Driscoll, Hongzhang Shan, and
Katherine Yelick. 2014. UPC++: a PGAS extension for C++.In 2014 IEEE

28th International Parallel and Distributed Processing Symposium. IEEE,
1105-1114.

	Abstract
	1 Introduction
	2 Motivation
	2.1 The Case for Fine-Grained Sharing

	3 Overview
	3.1 Cluster and computation model
	3.2 Enabling global variable access
	3.3 Programming model

	4 Efficiently serving global variables
	4.1 Caching and updates
	4.2 Replicating hot pages

	5 Fault tolerance and straggler mitigation
	5.1 Lineage-based fault tolerance
	5.2 Tracking lineage in Clamor
	5.3 Page versioning
	5.4 Straggler mitigation

	6 Implementation
	6.1 Weld compiler pass
	6.2 Shared address space
	6.3 Page size and metadata overhead

	7 Evaluation
	7.1 Random access workloads
	7.2 Batch processing workloads
	7.3 Fault recovery
	7.4 Straggler mitigation

	8 Related Work
	9 Conclusion
	10 Acknowledgements
	References

