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Abstract. We show that several statistics of the number of intersections between random
eigenfunctions of general eigenvalues and a given smooth curve in flat tori are universal
under various families of randomness.

1. Introduction

Let M be a smooth Riemannian manifold. Let F be a real-valued eigenfunction of the
Laplacian on M with eigenvalue λ2,

−∆F = λ2F.

The nodal set NF is defined to be the zero set of F ,

NF := {x ∈ M : F (x) = 0} .

The nodal set NF has been studied intensively in analysis and differential geometry, see,
for example, [17, 16, 11, 10, 5]. In this note we focus on the case when M is the flat tori
Td = Rd/Zd with d ≥ 2; more specifically we will be focusing on the intersection between
NF and a given reference curve.

Let C ⊂ M be a curve assumed to have unit length with the arc-length parametrization
γ : [0, 1] → M. The number of nodal intersections Z(F ) between F and C is defined to be
the cardinality of the intersection NF ∩ C.

1.1. Deterministic results in T2. It is known that all eigenvalues λ2 have the form 4π2m
where m = a2 + b2 for some a, b ∈ Z. Let Eλ be the collection of µ = (µ1, µ2) ∈ Z2 such
that

µ21 + µ22 = m.

The toral eigenfunctions f(x) = e2πi⟨µ,x⟩, µ ∈ Eλ form an orthonormal basis in the eigenspace
corresponding to λ2. In their beautiful paper [7], Bourgain and Rudnick provided uniform
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upper and lower bounds for the L2 norm of the restriction of F to a real analytic curve C
with non-vanishing curvature ([7, Main Theorem])∫

C
|F |2dγ = Ω

(∫
M

|F (x)|2dx
)

(1.1)

where the implicit constants depend on C but not on λ.

Here we say that f = O(g), or g = Ω(f), or f ≪ g, if there exists a constant C such that
|f | ≤ C|g|.

Using an argument from [5] (see also [38]), they showed that the lower bound in (1.1)
implies an upper bound on the number of nodal intersections Z(F ). Remarkably, they also
obtained a lower bound on Z(F ) from (1.1).

Theorem 1.1. [7, Theorem 1.1] Let C ⊂ T2 be a real analytic curve with nowhere vanishing
curvature, then for any ε > 0,

λ1−ε ≪ Z(F ) ≪ λ,

where the implicit constants depend only on C and ε.

It was then conjectured by Bourgain and Rudnick that the lower bound is of order λ.

Conjecture 1.2. [7] If C ⊂ T2 is smooth with non-zero curvature, then

Z(F ) ≫ λ.

In a subsequent paper, to support this conjecture they showed

Theorem 1.3. [8, Theorem 1.1] If C ⊂ T2 is smooth with nowhere vanishing curvature,
then

Z(F ) ≫ λ

B
5/2
λ

where Bλ denote the maximal number of lattice points which lie on an arc of size
√
λ on

the circle |x| = λ,

Bλ := max
|x|=λ

#
{
µ ∈ Eλ : |x− µ| ≤

√
λ
}
.

In particular, as one can show that Bλ ≪ log λ (see [8]), we have Z(F ) ≫ λ/ log5/2 λ.

The above link between Z(F ) and Bλ yields another interesting relationship between
Bourgain-Rudnick conjecture 1.2 and Cilleruelo-Granville conjecture [12] which predicts
that Bλ = O(1) uniformly. This is known to hold for almost all λ2, see for instance [6,
Lemma 5]; we also refer the reader to Lemma 5.2 of Section 5 for a similar result (with a
relatively short proof).

It’s worth noting that when the curvature of C is zero, it could happen that lim infλZ(F ) =
0. See [8].
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1.2. Arithmetic random wave model. Denote by N = Nm := #Eλ the dimension of
the eigenspace corresponding to the eigenvalue λ2. A probabilistic approach to the study
of Z(F ) was introduced in the pioneer paper of Rudnick and Wigman [34]. Consider the
random Gaussian eigenfunction

F (x) =
1√
N

∑
µ∈Eλ

εµe
2πi⟨µ,x⟩, (1.2)

for all x ∈ T2, where εµ are iid complex standard Gaussian with a saving

ε−µ = ε̄µ.

This saving ensures that F is real-valued. The random function F is called arithmetic ran-
dom wave [2, 27], which is a stationary Gaussian field because the correlation E(F (x)F (y))
is invariant under translation. As we can also see, the law of this model is independent of
the choice of the orthonormal basis of the eigenspaces.

Rudnick and Wigman showed that for all eigenvalues, almost all eigenfunctions satisfy
Conjecture 1.2. More specifically, they showed the following.

Theorem 1.4. [34, Theorems 1.1, 1.2] Let C ⊂ T2 be a smooth curve on the torus, with
nowhere vanishing curvature and of total length one. Then

(1) The expected number of nodal intersections is precisely

EgZ(F ) =
√
2m.

(2) The variance is bounded from above as follows

Varg(Z(F )) ≪ m

N
.

(3) Furthermore, let {m} be a sequence such that Nm → ∞ and the Fourier coefficient
{τ̂m(4)} do not accumulate at ±1, then

Varg(Z(F )) =
m

N

⎛⎝∫
C

∫
C

∑
µ∈Eλ

4
1

N

⟨
µ

|µ|
, γ̇(t1)

⟩2⟨ µ

|µ|
, γ̇(t2)

⟩2

− 1

⎞⎠ dt1dt2 +O
( m

N3/2

)
.

Here the subscript g is used to emphasize standard Gaussian randomness, and τm is the
probability measure on the unit circle S1 ⊂ R2 associated with Eλ,

τm :=
1

N

∑
µ∈Eλ

δµ/
√
m.

