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Harnessing testing strategies 
and public health measures to avert 
COVID‑19 outbreaks during ocean 
cruises
Gerardo Chowell1*, Sushma Dahal1, Raquel Bono2 & Kenji Mizumoto1,3,4

To ensure the safe operation of schools, workplaces, nursing homes, and other businesses during 
COVID-19 pandemic there is an urgent need to develop cost-effective public health strategies. Here we 
focus on the cruise industry which was hit early by the COVID-19 pandemic, with more than 40 cruise 
ships reporting COVID-19 infections. We apply mathematical modeling to assess the impact of testing 
strategies together with social distancing protocols on the spread of the novel coronavirus during 
ocean cruises using an individual-level stochastic model of the transmission dynamics of COVID-19. 
We model the contact network, the potential importation of cases arising during shore excursions, 
the temporal course of infectivity at the individual level, the effects of social distancing strategies, 
different testing scenarios characterized by the test’s sensitivity profile, and testing frequency. Our 
findings indicate that PCR testing at embarkation and daily testing of all individuals aboard, together 
with increased social distancing and other public health measures, should allow for rapid detection 
and isolation of COVID-19 infections and dramatically reducing the probability of onboard COVID-19 
community spread. In contrast, relying only on PCR testing at embarkation would not be sufficient to 
avert outbreaks, even when implementing substantial levels of social distancing measures.

Since the first human infections of the novel coronavirus (SARS-CoV-2) were reported in Wuhan, China in 
December 2019, the novel pathogen has reached every corner of the world and continues its unrelentless global 
march with more than 136 million reported cases including over 2.9 million related deaths by April 13th, 20211. 
The novel coronavirus has spread around the world at varying disease transmission, death and incidence rates2. 
In the United States, a total of 30.8 million COVID-19 cases including 556,853 deaths have been reported thus 
far1. Although safe and effective vaccines are becoming a reality in an unprecedented time scale, it will take 
months before a substantial fraction of the world population is immunized.

SARS-CoV-2 is a highly transmissible and deadly respiratory virus that readily spreads via droplets and 
aerosols especially in confined settings3,4. In fact, an early hotspot of the novel coronavirus outside mainland 
China unfolded aboard the Diamond Princess Cruise ship with 2,666 passengers and 1,045 crew members. 
This unfortunate COVID-19 outbreak shed early light on the clinical and epidemiological features of this novel 
coronavirus5–7. In particular, the outbreak on the Diamond Princess Cruise ship highlighted a substantial fre-
quency of asymptomatic infections which need to be rapidly isolated in order to halt transmission chains5.

Because the COVID-19 pandemic has greatly disrupted economic growth, there is an urgent need to develop 
cost-effective public health strategies that allow safe operation of schools, workplaces, nursing homes, and other 
businesses8–10. In this paper our focus is the cruise industry which was hit early by the COVID-19 pandemic, 
with more than 40 cruise ships reporting COVID-19 infections11,12 with the Centers for Disease Control and 
Prevention declaring a No Sail Order that halted all cruise operations in the US on March 14th, 2020. This 
form of leisure travel has undergone rapid growth in recent years including a substantial increase in ship size 
and passenger capacity13. According to the Cruise Line International Association report, the total number of 
cruise passengers increased from 17.8 million in 2009 to 26.7 million in 2017, and was projected to increase to 
30 million in 201914. The cruise ship industry is an important segment of tourism industry and an important 
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contributor to the global economy, supporting over 1.17 million jobs across a wide range of sectors including 
ground and air transportation, food and beverage services, lodging, hotels, manufacturing, and other service 
providers15. The suspension of cruise operations due to COVID-19 pandemic had a devastating economic effect 
globally. For instance, Cruise Lines International Association (CLIA) estimated a loss of $50 billion USD in 
economic activity, 334,000 lost jobs and $15 billion USD in wages from mid-March to the end of September, 
202015. In 2018, the total economic impact of the cruise industry was $150.13 billion USD that included $28.5 
million USD in global passenger embarkation, 1,177,000 jobs, $50.24 billion USD in wages and salaries, $67.97 
billion USD in direct purchases, with an average spending of $376 in port before boarding a cruise, and $101 in 
port while visiting during a cruise16.

