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Abstract
Qualifying the entanglement of a mixed multipartite state by gauging its distance to
the nearest separable state of a fixed rank is a challenging but critically important task
in quantum technologies. Such a task is computationally demanding partly because
of the necessity of optimization over the complex field in order to characterize the
underlying quantum properties correctly and partly because of the high nonlinear-
ity due to the multipartite interactions. Representing the quantum states as complex
density matrices with respect to some suitably selected bases, this work offers two
avenues to tackle this problem numerically. For the rank-1 approximation, an iterative
scheme solving a nonlinear singular value problem is investigated. For the general
low-rank approximation with probabilistic combination coefficients, a projected gra-
dient dynamics is proposed. Both techniques are shown to converge globally to a local
solution. Numerical experiments are carried out to demonstrate the effectiveness and
the efficiency of these methods.
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1 Introduction

Entanglement is a ubiquitous phenomenon in nature. Given one system, in whatever
sense, it is almost inevitable that it will necessarily interact with another or more
systems. This involvement of multiple systems, whether tangible or impalpable, can
generally be regarded as an entanglement. Depending on the settings, entanglement
can be characterized in different forms. Quantum entanglement, where multiple quan-
tum systems interact in such a way as if both their spatial coordinates and their linear
momenta are linked, even when the systems are widely separated in space, is particu-
larly intriguing [1]. Inmodern days, quantum entanglement plays an increasinglymore
important role in quantum technologies. Quantum informatics and quantum commu-
nication, for example, exploit the entanglement for faster and more secure passage of
information than classical algorithms. In recent years understanding of entanglement
has advanced and diversified into many subfields with applications across a variety
of disciplines. The scope is so broad that it is beyond our technical competence, nor
is there room in this short note, to provide even the most basic overview of the dif-
ferent subjects related to entanglement. Out of the numerously many, we mention
merely three review articles [2–4] whose references to hundreds of research results on
entanglement should be a conspicuous indication of the breadth and the depth of the
vast research endeavors in this area. This work concerns only about a fairly focused
subject of measuring numerically the distance between a given mixed state and its
nearest separable state [5–7]. In this introduction, therefore, we shall outline only the
needed background information pertaining to our methods. For clarity, we divide the
discussion into subsections by topics for easy perusal. Readers can skip the parts that
they are familiar with.

1.1 Entanglement and separability

In this section we briefly review some basic notions of entanglement and separability.
For a more thorough and in-depth treatment of the main ideas, we suggest [8–10] and
the classic book [11].

A quantum mechanical system is typically cast as a complex Hilbert space. The
reasons that complex numbers are needed in quantummechanics are plainly explained
in [12,13] and the references therein. Any unit vector in the space is referred to as a
pure state which typically is denoted by the Dirac’s ket notation |x〉. A mixed quantum
state is a probabilistic ensemble of finitely many pure states. It is more convenient to
represent a mixed state � as a density matrix

� :=
∑

i

μi |xi 〉 〈xi | ;
∑

i

μi = 1; μi ≥ 0, (1.1)

where the density matrices |xi 〉 〈xi | of pure states |xi 〉 are simply the orthogonal pro-
jector that maps any |z〉 onto |xi 〉 〈xi |z〉 with 〈xi |z〉 denoting the inner product in the
Hilbert space.
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A bipartite system H = H1 ⊗ H2 is a composition of two quantum mechanical
subsystemsH1 andH2 which interactwith each other through a bilinearmap1 denoted
by the symbol ⊗. A pure quantum state |ψ〉 ∈ H is called separable if and only if

|ψ〉 = ∣∣ψ1
〉 ⊗ ∣∣ψ2

〉
, (1.2)

where
∣∣ψ i

〉 ∈ Hi , i = 1, 2, are pure states, respectively; otherwise, |ψ〉 is entangled.
The real issue, however, concerns the mixed state in the composite system. A general
(mixed) quantum state ρ ∈ H is called separable if it can be decomposed as a
probabilistic mixture of tensor products of density matrices of pure states [14,15]:

ρ =
∑

i

θi (|xi 〉 〈xi |) ⊗ (|yi 〉 〈yi |),
∑

i

θi = 1; θi ≥ 0, (1.3)

where |xi 〉 ∈ H1 and |yi 〉 ∈ H2 are unit vectors. Thus, the collection of all separable
states in a bipartite system forms a convex set with pure separable states as its extreme
points [9].

The same notion of composition can be applied to more than two subsystems [16].
However, the classification of quantum-entangled states is far more complicated than
in the bipartite case. On the one hand, a natural generalization of (1.3) to a k-partite
density matrix ρ is that if

ρ =
∑

r

θr (
∣∣x1,r

〉 〈
x1,r

∣∣) ⊗ · · · ⊗ (
∣∣xk,r

〉 〈
xk,r

∣∣),
∑

i

θr = 1; θr ≥ 0, (1.4)

where, for all r ,
∣∣xi,r

〉 ∈ Hi is a unit vector, then ρ is called a fully separable state;
otherwise, it is said to be fully entangled. On the other hand, there also exists the notion
of partially separable states such as the separabilitywith respect to a particular partition
of k or the more complicated semi-separability. Once a specific class of separability is
chosen, the collection of all separable states under the associated definition still forms
a convex set.

Given a general mixed state ρ, if it is not separable, then it is natural to seek its
nearest separable state. The task involves calculating the shortest distance between ρ

and the convex hull of separable states. This nearest separable approximation problem
offers a way to assess the qualification of entanglement. It is of practical importance
in quantum applications [2,11].

1.2 Metric for measurement

We ought to make it clear that the qualification of entanglement depends highly on the
assumptions and the applications [17]. For this reason, when measuring the nearness,
different metrics might be used for different purposes. We mention three cases.

1 The very same notation ⊗ has been used for many different meanings in the literature. The distinction
between a tensor product and the Kronecker product is necessary for computation and will be explained in
Footnote 2. For a general composite system H1 ⊗ H2, we emphasize that ⊗ is merely a bilinear map.
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If the goal is to measure the maximum probability of distinguishability between
two quantum states ρ and σ , then the trace metric

DT (ρ, σ ) := 1

2
Tr

√
(ρ − σ)2,

basedon the so-calledKolmogorov–Smirnov (KS) test for comparing randomsamples,
is perhaps preferred. On the other hand, since repeated measurements are necessary
in quantum computation, it might be desired to calculate the minimum number of
measurements required to distinguish two different states. For this purpose, the Bures
distance

DB(ρ, σ ) :=
√
2 − 2Tr

√√
ρσ

√
ρ ,

an analogue of the Fisher information in classical statistics, can be employed. If we
regard the density matrix as an integrated ensemble of the state in which the whole
inherent information is contained, then the Frobenius norm

DF (ρ, σ ) = 1

2
‖ρ − σ‖F = 1

2

√
Tr(ρ − σ)2

may be used to measure the geometric difference between two ensembles [18].
It is known in linear algebra that, over finite dimensional spaces, all norms are

equivalent [19], but in quantum applications different choices of metrics will lead to
different approximation results and the associated interpretations.Also, not all distance
formulas are easy to use for numerical computation. Taking the positive square root of
a positive definite matrix repeatedly in the computation for the metrics DT or DB is
obviously more expensive than taking the square root of a scalar in the metric DF . As
a starter, we use the Frobenius norm DF in this work for its ease of implementation. If
DT or DB is to be used, then specifying the gradient information will be much more
involved. It will require separate works to develop new schemes and the pertinent
convergence theory. A numerical comparison of various measures is worthy of further
investigation, but is beyond the scope of this paper.