We also refer the reader to [35, Proposition 2.2] for a general estimate when the condition
on {τ̂m(4)} is lifted, and to [33, Theorem 1.3] for further extension when the first term
in Varg(Z(F )) vanishes. By Markov’s inequality, (1) and (2) in Theorem 1.4 imply that
Conjecture (1.2) holds for the random wave F asymptotically almost surely. In fact, the
statement of (2) and (3) show that the variance is much smaller than m, indicating a large
number of cancellations in the formula of the variance.
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1.3. Partial results in T3. Bourgain and Rudnick [4, 7, 8] also considered the number
of nodal intersections Z(F ) between the nodal set NF and a smooth hypersurface σ for
general Td. For T3, they obtained an analog of (1.1) for the L2 restriction over σ (See [7,
Main Theorem]). However, we are not aware of any deterministic results for T3 that are
similar to Theorem 1.1. On the probabilistic side, Rudnick, Wigman and Yesha [35] have
recently extended Theorem 1.4 to T3. Here, for λ2 = 4π2m with m ̸= 0, 4, 7 mod 8, let
Eλ be the collection of µ = (µ1, µ2, µ3) ∈ Z3 such that µ21 + µ22 + µ23 = m. Again denote
N = Nm = #Eλ.

Consider the random Gaussian eigenfunction

F (x) =
1√
N

∑
µ∈Eλ

εµe
2πi⟨µ,x⟩,

where εµ are iid complex standard Gaussian again with the saving

ε−µ = ε̄µ.

Rudnick, Wigman and Yesha showed the following result.

Theorem 1.5. [35, Theorems 1.4, 1.5] Let C ⊂ T3 be a smooth curve on the torus of total
length one with nowhere zero curvature. Assume further that either C has nowhere-vanishing
torsion or C is planar. Let m be an integer with m ̸≡ 0, 4, 7 (mod 8). Then

(1) The expected number of nodal intersections is precisely

EgZ(F ) =
2√
3

√
m.

(2) There exists c > 0 such that

Varg(Z(F )) ≪ m

N c
.

As pointed out in [35], the assumptionm ̸≡ 0, 4, 7 (mod 8) is natural because of the following
two reasons.

• If m ≡ 7 (mod 8), m cannot be written as a sum of three squares.

• If m ≡ 0, 4 (mod 8), then m = 4am′ and any eigenfunction of the eigenvalue m is
of the form F (x) = F ′(2ax) where F ′ is an eigenfunction of m′.

The proof of Theorem 1.4 and Theorem 1.5 are based on Kac-Rice formula. To motivate
the reader, let us sketch the computation of the expectation for d ≥ 2

EgZ(F ) =
2
√
m√
d
. (1.3)

We follow the proof of [35, Lemma 2.3]. Let r(t1, t2) = E(F (γ(t1))F (γ(t2))). Let K1(t) be
the Gaussian expectation (first intensity)

K1(t) := ϕt(0)E
(⏐⏐(F ◦ γ)′(t)

⏐⏐ ⏐⏐⏐⏐F (γ(t)) = 0

)
where ϕt is the density function of the random variable F (γ(t)), which is a standard Gauss-
ian random variable. Thus, ϕt(0) =

1√
2π
.
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By the Kac-Rice formula

EZ(F ) =

∫ 1

0
K1(t)dt.

Let Γ(t) be the covariance matrix of ((F ◦ γ)(t), (F ◦ γ)′(t)),

Γ(t) =

(
r(t, t) r1(t, t)
r2(t, t) r12(t, t)

)
,

where r1 = ∂r/∂t1, r2 = ∂r/∂t2, r12 = ∂2r/∂t1∂t2. It is not hard to show that Γ(t) =(
1 0
0 α

)
, where α = r12(t, t) =

4π2m
d . It thus follows

K1(t) =
1

π

√
α =

2
√
m√
d
.

This proves (1.3).

For the variance, define K2(t1, t2) to be

K2(t1, t2) := ϕt1,t2(0, 0)E
(⏐⏐(F ◦ γ)′(t1)(F ◦ γ)′(t2)

⏐⏐ ⏐⏐⏐⏐F (γ(t1)) = 0, F (γ(t2)) = 0

)
,

where ϕt1,t2 is the density function of the random Gaussian vector (F (γ(t1)), F (γ(t2))). It is
known that for any measurable subsets A,B ⊂ [0, 1], if the covariance matrix Σ(t1, t2) of the
vectors (F (γ(t1)), F (γ(t2)), (F ◦ γ)′(t1)(F ◦ γ)′(t2)) is non-singular for all (t1, t2) ∈ A × B,
then

E (Z(F ) |AZ(F )|B)− E
(
Z(F )

⏐⏐
A

)
E
(
Z(F )

⏐⏐
B

)
=

∫
A×B

K2(t1, t2)dt1dt2.

The main problem here is that the matrix Σ(t1, t2) is not always non-singular in [0, 1]2.
Roughly speaking, to overcome this highly technical obstacle, basing on the Taylor expan-
sion of the 2-point correlation function K2(t1, t2), Rudnick and Wigman [34] and Rudnick,
Wigman and Yesha [35] divide [0, 1] into subintervals Ii of length of order 1/

√
m each, and

then show that Kac-Rice’s formula is available locally on most of the cells Ii × Ij . We refer
the reader to [34, 35] for more detailed treatment of these issues.

1.4. More general random waves and our main results. With regard to the prob-
abilistic approach to Conjecture 1.2, a natural question that one can ask is the behavior
of Z(F ) for other random eigenfunctions F beside the Gaussian arithmetic random waves
described above. A special case of interest would be the case when the randomness comes
from a discrete distribution, for example, when the random variables εi in (1.2) are random
± signs. More generally, we consider the random function

F (x) =
1√
N

∑
µ∈Eλ

εµe
2πi⟨µ,x⟩, (1.4)

where εµ = ε1,µ + iε2,µ and ε1,µ, ε2,µ, µ ∈ Eλ are iid random variables with the saving
constraint ε−µ = ε̄µ. Note that the last constraint is again to make F a real-valued random
eigenfunction.

