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Abstract

The interaction of multiple parts with each other within a system according to certain intrinsic
rules is a crucial natural phenomenon. The notion of entanglement and its decomposition of
high-dimensional arrays is particularly intriguing since it opens a new way of thinking in
data processing and communication, of which the applications will be broad and significant.
Depending on how the internal parts engage with each other, there are different types of
entanglements with distinct characteristics. This paper concerns the approximation over a
multipartite system whose subsystems consist of symmetric rank-1 matrices that are entan-
gled via the Kronecker tensor product. Such a structure resembles that arising in quantum
mechanics where a mixed state is to be approximated by its nearest separable state, except
that the discussion in this paper is limited to real-valued matrices. Unlike the conventional
low-rank tensor approximations, the added twist due to the involvement of the Kronecker
product destroys the multi-linearity, which makes the problem harder. As a first step, this paper
explores the rank-1 multipartite approximation only. Reformulated as a nonlinear eigenvalue
problem and a nonlinear singular value problem, respectively, the problem can be tackled
numerically by power-like iterative methods and SVD-like iterative methods. The iteration in
both classes of methods can be implemented cyclically or acyclically. Motivations, schemes,
and convergence theory are discussed in this paper. Preliminary numerical experiments sug-
gest these methods are effective and efficient when compared with some general-purpose
optimization packages.
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1 Introduction

The problem of matrix approximation via Kronecker product, that is, given a matrix 7 €
Rmmzxmn2 find B € R™>*" and C € R™2*"2 g0 that

IT-—B®ClF (D

is minimized, was probably first discussed by Van Loan and Pitsianis in 1992 at a NATO ASI
conference [40]. This problem can be solved effectively by computing the largest singular
value and the associated singular vector of a properly permuted version of 7', referred to as
the Z-folding of T or the realignment of 7 [5]. In [39], Van Loan suggested that the operation
by the Kronecker product would have an increasingly greater role to play in the future and
demonstrated under the same framework a collection of matrix nearness problems arising
from matrix equations, multidimensional quadrature rules, fast transforms, least squares, and
semi-definite programming. In the following years, applications to stochastic automata net-
works [29], micro-array analysis [18, 22], image restoration [32, 35, 45], and computational
physics [16] are just another short list added to the Kronecker product approximation.
Given a positive integer k, denote the set [k] := {1,2, ..., k}. The problem (1) can be
generalized to the problem of finding B, € R™*" C, € R™2*"2 r ¢ [R], such that

(@)

R
T—ZB,@C,
r=1

F

is minimized, where R is a fixed positive integer no greater than min{m n, man;}. The same
singular value decomposition (SVD) technique can be applied and the global minimum is
always guaranteed.

The so-called Kronecker SVD technique proposed in [39, 40] cannot be applied when the
factors By and Cy in (2) are required to be structured. Of particular interest is the structure
of the form

(& i rem @
that is, the factors are all rank-1 symmetric matrices. Upon normalizing the vectors X, and
y,, the problem
2

. (4)

F

min
rreRy;x,€8" iy, esn!
re[R]

R
T — Z)‘-r(xrx;r) ® (yry;r)

r=1

where $™~! denotes the unit sphere in R™, is referred to as a rank-R entangled bipartite
approximation to 7.

It might be worth mentioning why the structure (3) and the problem (4) are of interest. The
motivation can be traced back to the theory of quantum mechanics whose scope, however, is so
broad that it is not possible, nor proper, to provide a general overview in a single discourse. We
shall briefly sketch only some elementary ideas here, relating the basic notion of quantum
entanglement to the linear algebra setting used in this paper [7]. For readers interested in
more formal, in-depth and mathematically oriented discussions, we suggest [1, 23, 33] and
the classic book [34]. A quantum mechanical system is generally cast as a complex Hilbert
space [1]. Any unit vector in the space is referred to as a pure state which typically is denoted
by the Dirac’s ket notation |w). For practical reasons, it is more convenient to represent a
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pure state |w) in the projector form |w)(w]|, referred to as a density matrix. With respect to
a specified basis, a finitely dimensional quantum system can be identified as C", where we
can write the state |w) as a unit vector w € C™, and the corresponding density matrix as
the rank-1 matrix ww* with * standing for the conjugate transpose. A mixed state, typically
denoted by p in the literature, is a probabilistic ensemble of density matrices of pure states
in that system, which therefore is a positive semi-definite matrix with unit trace.

