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Abstract

Microsecond I/O will make data serialization a major
bottleneck for datacenter applications. Serialization is
fundamentally about data movement: serialization libraries
coalesce and flatten in-memory data structures into a single
transmittable buffer. CPU-based serialization approaches will
hit a performance limit due to data movement overheads and
be unable to keep up with modern networks.

We observe that widely deployed NICs possess scatter-
gather capabilities that can be re-purposed to accelerate seri-
alization’s core task of coalescing and flattening in-memory
data structures. It is possible to build a completely zero-copy,
zero-allocation serialization library with commodity NICs.
Doing so introduces many research challenges, including
using the hardware capabilities efficiently for a wide variety
of non-uniform data structures, making application memory
available for zero-copy I/O, and ensuring memory safety.
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1 Introduction

The microsecond era is here [5]. As Figure 1 shows,
datacenter applications today can achieve microsecond
packet round-trip times, reaching single digit RTTs with
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Figure 1: Reported RTTs of recent microsecond-scale systems,
annotated with the percentage overhead that Protobuf serial-
ization and deserialization of a single 1024 byte string (1.0 ps)
would add (shown in the dashed line). Redis RTT comes from
Arrakis [27], eRPC from eRPC [17], while the RDMA, DPDK
and Linux RTTs are measured on the Demikernel. [42].

kernel-bypass. At these latencies, everyday systems services,
like data serialization, become unaffordable bottlenecks.
Data serialization [2,3,36-38] is important in datacenter
applications. Many distributed applications [1,33,41], RPC
libraries [13], and microservice deployments [10] rely on
serialization as a communication primitive, but serialization
already causes a big performance penalty. Google reported
that Protobuf [37] accounted for 5% of its datacenter cy-
cles [18] in 2015, and we expect the problem to worsen today.
Concretely, we find that Protobuf takes 1.0 s to serialize
and deserialize a simple data structure with a single 1024 byte-
sized string. Figure 1 overlays this overhead. Protobuf serial-
ization for this data structure adds a staggering 43% overhead
to eRPC [17]. Each extra microsecond of serialization over-
head significantly affects the throughput a server can achieve
and the number of cores necessary to saturate the network.
The main problem is that general-purpose CPUs cannot
perform serialization’s core task efficiently enough. Seri-
alization must move data, because there is fundamental
tension between the application’s optimal in-memory
layout and the network’s optimal on-the-wire layout for a
data structure. Data structures often contain pointers (e.g.,
trees and graphs), so applications can easily modify data
structures without having to re-allocate all the memory
contiguously. Serialization coalesces these scattered pointers
into a contiguous buffer for transmission. Performing this
data movement in software will limit throughput in modern
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networks, because it requires copying each field at least once
and providing a buffer to store the final result.

Without high performance serialization libraries, applica-
tions are forced to hand-roll their own serialization or inte-
grate custom hardware accelerators. Redis [31] improves CPU-
based serialization by restricting its functionality, but cannot
avoid the overhead required to move memory. The most com-
plicated object Redis can serialize is a list. On the other hand,
deploying and integrating custom hardware accelerators that
do serialization [15, 28] can be difficult in today’s datacenters
as it requires extra coordination between network adminis-
trators, offload developers and application developers [22].

Our key observation is that while CPUs coalesce scattered
memory regions inefficiently, widely deployed NICs already
perform a similar function: scatter-gather. Scatter-gather
was designed for high-performance computing, where
applications frequently move large, statically-sized chunks
of memory between servers. Kernel bypass exposes this NIC
capability to the serialization library, but it is not obvious
how to directly use it for serialization. Thus, this paper asks:
How can we leverage NIC scatter-gather capabilities to build
serialization libraries that keep up with modern networks?

The remainder of the paper describes why existing soft-
ware serialization is inefficient (§2) and a simple use of NIC
scatter-gather for serialization (§3). We finally discuss open
research questions around building general-purpose serializa-
tion libraries with scatter-gather (§4) and related work (§5).

2 The Limits of Software Serialization

This section shows that CPU-based serialization cannot keep
up with the peak packet processing throughput of kernel
bypass I/O (§2.1), because CPU-based serialization cannot
avoid certain data movement overheads (§2.2).