1.3 Approximation problem

Suppose H1 and H2 are two finite- dimensional quantum systems with fixed basis
states {ei }mi=1 and {f j }nj=1, respectively. Then, elements |x〉 ∈ H1 and |y〉 ∈ H2
can be interpreted as two column vectors x ∈ C

m and y ∈ C
n of their coordinates,

respectively. The density matrices |x〉 〈x| and |y〉 〈y| are indeed rank-1 matrices with
unit trace inCm×m andCn×n , respectively. Furthermore,with respect to the basis ei⊗f j
in the lexicographical order, the tensor product can be interpreted as the Kronecker
product. Therefore, the approximation problem
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min
|xi 〉∈H 1,〈xi |xi 〉=1
|yi 〉∈H 2,〈yi |yi 〉=1∑

i θi=1,θi≥0

‖ρ −
∑

i

θi (|xi 〉 〈xi |) ⊗ (|yi 〉 〈yi |)‖2F , (1.5)

can be translated via the linear algebra interpretation into the following equivalent
problem

min
xr∈Cm ,‖xr ‖=1,
yr∈Cn ,‖yr ‖=1,
λr≥0,

∑
r λr=1

‖ρ −
R∑

r=1

λr (xrx∗
r ) ⊗ (yry∗

r )‖2F , (1.6)

where ρ ∈ C
mn×mn is positive definite (hence Hermitian) with unit trace, ∗ denotes

the conjugate transpose, and ⊗ is interpreted as the Kronecker product. Over the
framework of general Hilbert spaces, the term needed for the summation in (1.5) is
difficult to determine.Over the finite dimensional spaceswe knowby theCarathéodory
theorem [20, Theorem 2.2.4] that no more than (mn)2 + 1 terms will provide the best
approximation of ρ over the convex hull of separable states. The problem therefore
involves at most (2(m + n) + 1)((mn)2 + 1) real variables. Suppose that R is a
predetermined positive integer, then we have a low-rank approximation problem. In
this case, since we are not taking all the extreme points of the convex hull of the pure
states into the summation, the solution to (1.6) is not unique.

This paper concerns the general k-partite low-rank approximation problem of the
form

min
xi,r∈Cmi , ‖xi,r‖2=1

λr≥0,
∑R

r=1 λr=1

‖ρ −
R∑

r=1

λr (x1,rx∗
1,r ) ⊗ · · · ⊗ (xk,rx∗

k,r )‖2F , (1.7)

for a given density matrix ρ ∈ C

∏k
i=1 mi×∏k

i=1 mi and k ≥ 2. It might appear that we are
dealing with the full separability for a k-partite system. Nevertheless, our techniques
applied to general dimensions mi . It is possible that a single space Cmi contains the
composition of several subsystems. That is, our methods can be applied to explore the
partial separability approximation as well [21]. This can be best illustrated by the split
of an n-qubit system in the next section.

1.4 Qubit system

The setting we present in this work is over a general multipartite quantum mechanical
system with xi,r ∈ C

mi , where mi is an arbitrary positive integer. For applications in
quantum information science, a commonly used basic unit for quantum computation
is the two-dimensional Hilbert space C

2. In this context, we still can formulate the
low-rank approximation.

Denoting the canonical basis vectors overC2 denoted by |0〉 =
[
1
0

]
and |1〉 =

[
0
1

]

or simply |↑〉 and |↓〉, a qubit is the quantum mechanical analogue of a classical bit
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in the digital computer. Correspondingly, in the bipartite system C
2 ⊗C

2 the product
|↑〉 ⊗ |↓〉 is often abbreviated as |↑↓〉, referred to as a 2-qubit. A d-qubit system
is represented by (C2)⊗d = C

2 ⊗ . . . ⊗ C
2. Therefore, a state in the system can

be thought of as a complex vector of dimension 2d . One could regard (C2)⊗d as
an d-partite entangled system of C2. If we regard the zeros and ones as constituting
the binary expansion of an integer, say, �, then we can replace the representations
of a basic d-qubit state by a short form |�〉, 0 ≤ � < 2d − 1. On the other hand,
if we split d = p + q, then we could also consider (C2)⊗d = (C2)⊗p ⊗ (C2)⊗q

as a bipartite entanglement of (C2)⊗p and (C2)⊗q . In the latter case, the problem
(1.5) becomes a partial separability approximation with m = 2p and n = 2q . Given
a 32 × 32 density matrix ρ, for example, we can group the 5 qubits in 7 ways:
5 = 5+0 = 4+1 = 3+2 = 3+1+1 = 2+2+1 = 2+1+1+1 = 1+1+1+1+1,
each constitutes a distinct low-rank approximation problems. The techniques to be
described in this paper can be applied to handle each case with appropriate realization
of k and mi in (1.7).

1.5 Canonical polyadic decomposition

Before we move on to describe our numerical method, we ought to point out that,
for the case R = 1, the problem (1.7) can be recast as a specially structured low-
rank tensor approximation referred to as the canonical polyadic decomposition with
symmetry in the literature [22]. For example, if ρ ∈ R

mn×mn is properly folded into an
order-4 tensor A ∈ R

m×m×n×n , we may recast the real version of (1.6) as an order-4
rank-1 tensor approximation with symmetry in the first two and the last two modes:

min
λ∈R+,x∈Rm ,y∈Rn

‖x‖=1,‖y‖=1

‖A − λ x ◦ x ◦ y ◦ y‖2F , (1.8)

where ◦ denotes the outer product. Many techniques, e.g., those in the Tensorlab
toolbox [23], are readily available to handle this specially structured rank-1 problem.
For the case R > 1, however, it becomes challenging to satisfy the probabilistic
constraint by conventional techniques. So far as we know, the Tensorlab toolbox has
not developed this functionality yet. Recall that the probabilistic ensemble is essential
in quantum applications. One of our contributions in this work is a mechanism to
maintain this constraint.

This paper is organized as follows. In Sect. 2, we generalize our recent results for
real-valued bipartite rank-1 approximation [24] to complex-valued multipartite rank-1
approximation. This generalization prepares the way of using the Wirtinger calculus
to derive the gradient of a real-valued objective function with complex variables. In
order to address the probabilistic constraint, we propose in Sect. 3 a projected gra-
dient flow to tackle the multipartite low-rank approximation (1.7) directly. The most
important features of this dynamical system are that the nonnegativity and sum-to-one
constraints of the combinations coefficients are preserved and that the rank can be
automatically adjusted downward during the integration. We believe that the simplic-
ity of this approach might be employed as a useful tool entanglement qualification.
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Numerical experiments are carried out in Sect. 4 to demonstrate the working of our
algorithms.

2 Multipartite rank-1 approximation

In an earlier study [24], we have considered the problem of approximating a real-
valued, symmetric, and positive matrix A ∈ R

mn×mn by a real-valued rank-1 bipartite
system, i.e.,

min
x∈Sm−1,y∈Sn−1,λ∈R+

‖A − λ(xx�) ⊗ (yy�)‖2F . (2.1)

The idea is to reformulate (2.1) as either a nonlinear eigenvalue problem or a nonlin-
ear singular value problem. Correspondingly, a nonlinear power-like and a nonlinear
SVD-like iterative schemes have been proposed and analyzed. Numerical experiments
suggest that these methods are not only easy to implement, but also are highly efficient
when compared with the more sophisticated routines used in the package Tensorlab.

In this section, we consider the most general k-partite approximation problem

min
λ∈R+, i∈�k�

xi∈Cmi , ‖xi‖2=1

‖A − λ(x1x∗
1) ⊗ · · · ⊗ (xkx∗

k )‖2F , (2.2)

for a density matrix A ∈ C

∏k
i=1 mi×∏k

i=1 mi . The previous experiences we have learned
in [24] help but the generalization is not as obvious because of the involvement of
complex variables and the extended number of factors when k ≥ 3.