A k-partite quantum system consists of k interacting quantum subsystems. With respect
to properly specified bases among the subsystems, the intersection can be described mathe-
matically via the Kronecker product. We say that a mixed state p in the k-partite system is
separable if p can be expressed as a finite sum in the form

R
p= w(wHw e (w)w! D, 5)

r=1

where Iwy)), r € [R], are pure states in the j-th subsystems, j € [k], and

R
mr=0. Y pr=1 (6)
r=1
There is no restriction on the value of R. When p is not separable, we say that it is entan-
gled. Quantum entanglement plays an increasingly more important role in modern quantum
technologies. Quantum informatics and quantum communication, for example, exploit the
entanglement for faster and more secure delivery of information than classical algorithms.
Determining whether a given mixed state in a k-partite system is entangled or not is NP
hard [15, 21]. On the other hand, note that separable states form a convex compact subset
in the ambient space. Approximating a given mixed state p with the nearest separable state
is a problem of interest in its own right. Depending on what statistical properties are to be
quantified, the nearness can be measured under different metrics [6].
The above notion can be expressed in terms of the classical linear algebra notations.
Observe that the tensor product of complex vectors

+v)P+1q) =@RP-VRQY +1(VRp+u®q),

involves a nontrivial intertwinement between the real and the imaginary parts of the variables.
Suppose that, as a first step, we limit ourselves to the real values. Then the structure of the
rank- R k-partite problem

2
R
. T T
min T — ZA, (Xgr)xir) )R ® (x]((r)x](:) ) @)
AreRy, xVesti=l, r—1 F
ie[k],re[R]

for a given matrix 7 resembles the fabric (5) underlying the quantum entanglement, where
the Frobenius norm is used.

In an earlier paper [7], we have already studied thoroughly the rank-1 approximation
of an entangled bipartite system. In particular, by casting the approximation as a nonlinear
eigenvalue problem and a nonlinear singular value problem, we have developed numerical
algorithms and accomplished the convergence analysis. The goal of this paper is to take
into account another aspect of complexity when more than two interacting subsystems are
involved. That is, we shall consider the rank-1 approximation of a k-partite system

min IT — Axix]) ® - ® (Xkx) )15+ (®)
reRy, xiesti=!ie[k]
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where k > 2, the dimensions [;, i € [k], are preselected, and T € Rm:l [Ty is a
given symmetric and positive definite (SPD) matrix. A generalization of both the numerical
methods and the convergence analysis from the rank-1 approximation of a bipartite system
to the rank-1 approximation of a k-partite problem (4) is not trivial because of the many more
factors involved in the tensor product. Our main contribution in this paper is to fill that gap.

To demonstrate the difficulty of this generalization, observe that with a proper folding
of T into an order-4 tensor T [39, 40], the bipartite problem can be treated as a specially
structured rank-1 tensor approximation, known as the canonical polyadic decomposition with
symmetry:

min T —Axoxoyoyl|%, )
AeR, xeR™ yeR"
IxlI=1.[ylI=1

where o denotes the outer product. Many techniques, e.g., those in the Tensorlab toolbox
[41], are readily available to handle (9), albeit some disadvantages of such a formulation
when compared with our methods [7]. The sticking point when generalizing this idea to the
case k > 2 is that, to our knowledge, there is no explicit strategy for folding the given T into
an order-2k tensor. This difficulty is in line with the fact that thus far the Kronecker SVD
technique for (2) has not been successfully generalized when the summation involves terms
with more than two factors in the tensor product.

We must stress also that the optimization problem (8) should not be confused with the
general low-rank tensor approximation that has been discussed extensively in recent years [3,
8, 10,24,26-28, 38, 43, 44]. The latter involves tensor products of vectors and is multilinear
in its factors, but our problem involves Kronecker products of rank-1 matrices and is not
multilinear at all. Existing techniques for conventional tensor decomposition are inadequate
to handle this structured problem. We thus propose in this paper two new methods for this
rank-1 multipartite approximation (8). Our main focus is on addressing the multi-indices
effectively, proposing the numerical algorithms and proving the global convergence.

Finally, to prepare our presentation, we point out that the minimization of (8) is equivalent
to the maximization of the orthogonal component of 7 in the direction of the unit "vector"
(xlxr) ® (xzx;'—) R - ® (xkx,j—), i.e., we may consider the problem

max A(Xp,...,Xg), (10)
Xl‘ESI"71
ie[k]
where
A=AXL LX) = (T, (XX ® (XX ) ® -+ ® (¢ X} ) 1)

and (-, -) stands for the Frobenius inner product of real matrices.

This paper is organized as follows. We begin in Sect. 2 by introducing a convenient
notation system which will help circumvent the otherwise tedious multi-indexed descriptions.
In Sect. 3, we reformulate the problem (10) as a nonlinear eigenvalue problem and propose a
power-like iterative scheme. Despite the simplicity in its appearance, the iteration is inherently
nonlinear. Our first contribution in this regard is the convergence analysis. The implication of
multi-indices also allows us to formulate the problem as a nonlinear singular value problem
in Sect. 4. The proposed SVD-like iterative scheme updates two vectors at a time. Our second
contribution is the proof that, regardless of the order of updating, convergence can be achieved.
A comparison of our two methods with some existing routines in Matlab Optimization
Toolbox is given in Sect. 5.
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2 Basic Notation

To enumerate the data in a multi-array consistently, we adopt the practice of counting the
multi-indexed entry 7;, . ; of an order-k tensor T € RY/1X/2X-XJk a5 the I-the entry in the
corresponding linear array, where

I == DS Jp—2... 1+ U1 — DJg—2 ... 1+ ...+ G2 — DIy +i1. (12)

In this way, we say that the tensor ¥ is vectorized by the operation vec. Therefore, the classical
Kronecker product ® of column vectors, resulting in a long vector, is related to the tensor
product o which produces multi-indexed tensor in a reversed order, i.e.,

XX Q- @ X =vec(Xgo---0Xp 0Xp).