2.1 Software Serialization Hits a Performance Limit

To demonstrate the overhead of serialization, we benchmark
three software serialization libraries [36-38] on DPDK
and find that they only achieve up to 52% of DPDK’s peak
single core throughput. We only consider compilation-based
serialization [2, 3, 36, 37] because dynamic type inference
at runtime [20, 23] (e.g., Java serialization of arbitrary Java
classes) adds unaffordable overheads. We use a data structure
with a single 1024-byte string field. Although the data struc-
ture is so simple that serialization is theoretically unnecessary,
it captures the minimal overhead for serialization today.
The experiment runs on 11 20-core dual socket Xeon Silver
4114 2.2 GHz servers, connected by Mellanox ConnectX-5
100 Gbps NICs and an Arista 7060CX 100 Gbps switch, with
a minimum 450 ns of switching latency. We use concurrent,
closed-loop clients to send a serialized message to the server,
which deserializes, then re-serializes the same payload and
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Figure 2: Measured achieved throughput and p99 latency for
sets of 1 to 20 concurrent clients (across up to 10 separate ma-
chines) pinging a single-core serialization echo server with
a message containing a single 1024-byte string. No software
serialization library can keep up with the peak zero copy
throughput without serialization, which is about 10.4 Gbps.

returns it to the client. We use a minimal UDP networking
stack for DPDK based on LWIP [7].

We show the results in Figure 2. The “No Serialization” line
removes serialization and gives the raw networking stack per-
formance. Kernel bypass requires that packet memory lives
in pinned, non-swappable pages, so the networking stack still
copies application payloads into registered packet memory
on transmission and copies packets into general memory on
receive. The “DPDK Single Core” line removes these copies
and represents the peak, zero-copy processing throughput
possible with DPDK. We include another version of Protobuf,
“Protobytes”, where the payload is bytes, not a string, as Pro-
tobuf spends a significant amount of time in utf8-validation.

Experiment Results. FlatBuffers, the fastest serialization
baseline, achieves only 5.4 Gbps, about 52% of DPDK’s peak
throughput of 10.4 Gbps (highest throughput measured
under 15 ps of tail latency), due to two performance gaps.
Serialization itself contributes the first 3 Gbps gap between
FlatBuffers and No Serialization. Having the networking
stack and serialization manage memory separately con-
tributes the 2 Gbps gap between No Serialization and DPDK
Single Core. Section 2.2 closely breaks down these gaps.

2.2 Why is Software Serialization So Expensive?

The overhead of moving data on CPUs limits the performance
of today’s software serialization libraries. In-memory data
structures often contain pointers, so serialization must flatten
the data into a contiguous representation. Additionally,
sometimes applications use serialization libraries to construct
and transmit data structures on-demand to respond to
application requests (e.g., returning the value of a range of
specified keys in a key-value store).



STEP Protobuf Cap’n Proto
Initialize Data Structure 34 ns 408 ns
Copy String Payload 167 ns” 80 ns*
Encode to Wire Format 351 ns* 53 ns
Decode from Wire Format 491 ns* 78 ns
Total Overhead 1043 ns 619 ns

Table 1: Breakdown of steps to serialize and deserialize a
message with a single 1024-byte-sized string field. Cap’n
Proto’s encode and decode are zero-copy because the in-
memory buffer layout matches the eventual wire format,
while Protobuf requires an expensive transformation to the
wire format. Both libraries’ copy-based overheads, marked
by stars, scale with message size.

All current serialization libraries, no matter their final
wire-format, pay the cost of the copies and allocations
required for this data movement. Table 1 breaks down the
serialization latencies from Figure 2 with Protobuf and
Cap’n Proto (FlatBuffers behaves similarly to Cap’n Proto).
After copying the field in (“Copy String Payload”), Protobuf
performs an expensive transformation to the on-the-wire
format. This transformation causes an additional allocation,
copy and utf8-validation during “Encode”, and corresponding
costs during “Decode”. Cap’n Proto’s “Encode” and “Decode”
are cheaper because the in-memory format matches the
wire-format exactly, but even Cap’n Proto must allocate space
for the serialized buffer (“Initialize Data Structure”) and copy
the payload in (“Copy String Payload”) during transmission.
For data structures with large payloads, data movement domi-
nates serialization costs, while converting integers to network
ordering, which few wire formats require, adds minimal cost.