Multiple infectious disease outbreaks have been linked to cruise ships17,18. A cruise ship mimics a virtual trav-
elling city bringing together a large number of people from different backgrounds, culture, and health status19,20. 
The interaction of passengers and crew in close proximity in often crowded, semi-enclosed environments such 
as dining halls and recreational rooms create a unique environment that facilitates the transmission of person-
to-person, food borne or water borne diseases17. Some earlier outbreaks of respiratory illness involving cruise 
ships include an influenza outbreak that occurred in May 2009 where 3% of passengers and crew were infected 
with A/H1N1 influenza, 3.6% with A/H3N2, and 0.1% with both strains21. Another influenza B outbreak was 
documented on a cruise ship off the Sao Paulo coast in Brazil in February 201222. Similarly, outbreaks of acute 
respiratory illness were reported in two cruise ships affecting 3.7% and 6.2% of the passengers, respectively, 
between March 15 and April 5 in 201423.

There is a need to devise systematic public health protocols to ensure safe transportation of passengers and 
crew across different transportation modalities and geographic distances. Indeed, international travel through 
cruise ships can have significant impact on the transmission and global spread of infectious disease. In the 
absence of appropriate screening and control measures, infectious individuals who disembark from ships and use 
multiple transportation means including trains, buses, and international flights can in turn transmit the disease 
to other people. Additionally, the average passenger on a cruise ship tends to be older and is at heightened risk 
of severe symptoms and complications from COVID-19 infection24. According to a prospective study, the aver-
age age of passengers who sought medical attention in 86 cruises of a ship in three years, was 72.6 years25. In the 
Diamond Princess Cruise ship, out of total 3,711 people aboard on 5th February 2020, 58.5% were aged 60 years 
and above, with 33.4% of the individuals aged 70–99 years26. Therefore, ensuring the safety of passengers and the 
crew aboard cruise ships and the local communities that host them is the highest priority of the cruise industry 
before operations are restarted27,28. To that end, some cruise companies have started to install PCR laboratories 
aboard their ships with capacity for daily testing of every crew member and guest29.

In this study, we apply mathematical modeling to assess the impact of testing strategies together with social 
distancing protocols on the spread of the novel coronavirus during ocean cruises using an individual-level sto-
chastic model of the transmission dynamics of COVID-19. We model the contact network of the population of 
interest and the potential importation of cases arising during shore excursions, our understanding of the temporal 
course of infectivity at the individual level as well as the effects of social distancing strategies and different testing 
scenarios characterized by the sensitivity profile of the test and testing frequency.

Our modeling results indicate that PCR testing at embarkation and daily testing of all individuals aboard, 
together with increased social distancing and other public health measures, should allow for rapid detection 
and isolation of COVID-19 infections before they infect others, significantly reducing the onboard COVID-19 
community spread. Our results support a daily PCR testing strategy in order to minimize the number of infec-
tions irrespective of the duration of the cruise, allowing cruises longer than 7 days. By contrast, a strategy that 
relies on PCR testing at embarkation would not be sufficient to avert outbreaks, even when substantial levels of 
social distancing measures are implemented.

Methods
Model description.  We developed an individual-level stochastic model to investigate the role of testing and 
social distancing protocols for preventing COVID-19 outbreaks during ocean cruises that include daily shore 
excursions. For this purpose, we model transmission dynamics in a highly connected social contact network and 
calibrate the baseline transmission rate based on estimates derived from the COVID-19 outbreak that unfolded 
aboard the Diamond Princess Cruise ship in February 20205. Further, our model incorporates uncertainty in the 
individual-level infectivity profile, which is informed by published data, the role of social distancing measures 
for mitigating the transmission probability per contact, potential exposure during daily shore excursions based 
on a local community prevalence, and the uncertainty associated with the sensitivity profile of the PCR test 
utilized in different testing scenarios.