So as to discuss our algorithms for the k-partite system in a more concise way, we adopt
the following notations. First, we introduce the abbreviations

®£'(=1 X, =X 03X Q- X,
{ Qi]:kxi ‘= X;0...0X],
and define the order-k tensor
D(x1,..., %) = reshape(T @_, xi, [k, ..., I]) € R, (13)

where the operation reshape imitates the same command in Matlab that folds data into
a multi-dimensional array according to the enumeration rule (12). Second, given a fixed
partition [k] = ¢ U B witha := {1, ..., ¢} and B := {B1, ..., Pr—e}, let T = (i, ..., i¢)
and J = (Ji, ..., ji—¢) denote the multi-indices at locations & and 8, respectively.

We shall regard an order-k tensor T = [z, 5, ] € R/1*/2%>Jk a5 the matrix representa-
tion of the linear operator .7,

e% . RJﬁl X XJg_, _ ]R‘,O‘I X X oy (14)

in the sense that, givenany U = [uj, ., ,] € R7B1 >8> Ige the 7-th entry of its image

T (U) is given by
(ZeU))z = (T@ U)z

.....

Jp) IBr—e

._ (e, ) _ (o, B) ) ) Joy XX Jy
= ZTLIIJJ”J = Z Z TL o1 Wteestme € R7 ¢,
J =l k=1

where the symbol r[(;"g)] represents the entry 7y, g, of T with sy, =iy, andsg, = j,, u € 1],
v € [k — £]. In this way, the subsets & and B generalize the notion of rows and columns,
respectively.

Using the associative law of multiplication, it can be seen that

k . —
<5’ O u?) = (Ta, (koe u® ”) O “(“’)> (15)
i=1 s=1 =1

for any tensors Of_; @) e R/« >->Jar and OFZEuB) e R8> Mh-e | The rela-
tionship (15) can be interpreted as a generalization of the adjoint equation. Such a notation
system offers the convenience that by merely specifying the elements in & and 8, we have a
clear indication of which part of the tensor is to be multiplied with another tensor.
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3 Nonlinear Eigenvalue Formulation

The following first order optimality condition for A(Xj, ..., Xx) is easy to derive.

Lemma 1 The first order optimality condition for maximizing A(x1, X2, ...,Xx¢) subject to
x;j € Sl j e [k], is that
l .
Dx1,...x0)®; | O xi ) =A@, x2, ..., x0x;, je[k], (16)
i=k,ij
where the multiplication ® j is to sum over the location indicators B = [k]\{j}.
The system of Eq. (16) can be regarded as a nonlinear eigenvalue problem which thus

motivates a power-like iterative scheme:

1
@(X[lp],...,xlgp])®j o) xl[p]

it
aREs el p=01.... (7
17647, w0 xle
i=k,i#]j
If Q(X[p ], X ]) were invariant in p, the scheme would be a Jacobi version [24] of

the conventional ALS method for rank-1 tensor approximation [3, 8, 26-28, 44] whose

convergence theory is well established [38, 43]. In our case, Q(X[p ], X ]) does vary in
p- Therefore, the analysis of its dynamical behavior will be more 1nv01ved

3.1 Convergence of A Values

Define a functional G : Rt x RN x ... x R x R — R by

~ ~ k ko~
G, X155 %, %) o= (TR, xi, @, %) (18)
Since T is a real and symmetric, it is clear that
G(x1, X155 X6, Xk) = G, X155 Xk, Xp). 19)
Note also that
G(X1, X155 Xk, X)) = A(X1, X2, ..., Xk). (20)
We now argue that the sequence {A(XEP ], e X,Ep ])} generated by the scheme (17) is mono-
tone.
Theorem 1 Assume that T is SPD. Let {(x[p ], . ,x,Ep ])} be the sequence generated by the
scheme (17). Then the functional G satisfies the interlacing property:
+1
G(xllpl,xllp];xlzp],xlzp]; ”_;x}(pl’x}(pl) < G(xllpl,xllp ];xlzp],xlzpl, ) pr]’ Ipl)
< G(prH],x[lpH];xgp],x[zp]; [p])
< G(xllpH],x[lpH];xlzp],xlsz]; o Lpl’x}(pl)
<... < G(x[lpH],x[lpH]; .. .;x,[(pﬂ],x,[{pﬂ]).
2D
Therefore, the sequence {)L(xllp ], . ,x,[(p ])} converges.
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Proof To prove the first inequality, observe that by (20) and the adjoint equation (15), we
can write

2
G P K X = oG xh ey O X7, X1,
We can also rewrite
2
+1 +1
Gox" o) = @6 e (O xh X
1=
[Pl [p] 2 7]
= 176", .. 5@ (O %l
1=
where the second equality follows from the definition of X[lp 1 Upon comparison, the first

inequality follows from the Cauchy-Schwarz inequality.
To prove the second inequality, define

Axl[p] = XEPH] - xl[p], i € [k]. (22)
Then we can break down the difference as
G [p+1] [p+1]. X[zp]’ X[21)] Xk ’Xk ) G(x[p p+1] Xk ’Xk)])
_ G(A [p] [p+l] [p], Xgp]’ X][Cpl’ X}[{p])
=G(Ax Axlpl x[zp],x[zp];.. xk ,xk )+G(A p] x[zp], [zp],...' X, ,xk h.