The second performance gap in Figure 2 comes from
the firm separation between the serialization library and
networking stack. Modern kernel bypass stacks require that
packets live in non-swappable, pinned memory, so they
typically use their own buffers for I/O. Serialization libraries
are unaware of the networking stack altogether, so there are
inherently copies between the two. Completely eliminating
the performance gap in Figure 2 would require tight
integration between the serialization library, application and
networking stack. This integration would involve agreeing
on an interface, making pinned memory available, and coordi-
nating ownership and memory safety of buffers. Fortunately,
with kernel bypass, the networking stack, serialization
library, and application are all in the same address space, so
coordinating memory management may be possible (§4.3).

3 Leveraging the NIC for Serialization

Speeding up serialization requires reducing CPU data
movement. Our key insight is that datacenter servers already
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Figure 3: Achieved throughput for 16 clients pinging a
single-core echo server with different message sizes (trans-
mitted as a single chunk, without scatter-gather). The server
either copies the payload out to a transmit buffer or uses
zero-copy transmission. The difference between zero-copy
and copy-out becomes visible only at 512 bytes. Note the log
scale in the x-axis.

have a hardware accelerator for coalescing non-contiguous
I/O regions: the NIC itself. Modern NICs have scatter-gather
engines for high-performance computing, e.g., to opti-
mize MPI communication primitives [8, 32]. Networking
stacks [9, 34] have re-purposed scatter-gather to manage
sending packets that are larger than the maximum packet
buffer size. Serialization differs from these use cases because
it needs to move potentially many fields whose size and
placement dynamically depend on external data or user
requests. This section describes the design of a prototype
serialization library for the popular Mellanox CX-5 [25] NIC.

3.1 NIC Scatter-Gather Capabilities

Whether NIC scatter-gather can be used for high-
performance serialization depends on its performance
properties and restrictions. The section focuses on the
Mellanox CX-5; other modern scatter-gather NICs with PCle
interconnects likely behave similarly (§4.1).

Given a list of I/O addresses, a CX-5 makes multiple PCle
requests to coalesce the memory into a single packet. The NIC
supports up to 60 scattered memory chunks, but each chunk
requires a NIC-to-PCle round trip. The number of these round
trips that can execute concurrently depends on hardware im-
plementation details of the PCle endpoint at the NIC and the
CPU, which we currently do not have knowledge of. To un-
derstand this penalty, we ran an experiment where the DPDK
echo server described in Section 2.1 transmits a pre-initialized
payload of size 1024 bytes (no copies) equally divided into
different numbers of chunks to a single client. The RTT in-
creases from 6 ps to a 10.5 ps RTT when the message is sent
as a single buffer, versus 60 scatter-gather chunks. Sending
back the 1024-byte message as 16 chunks results in higher
latency than using FlatBuffers to deserialize, reserialize and
transmit the request (which requires copying the payload



struct ScatterGatherArray {
size_t num_entries;
void * ptrs[MAX_ENTRIES];
size_t length[MAX_ENTRIES];
b
Listing 1: The scatter-gather array, the core abstraction for
scatter-gather based serialization.

twice). These results suggest that, for a 1024-byte message,
the “maximum” number of chunks should be fewer than 16.

There is also a tradeoff between the cost of an additional
PCle request and simply copying the memory. Figure 3
shows an experiment that measures the difference in
achieved throughput for 16 clients pinging the single-core
DPDK echo server with messages of varying size consisting
of a single buffer. The payload is either pre-initialized
(“Zero-Copy”) or copied into the packet (“Copy-Out”). The
only discernible difference between copy-out and zero-copy
starts at about 512 bytes. Additionally, entries much smaller
than 256 bytes could hurt performance. When the NIC reads
memory regions over PCle, the PCle controller sends back
256-byte-sized memory chunks (the chunk size is a hardware
setting). Each chunk contains a header, so the header could
dominate in the case of small payloads.

These results indicate that maximum performance on a CX-
5 requires passing in I/O lists with entries that are at least 512
bytes large. The “maximum” number of entries in the I/O list
depends on the size of each entry as well as how many concur-
rent DMAs can run. These tradeoffs preclude simple solutions,
such as one scatter-gather operation per data structure field.