We denote by Pεµ ,Eεµ , and Varεµ the probability, expectation, and variance with respect
to the random variables (εµ)µ∈Eλ .
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Question 1.6. Are the statistics such as EεµZ(F ) and Varεµ(Z(F )) with respect to the
randomness of the random variables εµ universal? In other words, do the conclusions of
Theorems 1.4 and 1.5 hold (asymptotically) when random variables εµ are non-Gaussian?

Note that we can write F as

F (x) =
1√
N

∑
µ∈Eλ

εµe
2πi⟨µ,x⟩ =

1√
N

∑
µ∈Eλ

ε1,µ cos(2π⟨µ, x⟩) + ε2,µ sin(2π⟨µ, x⟩). (1.5)

We first restrict to T2 and describe our results when the random variables εµ can have
discrete distribution. Consider the following conditions on the curves and the distributions.

Assumption on the reference curve. Let γ(t), t ∈ [0, 1] be a curve of unit length.

Condition 1.7. Consider the following conditions

(i) (Analyticity) The function γ(t) is real analytic.

(ii) (Non-vanishing curvature) The curve γ(t) : [0, 1] → T2 has arc-length parametrization
with positive curvature. More specifically, there exists a positive constant c such that
∥γ′(t)∥ = 1 and ∥γ′′(t)∥ > c for all t.

We also record a small remark below.

Remark 1.8. For a fixed smooth curve γ as above, when λ→ ∞ and N = N(λ) → ∞, for
any constant c0 > 0 there exists a constant α > 0 such that for any interval I ⊂ [0, 1] of
length c0/λ, the segment {γ(t), t ∈ I} cannot be contained in a ball of radius N−α/λ.

Proof. We prove a slightly more general estimate. Let M = supt∈[0,1] ∥γ′′(t)∥. Let I =

(a, b) ⊂ [0, 1] be any interval with length b − a ≤ 1/2M . Let φa be the unit vector
γ′(a). Consider f(t) = ⟨γ(t), φa⟩ for t ∈ I. Then f ′(t) = ⟨γ′(t), φa⟩ and particularly
f ′(a) = 1. Also, because |f ′′(t)| ≤ M for all t, we have that f ′(t) ≥ 1/2 for all t ∈ I,
and therefore by the mean value theorem |f(b)− f(a)| ≥ (b− a)/2. This then implies that
∥γ(b)− γ(a)∥ ≥ |f(b)− f(a)| ≥ (b− a)/2. □

Assumption on the distribution.

Condition 1.9. We will assume εµ to have mean zero, variance one, bounded (2 + ε)-
moment for some constant ε > 0 with the following properties. There is a fixed number K
such that either

(i) (Continuous distribution) εµ is absolutely continuous with bounded density function p,
∥p∥∞ ≤ K.

(ii) (Mixed distribution) There exist positive constants c1, c2, c3 such that P(c1 ≤ |εµ−ε′µ| ≤
c2) ≥ c3 where ε′µ is an independent copy of εµ and one of the following holds

• either |εµ| > 1/K with probability one

• or εµ1|εµ|≤1/K is continuous with density bounded from above by K.
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The assumption that εµ stays away from zero (for discrete distribution) is necessary be-
cause otherwise the random function F might be vanishing with positive probability. As
mentioned, one representative example of our consideration is Bernoulli random variable
which takes values ±1 with probability 1/2, and this model does not have the nice invari-
ance property of the Gaussian one. The assumption of bounded (2 + ε)-moment is only for
technical reasons and is mainly for Theorem 2.2.

We now state our main result for T2.

Theorem 1.10 (main result, universality of the moments in T2). Assume that γ satisfies
Condition 1.7 and the random variables ε1,µ, ε2,µ, µ ∈ Eλ are iid random variables satisfying
Condition 1.9. Then for almost all m we have

• EεµZ(F ) = EgZ(F ) +O
(
λ/N c′

)
;

• More generally, for any fixed k, EεµZ(F )k = EgZ(F )k +O
(
λk/N c′

)
,

where the subscript g stands for the distribution in which the ε1,µ and ε2,µ are independent
standard Gaussian. Here c′ and the implicit constants depend on the curve γ, k, and the
constants in Conditions 1.7 and 1.9 but not on N and λ. In particular, for almost all m,
we have

EεµZ(F ) =
√
2m+O

(
λ/N c′

)
and Varεµ(Z(F )) ≪ λ2

N c′
.

The density of the sequence {m} above can be worked out explicitly, but as this is not our
main focus, we will omit the details. It is plausible to conjecture that the variance is indeed
as small as in (iii) of Theorem 1.4. However, this seems to be an extremely delicate matter
given the highly nontrivial analysis of the Gaussian case.

To prove Theorem 1.10, we will need to show that for almost all m the set Eλ satisfies the
following property which is later proven in Section 6.

Lemma 1.11. There exists a constant ε0 > 0 such that for almost all m the following
holds. For any vector r ∈ R2 with |r| = 1

2πλ , the set {⟨r, µ⟩, µ ∈ Eλ} can not be covered by

less than O (N ε0) intervals of length N−1 in [−1, 1].

Theorem 1.10 is stated for almost all m mainly because of the deterministic Lemma 5.2 of
Section 5, which in turn is needed for the verification of one of our probabilistic conditions
of the universality framework. We also need to pass to almost all m for a brief verification
of Lemma 1.11.

Now we turn to Td, d ≥ 3. While in this setting the cardinality N of Eλ is relatively large
compared to λ, the situation is difficult by different reasons. Consider the following example
from [35].