The first term on the right side in the last equality is positive because 7 is SPD. The second
term is nonnegative because of the first inequality and the symmetric property (19). The
other inequalities can be argued in a similar manner. Since {A(X[P ], X ])} is bounded,
the sequence converges. O
[p]

Thus far, we update x j

9 (x[p J, X ]) until one sweep is over. One possible variant of (17) is to select an integer
Jj € [k] randomly and update the factor x; according to the right side of (17), except that
only the latest updates of the remaining factors Xy, ..., X;_1, X;41, X are used on the right
side of (17). This amounts to an asynchronous version of the Gauss-Seidel update [36]. A
similar approach applied to the best rank-1 tensor approximation can be found in [20].
More specifically, the scheme (17) for the Gauss-Seidel-type update should be interpreted
as follows: Suppose that an index j has been chosen so that @ = {j}, B = [k]\{/}) and that

by sweeping j € [k] in the cyclic order and do not update

the factor x ! has been updated to X 1 we immediately recognize (x[p H], ey x,Ep H])
as an update from (x1 .. [p]) in Wthh X4 1’“] = x/[s’7 i€ [[k — 1] and only x{ pH] is
truly updated. In this way, the variables in the deﬁmtlon of 7 (X] e xk ) are always the

most updated ones.

A convergence analysis of this updating scheme in a haphazard order might seem daunting.
However, a close examination of the proof used for Theorem 1 shows that the cyclic order
is never required. All we need is a fixed integer j € [k] for which x[p Vs to be updated to

1] . .
x”T while all other variables are assumed known and stay invariant during the execution

of (17). When this is done, the superscripts for all variables are renamed from [7] to [P+11 and
we continue the process to a new factor with another randomly selected integer. The iteration
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exhibits the same interlacing property. The fact that the iteration still maintains convergence
under any order of updating strategy is remarkable. For completion, we summarize the result
below.

Corollary 1 Assume that T is SPD. Let the sequence {x[p], .. [p]} be generated by (17)
in any acyclic order. Then the variational relationship (21) snll holds and the sequence
{)»(xgp], .. [p])} converges.

3.2 Convergence of Iterates

In addition to the convergence of the objective values, we now argue that under some mild
conditions the iterates {(X[lp 1 X]Ep 1y also converge.

We first mention the following result from real analysis. The proof can be found in
[30,Lemma 4.10]. A refined version is given in [20,Lemma 2.7].

Lemma?2 Let z* be an isolated limit point of the sequence {zIP1} C R™. Assume that for
every subsequence {z\Pi1} converging to z*, ||Z1PiTH —zIPil||, — 0 as pj — o0. Then {zIPly
converges.

We next examine the increment between two consecutive iterates in our algorithm.

Lemma 3 Suppose that T is SPD and that {x[pJ, .. “’J} is generated by (17) in either cyclic

or acyclic order. Then, for each i € [k], the sequence {Ax%p J} defined in (22) converges to
zero.

Proof Without loss of generality, we consider the case when the sequence x; is updated in a
cyclic order. The following two equations are obvious:

G(le] [p+1]. XEP]’X[ZP]’ N Xk ’Xk ) G(X[p]’ rl. Xgp]’x[zp]’“ X,[(p],x,[(p])
= (T (A" e @, X, XM o @, X, (23)
+1 +1 [p+1
G(xt [p ] [p 1. Xgp]’x[zp], - Xk 7Xk ) G(x[p 17 1. x[z”],xg”], X][Cplyxl[cp])
+1
<T(AX1 ®®l =X ), X[p ]®®i=2Xip]>' 24

. . . [p]
Taking the difference of (23) and (24) and applying the fact that the sequence {A(le ey

x,[{p J)} converges, we have

[p] [p] [p] [p]
T(AX ®®12 i )AX ®®12 i

Since all xl[p ], i € [k]\{1} are of unit length, by the positive definiteness of T, it must be that

Ax&p I 0. We can carry out a similar argument to show that Axl[p 1 0fori e TkI\{1}.
]