2.1 Basics

To facilitate our subsequent discussion, we first introduce some basic notations and
review some useful facts. Let �k� denote the set of integers {1, . . . , k}. Given column
vectors xi , i ∈ �k�, note that the classical Kronecker product ⊗ is equivalent to the
tensor product2 ◦ in a reversed order [25], i.e.,

x1 ⊗ . . . ⊗ xk = vec(xk ◦ . . . ◦ x1), (2.3)

where vec(T) for an order-k tensor T ∈ C
m1×m2×...×mk is a linear array whose entry

at the location

(sk − 1)mk−1 . . .m1 + (sk−1 − 1)mk−2 . . .m1 + ... + (s2 − 1)m1 + s1

2 The tensor product of tensors leads to a multi-indexed array. While the way to enumerate its elements
is often immaterial in theory, it is essential to enumerate them consistently for numerical calculation. One
general rule adopted is that the indices of the leftmost tensor are counted first, e.g., the indices in the tensor
product a ◦ b of two vectors are enumerated in the same way as the matrix ab�. The relationship (2.3)
therefore follows.

123



120 Page 8 of 28 M. M. Lin, M. T. Chu

is precisely the element τs1,...,sk of T. It will be convenient to adopt the abbreviations

{⊗k
i=1 xi := x1 ⊗ x2 ⊗ · · · ⊗ xk,

©1
i=kxi := xk ◦ . . . ◦ x1,

and define the order-k tensor

D(x1, . . . , xk) := reshape(A
k⊗

i=1

xi , [mk, . . . ,m1]) ∈ C
mk×...×m1,

where the operator reshape is identical to that in Matlab which returns a multi-
dimensional array with the specified dimensions.

To handle the multi-indices more effectively, the following notation system proves
handy [26]. Suppose that the set �k� is partitioned as the union of two disjoint nonempty
subsets α := {α1, . . . , α�} and β := {β1, . . . , βk−�}. Let I = (i1, . . . , i�) and J =
( j1, . . . , jk−�) denote indices at locations α and β, respectively, where each index
in the arrays I and J should be within the corresponding range of integers, e.g.,
i1 ∈ �mα1� and so on. An element τs1...sk in the order-k tensor T can be identified as

τ
(α,β)

[I|J] with sαμ = iμ and sβν = jν , μ ∈ ���, ν ∈ �k − ��. The point to make is that via
the location pointer (α,β) we can enumerate elements τs1...sk in any order we want.
When the reference to a specific partitioning (α,β) is clear, we abbreviate the element
as τ[I|J]. The partition (α,β) may be regarded as generalizing the familiar notion of
rows and columns for matrices.

Given a partition �k� = α ∪ β, we may regard an order-k tensor T as the matrix
representation of a linear transformation from the tensor space C

mβ1×...×mβk−� to
C
mα1×...×mα� . Thus, we use the symbol �α to replace the conventional “matrix-to-

vector" multiplication, that is, if S = [σ j1... jk−�
] ∈ C

mβ1×...×mβk−� , then the Ith
element of the product Y = T �α S ∈ C

mα1×...×mα� is defined by

(Y)I :=
mβ1∑

j1=1

. . .

mβk−�∑

jk−�=1

τ
(α,β)

[I| j1... jk−�]σ j1,..., jk−�
.

For a,b ∈ C
n , let

〈a,b〉R :=
n∑

i=1

aibi (2.4)

denote a formal inner product. Similarly, the notation 〈, 〉R can be generalized to
matrices or tensors. The relationship

〈T,
k©

i=1
xi 〉R = 〈T �α (

k−�©
s=1

xβs ),
�©

t=1
xαt 〉R, (2.5)
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which is nothing but the associative law of multiplication, holds for any tensors
�©

t=1
xαt ∈ C

mα1×...×mα� and
k−�©
s=1

xβs ∈ C
mβ1×...×mβk−� . We shall employ (2.5) to help

describe lengthy algebraic manipulations.
Suppose that f : C → R is a real-valued function over a complex variable z =

x + ı y. If we regard f (z) = u(x, y), then the Wirtinger derivatives are defined by

⎧
⎪⎨

⎪⎩

∂ f
∂z := 1

2

(
∂u
∂x − ı ∂u

∂ y

)
,

∂ f
∂z := 1

2

(
∂u
∂x + ı ∂u

∂ y

)
.

That is, while maintaining the usual complex arithmetic throughout the operations, we
take the formal partial derivatives of f (z) by treating z and z as independent variables
with respect to each other [27]. For a general real-valued function f : Cn → R, the
definition of the Wirtinger derivative can be generalized to:

⎧
⎪⎨

⎪⎩

∂ f
∂z := 1

2

(
∂ f
∂u − ı ∂ f

∂v

)
,

∂ f
∂z := 1

2

(
∂ f
∂u + ı ∂ f

∂v

)
,

(2.6)

where we regard f (z) = f (u, v) in the real variables u, v ∈ R
n and z = u+ ıv ∈ C

n .
In this way, the “true" gradient of function f : Cn → R can be calculated from the
Wirtinger derivatives via the relationship:

∇ f =
[ ∂ f

∂u

∂ f
∂v

]
=

[ ∂ f
∂z + ∂ f

∂z

ı( ∂ f
∂z − ∂ f

∂z )

]
. (2.7)

2.2 Nonlinear singular value formulation

For the optimization problem (2.2), and especially for the case k ≥ 3, we propose the
idea of alternately applying the singular value decomposition to update two complex
vectors at a time.Wedivide the discussion into twoparts. First,wemotivate the iterative
scheme by exploring the first-order optimal condition for the objective function. Then,
we derive the convergence theory.

Lemma 2.1 Let �k� = α ∪ β with α := {α1, α2} and β := {β1, . . . , βk−2} be an
arbitrary partition. If (x1, . . . , xk) is a local minimizer to (2.2), then it is necessary
that

⎧
⎪⎪⎨

⎪⎪⎩

(
D(x1, . . . , xk) �α

(
k−2©
i=1

xβi

))
xα2 =λ(x1, . . . , xk)xα1 ,

(
D(x1, . . . , xk) �α

(
k−2©
i=1

xβi

))∗
xα1=λ(x1, . . . , xk)xα2 .

(2.8)
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It is worth noting that the multiplication between the order-k tensorD(x1, . . . , xk)
and the order-(k-2) tensor ©k−2

i=1 xβi results a matrix. Also, since �k� = α ∪ β is
an arbitrary partition, the specifics of α1 and α2 are immaterial. They refer to every
possible indices. The necessary condition (2.8) therefore is much more involved than
it appears.

Proof Because A is positive definite, the minimization of (2.2) is equivalent to the
maximization of

max
xi∈Cmi , ‖xi‖2=1

i∈�k�

λ(x1, . . . , xk) := 〈A, (x1 ⊗ · · · ⊗ xk)(x1 ⊗ · · · ⊗ xk)∗〉, (2.9)

where 〈, 〉 denotes the Frobenius inner product over the complex space. We can also
write λ as

λ(x1, . . . , xk) = 〈A, (x1 ⊗ · · · ⊗ xk)(x1 ⊗ · · · ⊗ xk)�〉R.

Consider the variable xα1 = uα1 + ivα1 first. Taking the Wirtinger derivatives with
respect to xα1 yields

∂λ

∂xα1

= (D(x1, . . . , xk) �α (
k−2©
i=1

xβi ))xα2

Since

λ(x1, . . . , xk) = λ(x1, . . . , xk) = 〈A, (x1 ⊗ · · · ⊗ xk)(x1 ⊗ · · · ⊗ xk)�〉R,

we also have

∂λ
∂xα1

= ( ∂λ
∂xα1

) = (D(x1, . . . , xk) �α (
k−2©
i=1

xβi ))xα2 ,

It follows from (2.7) that the partial gradient of λ with respect to the real variables uα1

and vα1 is given by

∇(uα1 ,vα1 )λ =
⎡

⎣
∂λ

∂uα1

∂λ
∂vα1

⎤

⎦ = 2

[R
I

]
, (2.10)

where R and I are, respectively, the real and imaginary parts of

D(x1, . . . , xk) �α (
k−2©
i=1

xβi ))xα2 = R + ıI.
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Let S2mα1−1 denote the unit sphere

S2mα1−1 :=
{[

u
v

]
∈ R

2mα1 | ‖u‖22 + ‖v‖22 = 1

}
.