Example 1.12. Let F0(x, y) be an eigenfunction on T2 with eigenvalue 4π2m, and S0 a
curved segment length one contained in the nodal set, admitting an arc-length parameter-
ization γ0 : [0, 1] → S0 with curvature κ0(t) = |γ′′0 (t)| > 0. For n > 0, let Fn(x, y, z) =
F0(x, y) cos(2πnz), which is an eigenfunction on T3 with eigenvalue 4π2(m + n2). Let
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C be the curve γ(t) = (γ0(t/
√
2), t/

√
2). Standard computation shows that the curvature

κ(t) = κ0(t/
√
2)/2 > 0 and the torsion τ(t) = ±κ0(t/

√
2)/2 is non-zero. Note that C is

contained in the nodal set of Fn for all n. Thus we can have a non-trivial curve contained
in the nodal set for arbitrary large λ.

This example shows that the study of universality in Td, d ≥ 3 in the case where the random
variables εµ have discrete distribution can be highly complex (at least if we only assume γ
to have non-vanishing curvature and torsion) as there is no deterministic upper bound for
Z(F ). If we are not careful with the choice of discrete distributions, our random function
F from (1.4) might be one of the Fn in Example 1.12 with non-zero probability, and hence
EZ(F ) is infinite. To avoid such type of singularity, in what follows we will assume that the
random variables εµ are continuously distributed. More specifically, we assume Condition
1.9(i). Note that the following result also holds for d = 2, and here we don’t need to assume
Condition 1.7.

Theorem 1.13 (universality for the moments in Td, d ≥ 2, continuous distributions).
Assume that ε1,µ, ε2,µ, µ ∈ Eλ are independent random variables satisfying Condition 1.9(i).
Assume furthermore that the curve γ is real analytic. Then for any fixed k we have

EεµZ(F )k = EgZ(F )k +O
(
λk/N c′

)
.

In particular for T3, with γ and λ as in Theorem 1.5, we have

EεµZ(F ) =
2√
3

√
m+O

(
λ/N c′

)
and Varεµ(Z(F )) ≪ λ2

N c′
.

Here c′ and the implicit constants depend on the curve γ, k, and the constants in Condition
1.9(i) but not on N and λ.

All in all, our results support the striking conjecture (which cannot be observed from a
deterministic point of view) that the statistics of the number of intersections between a
random wave and a given non-degenerate curve is universal, independently of the random
source used to generate the wave. We also refer the reader to [1] and [22] and the references
therein for related issues.

1.5. The method. Our proof of the main results uses the comparison method: instead of
directly computing the relevant statistics for each random wave, we compare them to those
from the Gaussian wave and show that the differences are small. Roughly speaking, this
comparison process itself contains many smaller comparisons as one goes over the random
coefficients one by one to flip to Gaussian. So there are many types of differences (errors)
to be taken care of. To this end, the “roughness” of the distributions has a huge affect, in
analogy with the comparison between any random variable of mean zero and variance one
with the standard Gaussian. Accordingly, our paper has two major components, one on the
comparison method and its relation to previous developments, and one on the resolution of
“roughness” associated to this complicated model.

The rest of the note is organized as follows. We first introduce in Section 2 a general scheme
of the comparison method from [39], [15] and [32] gearing toward our universality result; a
sketch of proof for these results will be discussed in Section 9 for the reader’s convenience.
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In the next phase, we prove Theorem 1.13 first in Section 3 as in this setting the error
bounds are easier to control. The proof of Theorem 1.10 will be carried out throughout
Section 4, 5, and 6 to check various regulatory conditions.

Further notation. We consider λ as an asymptotic parameter going to infinity and allow
all other quantities to depend on λ unless they are explicitly declared to be fixed or constant.
As mentioned earlier, we write X = O(Y ), Y = Ω(X), X ≪ Y , or Y ≫ X if |X| ≤ CY for
some fixed C; this C can depend on other fixed quantities such as the the parameter K of
Condition 1.9 and the curve γ. If X ≪ Y and Y ≪ X, we say that Y = Θ(X).

Throughout the note, if not specified otherwise, a property p(λ) holds for almost all λ if
the set of λ up to T that p(λ) does not hold has cardinality much smaller than that of the
set of λ for which p(λ) holds, i.e. |{λ ≤ T, p̄(λ)}| = o(|{λ ≤ T, p(λ)}|) as T → ∞.

Finally, all the norms ∥.∥ in this note, if not specified, will be the usual ℓ2-norm.

2. Supporting lemmas: general universality results

Our starting point uses the techniques developed by Do, Tao, and the last two authors
[39, 15, 32] in the past several years. To put it in a more general context, we consider two
random functions

H(x) =
∑
µ∈E

ξµfµ(x), H̃(x) =
∑
µ∈E

ξ̃µfµ(x), x ∈

where E is a countable set and fµ are deterministic functions with fµ(R) ⊂ R; the inde-
pendent random variables ξµ satisfy Condition 1.9 and the independent random variables

ξ̃µ are standard Gaussian.

To introduce a general scheme to compare the number of roots of H(x) and H̃(x) in a
given set B ⊂ R, we first need some assumptions. As the reader will see, most of these
requirements are very natural and easy to check.

Given positive constants (k,C1, α1, A, c1, C), consider the following conditions where N is
a positive number. (In applications, N is often set to be |E|.)

Condition 2.1.

(1) For any x ∈ B, H is analytic on the ball B(x, 1) with probability 1 and

EZk+2
B(x,1/2)1ZB(x,1/2)≥NC1 ≤ C

where ZB(x,1/2) is the number of zeros of H in the complex ball B(x, 1/2).

(2) (Anti-concentration) For every x ∈ B, with probability at least 1 − CN−A, there
exists x′ ∈ B(x, 1/100) such that |H(x′)| ≥ exp (−N c1).

(3) (Boundedness) For every x ∈ B,

P (|H(z)| ≤ exp (N c1) for all z ∈ B(x, 1)) ≥ 1− CN−A.



10 MEI-CHU CHANG, HOI NGUYEN, OANH NGUYEN, VAN VU

(4) (Delocalization) For every z ∈ B +B(0, 1) and every µ ∈ E,
|fµ(z)|√∑
µ |fµ(z)|2

≤ N−c1 .