To make use of Lemma 2 for proving convergence, we need to ensure that any limit point is
isolated. Toward this end, observer that by continuity any accumulation point of the sequence
{(X[lp L X][(p ])} must satisfy the system of Eq. (16) which actually is a polynomial system
in the variables xp, - -+ , xx with T as the parameter. An algebraic geometry argument can
be used to help complete the convergence proof. To begin with, it is known that almost all
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square systems of polynomial equations over the complex field have finitely many solutions
[14]. More specifically, suppose that F(z; q) is a square polynomial system in the variables
z and the parameters q, then the theory on parameter continuation for polynomial systems
implies that the number of isolated solutions to this polynomial system is finite for almost all
parameters q [37,Theorem 7.1.1]. The phrase "almost all" means that pathological examples
(for the parameter 7') can be constructed to negate the assertion. However, those values
of parameters that fail to induce finitely many and geometrically isolated solutions form a
nowhere dense and measure zero subset in the ambient space. The term "non-generic" is
often used to describe collectively this type of special cases. Because of this observation, we
conclude that the following condition for the matrix 7 may be regarded as generic.
Condition P: We say that the matrix T satisfies Condition P if the corresponding poly-
nomial system (16) has finitely many and geometrically isolated real-valued solutions.

Theorem 2 Assume that T is SPD and satisfies Condition P. Then the sequence {(xgp ], R

x,[f ])} generated by the scheme (17) in any order converges to a single limit point which
satisfies the system (16).

Proof Under Condition P, we know that the sequence {(XEP ], o X/[(p ])} has only a finite num-
ber of isolated limit points. By Lemma 3, every convergent subsequence {(X[ll7 J ], cee, X][CP J ])}

of {(x[lp 1, x,[f 1} will have diminishing increments. By Lemma 2, we see that the overall
converges. o

4 Nonlinear Singular Value Formulation

Thus far, in order to find a solution to the system (16), we have been updating one vector
variable at a time. The scheme (17) resembles the conventional power method but is nonlinear
in its variables. In this section, we describe another iterative scheme with the goal to update
two vectors simultaneously. Toward this goal, we reformulate the approximation problem as
a nonlinear singular value decomposition.

4.1 Simultaneous Updates via SVD

The first order optimality condition Lemma 1 can be expressed differently as follows.

Lemma4 Let o := {«y, a2} and B := {Bi1, ..., Bx—2} be an arbitrary partition of [k] =
a U B. Then the necessary condition of a local maximizer for A(x1, ..., Xy) is that

k=2
(Zx1, .. X ) B (O X ))Xey = AMX1, oo, Xp) Xy s
i=1

o (25)
(@1, X)) ®a (O xp,))  Xay = A& ..., X1)Xe,
i=1
We may interpret (Xq,, A(X1, ..., Xk), Xo,) as a singular triplet of the matrix Z(xy, ...,
k—2
Xi)®q (O Xg;). Since our goal is to maximize the A(xy, ..., X¢), we may as well search for

1=
the dominant singular triplet. We thus propose the scheme that, while varying & = {«1, a2}
through [] to select vectors to be updated, repeat the fixed-point iteration:
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+1 +1 +1
(Sgn( [p ])X([£+l]’)h‘[¥17 | sen ([p ])xfg“])

= svds(2x”), ... xPhe (kézx“’]> 1 (26)
= 1 20 Ak o | B )1
i=1

+1] [p+1]

of the vector Xg, ' is used to maintain the continuity
[p+1] =0

where the sign of the first entry x[p
and svds denotes any route that computes the first dominant s1ngular trlplet If x,

then we choose the next nonzero entry of Xa1+ I Since Q(X1 NS ]) varies in p, this
nonlinear singular value decomposition approach is of theoretical interest in its own right.

There are several variations worth mentioning. Computing Q(X[lp L x,[(p 1Y and the mul-
tiplication ®, involves an extensive amount of floating-point arithmetic operations. To save
the overhead, we could keep @(x[lp ], R XECP ]) the same throughout the sweeps of & C [k]
per p. This is in the same spirit of the classical Jacobi iteration, but is applied to the SVD in our
case. It is also feasible to follow the Gauss-Seidel notion by always using the most updated
vectors in the definition of Z. This Gauss-Seidel-type updating scheme is implemented in our
numerical experimentation. In all, we will show that the order by which & = {a, an} C [£]
is selected is immaterial and will not affect the convergence.

4.2 Convergence Analysis

So that we can describe the convergence behavior categorically for all possible strategies

of selectmg the partition [k] = a U B, we shall let (x; p+] C Xy Lp+1] ) denote an update

[

from (X1 ). [p ]) whenever an « is chosen and two vectors X, p ! and Xy p ! have been

[p+1]
[p+ ]

updated accordlng to (26). Thus, in the list of (x| . ,[(p +1]), we have exact copies of

%Hl] X%P i k- p+1
update [P+!1 already includes a specific choice of . We may thus write A‘[,,p g Alp 1,
We first observe the converges of the A values.

2] and only xy and x4 are newly updated. In this way, the

Theorem 3 Suppose that T is SPD. If {\IP1} is the sequence of dominant singular values
generated by (26) with randomly selected o C [k], then

e Py < alr <t L ) < e 27)
and the sequence {\!P1} converges.