The projection of ∇(uα1 ,vα1 )λ onto the unit sphere S2m j−1 is given by

2

[R
I

]
− 2(u∗

α1
R + v∗

α1
I)

[
uα1

vα1

]
. (2.11)

Observe that

λ = λ̄ = (u∗
α1

− iv∗
α1

)(R + iI) = (u∗
α1
R + v∗

α1
I) + i(u∗

α1
I − v∗

α1
R).

Therefore, it must be that

{
u�

α1
R + v�

α1
I = λ,

u�
α1
I − v�

α1
R = 0.

(2.12)

The first-order optimality condition requires that the projected gradient in any direction
be zero. By substituting (2.12) into (2.11), we find that

(D(x1 ⊗ · · · ⊗ xk) �α (
k−2©
i=1

xβi ))xα2 = λ(x1, . . . , xk)xα1 .

which is the first equation in (2.8). The second equation can be proved by applying a
similar argument to the variable xα2 . ��

Since the goal is to maximize λ(x1, . . . , xk), we can interpret the relationship (2.8)
in Lemma 2.1 in terms of the singular value decomposition as follows.

Corollary 2.2 With respect to an arbitrary but fixed partition �k� = α ∪ β with α :=
{α1, α2} and β := {β1, . . . , βk−2}, the triplets (xα1 , λ, xα2) such that (2.8) is satisfied
and such that λ is as large as possible must be the dominant singular triplets of the
matrix D(x1, . . . , xk) �α (©k−2

i=1 xβi ). In particular, xα1 is the dominant left singular
vector and xα2 is the dominant right singular vector.

Corollary 2.2 thus motivates an SVD-like iteration where we update two pure states
at a time by varying the indices in α. The selections of α could be systematic such as
cycling through the list of pairs (1, 2), (2, 3), . . . , (k − 1, k) and (k, 1), or could be
randomly generated at every iteration. Our proof of convergence does not depend on
how α is generated. The updating scheme with a random selection of α is sketched in
Algorithm 1.

A general purpose routine, say, svds, is employed as a black box to calculate the
dominant singular triplets. To ensure continuity, we shall align all singular vectors by
requiring that the first entries of left singular vectors be real and nonnegative. This
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Algorithm 1 (Best rank-1 approximation via SVD updating with randomization.)

Require: An density matrix A and k starting unit vectors x[0]
i ∈ C

mi , i ∈ �k�.
Ensure: A local best rank-1 approximation to A in the sense of (2.2).

1: p ← 0
2: λ[0] ← 〈A, (

⊗k
i=1 x

[0]
i )(

⊗k
i=1 x

[0]
i )∗〉

3: repeat
4: p ← p + 1
5: α ← two random integers from �k�
6: β ← �k� − α {Complement of α}

7: D ← D(x[p−1]
1 , . . . , x[p−1]

k ) �α (
k−2©
i=1

x[p−1]
βi

)

8: [u, s, v] = svds(D, 1) {Dominant singular value triplets via, e.g., Matlab routine svds}
9: θ ← argument of first entry of u

10: x[p]
α1 = e−ıθu

11: x[p]
α2 = eıθv

12: λ[p] ← s
13: until λ[p] meets convergence criteria

can easily be accomplished by a phase change. For example, if (u, s, v) represents the
dominant singular triplets of a matrix X , i.e.,

Xv = su,

then so does the triplets (e−ıθu, s, e−ıθv) for any angle θ . Taking θ to be the phase of
the first entry of u will make the first entry of e−ıθu nonnegative. This mechanism is
included in Algorithm 1.

For the sake of conveniently registering the iterates for analysis, we have implied
in the description of Algorithm 1 that whenever two vectors (x[p]

α1 , x[p]
α2 ) are updated

to (x[p+1]
α1 , x[p+1]

α2 ), the remaining list in (x[p+1]
1 , . . . , x[p+1]

k ) are just exact copies of

(x[p]
β1

, . . . , x[p]
βk−2

), i.e., x[p+1]
βi

= x[p]
βi

for i ∈ �k − 2�.

In our current application,D(x[p]
1 , . . . , x[p]

k ) varies in p. This is different from the
SVD-based methods developed earlier for stationary tensor approximations [26,28].
We have to establish a new convergence theory. Toward that goal, we first prove the
monotone increasing property of the objective values of λ.

Theorem 2.3 Given a density matrix A ∈ C
mn×mn, let {λ[p]} be the sequence gener-

ated by Algorithm 1 where α ∈ �k� is randomly selected. Then the inequalities

λ(x[p]
1 , . . . , x[p]

k ) ≤ λ[p+1] ≤ λ(x[p+1]
1 , . . . , x[p+1]

k ) ≤ λ[p+2] (2.13)

hold. Therefore, both sequences {λ[p]} and {λ(x[p]
1 , . . . , x[p]

k )} converge monotoni-
cally.

Proof Define the abbreviation a[p] = x[p]
1 ⊗ . . . ⊗ x[p]

k . Then we can write

λ(x[p]
1 , . . . , x[p]

k ) = 〈Aa[p], a[p]〉 = 〈D(x[p]
1 , . . . , x[p]

k ) �α

(
k−2©
i=1

x[p]
βi

)
,

2©
i=1

x[p]
αi

〉,
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λ[p+1] = 〈Aa[p], a[p+1]〉 = 〈D(x[p]
1 , . . . , x[p]

k ) �α

(
k−2©
i=1

x[p]
βi

)
,

2©
i=1

x[p+1]
αi

〉.

The first inequality in (2.13) follows from the definition that λ[p+1] is the dominant sin-

gular value of thematrixD(x[p]
1 , . . . , x[p]

k )�α (
k−2©
i=1

x[p]
βi

). Similarly, the third inequality

holds. To prove the second inequality, observe that

λ(a[p+1]) − λ[p+1] = 〈Aa[p+1], a[p+1]〉 − 〈Aa[p], a[p+1]〉 = 〈a[p+1] − a[p], Aa[p+1]〉
= 〈a[p+1] − a[p], A(a[p+1] − a[p])〉 + 〈a[p+1] − a[p], Aa[p]〉 ≥ 0,

which completes the proof. ��
We next prove the convergence of iterates themselves under the following generic

condition.

Definition 2.4 We say that the matrix A satisfies Condition P if the corresponding
polynomial system (2.8) hasfinitelymanygeometrically isolated real-valued solutions.

Though pathological examples can be constructed, it is well known in algebraic
geometry that almost every square system of polynomial equations over the complex
field has finitely many solutions [29]. Furthermore, if F(z;q) is a system of polyno-
mials in both the variables z and the parameters q and is square in z, then for almost all
parameters q the number of geometrically isolated solutions to this polynomial system
is finite [30, Theorem7.1.1]. The phrase “almost all”means that those values of param-
eters that fail to produce finitely many and geometrically isolated solutions constitute
a nowhere dense and measure zero subset in the ambient space. These exceptions are
referred to as “non-generic”. For this reason, the condition P is generic.

Theorem 2.5 Suppose that the given density matrix A ∈ C
mn×mn satisfies the Condi-

tion P. Suppose also that the matricesD(x[p]
1 , . . . , x[p]

k ) always have simple dominant

singular values. Then the corresponding iterates {(x[p]
1 , . . . , x[p]

k )} converge.
Proof Aswe have shown in the proof of Theorem 2.3, the interlacing property in (2.13)
implies that

lim
p→∞〈A(a[p+1] − a[p]), (a[p+1] − a[p])〉 = 0.