(5) (Derivative growth) For any real number x ∈ B + [−1, 1],∑
µ

|f ′µ(x)|2 ≤ C

(
N c1

∑
µ

|fµ(x)|2
)
, (2.1)

as well as

sup
z∈B(x,1)

|f ′′µ(z)|2 ≤ C

(
N c1

∑
µ

|fµ(x)|2
)
. (2.2)

Note that the last conditions (4), (5) are about the deterministic functions fµ, which au-
tomatically hold for trigonometric functions. Roughly speaking, the remaining Conditions
1, 2, and 3 guarantee that the number of roots in any local ball B(x, 1), x ∈ B is not too
large. Now we state the main result from [32].

Theorem 2.2 (Local universality of real roots). [32, Theorem 2.5] Let k ≥ 1 be an in-
teger constant and α1, C1, ε be positive constants. Assume that there exists a constant

C > 0 such that the random functions H and H̃ satisfy Condition 2.1 with parameters
(k,C1, α1, A, c1, C) for some constants 0 < c1 ≤ α1ε

106k4
and A ≥ 2k(C1 + 2) + α1ε

6 . Then
there exists a constant c depending only on k and the constants in Conditions 1.9 and 2.1
(but not on B and N) such that the following holds. For any real numbers x1, . . . , xk in B,
and for every smooth function G supported on

∏k
j=1[xj − c, xj + c] with |∇aG(z)| ≤ 1 for

0 ≤ a ≤ 2k we have⏐⏐⏐⏐⏐⏐Eξµ

∑
i1,...,ik

G(ζi1 , . . . , ζik)− Eξ̃µ

∑
i1,...,ik

G(ζ̃i1 , . . . , ζ̃ik)

⏐⏐⏐⏐⏐⏐ ≤ 1

c
N−c, (2.3)

where the ζi are the roots of H, and the ζ̃i are the roots of H̃, the sums run over all possible
assignments of i1, . . . , ik which are not necessarily distinct.

Thus, heuristically, this theorem states that as long as the Condition 2.1 is satisfied, the
k-wise correlation functions of the roots of H and H̃ in B are asymptotically the same.

We will provide a sketch of the proof of this theorem in Section 9 for the reader’s convenience.

Now we consider F from (1.4). By the analyticity of the curve γ, there exists a constant
b > 0 such that γ has analytic extension on [0, 1] +B(0, b). Let bλ = max {1/b, λ}. Set the
scaled function H : [0, bλ] +B(0, 1) → to be

H(z) : = F

(
γ

(
z

bλ

))
=

1√
N

∑
µ∈Eλ

ε1,µgµ(z) + ε2,µhµ(z) (2.4)

where

gµ(z) := cos

(
2π

⟨
µ, γ

(
z

bλ

)⟩)
and hµ(z) := sin

(
2π

⟨
µ, γ

(
z

bλ

)⟩)
(2.5)
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To prove Theorems 1.10 and 1.13, the main task is to show that Condition 2.1 holds for H
with an appropriate choice of the set B. More specifically, for Theorem 1.13 we will show

Lemma 2.3. Let k be a positive integer. Under the assumptions of Theorem 1.13, let
B1 = [0, bλ]. There exist positive constants ck, Ak such that for any positive constants
c1 < ck and A > Ak, there exists a constant C for which the function H in (2.4) satisfies
Condition 2.1 with B = B1, α1 = 1/2, C1 = 1, and N = |Eλ|.

(We would like to remind the reader that the constants in this manuscripts do not depend
on N,B, or λ.)

As the randomness here is smooth (i.e., the random variables have bounded, continuous
density), our verification of this result (to be presented in Section 3) will be relatively short.

Next, for Theorem 1.10 we show

Lemma 2.4. Under the assumptions of Theorem 1.10, let B2 = [0, bλ] \ ∪φ∈D(λSφ) where
D is the set of directions

D =

{
µ1 − µ2

∥µ1 − µ2∥
, µ1 ̸= µ2, µ1, µ2 ∈ Eλ

}
and

Sφ :=
{
t ∈ [0, 1],∠(γ′(t), φ) < N−3

}
.

Then for any positive constants k, c1, A, there exists a constant C for which the function H
in (2.4) satisfies Condition 2.1 with B = B2, α1 = 1/2, C1 = 7, and N = |Eλ|.

We refer the reader to Section 5 for the motivation of introducing D and Sφ as above. The
verification of Lemma 2.4 (in Sections 4 and 5) will occupy the most technical part of our
note: notably when we justify (1) and (2) from Condition 2.1.

Combining Theorem 2.2, Lemmas 2.3 and 2.4, we then show the following proposition,
which in turn implies Theorems 1.10 and 1.13.

Proposition 2.5. Let H be the function in (2.4). Under the assumptions of Theorem 1.13
(respectively Theorem 1.10), for any k ≥ 1, there exists a constant c > 0 such that for any
intervals I1, . . . , Ik ⊂ [0, bλ] each belongs to B1 (respectively B2) and has length O(1), we
have

Eεµ

k∏
j=1

Zj = Eg

k∏
j=1

Zj +Ok

(
N−c

)
where N = |Eλ| and Zj is the number of roots of H in Ij.

The deduction of Proposition 2.5 from Lemmas 2.3 and 2.4 is given in Section 7. Theorems
1.10 and 1.13 are concluded from Proposition 2.5 in Section 8.

3. Proof of Lemma 2.3

In this section, we prove Lemma 2.3. Note that the random variables are assumed to satisfy
Condition 1.9 (i), namely they are continuously distributed with bounded density. For
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notational convenience, we assume that λ is sufficiently large, and thus bλ = λ. For small
λ, the proof is similar. The analyticity of H on the ball B(x, 1), x ∈ B in Condition 2.1(1)
follows from our assumption on the analyticity of the curve γ.