Proof By the definition of A, we can write
[p] [p] [p] [p] K2 A Ll
VNG IR i )=<©(x] s X)) @ (O xg0), Oxa‘i’>.
i=1 i=1

Since AlP*T1 is the dominant singular values of the matrix ®© (X[P I lej) B (O,— 1 lpJ
the first inequality follows. Similarly, the third inequality holds. To prove the second 1nequal—
ity, define the abbreviation:

k
al’l = ®._ x”. (28)

Then, we find that
ALy rH) i)

= (TalPtl alPF1lly _ (TalPl glr+1ly
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— (Ta[”“], alP 1l _ a[p])
— (T(a[P+1] _ a[lf)])7 (a[P+1] — glPl )) + (Ta alP 1l [P])_

The first term in the last equation is nonnegative because 7 is SPD. The second term is
nonnegative because of the first inequality. Being a bounded monotone sequence, {A[P1}
must converge. O

The same argument for the generic Condition P imposed on the matrix 7 for the poly-
nomial system (16) can be applied to the matrix 7 for the polynomial system (25) [14, 37].
Additionally, it is also known that the symmetric matrices with multiply eigenvalues form an
algebraic variety of codimension two [9] which, of course, is nowhere dense and of measure
zero. This can be translated as that the dominant singular value being simple is generic.
Together, the following condition for the matrix 7 is still generic.

Condition S: We say that the matrix T satisfies Condition S if the corresponding polyno-
mial system (25) has finitely many, geometrically isolated, real-valued solutions and that the
associated matrix 2(xy, ..., Xg) ®qy (xﬁkf2 o.. .oxﬁl) has a simple dominant singular value.

Finally, we prove the convergence of the SVD-type iteration for generic 7.

Theorem 4 Assume that T is SPD and satisfies Condition S. Then the sequence { (x[p ], R

k )} generated by the scheme (26) with any order o C [k] converges.

Proof In terms of the abbreviation defined in (28), using the assumption that the sequence
{A[P1} is increasing and the interlacing property (27), we know that as p — o0,

A+ _ )\(X[ll’]’ o X]EP]) = (alP+1_TalPly — alpl Talrly 5 0,
)\(X[lpH]’ L X}Eﬂ+1]) — AP+ = (qlp 1l Talptily _ (qlpt1l Talrly 5 0

It follows that as p — oo,
(a[P-‘r]] _ a[P], T(a[P-‘r]] _ a[P])>
— ((a[P-‘rl]’ Ta[P-‘rl]) _ (a[P-‘rl]’ Ta[P])) _ ((a[P-H]’ Ta[P]) _ (a[P]’ Ta[P])) - 0.
Since T is SPD, we see that

lim [alP+t! —alPl), = 0.

p—>00

By the fact that
k
+1
JalP 1 — alrh2 =2 — 2 [T, 710,
i=1

we see that

1]
11m|| p p+ y=1.
p*)OO

Since [(x; [pJ £p+1J)| < 1, it must be that

XL xlPy — 1 e k]

lim (x|

pP—>00
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That is, the two consecutive vectors xl[p I'and Xl[p U must gradually be aligned. The rule of

sign selection imposed forces them to gradually point to the same direction as p — oo. In
particular,

Axl_“’J = xl[p+]] - xl[p] — 0, ie€l[k].

We thus complete the proof by Lemma 2 under Condition S.

5 Numerical Experiments

In the above, we have proposed a power-like method and an SVD-like method for tackling
the rank-1 k-partite approximation problem. In this section, we carry out some numerical
experiments to illustrate the effectiveness of our algorithms. In particular, we want to compare
whether our simple iterative methods, even at their rudimentary implementation, are compat-
ible with some existing state-of-the-art optimization techniques. There are many compatible
optimization software packages. For demonstration purpose, we use Matlab as the compu-
tational platform and limit our comparison to those available in the Matlab Optimization
Toolbox. The following experiments are performed on a MacBook Pro laptop with Quad-
Core Intel Core i5 @ 2.4GHz processor and 16GB RAM by using MATLAB, version 2020b,
as the computing platform.

Example 1 The purpose of our first experiment is to test the efficiency and accuracy of the
power-like iteration (17) and the SVD-like iteration (26). To simulate the experiment, we
choose k = 3 and generate three random vectors y; € R0, i e [3], from the identical and
independent Gaussian distribution. Define a rank-1 density matrix

Ti = (ux]) ® (xox)) ® (x3x7) € R1000X1000 (29)

where x; = T ;TiHZ €S, ie [3], as the base matrix which has exact decomposition. We
)

consider the rank-1 3-partite approximation to this perturbed matrix

T =T +0o(B—T),

where B is a randomly generated but fixed density matrix and 0 = 1077, p = 8§, ..., 12,
signifies the magnitude of the noise. Since T is a convex combination of two density matrices,
it remains to be a density matrix. Nonetheless, even with a small perturbation, the matrix 7,
is generally of full rank.