3.2 Integrating Networking and Serialization

Core Abstraction: Scatter-Gather Array. Our serializa-
tion library’s core abstraction is the scatter-gather array
abstraction, shown in Listing 1. Scatter-gather arrays point to
application data in their original memory location. When ap-
plications call serialize, the library produces a scatter-gather
array that can be passed to the networking stack instead of a
single contiguous buffer. Transmitting scatter-gather arrays
is conceptually similar to calling the writev system call [12]
in Linux with an iovec data structure, except the Linux kernel
still copies the iovec into a contiguous buffer before trans-
mission. Section 4.3 discusses research challenges around
ensuring application memory can be used for I/O directly.

Serialization API. Our prototype serialization library
requires a zero-copy application interface. The generated
setter functions store pointers to application memory
directly, rather than moving the memory. Listing 2 shows
the interface our library would produce for the simple data
structure benchmarked in Section 2.1 and how an echo server
could use the interface. However, the library only stores

message Object { optional string msg = 1; }

class ObjectGenerated {
std: :pair<char *, size_t> get_msg();
void set_msg(const char *addr, size_t len);
ScatterGatherArray serialize(size_t num_entries);
void deserialize(const char *payload);

3

ObjectGenerated obj_recv, obj_send;
obj_recv.deserialize(connection.recv());

recved = obj_recv.get_msg();
obj_send.set_msg(recved.?, recved.1);
ScatterGatherArray sga_send = obj_send.serialize();
connection.send(sga_send);

Listing 2: Interface produced by our serialization library
in C++, for the listed object schema (in Protobuf syntax),
along with example code for an echo server. Unlike prior
serialization interfaces, this interface uses zero-copy writes
and reads. The serialization library avoids copying fields into
a pre-allocated buffer and passes a scatter-gather array to the
networking stack for transmission.

pointers for variable-sized values, such as strings, bytes or
nested objects. Maintaining pointers to integer fields would
not improve performance (storing the pointer to an integer
takes about the same space as storing the integer itself), so
the serialize function copies integers into the object header.

The header contains a bitmap to index which fields
are present, followed by metadata for each field that is
present. For the data structure in Listing 2, the corresponding
scatter-gather array points to the object header in the first
entry and to the string field in the second entry. The object
header contains a bitmap that indexes whether the single
field is present or not and an offset which points to the string
field if it is present. The resulting wireformat is similar to
Cap’n Proto’s wireformat.

Our library can support nested objects and lists, like Cap’n
Proto, FlatBuffers and Protobuf. To support a nested field,
the object header contains an offset to the nested object’s
header (if present). To support a list, the header stores the
length of the list and an offset to the actual list data. The
final scatter-gather array contains the object header in the
first entry (including any nested header data), and pointers
to string or bytes fields in further entries from the top-level
object as well as any nested objects or lists.

Deserialization API. Deserialization requires turning the
received payload back into a pointer-based data structure.
This requires linearly scanning through all of the possible
fields in the object schema, checking if they are present in the
bitmap, and recasting each field offset into a pointer. While
linearly scanning through all the fields may add overhead for
a data structure with a large number of fields, deserialization



could be “lazily” evaluated if the library changed its wire
format slightly. If the object header stored information for
all fields, instead of only fields that are present, the compiler
would know the location of any field’s header information
ahead of time. Deserialization could then be a constant-time
operation and the library could lazily recover the pointer for
any given field when the programmer calls get_field.
Zero-copy deserialization (without copies) causes the appli-
cation to take ownership of data allocated in the networking
stack’s packet buffers, which the networking stack might
need to reclaim later. Additionally, unless the application uses
in-place updates when writing data from received packets
(e.g., a put request in Redis), the deserialized data might need
to be “re-scattered” into specific in-memory data structures,
which requires copies. A fully integrated serialization library
and networking stack would need to deal with memory
safety and reclamation on the deserialization path (§4.4).

3.3 Prototype Implementation

We implemented this approach for the echo server workload
for the data structure in Listing 2 in C++ on top of the same
UDP networking stack for DPDK used in Section 2.1. We
modified the DPDK datapath to produce a linked list of mbuf
packet data structures given the scatter-gather array. The first
mbuf contains the packet header with the serialization header
copied in. The further mbufs point to the payloads referenced
by the scatter-gather array using DPDK’s attach_extbuf APIL
To comply with kernel bypass I/O memory requirements, the
server directly initializes the data structure payload from pre-
registered memory. However, Section 4.3 discusses strategies
to ensure application memory addresses can be used for I/O.