3.1. Verification of Condition 2.1(2). To prove Condition 2.1(2), it suffices to show that
for any any c1, A > 0, there exists a constant C > 0 such that for all x0 ∈ B, we have

P (|H(x0)| ≥ exp (−N c1)) ≥ 1− CN−A. (3.1)

For any δ > 0 and any µ0 ∈ Eλ, by conditioning on all other random variables except εµ0 ,
we can see that the probability that |H(x0)| is confined in an interval of size 2δ is bounded
from above by the probability that ε1,µ0 cos(2π ⟨µ0, γ(x0/λ)⟩)+ ε2,µ0 sin(2π⟨µ0, γ(x0/λ)⟩) is
confined in an interval of size 2

√
Nδ. From this and the continuity of εµ, we obtain

P (|H(x0)| ≥ δ) ≥ 1−O
(√

Nδ
)
. (3.2)

(Note that when
√
Nδ is large, the last expression becomes negative and the inequality

becomes trivial.) Let δ = exp (−N c1), we obtain (3.1).

3.2. Verification of Condition 2.1(3). For every z ∈ [0, λ]× [−1, 1], let x = Re(z). Since⟨
µ, γ

(
x
λ

)⟩
is real, we have⏐⏐⏐Im⟨µ, γ ( z

λ

)⟩⏐⏐⏐ ≤ ⏐⏐⏐⟨µ, γ ( z
λ

)
− γ

(x
λ

)⟩⏐⏐⏐ = O(1), (3.3)

and so ⏐⏐⏐exp(i2π ⟨µ, γ ( z
λ

)⟩)⏐⏐⏐ = exp
(
−2πIm

⟨
µ, γ

( z
λ

)⟩)
= O(1). (3.4)

Thus,

|H(z)| = O(1)
∑
µ

|εµ|.

By applying Markov’s inequality to the random variable
∑

µ |εµ|, we obtain for any M > 0,

P (|H(z)| ≥M for some z ∈ [0, T ]× [−1, 1]) ≤ P

(
M = O

(∑
µ

|εµ|

))
= O

(
N

M

)
. (3.5)

SettingM = eN
c1 , Condition 2.1(3) then follows. We remark that this condition holds even

if the εµ have discrete distribution.

3.3. Verification of Condition 2.1(1). Let K = maxz∈B(x,1) |H(z)|. Recall the following
Jensen’s inequality for analytic functions (for a proof, see, for example, [32, Appendix 15.5]):
for any z ∈, R > r > 0, any analytic function ψ on an open domain that contains the closed
disk B̄(z,R), the number of roots of ψ in the open disk B(z, r) is bounded from above as
follows.

#{w ∈ B(z, r) : ψ(w) = 0} ≤
log M

m

log R2+r2

2Rr

(3.6)

where M = maxw∈B̄(z,R) |ψ(w)|, m = maxw∈B̄(z,r) |ψ(w)|.
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By the Jensen’s inequality (3.6), we obtain

ZB(x,1/2) = O(1) log
K

|H(x)|
. (3.7)

Let A be the event on which ZB(x,1/2) ≥ NC1 . By (3.7), the upper bound (3.5) on K and
the lower bound (3.2) on H, we obtain

P(A) = O
(
N−10

)
.

Thus,

EZk+2
B(x,1/2)1A ≪ E| logK|k+21A + E| log |H(x)||k+21A. (3.8)

By Hölder’s inequality,

E| logK|k+21A ≤
(
E| logK|2k+2

)1/2
P(A)1/2.

By the bound (3.5), we obtain E| logK|k+2 = Ok(N) which yields

E| logK|k+21A = Ok

(
N−9/2

)
. (3.9)

We argue similarly for E| log |H(x)||k+21A using (3.2) (which is valid for all δ > 0). From
this and (3.8), (3.9), we obtain

EZk+2
B(x,1/2)1ZB(x,1/2)≥NC1 = O(1)

as claimed.

3.4. Verification of Conditions 2.1(4) and 2.1(5) for gµ, hµ. For Condition 2.1(4), note
that for any z ∈ (0, λ) +B(0, 1) and gµ, hµ as in (2.5), we have∑

µ

(gµ(z))
2 + (hµ(z))

2 = N,

and so

|gµ(z)|+ |hµ(z)|√∑
µ |gµ(z)|2 + |hµ(z)|2

= O

(
1√
N

)
.

For (2.1) of Condition 2.1(5), we have

g′µ(z) =
2π

λ

⟨
µ, γ′

( z
λ

)⟩
cos
(
2π
⟨
µ, γ

( z
λ

)⟩)
.

Thus ∑
µ

|g′µ(z)|2 +
∑
µ

|h′µ(z)|2 ≪
∑
µ

1

λ2

⟨
µ, γ′

( z
λ

)⟩2
≪ N

where the implicit constant depends on maxz∈[0,λ] |γ′( zλ)|. This proves (2.1). Finally, (2.2)
of Condition 2.1(5) is proven similarly using the same argument together with (3.4).
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4. Proof of Lemma 2.4: verification of Condition 2.1(2)

As the case when the random variables are continuously distributed has been treated in
Section 3, here we will assume that

• there exist positive constants c1, c2, c3 and K such that

P
(
c1 ≤ |εµ − ε′µ| ≤ c2

)
≥ c3

• with probability one
|εµ| > 1/K

where ε′µ is an independent copy of εµ.

Since the verification of Conditions (3), (4) and (5) in Section 3 works automatically for
this setting, it suffices to verify Conditions 2.1(1) and 2.1(2) only. In this section, we will
verify Condition 2.1(2). In the next section, we will verify Condition 2.1(1).

Recall that N = |Eλ|. Without scaling, we will show the following which implies Condition
2.1(2).