We compare our algorithms with the conventional Matlab routine fmincon employing
three distinct solvers “sqp”, “interior-point”, and “active-set”, respectively. Since counting
the number of floating-point arithmetic operations is no longer a reliable means for measur-
ing the computational complexity, we measure the CPU time as a criterion to evaluate the
performance. Because each method has its own special characteristics, it makes a term-by-
term comparison difficult. For a straightforward comparison, we turn off all other stopping

criteria but demand that all methods must meet the same first-order optimality condition:

k
DX, X0)®; O X — AX| < 10710, (30)
i=1i#j j=lok |,
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Fig. 1 Average residuals, elapsed time, and respective STDs for approximating perturbed T

before terminating the iteration. For each o, we repeat our experiments 50 times with ran-
domly generated B and, after taking the standard deviations into account, take the average
to represent the general trends. Each time different starting values are generated, but the
same values are used for each method. While we want to minimize (8) with T = T, we
are hoping to recover 77 which is under perturbation. Thus, we measure the final quality of
approximation based on the definition:

Residual := || T} — A(X1, X2, %3) (R1%] ) ® (Rakg ) ® (Rak3 )|, (31)

where the triplet (X1, X», X3) represents the final result output by each of the specific algo-
rithms, respectively. Finally, since the gradient information is readily available, the option of
user-provided analytic gradients for both the objective function and the constraint is turned
on for all Matlab routines, which should help the efficiency and the precision if the Hessian
is needed.

Under the above rules of setup, depicted in Fig. 1a are the averages of the residuals com-
puted by six distinct methods. These are the power-like iteration (Power) updated according
to the Gauss-Seidel and cyclic rules, the SVD-like iterations with « chosen cyclically (SVD)
or randomly (SVDr), the solvers sqp, interior-point, and active-set, respectively. To make
sure that taking the average makes sense, we record the standard derivations (STD) of the
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residuals from the respective means in Fig. 1b. Extremely small variances observed for our
methods as well as the relatively small variance for the interior-point method indicate that
the means do represent the general mode of approximation. Together with the small residuals
observed in Fig. 1a, these empirical data strongly suggest that our techniques, the SVD-like
methods in particular, tend to have better approximations.

One possible explanation for the poor performance by the more sophisticated solvers
sqp and active-set might be that these methods have terminated prematurely under our sole
stopping criterion (30). We understand that a robust code should have multi-layer stopping
criteria in place. One way to improve the precision in the Matlab built-in solvers is to fine-tune
the tolerance of other factors such as the step sizes and constraints. In doing so, however, the
required elapsed time will increase dramatically, which is already slow as we can see under
the current setting.

Depicted in Fig. 1c are the averages of elapsed time required by each method to meet the
condition (30). We also measure the respective standard deviations of the required elapsed
time in Fig. 1d. It manifests that our algorithms are consistently more time efficient at obtain-
ing solutions with smaller residual values. The three routines from the Optimization Toolbox
have much larger variances in the needed CPU time, indicating the varying difficulties in
achieving (30). Also, while the power-like method is cheaper per iteration, the overall per-
formance of the SVD-based methods, regardless whether « is chosen cyclically or acyclically,
seems to consume about the same CPU time while producing slightly smaller residuals. We
stress that the implementation of our methods is not as sophisticated as those in the Matlab
Optimization Toolbox, yet our experiments seem to suggest that the potential applicability
of our power-like or SVD-like methods.

Example 2 The purpose of this experiment is to demonstrate how the numerical calculation
helps discover a special property of the so-called a Greenberger-Horne-Zeilinger state (GHZ
gate) [13, 19]. Consider the quantum system C> whose elements, called qubits, serve as the
basic units for quantum information science. The standard basis vectors e; and e; of C? are
often denoted by |0) and |1), respectively. Correspondingly, the 2-qubit element |0) ® |1) in
the bipartite system C> ® C? is conveniently abbreviated as [01) and so on. The GHZ gate

1
V2
is a pure k-qubit state that involves the entanglement of at least three subsystems, i.e., k >

3. GHZ states are used in several protocols in quantum communication and cryptography
because they exhibit some non-classical properties.

IGHZ) := —=(10)®" + 1)®)

Assume k = 3 in this experiment. Consider the mixture of the GHZ state with the white
i € L 1)®3 i i
noise state (ﬁ |0) + 7 [1))®7, i.e., a mixed state in the form

1
Q = (1-0)GHZ)(GHZ| +ogls, 0<o <1,

The density matrix €2, , known as the generalized Werner state, has applications in the robust-
ness of entanglement [42], NMR quantum computation [4], and purification schemes for
entangled states [31]. In theory, we know that 2, is separable in the sense of (5) if and only
if % < o < 1][2, 11], but the tensor rank R needed for the decomposition can be high.
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Fig.2 Average residuals and respective STDs for approximating the GHZ gate

On the other hand, the matrix representation of 2, can be expressed as

| . 10 e 07
fo.-.04
00 00 | 01 0

Qe=0=-0o)| 1 o I —|—O‘§ Do e c R8>8,
00---00 .
Log...0ol "
2 2 L0 e 01|

Our problem (8) amounts to finding the best symmetric rank-1 approximation of 2, but this
rank-1 matrix must involve the tensor product of three factors. Even for such a small size
problem the specially structured rank-1 approximation is not obvious.