On the one hand, because A is positive semi-definite, we have

lim
p→∞ ‖a[p+1] − a[p]‖2F = 2 − 2 lim

p→∞Re(
k
i=1〈x[p]

i , x[p+1]
i 〉) = 0.

On the other hand, because |
k
i=1〈x[p]

i , x[p+1]
i 〉| ≤ 1, i ∈ �k�, it must be that

lim
p→∞〈x[p]

i , x[p+1]
i 〉 = 1, i ∈ �k�.
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Throughout the algorithm, with respect to arbitrary α, we have required the phase of
the first entries of all x[p]

α1 be positive. Therefore, the two unit vectors x[p]
i and x[p+1]

i ,
i ∈ �k�, must be gradually aligned as p goes to infinity. In particular,

lim
p→∞(xi [p+1] − xi [p]) = 0, i ∈ �k�.

By the result already established in [31, Lemma 4.10] and [28, Lemma 2.7], the above
limiting behavior of increments between two consecutive iterates is sufficient to prove
that {(x[p]

1 , . . . , x[p]
k )} converges. ��

Algorithm 1 is designed for multipartite rank-1 approximation problem (2.2). Since
its convergence theory is complete and its computation is highly efficient, it is tempting
to speculate that we can use it as the basic building block in the so-called greedy ALS
update scheme for the general problem (1.7). The idea is that, while advancing in
t = 0, 1, . . ., we repeatedly apply Algorithm 1 to solve a sequence of subproblems of
the form

(
λ

[t+1]
j , x[t+1]

1, j , . . . , x[t+1]
k, j

)
:= argmin

λ j∈R+, i∈�k�,

xi∈Cmi , ‖xi‖2=1

‖ρ[t+1]
j − λ j (x1x∗

1) ⊗ · · · ⊗ (xkx∗
k )‖2F ,

j ∈ �R�, (2.14)

where

ρ
[t+1]
j := ρ −

j−1∑

r=1

λ[t+1]
r

(
x[t+1]
1,r x[t+1]

1,r
∗) ⊗ · · · ⊗

(
x[t+1]
k,r x[t+1]

k,r
∗)

−
R∑

r= j+1

λ[t]
r

(
x[t]
1,rx

[t]
1,r

∗) ⊗ · · · ⊗
(
x[t]
k,rx

[t]
k,r

∗)
. (2.15)

The matrix ρ
[t+1]
j is composed of two parts—the factors λ

[t]
r , x[t]

1,r , . . . , x
[t]
k,r , r ∈

�R�\� j�, are available from the t th iteration and λ
[t+1]
r , x[t+1]

1,r , . . . , x[t+1]
k,r , r ∈ � j−1�,

are newly updated at the (t + 1)th iteration. Nonetheless, such a successive dis-
placement iterative scheme suffers from several issues both computationally and
theoretically. First, it is expensive. For each fixed t = 0, 1, . . ., we need to sweep
through j ∈ �R�, whereas for each fixed j ∈ �R� we need to solve (2.14) using Algo-
rithm 1 which itself requires iterations. Second, the matrix ρ

[t+1]
j is guaranteed only

to be Hermitian but is not necessarily positive semi-definite, whereas our convergence
analysis for Algorithm 1 relies heavily on the definiteness of the underlying matrix.
Third, the foremost challenge in computation is to maintain the critically important
probability mixture of separable states in (1.7), i.e., the conditions that

R∑

r=1

λr = 1, λr ≥ 0. (2.16)
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The λ
[t+1]
j found by solving the individual problem (2.14), however, does not take this

constraint into account as a whole. In fact, since ρ
[t+1]
j is a mixture by λ

[t+1]
1 , . . . λ

[t+1]
j−1

and λ
[t]
j+1, . . . , λ

[t]
R which in general are not even probabilistically related, we have no

reason to think that the constraint (2.16) will be satisfied eventually. Enforcing such a
condition seems to be a major difficulty in applying the greedy ALS method.

3 Quantum low-rank separability approximation

In contrast to the SVD-based iterative method for the case R = 1, in this section we
propose a continuous dynamical system approach for the case R > 1 when solving
the problem (1.7). The dynamical system is based on the complex-valued gradient
flow. We observe at least four advantages in such an approach. First, the sum-to-one
constraint imposed on the combination coefficients can be built into the dynamical
system. Second, any violation of the nonnegativity constraint can easily be detected
and fixed. Third, the rank can be automatically adjusted downward and, hence, even if
R is wrongly overestimated, it actually helps offer a broader search initially and will
be downgraded along the course of integration. Fourth, once the differential equation
is in place, the coding is straightforward and any available ODE solver can be used as
the numerical integrator.

3.1 Projected gradient flow

For convenience, we introduce the abbreviations

⎧
⎨

⎩

� := ρ − ∑R
r=1 λr (x1,rx∗

1,r ) ⊗ · · · ⊗ (xk,rx∗
k,r ) ∈ C


k
i=1mi×
k

i=1mi ,

ωr := 〈x1,r ⊗ · · · ⊗ xk,r ,�(x1,r ⊗ · · · ⊗ xk,r )〉 ∈ R,

Cr := reshape
(
2(x1,r ⊗ · · · ⊗ xk,r), [mk, . . . ,m1]

) ∈ C
mk×···×m1 .

Note that ωr and Cr vary in r ∈ �R�. Note also that the expressions involve every λr ,
r ∈ �R�. That is, different from the greedy ALS scheme (2.14), we want to adjust
the entire array {λ1, . . . , λR} simultaneously. Despite their seemingly complicated
expressions, it will be interesting to find in the following development that �, ωr and
Cr for the case R > 1 generalize the roles of A, λ and D discussed in the preceding
section for the case R = 1, respectively.

Rewrite the objection function in (1.7) as

g(λ1, . . . , λR, x1,1, . . . , xk,1, x1,2, . . . , xk,2, . . . , x1,R, . . . , xk,R)

:= 〈�,�〉 = 〈�,�〉R . (3.1)

It is not difficult to calculate the Wirtinger derivative of the function g with respect to
various variables. We summarize the results as follows:
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⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂g
∂λr

= −2ωr ,

∂g
∂x j,r

= −2λrCr � j

(
1©

i=k,i �= j
xi,r

)
,

∂g
∂x j,r

= −2λrCr � j

(
1©

i=k,i �= j
xi,r

)
,

j ∈ �k�, r ∈ �R�. (3.2)

Note that the outer product is done specifically in the reverse order. If we denote
x j,r = u j,r + ıv j,r with u j,r , v j,r ∈ R

m j , then by using (2.7) the above Wirtinger
gradients (3.2) can be converted to the real gradients as follows:

∂g

∂(u j,r , v j,r )
= −4λr

⎡

⎢⎢⎢⎢⎣

Re

(
Cr � j

(
1©

i=k,i �= j
xi,r

))

Im

(
Cr � j

(
1©

i=k,i �= j
xi,r

))

⎤

⎥⎥⎥⎥⎦
, j ∈ �k�, r ∈ �R�.

(3.3)

This expression is similar to that in (2.10). Using the same argument as that for deriving
(2.12), we arrive at the relationships

ωr = u∗
j,r Re

(
Cr � j

(
1©

i=k,i �= j
xi,r

))

+ v∗
j,r Im

(
Cr � j

(
1©

i=k,i �= j
xi,r

))
, r ∈ �R�. (3.4)

Therefore, the projected gradients of objective function g onto the unit sphere S2m j−1,
j ∈ �k�, can be expressed in the condensed form:

Proj
S2m j−1

∂g

∂(u j,r , v j,r )
= −4λr

(
Cr � j

(
1©

i=k,i �= j
xi,r

)
− ωrx j,r

)
, r ∈ �R�.