Theorem 4.1. Let A,α, c0 > 0 be fixed constants, then there exists a constant C such that
the following holds for F (γ(t)) from (1.4): for any interval I ⊂ [0, 1] of length c0/λ, for any

t1, t2 ∈ I with ∥γ(t1)− γ(t2)∥ = N−α

λ , we have

P
(
|F (γ(t1))| ≤ N−C

)
≤ N−A or P

(
|F (γ(t2))| ≤ N−C

)
≤ N−A.

Note that by Remark 1.8, for any interval I of length c0/λ, there exist t1, t2 ∈ I with

∥γ(t1)− γ(t2)∥ = N−α

λ .

Since |F (γ(t))| ≥ N−C implies |H(t)| ≥ N−C ≫ exp (−N−c1) for any positive constant c1,
Theorem 4.1 implies Condition 2.1(2). To prove Theorem 4.1 we will rely on two results on
additive structures. For this we will need some definitions.

We say a set S ⊂ C is δ-separated if for any s1, s2 ∈ S, |s1 − s2| ≥ δ, and S is ε-close to a
set P if for all s ∈ S, there exists p ∈ P such that |s− p| ≤ ε.

Define a generalized arithmetic progression (or GAP) to be a finite subset Q of of the form

Q = {g0 + a1g1 + · · ·+ argr : ai ∈ Z, |ai| ≤ Ni for all i = 1, . . . , r}
where r ≥ 0 is a natural number (the rank of the GAP), N1, . . . , Nr > 0 are positive
integers (the dimension lengths, or dimension for short, of the GAP), and g0, g1, . . . , gr ∈
are complex numbers (the generators of the GAP). We refer to the quantity

∏r
i=1(2Ni+1)

as the volume vol(Q) of Q; this is an upper bound for the cardinality |Q| of Q. When
g0 = 0, we say that Q is symmetric. When

∑
i aigi are all distinct, we say that Q is proper.

Let ξ be a real random variable, and let V = {v1, ..., vn} be a multi-set in Rd. For any
r > 0, we define the small ball probability as

ρr,ξ(V ) := sup
x∈Rd

P (v1ξ1 + · · ·+ vnξn ∈ B(x, r))
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where ξ1, ..., ξn are iid copies of ξ, and B(x, r) denotes the closed disk of radius r centered
at x in Rd.

We now cite the first useful ingredients.

Theorem 4.2. [30, Theorem 2.9] Let A > 0 and 1/2 > ε0 > 0 be constants. Let β > 0 be
a parameter that may depend on n. Suppose that V = {v1, . . . , vn} is a (multi-) subset of
Rd such that

∑n
i=1 ∥vi∥2 = 1 and that V has large small ball probability

ρ := ρβ,ξ(V ) ≥ n−A,

where ξ is a real random variable satisfying Condition 1.9. Then the following holds: for
any number nε0 ≤ n′ ≤ n, there exists a proper symmetric GAP Q = {

∑r
i=1 xigi : |xi| ≤ Li}

such that

• at least n− n′ elements of V are O(β)-close to Q,

• Q has constant rank d ≤ r = O(1), and cardinality

|Q| = O
(
ρ−1n′(−r+d)/2

)
.

Here the implicit constants are allowed to depend on the parameters A and ε0.

Our second ingredient is a continuous analog of [13] by the first author, in connection with
the “sum-product” phenomenon in additive combinatorics (see also [20].)

Theorem 4.3. Let P = {g0 +
∑r

i=1 nigi : |ni| < M} be a generalized arithmetic progression
of rank r on the complex plane. Then there exists an (explicit) constant Cr with the following
property. Let 0 < δ < 1 and ε < M−CrδCr and let S ⊂ P be a subset consisting of elements
which are δ-separated and ε-close to the unit circle, then

S ≤ exp (Cr logM/ log logM) .

We postpone the proof of Theorem 4.3 to the next subsection.

Proof of Theorem 4.1. First fix t ∈ I, and let x = γ(t). Set β = N−C , with C sufficiently
large to be chosen, and assume that

P

⎛⎝⏐⏐⏐⏐⏐⏐
∑
µ∈Eλ

ε1,µ cos(2π⟨µ, x⟩) + ε2,µ sin(2π⟨µ, x⟩)

⏐⏐⏐⏐⏐⏐ ≤ β

⎞⎠ ≥ N−A. (4.1)

We will choose ε0 to be the constant in Lemma 1.11. Then by Theorem 4.2 (applied to the
sequences {cos(2π⟨µ, x⟩), µ ∈ Eλ} and {sin(2π⟨µ, x⟩), µ ∈ Eλ} separately 1 with n′ = N ε0),
there exist proper GAPs P1, P2 ⊂ R and |Eλ| − 2n′ indices µ ∈ Eλ such that with zµ(t) =
cos(2π⟨µ, x⟩) + i sin(2π⟨µ, x⟩) = exp(2πi⟨µ, γ(t)⟩),

dist (zµ(t), P1 + iP2) ≤ 2β

1We condition on ε1,µ to obtain structure approximation for the sine sequence, and then condition on
ε2,µ to obtain structure approximation for the cosine sequence.
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and such that the cardinalities of P1 and P2 are O
(
NOA(1)

)
and the ranks are O(1). The

properness implies that the dimensions of the GAPs P1 and P2 are bounded by O
(
NOA(1)

)
.

For short, we denote the complex GAP P1 + iP2 by P (t).

Now assume by contradiction that (4.1) holds for both t = t1 and t = t2. By applying the
above process to t1 and t2, we obtain two GAPs P (t1) and P (t2) which are 2β-close to the
points zµ(t1) and zµ(t2) respectively for at least N − 4N ε0 indices µ.

Since the zµ(t1) and zµ(t2) have magnitude 1, the product set

P (t1)P̄ (t2) = {p1p̄2, p1 ∈ P1(t), p2 ∈ P2(t)}
will O(β)-approximate the points zµ = zµ(t1)z̄µ(t2) = exp(2π⟨µ, γ(t1)− γ(t2)⟩) for at least
N − 4N ε0 indices µ. Let S be the collection of these points zµ.