Through global sensitivity and uncertainty analysis and using 200 stochastic simulations for each combina-
tion of parameter values, we summarized our findings in terms of the cumulative number of cases occurring 
during the duration of the cruise for scenarios with and without the implementation of interventions. A detailed 
description of the different model components is provided below.

Transmission dynamics and infectivity profile.  In the absence of interventions, susceptible individuals in con-
tact with infectious individuals become infected with a probability that depends on an infectivity level of each 
infectious contact that varies according to the age of infection and a scaling factor that modulates transmission 
rate according to the basic reproduction number R0. The infectivity of infectious individuals varies according to 
their age of infection which progresses on daily time steps (Fig. 1). Thus, for a 14-day infectious period, there 
are 14 different infectivity values for each infectious individual. All infectious individuals recover and become 
protected at the end of their infectious period.
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Asymptomatic transmission is a key characteristic of the transmission dynamics of COVID-19 outbreaks30. 
Therefore, it is crucial to rapidly identify infected individuals irrespective of the presence of symptoms. While we 
do not distinguish between symptomatic and asymptomatic individuals in our model, we track and model the 
uncertainty in the temporal infectiousness profile for each infected individual. Moreover, some studies suggest 
that asymptomatic individuals transmit at almost the same rate as symptomatic individuals31. To this end, we 
approximate the COVID-19 infectivity profile following a gamma distribution function informed by published 
data32,33. Specifically, we assume that the infectious period is up to 14 days long, but the timing of peak infectivity 
for each individual varies randomly and occurs 5, 6, or 7 days post infection as shown in Fig. 1.

Individual contact network.  While previous modeling studies of the Diamond Princess outbreak have used 
compartmental transmission models to characterize contact patterns according to passenger age and crew 
type34,35, here we take an individual-level contact network approach and conservatively assume a highly con-
nected network of contacts among passengers and crew aboard the vessel. For this purpose, the baseline contact 
network of 1395 individuals (the total of 930 passengers and 465 crew members on a Viking vessel) is conserva-
tively modeled according to a small world network where each individual has an average of 100 contacts during 
the duration of the cruise itinerary (i.e. small world network parameter K = 50) with a rewiring probability p set 
at 0.136. The resulting small world network has a low average path length and significant clustering compared to 
its random network counterpart. Further, the links of the network do not change during the entire duration of 
the simulation. The baseline contact network is depicted in Fig. 2. A Viking vessel is different from other cruise 
lines in that Viking is considered a small-to-medium cruise line vs. the big ones with capacity for 4 K–5 K on 
each ship. In sensitivity analyses, we also consider a bigger ship with capacity of 6000 (4000 passengers and 2000 
crew).

The basic reproduction number on board the vessel (R0(ship)).  The basic reproduction number denoted by R0 
quantifies the average number of secondary cases generated by a primary infectious during his/her infectious 
period in the absence of interventions during the early stages of an outbreak37. In line with published studies of 
the early transmission dynamics of the COVID-19 outbreak that unfolded aboard the Diamond Princess Cruise 
ship in early 20206,35, we calibrated our transmission model with a baseline average basic reproduction number 
aboard the cruise ship denoted by R0(ship) at 12, but vary this value in the range between 9 and 16 in sensitivity 
analyses.

COVID‑19 test characteristics.  We model testing strategies based on PCR tests with a sensitivity profile that is 
modeled using a logistic growth function that reaches maximum sensitivity 5–7 days post infection followed by 
a symmetric logistic decline function (Fig. 3). Further, we vary peak test sensitivity from 85 to 95% in sensitivity 
analyses.