The prototype implementation achieves about 9.15 Gbps
(highest throughput measured under 15 s of tail latency).
The prototype’s performance improves on all the serialization
libraries and the 1-copy ("No Serialization”) baseline, but falls
about 1.2 Gbps short of the optimal DPDK throughput. We
speculate this gap comes from inefficient use of scatter-gather
entries (allocating an entire mbuf for just the packet header
and object header). Nonetheless, this prototype shows
that leveraging NIC scatter-gather is a promising way to
accelerate serialization.

4 Open Research Challenges

Many challenges remain in building general-purpose and
usable serialization libraries that leverage NIC scatter-gather.
This section covers four areas of future work.

4.1 NIC Support for Scatter-Gather

Building a scatter-gather based serialization library requires
modeling the performance trade-offs of scatter-gather, which
can vary across NICs as well as device drivers. Modeling
scatter-gather in current NICs gives insight into how future

NIC designs can better support scatter-gather based serializa-
tions. Section 3.1 shows that our PCle-connected NIC adds
overhead for transferring small payloads, so scatter-gather
can only help for data structures with large enough payloads.
Eliminating the PCle interconnect in the NIC [24] could
change these tradeoffs and make scatter-gather beneficial
for data structures with smaller payloads. Additionally,
understanding how to manage the number of concurrent
PCle requests would help model the time required to transmit
any given scatter-gather array.

4.2 Using Scatter-Gather Efficiently

Translating application data structures into scatter-gather
arrays that work efficiently with a specific NIC requires op-
timizing the memory layout of the scatter-gather array. Data
structures could vary in size (many fields or few fields), shape
(differently-sized fields) and complexity (contain nested ob-
jects). Naively creating one scatter-gather entry per data struc-
ture field could add overhead, so the serialization library must
modify the memory layout of the scatter-gather array before
handing it to the NIC. This optimization encompasses coalesc-
ing some fields into larger buffers and keeping some fields as
separate entries, given a model of scatter-gather performance.

4.3 Accessing Application Memory for Zero-Copy I/O

A completely zero-copy serialization solution requires using
arbitrary application memory for I/O, which raises issues
related to programming effort and memory fragmentation.
Kernel bypass requires that any memory used for I/O lives
in pinned and backed pages, because the virtual to physical
mappings of this memory must remain the same during the
program lifetime. As a result, pinning an entire application’s
memory for kernel bypass I/O could lead the OS to allocate
large amounts of memory that the application will never use.
For memory-intensive datacenter workloads, this could im-
pact the performance of other processes or even the ability for
other applications to share infrastructure. Thus, the network-
ing stack and serialization library must understand which
application memory will be used for I/O and must be pinned.

Pinning memory on demand in the networking stack
seems promising but would hinder performance on the
packet-processing fast path. On-demand pinning would tell
the networking stack which data needs to be pinned, but
would add the overhead of a system call to packet trans-
mission. Some NICs have additional penalties to consider.
Mellanox NICs require memory registration, so the device
can do address translation. However, the NIC can only hold a
fixed number of address mappings. Fetching a mapping, done
when the first address in a newly mapped region is trans-
mitted, adds a 1 ps latency penalty. If the networking stack
registers too many regions, some mappings might fall out
of the NIC memory, causing an effect similar to a cache miss.



A new class of kernel bypass-aware memory alloca-
tors [40, 42] could enable zero-copy dataflows, but raises
research challenges related to application integration and
memory fragmentation. They could pin large regions
of memory beforehand and allocate “dataplane” memory
directly into these regions, while allocating “control” memory
into a normal heap. To do this transparently, allocators
would need to understand which data needs to be registered
with minimal programming effort, perhaps with some sort
of compiler-based control flow analysis [4]. To enable multi-
tenancy and minimize interference with other processes, the
allocators need to to minimize memory fragmentation and
understand how to give up unused memory back to the OS.

4.4 Providing Zero-Copy I/0 with Memory Safety

A zero-copy serialization stack must provide memory safety,
in the form of write and free protection during transmission,
and a memory management scheme on the deserialization
path. As the Demikernel paper [42] suggests, the memory
allocator could provide free protection by adding a reference
count to any buffers that are transmitted.

However, providing transparent, efficient write protection
from concurrent memory accesses between the NIC and
CPU is an open problem. Relying on Linux write protection
would add the overhead of a page fault to kernel bypass
applications [11]. The networking stack could adopt
techniques from recent work [6] to use cache invalidation to
detect when addresses are being overwritten and accordingly
respond, but this requires custom hardware. Relying on a
memory-safe language such as Rust to build the serialization
library and networking stack would not protect against
read-write races between the NIC hardware and CPU.