(3.5)

By (3.5), the first-order optimality condition should be that

λr

(
Cr � j

(
1©

i=k,i �= j
xi,r

)
− ωrx j,r

)
= 0, j ∈ �k�, r ∈ �R�,

which resembles that in Lemma 2.1 but is more involved because r varies. By now,
we have established a negative gradient flow
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⎧
⎪⎨

⎪⎩

λ̇r = 2ωr ,

ẋ j,r = 4λr

(
Cr � j

(
k©

i=1,i �= j
xi,r

)
− ωrx j,r

)
,

j ∈ �k�, r ∈ �R�, (3.6)

whose solution defines a trajectory alongwhich the objective value of (1.7) is gradually
decreased. However, thus far there is no guarantee on whether the resulting λr (t),
r ∈ �R�, will satisfy the constraint (2.16). We will modify the differential equation to
address this issue while still maintaining the descent property in the next section. We
also have to devise an implementation that respects the nonnegativity constraint.

3.2 Modified gradient flow and adaptive strategy

We address the sum-to-one constraint first. Suppose that initially λr (0) > 0, r ∈ �R�,
and

∑R
r=1 λr (0) = 1. To satisfy the constraint (2.16), it is necessary that

R∑

r=1

λ̇r (t) = 0, for all t ≥ 0. (3.7)

The dynamical system given in (3.6) alone can hardly meet this condition.We propose
to remedy the situation by modifying the flow for λr (t) to

λ̇r = 2(ωr − ω̃), r ∈ �R�, (3.8)

with ω̃ :=
∑R

r=1 ωr
R , while keeping intact the original governing equations for ẋ j,r ,

j ∈ �k�, r ∈ �R�. By doing it this way, the condition (3.7) is met, but the direction of
the flow x j,r , j ∈ �k�, r ∈ �R� will have been altered. Even so, the following result
shows that we still have a descent flow.

Lemma 3.1 Let

Z(t) := (λ1(t), . . . , λR(t), x1,1(t), . . . , xk,1(t), . . . , x1,r (t), . . . , xk,r (t)) (3.9)

denote the flow corresponding to the newly modified differential system described
above. Then the objection value of g is descending along the trajectory Z(t).

Proof We first calculate that

dg(Z(t))

dt
= ∇g(Z(t)).

dZ(t)

dt

=
R∑

r=1

∂g

∂λr
λ̇r +

k∑

j=1

R∑

r=1

〈 ∂g

∂(u j,r , v j,r )
,

[
u̇r
v̇r

]
〉

=
R∑

r=1

∂g

∂λr
λ̇r − 16

k∑

j=1

R∑

r=1

λ2r

⎛

⎝
∥∥∥∥∥Cr � j

(
k©

i=1,i �= j
xi,r

)∥∥∥∥∥

2

− ω2
r

⎞

⎠ .

(3.10)
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It follows from (3.4) that each term in the last summations is nonnegative. Also,

R∑

r=1

∂g

∂λr
λ̇r = −4

R∑

r=1

ωr (ωr − ω̃) = −4(
R∑

r=1

ω2
r − 1

R
(

R∑

r=1

ωr )
2) ≤ 0, (3.11)

where the last inequality follows from the Cauchy–Schwarz inequality and the fact
that ωr ∈ R, r ∈ �R�. In all, we see that dg(Z(t))

dt ≤ 0. We mention in passing that the
equality in (3.11) holds only if ωr = 1√

R
. ��

We next address the task of keeping λr ≥ 0, r ∈ �R�. Maintaining nonnegativity in
solutions of ordinary differential systems has been widely discussed in the literature.
A variety of strategies for enforcing nonnegativity can be found in the literature. See
[32] and the references contained therein for a historic review of this subject. For
our application, we propose the following mechanism to keep λr ≥ 0, r ∈ �R�. The
mechanism consists of three components working together:

1. Event Detection: By an event we mean that one of these λr (t), r ∈ �R�, has
decreased from a positive value to zero (or near zero) for some t during the
integration. It is critical to determine the time t̂ when an event occurs up to the
prescribed precision. Such a detection machinery can effectively be programmed
in anynumerical solver. For demonstrate purpose,we shallmakeuse of the existing
event function in the Matlab ODE suite to carry out the task.

2. RankReduction:The eventλr (t̂) = 0 indicates two things. First, since λ̇r (t̂) ≤ 0,
any further integration even at a tiny time step is likely to violate the nonnegative
constraint. Second, since the termλr (t̂)(x1,r (t̂)x∗

1,r (t̂))⊗· · ·⊗(xk,r (t̂)x∗
k,r (t̂)) = 0

is not making any contribution to the objective value of g at the moment, we can
drop this term and continue. In doing so, the initial rank R is reduced by one.

3. Restart:Once a term is dropped,we use the remaining information (λs(t̂), x1,s(t̂),
. . . , xk,s(t̂)), s ∈ �R�\{r}, as the initial value to restart the integration. In this way,
the objective value is ratcheted at the current value and can only continue to go
down after the restart.

Recall that estimating a proper R is always difficult in low-rank approximation.
Starting with a larger rank R might seem redundant and wasteful initially, but it
provides the flexibility of searching multiple directions for a better solution. The
mechanism described above serves as a means to filter out unneeded factors.

3.3 Convergence

The limiting behavior of a gradient dynamics iswell studied in the literature. In particu-
lar, counterexamples have been found to evince that not all gradient flowwill converge.
For completion, we now argue that our gradient flow, even with the modification (3.8),
will converge to a singleton point.

If we separate each x j,r into real and imaginary parts, the right-hand side of our
differential system can be regarded as a polynomial system in a total of (2

∑k
i=1 mi +
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1)R real variables. Without loss of the original sense, let ξ denote the vector of all real
variables and abridge the differential system as a negative gradient flow

dξ

dt
= −∇F(ξ) (3.12)

for some abstract objective function F(ξ) in ξ . Being polynomials in ξ , the vector
field ∇F(ξ) is real analytic in ξ . By construction, ξ(t) is also bounded. It follows that
the set of accumulation points

ω(ξ(0)) := {̃
ξ ∈ R

n | x(tν) → ξ̃ for some sequence tν → ∞}
(3.13)

is a non-empty, compact, and connected subset of stationary points, i.e., ∇F (̃ξ) = 0.
Recall the following Łojasiewicz gradient inequality [33,34].

Theorem 3.2 Suppose that F : U → R is a real analytic function in an open set
U ⊂ R

n and ξ̃ ∈ U. Then there exist a neighborhood W of ξ̃ , constants c > 0 and
θ ∈ [0, 1), such that the inequality

‖∇F(ξ)‖ ≥ c‖F(ξ) − F (̃ξ)‖θ

holds for all ξ ∈ W.

An important consequence of the Łojasiewicz gradient inequality is that the trajec-
tory of an analytic gradient flow is necessary of finite length. The following result is
readily applicable to our differential system and implies that the flow {λr (t), x j,r (t)},
j ∈ �k�, r ∈ �R� converge to a singleton stationary point. See [35, Theorem2.2] and
the lecture note [36] for its proof.

Theorem 3.3 Suppose that F : U → R is real analytic in an open set U ⊂ R
n. Then

for any bounded semi-orbit of (3.12)

ξ(t) → ξ̃ as t → ∞

for some ξ̃ ∈ U.