Social distancing protocols.  The overall effect of public health measures during the duration of the cruises 
(including during shore excursions) is modeled as a proportionate reduction in the transmission rate by a scal-
ing factor. These public health measures include frequent sanitation of surfaces, mandatory wearing of mask on 
board for passengers and crew, physical distancing protocols (contact tracing and quarantining), air purifiers, 
and UV lights in all air handling units38–41. Hence, the combined effect of these public health measures are 
assumed to reduce the transmission probability per contact in the range of 50–90% with a conservative baseline 

Figure 1.   The timing of peak infectivity for each individual varies randomly, peaking at 5 (red curve), 6 
(blue curve), or 7 (green curve) days post infection according to a gamma distribution. We do not distinguish 
between symptomatic and asymptomatic individuals.
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level at 60%, in agreement with parameter uncertainty considered by the cruise industry in COVID-19 risk 
assessment efforts.

Testing strategies.  In addition to social distancing measures, we evaluate the impact of two different testing 
protocols on the cumulative number of cases that occur during the cruise duration:

•	 PCR Testing of passengers prior to embarkation. All of the individuals are tested prior to embarkation, and 
positive individuals are not allowed to board the ship. The probability of a positive individual boarding the 
ship depends on the age of his/her infection as well as the temporal sensitivity profile of the test. Hence, the 
probability of a false-negative test result is not negligible42,43. Indeed, even PCR tests are unlikely to detect 

Figure 2.   Schematic diagram of the individual-level stochastic model to investigate the role of testing and 
social distancing protocols for preventing COVID-19 outbreaks during ocean cruises. The model allows us to 
incorporate the role of imported cases arising during embarkation and shore excursions, our understanding of 
the temporal course of infectivity at the individual level as well as the effects of social distancing strategies and 
different testing scenarios characterized by the sensitivity profile of the test and testing frequency.

Figure 3.   Illustration of the PCR test sensitivity profiles modeled according to a logistic function where a peak 
sensitivity of 80% is reached 5 (red curve), 6 (blue curve), or 7 (green curve) days post infection.
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very recent infections. Infected individuals that are detected prior to embarkation do not contribute to the 
transmission dynamics during the cruise itinerary.

•	 PCR Testing of passengers prior to embarkation and daily testing on board. In addition to testing all passengers 
prior to embarkation, all individuals on board the ship are tested every day with a PCR test. We assume that 
test results become available within hours and positive cases are effectively isolated and do not contribute to 
generating further infections on board the ship.

Prior immunity.  For simplicity we assume that all of the individuals on board the cruise are equally susceptible 
to catching the novel coronavirus. Thus, we model here conservative scenarios since the potential role of prior 
immunity from past infection or vaccination campaigns is not considered in our analyses.

Initial conditions.  The initial number of infected passengers before the cruise starts depends on the local com-
munity prevalence with a baseline value at 1% which we vary in the range: 0.3–3% in sensitivity analyses. This is 
the baseline and range of community COVID-19 prevalence that the cruise industry (including Viking cruises) 
is considering in their COVID-19 risk assessment efforts. This range captures the wide variability in spatial–
temporal disease transmission for across source and destination markets2,44. The initial number of COVID-19 
infected passengers is drawn from a binomial probability distribution based on the community prevalence value 
and the number of passengers boarding the ship. Moreover, all crew members are initially assumed to be suscep-
tible to infection with SARS-CoV-2 while the age of the infection of initially infected passengers at embarkation 
is sampled from a uniform distribution in the range of 0 to 14 days.