On the deserialization path, the networking stack may
need to eventually reclaim application buffers (e.g., if an appli-
cation uses an in-place update to write a value from a received
packet). If the application does not free received buffers in
time, the networking stack could run out of memory.

5 Related Work

Serialization Acceleration. Many libraries attempt to
improve CPU-based serialization by optimizing their wire for-
mat [36,38], employing SIMD parallelism for decoding [21],
or reducing the overhead of type inference in dynamic
serialization [20, 23]. These approaches do not remove the
fundamental cost required to move memory in software. As
a result, recent research proposes offloading serialization
to custom accelerators [15, 28, 39] or directly within SSDs
for storage [35]. Unlike these accelerators, the scatter-gather
functionality already exists in widely used NICs.

Kernel Bypass Systems. Our work is enabled by recent ker-
nel bypass I/O frameworks that expose NIC interfaces directly

to applications in userspace [14,30,34] to eliminate OS level
packet processing overheads. Many recent kernel bypass net-
working stacks [26,27,29,42] build on top of these interfaces
to provide APIs to applications while offering low latency, op-
timized thread scheduling, or zero-copy 1/O. eRPC [17] offers
general-purpose RPC for commodity networking hardware,
and zero-copy networking. None of these systems directly
offer general-purpose, zero-copy, data structure serialization
as a programming primitive, which requires scatter-gather.

Scatter-Gather Capabilities. High-performance comput-
ing applications have used scatter-gather to optimize MPI
all-to-all communication primitives [8], or provide zero-copy
communication over MPI derived datatypes [32]. Kesavan, et
al. [19] uses scatter-gather to measure when zero-copy helps
an in-memory database, but does not consider serialization
of arbitrary data structures. Derecho [16], a recent SMR
system, uses scatter-gather to provide zero-copy I/O for
scattered data structures, but relies on specific layouts of data
structures provided by their memory allocator. We propose
designing general-purpose serialization for application data
in arbitrary memory layouts.

6 Conclusion

As link speeds have increased, servers have less cycles to
process packets. Object serialization is a core component
of datacenter systems, but it cannot keep up with modern
networks. We identify that CPU-based software serialization
is inherently inefficient, as it relies the CPU to perform data
movement. We propose using a hardware capability already
present in widely deployed NICs to accelerate serialization:
NIC scatter-gather functionality. Our prototype shows that by
leveraging NIC scatter-gather to offload data movement from
the CPU to the NIC, it is possible to build a zero-copy and
zero-allocation serialization library. We identify several areas
of future work: better hardware support for scatter-gather, us-
ing scatter-gather efficiently, providing transparent memory
registration, and ensuring memory safety with zero-copy.

7 Acknowledgements

We thank the anonymous HotOS reviewers, Akshay Narayan, Amy
Ousterhout, Anirudh Sivaraman, Anuj Kalia, Jacob Nelson, Kostis
Kaffes, Qian Li, Shoumik Palkar, and the members of the Stanford
Future Data and SING Research groups for their invaluable feedback.
This research was supported in part by affiliate members and other
supporters of the Stanford DAWN project—Ant Financial, Facebook,
Google, Infosys, NEC, and VMware—as well as Toyota Research
Institute, Northrop Grumman, Cisco, SAP, and the NSF under
CAREER grant CNS-1651570 and Graduate Research Fellowship
grant DGE-1656518. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the authors
and do not necessarily reflect the views of the National Science Foun-
dation. Toyota Research Institute ("TRI") provided funds to assist the
authors with their research but this article solely reflects the opinions
and conclusions of its authors and not TRI or any other Toyota entity.



References

[1] Apache Software Foundation. Hadoop. https://hadoop.apache.org.

[2] Apache Software Foundation. Apache avro. https://avro.apache.org/,
2012.

[3] Apache Sofware Foundation. Apache thrift. https://thrift.apache.org/
download, 2017.

[4] K. Ashcraft and D. Engler. Using programmer-written compiler
extensions to catch security holes. In IEEE Symposium on Security and
Privacy, 2002.

[5] L.Barroso, M. Marty, D. Patterson, and P. Ranganathan. Attack of the
killer microseconds. Communicatons of the ACM, 2017.