4 Numerical experiment

Quantifying the entanglement of a mixed state by finding its nearest separable state
is a challenging problem. Even the problem of determining whether a given state
is separable or not is NP-hard [37,38]. However, we must not misconceive that an
NP-hard problem is forever hopeless and untouchable. A practical example is the
problem that expressing

√
2 isNP-hard in theory because it requires infinite complexity

on a Turing machine but we do have polynomial-time algorithms to approximate
it to any finite precision. Likewise, the NP-hardness encountered in entanglement
quantification does not imply that we cannot approximately solve the problem by

123



120 Page 20 of 28 M. M. Lin, M. T. Chu

Table 1 Average errors, numbers of iterations, and CPU time in seconds on 20 runs by Algorithm 1 for ρ

α Error Iteration MinTime MaxTime AveTime

Cyclic 9.6389 × 10−16 4 4.0921 × 10−3 1.1574 × 10−1 1.0126 × 10−2

Random 3.5439 × 10−15 4.1 2.9594 × 10−3 2.4689 × 10−2 5.3788 × 10−3

numerical means. Thus far, we have described an SVD-based iterative method for the
rank-1 k-partite problem (2.2) and a gradient flow approach for the more complicated
rank-R k-partite problem. In this section we carry out some numerical experiments to
test the effectiveness of our methods.

Example 1 In the first part of this experiment, we produce the target matrix

�1 = (η1 ⊗ η2 ⊗ η3 ⊗ η4)(η1 ⊗ η2 ⊗ η3 ⊗ η4)
∗

with randomly generated unit vectors η1, . . . , η4 ∈ C
5. Therefore, the target matrix

ρ ∈ C
625×625 is already separable and is of rank one. We test Algorithm 1 with

randomly selected α as well as its analogue where α is varied cyclically. The iteration
is terminated whenever the stopping criterion

∥∥∥∥∥∥

[
D(x1, x2, x3, xk)� j

4©
i=1,i �= j

xi − λx j

]

j=1,...,4

∥∥∥∥∥∥
F

< 10−10. (4.1)

is met. We repeat our experiments 20 times with distinct randomly generated starting
points. As a nonlinear optimization problem, the limit points depend on the starting
points and may differ from the original generators η1, . . . , η4 ∈ C

5. It should be more
feasible if we gauge the quality of the approximation not by a comparison with the
original generators but by the product

ρ̂ = (x̂1 ⊗ x̂2 ⊗ x̂3 ⊗ x̂4)(x̂1 ⊗ x̂2 ⊗ x̂3 ⊗ x̂4)∗

based on the limit point (x̂1, x̂2, x̂3, x̂4) of the iterates. We measure the quantity

Error := ‖�1 − ρ̂‖F .

The test results in terms of the averages of errors, numbers of iterations, and CPU
time in seconds of the 20 runs are tabulated in Table 1. Since Algorithm 1 utilizes
only the first-order derivative information, its rate of convergence should be at most
linear. Nonetheless, for this problem of decomposing a 625 × 625 density matrix as
the tensor product of four pure state density matrices in C

5, the empirical data seem
to suggest that our SVD-based approach can be effective in precision and efficient in
time when calculating the optima.

In practice, the exact rank of a given entangled state is not known. Indeed, for
almost all information gathering devices, it is inevitable that the data collected contain
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(a) (b)

Fig. 1 Average errors and CPU time on 20 random runs by Algorithm 1 for ρσ

noise. The presence of even a small amount of noise to a low-rank matrix will break up
the low rank. In the second part of this experiment, we mete out the perturbation in a
controlled way and calculate the rank-1 approximation of ρ under noise. Specifically,
we use the perturbed matrix

ρσ = �1 + σ(γ − �1) (4.2)

as the target matrix, where γ is a randomly generated but fixed density matrix and
σ = 10−p, p = 2, 4, 6, 8, 10, represents the intensity of the noise. In this particular
experiment, we already know ‖γ − �1‖ ≈ 1.0001, so σ ≈ ‖ρσ − �1‖. Observe that
ρσ is still a density matrix and is of full rank in general, but ρσ is made more of the
rank-1 matrix �1 than of the full rank matrix γ . For this reason, we find in Fig. 1a that
the ultimate rank-1 approximation ρ̂ for ρσ is in fact closer to the rank-1 matrix �1
than to the full rank matrix ρσ . We also find that the smaller the perturbation σ , the
closer ρ̂ is to �1. The CPU time is little affected.

Example 2 Despite the success of the SVD-based iterative method for the case R = 1,
it is difficult to generalize to the greedy method for the case R > 1. In the first part
of this second experiment, we demonstrate that the differential system approach can
identify a proper rank by the mechanism described in Sect. 3.2. Consider a separable
rank-2 target matrix:

�2 =
2∑

r=1

λr (η1,rη
∗
1,r ) ⊗ (η2,rη

∗
2,r ) ⊗ (η3,rη

∗
3,r ) ⊗ (η4,rη

∗
4,r ), (4.3)

where ηi,r ∈ C
5, i = 1, . . . , 4, r = 1, 2, are randomly generated unit vectors and

λr > 0, r = 1, 2, satisfies
∑2

r=1 λr = 1. Pretending that we do not know of the exact
low rank of �2 initially, we start off with R = 4 with the hope the exact rank of �2
will be found eventually.
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(a) (b)

Fig. 2 Convergence, event detection, and sum-to-one constraint for approximating exact �2

(a) (b)

Fig. 3 Rank-4 approximation for perturbed matrices ρσ of �2, σ = 10−p , p = 2, 4, 6, 8, 10

Utilizing the existing routine ode15s in Matlab as the integrator, we turn on the
option event and set the local error tolerance at AbsTol = 10−10 and RelTol = 10−10.
We follow four trajectories, each with a different set of starting points. The evolution
of the objective values when following these trajectories is plotted in Fig. 2a. As can
be seen, though the integral curves follow different trajectories and might end up with
distinct stationary points, the ultimate objective values can be regarded as nearly zero
within the prescribed tolerance. Evidence about the preservation of the sum-to-one
property, even with the overestimated R, is plotted in Fig. 2b. Though their markings
might be smeared due to the proximity of the curves, the red circles in both graphs in
Fig. 2 indicate that an event has been detected and, hence, the value R is reduced by
one. There are two red circles in each curve, so we know that the original low rank
has been found.

Similar to the experiment done in Example 1, we next investigate how the noise
affects our dynamical approach’s performance. We deal out the perturbation to �2
in exactly the same way as in (4.2) to produce the target matrix ρσ . Let ρ̂(t) denote
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(a) (b)

Fig. 4 Rank reduction for perturbed matrix ρσ with σ = 10−4 and relaxed event qualification

the numerical solution to our different equation. The evolution of ‖�2 − ρ̂(t)‖F and
‖ρσ − ρ̂(t)‖F in response to different levels of perturbation strength σ are plotted in
Fig. 3. In contrast to the case of R = 1 in Example 1, we have observed that the rank-2
separable state�2 is more sensitive to perturbation in the sense that ‖�2− ρ̂σ (t)‖F ≈
‖ρσ − ρ̂σ (t)‖F if σ ≥ 10−6. That is, the flow ρ̂σ (t) is about equal distance to both
the rank-2 state �2 and the full rank state ρσ if the perturbation σ is lightly too large.
Different from the case R = 1, two observations are worth noting. First, ρ̂(t) does
not show a preference to �2. Second, we start with R = 4, but not all trajectories
encounter an event to reduce the rank. The latter phenomenon leads us to reconsider
the definition of the event,

Instead of defining an event rigorously only at λr (t̂) = 0, we may declare
that an event happens whenever |λr (t̂)| < ε at a preselected ε. The rationale
is that since ‖x j,r (t)‖2 = 1, j ∈ �k�, for all t , the contribution of the term
λr (t̂)(x1,r (t̂)x1,r (t̂)∗) ⊗ · · · ⊗ (xk,r (t̂)xk,r (t̂)∗) to the overall summation is at most
|λr (t̂)|. If the current approximation is several orders larger than ε, then maybe it is
plausible to ignore the term whose contribution is at most ε. We experiment with this
more relaxed rank reductionmechanism on the perturbedmatrix ρσ with σ = 10−4 by
choosing ε = .5 ∗ 10−4. We start with λr (0) = 1