Daily importation rate from shore excursions.  We also consider the possibility that passengers may be exposed 
to SARS-CoV-2 during daily excursions on shore. For each day of the cruise duration, the number of infected 
passengers during the shore expedition depends on the current number of susceptible passengers, the local 
reproduction number on shore denoted by R0(shore) which is assumed to vary between 0.6 and 1.6, the local 
COVID-19 prevalence level, the amount of time that passengers spend on shore excursions (about 6 h) as well 
as the extent of public health measures in place during these activities (e.g., facemask wearing, hand hygiene). 
Hence, the number of passengers infected during shore excursions could fluctuate on a daily basis depending 
on the epidemiological state of the individual passengers. Here we assume the same local prevalence during 
embarkation and during daily shore excursions (range: 0.3–3%). Figure 4 illustrates the average daily number of 

Figure 4.   Illustration of the average daily number of infected individuals from shore excursions (shorex) 
as a function of the local prevalence and the extent of public health measures (e.g., facemask wearing). The 
number of infected passengers arising from daily shore expeditions depends on the number of susceptible 
passengers, the local reproduction number R0(shore), the local COVID-19 prevalence level, the amount of 
time that passengers spend on shore excursions (about 6 h) as well as the extent of public health measures in 
place (e.g., facemask wearing). Here R0(shore) = 1.0. The extent of public health are modeled as a proportionate 
reduction in the transmission probability per contact which is assumed to vary from 50 to 90%. This is likely 
a conservative range that reflects the combined impact of enhanced surface sanitation, mandatory facemask 
wearing on board for passengers and crew, physical distancing protocols, air purifiers, and UV lights in all air 
handling units.



6

Vol:.(1234567890)

Scientific Reports |        (2021) 11:15482  | https://doi.org/10.1038/s41598-021-95032-4

www.nature.com/scientificreports/

infected individuals from shore excursions as a function of the local prevalence and the extent of public health 
measures which we quantify as a proportionate reduction between 50 and 90% in the transmission rate. This 
is likely a conservative range that reflects the combined impact of mandatory facemask wearing for passengers, 
physical distancing protocols during the excursion, buses sanitation, and limiting high-risk shore excursion 
programs and self-exploration of the destination39,41.

Global sensitivity and uncertainty analyses.  To account for various model uncertainties including the epidemi-
ology of the novel coronavirus, the characteristics of the cruises (duration, local prevalence) as well as the char-
acteristics of the test on our modeling results (Table 1), we relied on global uncertainty and sensitivity analyses. 
Specifically, we performed global sensitivity and uncertainty analysis to quantify the effect of changes in the 
model parameters on the cumulative number of cases during the cruise. For sensitivity analyses, we rank model 
parameters according to the size of their effect on the total cases that occur during the duration of the cruise using 
partial rank correlation coefficients (PRCC)45. The larger the partial rank correlation coefficient, the larger the 
influence of the input parameter on the cumulative number of cases. All of the input parameters were sampled 
from uniform distributions (ranges given in Table 1) following Latin Hypercube Sampling with 200 samples.

Results
Figure 5 compares the mean and the 95% CI of the distribution of the caseload at the end of 7-day cruises for 
three different scenarios with and without interventions using the baseline parameter values shown in Table 1.

•	 In the absence of interventions, the average number of infections during a 7-day cruise was estimated at 
139.2 (95% CI: 43.8, 270) while the number of imported cases from embarkation was estimated at 9.6 (95% 

Table 1.   Parameter definitions, baseline values, and ranges considered in global sensitivity analyses.

Parameter definition Baseline value Range

Number of crew 465 (small ship) 2000 (big ship)

Number of passengers 930 (small ship) 4000 (big ship)

Local prevalence 1% 0.3–3%

Mean peak timing for infectivity profile (days) 6 5–7

Length of the cruise (days) 7 4–14

Basic reproduction number aboard the cruise ship, R0(ship) 12 9–16

Basic reproduction number during shore excursions, R0(shore) 1.0 0.6–1.6

Extent of public health/social distancing measures (%) 60% 50–90%

Maximum PCR test sensitivity (%) 85% 80–95%

Time from infection to peak PCR test sensitivity (days) 6 5–7

Figure 5.   Distribution of the cumulative number of infections during 7-day cruises for three different scenarios 
using the baseline parameter values displayed in Table 1. The error bars reflect the 95% CI of the outcome 
distribution from 200 stochastic realizations.
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CI: 4.0, 15). This result underscores the substantial number of imported cases that lead to rapid growth in 
case numbers even when the baseline COVID-19 prevalence in the general population is 1 COVID-19 case 
in 100 people.