[6] I Calciu, L. Puddu, A. Kolli, A. Nowatzyk, J. Gandhi, O. Mutlu, and
P. Subrahmanyam. Project pberry: Fpga acceleration for remote memory.
In HotOS, 2019.

[7] IwIP - A Lightweight TCP/IP stack - Summary. https://savannah.nongnu.
org/projects/lwip/.

[8] A.Gainaru, R. L. Graham, A. Polyakov, and G. Shainer. Using infiniband
hardware gather-scatter capabilities to optimize mpi all-to-all. In
EuroMPI 2016, 2016.

[9] A. Gallatin, J. Chase, and K. Yocum. Trapeze/ip: Tcp/ip at near-gigabit
speeds. In ATC, 1999.

[10] Y. Gan, Y. Zhang, D. Cheng, A. Shetty, P. Rathi, N. Katarki, A. Bruno,
J. Hu, B. Ritchken, B. Jackson, et al. An open-source benchmark suite
for microservices and their hardware-software implications for cloud
& edge systems. In ASPLOS, 2019.

mprotect(2) - linux manual page. https://man7.org/linux/man-

—
—_
—_

—

pages/man2/mprotect.2.html.

[12] writev(2) - linux man page. https://linux.die.net/man/2/writev.

[13] gRPC Authors. grpc: A high-performance, open source universal rpc
framework. https://grpc.io/.

[14] Storage performance development kit. https://spdk.io/.

[15] J.Jang, S.]. Jung, S. Jeong, J. Heo, H. Shin, T. J. Ham, and J. W. Lee. A

specialized architecture for object serialization with applications to big

data analytics. In ISCA, 2020.

S.Jha,]J. Behrens, T. Gkountouvas, M. Milano, W. Song, E. Tremel, R. V. Re-

nesse, S. Zink, and K. P. Birman. Derecho: Fast state machine replication

for cloud services. ACM Transactions on Computer Systems, 2019.

A.Kalia, M. Kaminsky, and D. Andersen. Datacenter rpcs can be general

and fast. In NSDI, 2019.

S.Kanev, J. P. Darago, K. Hazelwood, P. Ranganathan, T. Moseley, G.-Y.

Wei, and D. Brooks. Profiling a warehouse-scale computer. In ISCA, 2015.

[19] A. Kesavan, R. Ricci, and R. Stuntsman. To copy or not to

copy: Making in-memory databases fast on modern nics.

https://rstutsman.github.io/papers/copy-not-to-copy.pdf.

Kyro. https://github.com/EsotericSoftware/kryo, Accessed January 23,

2021.

G. Langdale and D. Lemire. Parsing gigabytes of json per second. The

VLDB Journal, 2019.

[22] A.Narayan, A. Panda, M. Alizadeh, H. Balakrishnan, A. Krishnamurthy,
and S. Shenker. Bertha: Tunneling through the network api. In HotNets,
2020.

[23] K.Nguyen,L.Fang, C.Navasca, G.Xu,B. Demsky,andS. Lu. Skyway: Con-
necting managed heaps in distributed big data systems. In ASPLOS, 2018.

[24] S.Novakovic, A. Daglis, E. Bugnion, B. Falsafi, and B. Grot. Scale-out

numa. In ASPLOS, 2014.

Nvidia. Connectx-5. advanced

most  demanding  applications.

us/networking/ethernet/connectx-5/.

A. Ousterhout, J. Fried, J. Behrens, A. Belay, and H. Balakrishnan.

Shenango: Achieving high CPU efficiency for latency-sensitive

datacenter workloads. In NSDI, 2019.

—
[
(=)

—

(17

—

[18

[t

[20

[t

[21

—

offload capabilities for the
https://www.nvidia.com/en-

[25

—

26

=

[27] S. Peter, J. Li, I. Zhang, D. R. K. Ports, D. Woos, A. Krishnamurthy,
T. Anderson, and T. Roscoe. Arrakis: The operating system is the control
plane. In OSDI, 2014.

[28] A. Pourhabibi, S. Gupta, H. Kassir, M. Sutherland, Z. Tian, M. P.
Drumond, B. Falsafi, and C. Koch. Optimus prime: Accelerating data
transformation in servers. In ASPLOS, 2020.