R , r ∈ �R�, to give every component
an equal chance to compete for survival. Since now it is easier to qualify an event,
we set R = 40 with the hope of broadening the search in many more directions. The
red line at the top of Fig. 4a shows the preservation of the sum-to-one property. We
also see that at t ≈ 100, many λr (t)’s begin to diminish and eventually trigger the
event mechanism. The rank reduction from R = 40 to R = 2 happens quickly within
a small window of t , as can been seen from the cluster of red circles in Fig. 4b. While
the rank is being reduced, we see that the objective values continue to decrease until
a local minimum is found. This experiment supports the mechanism of relaxed event
qualification, but in practice we usually do not have a priori knowledge of the proper
extent of relaxation.
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Fig. 5 Low-rank approximation
of a 5-qubit system

Example 3 Let �3 ∈ C
32×32 be a randomly generated positive definite matrix. Sup-

pose that �3 is regarded as a density matrix in a 5-qubit system. Recall that each qubit
counts as an element in C

2. Let the notation �p1, p2, . . . , p�� denote the composite
system (C2)

⊗p1 ⊗(C2)
⊗p2 ⊗. . .⊗(C2)

⊗p� . There are sevenways to split the number 5
as a sum of nonnegative integers. (The number of partitions for a d-qubit is the Sloane
sequence A000041.) Thus we may consider partial separability approximations asso-
ciated with the group assignments: �1, 1, 1, 1, 1�, �2, 1, 1, 1�, �2, 2, 1�, �3, 1, 1�,
�3, 2�, �4, 1�, and �5�.

The case �5� amounts to the rank-R approximation in the conventional sense of
linear algebra. The problem can be resolved directly by the singular value decompo-
sition of �3. It is a well-known fact from the Eckart–Young–Mirsky theorem that, for
each R ≤ 32, the truncated singular value decomposition gives rise to the globally
best rank-R approximation to �3 [19,39].

Starting from R = 50, we apply the gradient flow approach to approximate �3
over the other six types of multipartite systems specified by the group assignments.
Figure 5 shows the evolution of errors ‖�3 − ρ̂(t)‖F . We see that as the number of
splits decreases, the errors are reduced correspondingly. This observation is expected
because, for example, the case �3, 1, 1� can be considered as a more restrictive struc-
ture of �3, 2� and, hence, it should have higher errors. In the order from �1, 1, 1, 1, 1�
to �4, 1�, we find that the final reduced ranks are 41, 46, 41, 43, 41, and 36, respec-
tively. The fluctuation of the final ranks might indicate that we have found a local
solution only, but the general trend is that the higher the separability is involved, the
more demanding is the computation. It is interesting to note that the singular value
decomposition of a generic �3 requires exactly R = 32 for a complete decompo-
sition of �3. The fact that our gradient approach for the �4, 1�-type approximation
reduces the final rank to 36 seems to evince that the rank reduction mechanism works
reasonably well.

Example 4 In this experiment, we apply our gradient flow to a realistic problem. We
briefly describe some background information before carrying out the experiment.
In the quantum information theory, the so-called Greenberger–Horne–Zeilinger state
(GHZ state) [40,41]

|GHZ〉 = 1√
2
(|0〉⊗k + |1〉⊗k)
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Fig. 6 Low-rank approximation
of entangled density matrices

is a quantum state that involves the entanglement of at least three subsystems, i.e.,
k ≥ 3. Because they exhibit some extremely non-classical properties, GHZ states
are used in several protocols in quantum communication and cryptography. In this
example, we consider the simplest case k = 3 and a density matrix Wσ of the form

Wσ := (1 − σ) |GHZ〉 〈GHZ| + σ
1

8
I8, 0 ≤ σ ≤ 1,

which represents a probabilistic mixture of |GHZ〉 with the operator 1
8 I8. The mixed

stateWσ is known as the generalizedWerner state which has found applications in the
robustness of entanglement [42], NMR quantum computation [43], and purification
schemes for entangled states [44].

The matrix representation of Wσ can be expressed as

Wσ = (1 − σ)

⎡

⎢⎢⎢⎢⎢⎣

1
2 0 · · · 0 1

2
0 0 · · · 0 0
...

...
...

...
...

0 0 · · · 0 0
1
2 0 · · · 0 1

2

⎤

⎥⎥⎥⎥⎥⎦
+ σ

1

8

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

1 0 · · · · · · 0
0 1 0 · · · ...
... 0

. . .
. . .

...
...

. . .
. . .

. . . 0
0 · · · · · · 0 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

∈ R
8×8.

It has been shown in theory thatWσ is (totally) separable if and only if 4
5 ≤ σ ≤ 1 [45].

Therefore, by adjusting σ we have a test case to explore the rank reduction mechanism
and to estimate a possibly optimal rank.

Since the exact low rank of Wσ is not known a priori, we start out our experiments
from R = 15 for the three choices of σ = 2/3, 4/5 and 6/7. We are interested in
observing two phenomena in each choice. For the case σ = 6/7, how low can the
rank be reduced and can the separability be achieved? What will happen to the case
σ = 2/3 which is not separable? Can the rank be reduced at all while the objective
value is decreased? The borderline case σ = 4/5 is most curious. It is separable in
theory, but will its rank be the same as that for σ = 6/7 at total separation?

Starting from the same randomly generated unit vectors x1,r , x2,r , x3,r ∈ C
2, r ∈

�15�, and using the rigorous event qualification, we plot the evolution trajectories of
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the residuals together with red circles whenever an event has been detected in Fig. 6.
The monotone decreasing property guaranteed by our theory is clearly manifested in
these curves. The answers to the above questions for the cases σ = 2/3 and σ = 6/7
are also clear. It is estimated that the flow for σ = 2/3 reaches its local solution
much sooner (at t ≈ 300) than the flow for σ = 6/7 reaches its total separability
(at t ≈ 34000). These limiting behaviors strongly support that Wσ is entangled if
σ = 2/3 and is separable if σ = 6/7. For the case σ = 4/5, we estimate that the
residual decreases at approximately the rate O(1/t). That is, while the residuals keep
going down, it converges at a very slow pace. The behavior suggests that the case
σ = 4/5 is separable, but it is much harder to find its components.

Note that in the extreme case σ = 1,

W1 = 1

8
I8 = 1

8

7∑

i=0

|i〉 〈i | ,

where |i〉 denotes the 3-qubit whose binary representation is equal to i . That is, the
optimal rank for W1 is R = 8. Counting the events for cases σ = 2/3, 4/5, and 6/7,
we observe that the reduced ranks are 11, 11, and 12, respectively. While our rank
reduction mechanism is tested to work for arbitrary σ , it remains an open question on
whether these are the optimal ranks. It is also unclear whether the trajectory for the
case σ = 4/5 will have additional events in later stage of integration.

5 Conclusion

Quantum technologies have been rapidly advancedwith the urgent need to create more
complex and powerful quantum computers. The technologies, if fully developed, will
have far-reaching applications including, for example, as critical as superior analytics
capabilities or as practical as better battery life. At the crux of quantum computing is
the understanding and control of quantum entanglement, which has already attracted
many research endeavors. This paper is concerned with computing numerically the
low-rank separable approximation of a given entangled multipartite system, which
might be used as a computational tool for gauging the quality of entanglement of
quantum states.

The notion of quantum mechanics is generally described in physics terms, but
there is rich mathematics involved. This work employs a synthesis of techniques
from linear algebra, optimization, and dynamical system to tackle the entanglement
certification problem numerically. All discussions are over the complex field, so the
methods are readily transferable to real-world problems. For rank-1 approximations,
the SVD-based iterative method is shown to be efficient and effective. For higher
rank approximations, this work derives a complex-valued differential system that not
only guarantees global convergence but also is capable of maintaining a probabilistic
ensemble of pure states while dynamically estimating a proper rank in the ensemble.

Data Availability Statements The datasets generated during and/or analyzed during the current study are
available from the corresponding author on reasonable request.
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