•	 In contrast, for the embarkation testing and public health measures scenario, we estimated an average of 
14.9 cases (95% CI:1, 39.0) during the cruise whereas the number of imported cases from embarkation was 
estimated at 5.2 (95% CI: 1, 10). Hence, the average number of case importations is only reduced from 9.6 
cases in the absence of interventions to an average of 5.2 cases. Indeed, embarkation testing may not be able 
to detect all of the infected individuals prior to boarding especially those in the early infection stages given 
our current understanding of the temporal sensitivity profile in the PCR test (Fig. 3).

•	 For the scenario of embarkation testing and daily testing of all individuals, the number of cases during the 
cruise is reduced to an average of 2.9 cases (95% CI:0, 8). In fact, the stochastic simulation curves of the daily 
cumulative number of cases across the three scenarios indicate that the strategy that tests during embarkation 
together with daily testing of all individuals is the only strategy that rapidly flattens the growth trend in case 
numbers (Fig. 6). This strategy greatly diminishes the probability that an infectious individual transmits the 
virus to other individuals aboard the vessel. While embarkation testing may not be able to detect all of the 
infected individuals prior to boarding, the great majority of infected individuals that are not detected during 
embarkation are likely to be identified soon after embarkation through daily testing strategies.

Results from uncertainty and sensitivity analyses.  In the absence of interventions our results from the 
global uncertainty analyses after considering the uncertainty ranges for each parameter (Table 1) indicate that 
the average number of imported cases from embarkation is at 15 (95% CI:2, 32) while the average number of 
cases during the cruise including any cases during shore excursions (shorex) is 470 (95% CI:19, 1300). Further-
more, results from sensitivity analyses (Table 2 and Fig. 7) indicate that the case load at the end of the cruise was 
most sensitive to the following parameters:

•	 The local community prevalence. This parameter is strongly correlated with the expected number of infected 
individuals boarding the vessel. Each infected individual that boards the vessel initiates a rapidly growing 
transmission chain given the high basic reproduction associated with the cruise environment.

•	 The duration of the cruise. This parameter directly modulates the time window during which susceptible 
may become exposed to infectious individuals on aboard the vessel.

The basic reproduction number aboard the ship, R0(ship). This parameter is related to the likelihood that an 
infectious individual transmits the coronavirus to other individuals on aboard.

Figure 6.   Epidemic curves of the cumulative number of infections during 7-day cruises for three different 
scenarios using the baseline parameter values displayed in Table 1. The red curve indicates the mean of the 200 
stochastic realizations (cyan curves).



8

Vol:.(1234567890)

Scientific Reports |        (2021) 11:15482  | https://doi.org/10.1038/s41598-021-95032-4

www.nature.com/scientificreports/

Embarkation testing and social distancing interventions For the scenario that considers testing during embar-
kation together with public health measures, our results from the global uncertainty analyses indicate that the 
average number of imported cases from embarkation is at 9.6 (95% CI:1, 21) while the average number of cases 
during the cruise including any shorex cases is 45 (95% CI: 0, 260). Furthermore, results from sensitivity analyses 
(Table 2 and Fig. 8) indicate that for this scenario the case load at the end of the cruise was most sensitive to the 
following parameters:

•	 The local prevalence. Higher local prevalence levels increase the expected number of infected individuals 
boarding the vessel even when embarkation testing mitigates the number of infected individuals that make 
it aboard.

•	 The length of the cruise. Once an infected individual makes it aboard the vessel, the longer the duration of 
the cruise, the longer the time window during which susceptible individuals could be become exposed to 
infectious individuals aboard the vessel.