Using the same stopping criterion (30) and repeating the same experiment 50 times for
different values of the probability o, we obtain the empirical results shown in Fig. 2. On one
hand, we still observe from Fig. 2b the consistency of our methods in producing the structured
rank-1 approximation. On the other hand, Fig. 2a may seem rather mundane because, for
each prescribed o, all methods produce nearly identical residuals. In order to understand why
there is such a coincidence, we take a closer examination. We are surprised to discover that
in fact Q, has two best rank-1 separable approximations, i.e., |000)(000| and [111)(111],
which are independent of o. Therefore, up to the error induced by the stopping criterion
(30), all methods lead to nearly the same best rank-1 separable approximation, whereas the
corresponding optimal A defined in (11) is given by A, = (4 — 30)/8.

Example 3 Similar to the GHZ state, we now experiment with another non-biseparable 3-
qubit states, i.e., the so-called W state

1
V3
In application, constructing the GHZ state is easier than the W state, but the W state is more

robustly entangled in the sense that, when a subsystem is traced out, the remaining state is
still entangled [12, 17, 25].

|W) (]100) + |010) 4 001)). (32)
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Fig.3 Average errors, elapsed time, and respective STDs for approximating W,

Analogous to the preceding experiment, consider the perturbed state in the form:
1
Ws = (1 —0)|W) (W] +G§Ig, 0<o <l

Having experienced the GHZ gate, we speculate and are able to verify analytically that the
density matrix W, has three nearest rank-1 separable states. These are the density matrices
[100)(100], |010)(010| and |001)(001| which, again, are independent of o. Let X := X| ®
X» ® X3 denote the tensor product of the final output triplet (X;, X2, X3) by various algorithms
for W,. We are curious to know whether the pure state X approximates any of these 3-qubit
entangled states, | 100), |010) or |001). Therefore, in this experiment, we take the measurement
of

Error := min{]||001) — sgn(X2)X||2, [[[010) — sgn(X3)X]|2, [[[100) — sgn(Xs)X[l2}. (33)

The average of errors measured in terms of (33) and the corresponding STDs after 50 runs
for each prescribed algorithm computed with the same stopping condition (30) are shown
in Fig. 3. The small errors in Fig. 3a confirmed the working of our power-like and SVD-
based methods while, in contrast, the standard optimization routines, e.g., the sqp, produce
an approximation with much larger errors. The small STDs in Fig. 3b also confirm that our
methods are more consistent than the standard optimization routines in producing the best
approximation.

Example 4 The purpose of our last experiment is to assess simultaneously the accuracy and
efficiency of our two methods when applied to 4-partite systems. We randomly generate an
SPD matrix 7 € R'?0%120 with unit trace as the target density matrix and search for unit
vectors x| € R, xp € R*, x3 € R3, and x4 € R? to minimize (8). With the fixed T, we let
each algorithm carry out 400 iterations. We repeat our experiments 50 times, each time with
the same random starting values for all methods. We plot the history of the average behavior
in Fig. 4 to compare the residuals and overhead progressively.

In Fig. 4a, we see the trend that the SVD-like iterations can reduce the residuals more

rapidly within a relatively small number of iterations than the power-like iteration. However,
the call of svds per iteration by the SVD-like schemes requires many iterations within the
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Lanczos algorithm, whereas the calculation required by the power-like scheme is straightfor-
ward and, thus, requires less elapsed time. Figure 4b indicates that, on average, the SVD-like
scheme takes approximately twice as much time per iteration when comparing to the power-
like method. To see how these two conflicting measurements can be mended, we plotin Fig. 4c
the history of residuals versus the elapsed time. It is interesting to find that the improvement
of residuals by the SVD-like iteration per unit time with a random choice of a is almost
the same as that of the power-like iteration. In other words, if speed and precision are both
desired, then the power-like scheme and the acyclic SVD-like scheme might be the methods
of choice.

6 Conclusion

Motivated by the structure embedded in quantum entanglement, we consider the real ver-
sion approximation to entangled multipartite systems. In contrast to the conventional tensor
approximation that is multilinear in its factors, the entangled multipartite system involves
density matrices of pure states and, hence, is nonlinear with respect to its factors. Generaliz-
ing a previous work on bipartite systems, this paper studies the basic rank-1 approximation
to multipartite systems.
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The first order optimality condition is rewritten as a nonlinear eigenvalue problem and
a nonlinear singular value problem. Correspondingly, a power-like iterative scheme and an
SVD-like iterative scheme are proposed as means for numerical calculation. Convergence
theory is established. Though the schemes appear simple, numerical experiments seem to
suggest that they are effective and efficient for tackling the rank-1 multipartite approximation
problem. Further work should include the extension of these schemes to the more general
low-rank multipartite systems and complex systems.
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