[29] G.Prekas, M. Kogias, and E. Bugnion. Zygos: Achieving low tail latency
for microsecond-scale networked tasks. In SOSP, 2017.

[30] A rdma protocol specification. http://rdmaconsortium.org/, 2009.

[31] redis labs. Redis. https://redis.io/.

[32] G.Santhanaraman,J. Wu, W. Huang, and D. K. Panda. Designing zero-
copy message passing interface derived datatype communication over
infiniband: Alternative approaches and performance evaluation. The
International Journal of High Performance Computing Applications, 2005.

[33] R. Taft, I. Sharif, A. Matei, N. VanBenschoten, J. Lewis, T. Grieger,
K. Niemi, A. Woods, A. Birzin, R. Poss, P. Bardea, A. Ranade, B. Darnell,
B. Gruneir, J. Jaffray, L. Zhang, and P. Mattis. Cockroachdb: The resilient
geo-distributed sql database. In SIGMOD, 2020.

[34] Dpdk: Data plane development kit. https://www.dpdk.org/.

[35] H.-W. Tseng, Q. Zhao, Y. Zhou, M. Gahagan, and S. Swanson. Morpheus:
Creating application objects efficiently for heterogeneous computing.
In ISCA, 2016.

[36] W. Van Oortmerssen. Flatbuffers: a memory efficient serialization li-
brary. https://opensource.googleblog.com/2014/06/flatbuffers-memory-
efficient.html, 2014.

[37] K. Varda. Protocol buffers: Google’s data interchange form.
https://opensource.googleblog.com/2008/07/protocol-buffers-
googles-data.html, 2008.

[38] K. Varda. Cap’n proto. https://capnproto.org/, 2020 (Accessed October
22, 2020).

[39] A. Wolnikowski, S. Ibanez, J. Stone, C. Kim, R. Manohar, and R. Soulé.
Zerializer: Towards zero-copy serialization. In HotOS, 2021.

[40] B.Yi,]. Xia, L. Chen, and K. Chen. Towards zero copy dataflows using
rdma. In SIGCOMM Posters and Demos, 2017.

[41] M. Zaharia, M. Chowdhury, T. Das, A. Dave, ]J. Ma, M. McCauly, M. J.
Franklin, S. Shenker, and I. Stoica. Resilient distributed datasets: A fault-
tolerant abstraction for in-memory cluster computing. In NSDI, 2012.

[42] I Zhang, ].Liu, A. Austin, M. L. Roberts, and A. Badam. I'm not dead yet!
the role of the operating system in a kernel-bypass era. In HotOS, 2019.


https://hadoop.apache.org
https://avro.apache.org/
https://thrift.apache.org/download
https://thrift.apache.org/download
https://savannah.nongnu.org/projects/lwip/
https://savannah.nongnu.org/projects/lwip/
https://man7.org/linux/man-pages/man2/mprotect.2.html
https://man7.org/linux/man-pages/man2/mprotect.2.html
https://linux.die.net/man/2/writev
https://grpc.io/
https://spdk.io/
https://rstutsman.github.io/papers/copy-not-to-copy.pdf
https://www.nvidia.com/en-us/networking/ethernet/connectx-5/
https://www.nvidia.com/en-us/networking/ethernet/connectx-5/
http://rdmaconsortium.org/
https://redis.io/
https://www.dpdk.org/
https://opensource.googleblog.com/2014/06/flatbuffers-memory-efficient.html
https://opensource.googleblog.com/2014/06/flatbuffers-memory-efficient.html
https://opensource.googleblog.com/2008/07/protocol-buffers-googles-data.html
https://opensource.googleblog.com/2008/07/protocol-buffers-googles-data.html
https://capnproto.org/

	Abstract
	1 Introduction
	2 The Limits of Software Serialization
	2.1 Software Serialization Hits a Performance Limit
	2.2 Why is Software Serialization So Expensive?

	3 Leveraging the NIC for Serialization
	3.1 NIC Scatter-Gather Capabilities
	3.2 Integrating Networking and Serialization
	3.3 Prototype Implementation

	4 Open Research Challenges
	4.1 NIC Support for Scatter-Gather
	4.2 Using Scatter-Gather Efficiently
	4.3 Accessing Application Memory for Zero-Copy I/O
	4.4 Providing Zero-Copy I/O with Memory Safety

	5 Related Work
	6 Conclusion
	7 Acknowledgements