Table 2.   Partial rank correlation coefficients (PRCC) derived from global sensitivity analyses that quantify the 
influence of the model parameters on the average final case load.

Parameter definition No interventions
Testing during embarkation + public health 
measures

Embarkation and daily testing + public health 
measures

Local prevalence 0.91 (P < 0.001) 0.90 (P < 0.001) 0.98 (P < 0.001)

Length of the cruise (days) 0.97 (P < 0.001) 0.89 (P < 0.001) 0.48 (P < 0.001)

Basic reproduction number aboard the cruise ship, 
R0(ship)

0.71 (P < 0.001) 0.51 (P < 0.001) 0.24 (P < 0.001)

Extent of public health/social distancing measures 
(%) N.A  − 0.87 (P < 0.001)  − 0.88 (P < 0.001)

Maximum PCR test sensitivity (%) N.A  − 0.17 (P = 0.02)  − 0.26 (P < 0.001)

Time from infection to peak PCR sensitivity (days) N.A 0.07 (P = 0.34)  − 0.12 (P = 0.1)

Figure 7.   These scatter plots display the relationship between the model parameters and the average number 
of infections in the absence of testing strategies and public health measures. Partial rank correlation coefficients 
(PRCC) and their statistical significance (P value) after considering the uncertainty ranges for each parameter 
(Table 1) are also shown. Local prevalence and the length of the cruise are strongly and positively correlated with 
the expected number of cases at the end of the simulations. The basic reproduction number aboard the ship is 
also correlated with the average number of cases.



9

Vol.:(0123456789)

Scientific Reports |        (2021) 11:15482  | https://doi.org/10.1038/s41598-021-95032-4

www.nature.com/scientificreports/

•	 The extent of public health measures. The transmission rate is mitigated proportionately by the level of public 
health measures, but it is unlikely to be reduced to zero.

Embarkation and daily testing + social distancing interventions For the scenario that considers testing dur-
ing embarkation and daily testing of all individuals together with public health measures, our results from the 
global uncertainty analyses indicate that the average number of imported cases from embarkation is at 9.6 (95% 
CI:1, 21) while the average number of cases during the cruise including any shorex cases is 4.7 (95% CI:0,16). 
Furthermore, results from sensitivity analyses (Table 2 and Fig. 9) indicate that for this scenario the case load at 
the end of the cruise was most sensitive to the following parameters:

•	 The local prevalence. Embarkation testing and daily testing greatly mitigate the average number of cases 
occurring on board the vessel compared to embarkation testing only (Fig. 8). Yet, the number of cases during 
the cruise is still correlated with the local prevalence level.

•	 The extent of public health measures. The transmission rate during the cruise is negatively correlated with 
the extent of public health measures.

It is worth noting that compared to embarkation testing only, the length of the cruise does not play an impor-
tant role in the average number cases expected during the cruise in this scenario.

Discussion
Using an individual-level stochastic transmission model parameterized for COVID-19 transmission dynamics, 
we find that the implementation of PCR testing during embarkation and daily testing of all individuals aboard 
together with social distancing measures can greatly mitigate the number of cases during cruises for a wide 
range of parameter uncertainty related to the epidemiology of the novel coronavirus, PCR test characteristics 
relating to the sensitivity profile, and the conditions surrounding the operation of the cruises (local prevalence 
and cruise duration). Importantly, our findings also indicate that testing during embarkation is not sufficient 
to avert outbreaks even when moderate levels of social distancing measures are considered42. In the absence 
of pharmaceutical interventions such as vaccination, daily testing is key to minimize the number of infections 
irrespective of the duration of the cruise.

Figure 8.   These scatter plots display the relationship between the model parameters and the average number of 
infections in the context of embarkation testing and public health measures. Partial rank correlation coefficients 
(PRCC) and their statistical significance (P value) after considering the uncertainty ranges for each parameter 
(Table 1) are also shown. Local prevalence, the extent of public health measures and the length of the cruise 
are highly and positively correlated with the expected number of cases at the end of the simulations. The basic 
reproduction number aboard the ship is only weakly correlated with the average number of cases.



10

Vol:.(1234567890)

Scientific Reports |        (2021) 11:15482  | https://doi.org/10.1038/s41598-021-95032-4

www.nature.com/scientificreports/

Cumulative incidence from the baseline model without considering the effects of interventions are sig-
nificantly sensitive to variations in the local community prevalence (0.3–3%), the duration of the cruise ship 
(4–14 days), and the basic reproduction number aboard the cruise ship (9–16). For intervention scenarios 
incorporating testing strategies and social distancing, cumulative cases are most sensitive to the variation in 
local prevalence and the extent of social distancing measures (50–90%). Importantly, cumulative cases were 
not significantly sensitive to the variation assumed in the characteristics of the test sensitivity profile (Table 1).

The role of mathematical modeling has been instrumental in our current understanding of the transmission 
dynamics of COVID-19. Mathematical models have been employed in several previous studies to understand 
the effectiveness of non-pharmaceutical interventions to the control of SARS-CoV-2 in the Cruise ship setting, 
mainly utilizing data from Diamond Princess Cruise ship34,35,46,47. While some of the previous studies have used 
the compartmental models that are limited in representing the full heterogeneity of contact patterns of people 
aboard35,46, others that have employed the contact network models have not assessed the role of testing strategies 
in preventing COVID-19 outbreaks during the ocean cruise that involve shore excursions34,47. Previous mod-
eling studies of SARS-CoV-2 transmission in cruise ships have underscored the importance of extreme contact 
restrictions (e.g., network lockdown) in the context of a rapidly growing outbreak and considerable clinical 
response strategies (such as early mass screening with rapid and highly sensitive diagnostic test and immediate 
case isolation upon diagnosis)47, and the timely containment and evacuation of passengers and crew35,46. Other 
studies suggest the need to mitigate the concentration of the coronavirus in closed settings34 to prevent super-
spreading events. Our study adds to this understanding by systematically assessing the role of different layers of 
testing together with public health measures in averting outbreaks using a stochastic model with individual-level 
infectivity and test sensitivity dynamics.

Our analysis is not exempt of limitations. First, there is still much uncertainty surrounding the full spectrum 
of infectiousness profiles in the population and additional data may prove useful to further refine this model 
component. For this reason, our model does not distinguish between the infectivity profile of symptomatic and 
asymptomatic individuals. Second, the contact network of all the individuals aboard the cruise ship was modeled 
following the small world network paradigm which provides a reasonable approximation to social interactions36. 
While some studies have modeled group-level transmission aboard the vessel according to passenger age and 
crew type34,35, real-time and recurrent collection of data on contacts occurring during specific cruises of interest 
should help define a more accurate characterization of the contact dynamics that occur during cruises. Fourth, 

Figure 9.   These scatter plots display the relationship between the model parameters and the average number 
of infections in the context of embarkation and daily testing together with social distancing protocols. Partial 
rank correlation coefficients (PRCC) and their statistical significance (P value) after considering the uncertainty 
ranges for each parameter (Table 1) are also shown. Local prevalence and the extent of public health measures 
are positively correlated with the expected number of cases at the end of the simulations. The basic reproduction 
number aboard the ship does not play a significant role while the length of the cruise is only weakly correlated 
and does not substantially affect the outcome.
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we calibrated the transmission potential of SARS-CoV-2 aboard the vessel based on estimates derived from the 
Diamond Princess outbreak which may not be representative of the conditions conducive to viral transmission 
across all cruise ships. Fifth, we model conservative scenarios since we do not account for potential effects arising 
from prior immunity shaped by past infections or vaccination campaigns. As COVID-19 vaccination campaigns 
are launched around the world, future studies could evaluate their impact on transmission dynamics.
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