By definition, P = P (t1)P̄ (t2) is another GAP whose rank is O(1) and dimensions are of

order O
(
NOA(1)

)
.

Now we look at the set S. On one hand, S is “closed” under multiplication in the sense that
|zµ1zµ2 | = 1 for all µ1, µ2. On the other hand, as zµ can be well approximated by elements
of a GAP of small size, the collection of sums zµ1+zµ2 can also be approximated by another
GAP of small size. As such, we can apply Theorem 4.3 with ε = O(β), r = OA(1), and

M = O
(
NOA(1)

)
to conclude that the set S can be covered by exp(Cr logN/ log logN) disks

of radius δ with δ =Mε1/Cr . Taking into account at most 4N ε0 elements zµ not included in
S, the set {⟨µ, γ(t1)− γ(t2)⟩}µ∈E can be covered by 4N ε0 +exp(Cr logN/ log logN) ≤ 5N ε0

intervals of length O(δ). However, note that

δ =Mε1/Cr = O
(
N−C/Cr+OA(1)

)
.

By choosing C sufficiently large, this would contradict with the equi-distribution Lemma
1.11 on E . The proof of Theorem 4.1 is complete. □

4.1. Proof of Theorem 4.3. We will need some preparations. In this subsection Cr is a
constant depending on r and may vary even within the same context. We denote the set of
the coefficient vectors of S by

F =

{
n̄ = (n1, . . . , nr) ∈ Zr : |ni| < M, g0 +

r∑
i=1

nigi ∈ S

}
.

Fix m̄ ∈ F . Since g0+
∑r

i=1migi is ε-close to the unit circle, we have |g0 +
∑r

i=1migi| ≤ 1+ε
and

⏐⏐⏐⏐⏐
r∑

i=1

(ni −mi)gi

⏐⏐⏐⏐⏐ ≤ 2(1 + ε) for all n̄ ∈ F . (4.2)

Let ⟨F − m̄⟩ be the vector space generated by n̄− m̄, n̄ ∈ F . We assume dim⟨F − m̄⟩ = r,
since otherwise we may reduce the rank of P without significantly changing the size of P
(see [40, Chapter 3]).
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Therefore, we can take r independent vectors n̄(1), · · · , n̄(r) ∈ F and use Cramer’s rule to
solve g1, · · · , gr in the following system of r equations.

(n
(1)
1 −m1)g1+ · · ·+ (n(1)r −mr)gr = c(1)

· · ·
· · ·
· · ·

(n
(r)
1 −m1)g1+ · · ·+ (n(r)r −mr)gr = c(r)

where |c(1)|, · · · , |c(r)| ≤ 2(1 + ε) < 3.

We obtain a bound

|g1|, . . . , |gr| ≤ 3.2rr!M r−1, (4.3)

and hence

|g0| <
∑
i

|nigi|+ 1 + ε < (3r)2rr!M r. (4.4)

Next, assume that |F| ≥ 2. Then the separation assumption means that for any m̄, n̄ ∈ F
with m̄ ̸= n̄ we have |

∑r
i=1(mi − ni)gi| > δ. Thus,

max {|g1|, . . . , |gr|} >
δ

2rM
. (4.5)

Without loss of generality, assume that the maximum above is attained by |g1|. We now
introduce the key lemma toward the verification of Theorem 4.3.

Lemma 4.4. There exist z0, z1, . . . , zr, w0, w1, . . . , wr ∈ C with z1 ̸= 0 such that for any
n̄ ∈ F (

z0 +

r∑
i=1

nizi

)(
w0 +

r∑
i=1

niwi

)
= 1.

We now conclude Theorem 4.3 using this lemma.

Proof of Theorem 4.3. Let

A =

{
z0 +

r∑
i=1

nizi : n̄ ∈ F

}
.

Applying Proposition 3 in [13] to the mixed progression{
n0z0 + n0w0 +

r∑
i=1

nizi +

r∑
i=1

n′iwi : |n0|, |n′0| < 2 and |ni|, |n′i| < M

}
,

we have

|A| ≤ exp(Dr logM/ log logM),

for some positive constant Dr.
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We next partition F as

F =
⋃
a∈A

Fa, where Fa =

{
n̄ ∈ F : z0 +

r∑
i=1

nizi = a

}
.

Let S be as in Theorem 4.3, we write

S =

{
g0 +

r∑
i=1

nigi : n̄ ∈ F

}
=
⋃
a∈A

Sa, (4.6)

where

Sa :=

{
g0 +

r∑
i=1

nigi : n̄ ∈ Fa

}
.

Notice that Sa ⊂ Pa := {g0 +
∑r

i=1 nigi ∈ P : z0 +
∑r

i=1 nizi = a} . The gain here is that
Pa is contained in a progression of rank at most r − 1, that is,

g0 +

r∑
i=1

nigi =

(
g0 +

a− z0
z1

g1

)
+

r∑
i=2

ni

(
gi −

zi
z1
g1

)
so by induction

|Sa| ≤ exp(Cr−1 logM/ log logM).

It thus follows from (4.6) that

|S| ≤ exp(Cr logM/ log logM),

for some appropriately chosen constant sequence Cr, completing the proof of Theorem
4.3. □

It remains to verify Lemma 4.4. We will use the following effective form of Nullstellensatz
from [26] (see also [14, Theorem 2]).

Theorem 4.5. Let q, f1, . . . , fs ∈ Z[x1, . . . , xn] with deg q,deg fi ≤ d for all i such that q
vanishes on the common zeros of f1, · · · , fs and ht(fi) ≤ H. Then there exist q1, . . . , qs ∈
Z[x1, . . . , xn] and positive integers b, l such that

b ql =
s∑

i=1

qifi (4.7)

where
l ≤ D = max

1≤i≤s
{deg qi} ≤ 4ndn

as well as

max
1≤i≤s

{log |b|,ht(qi)} ≤ 4n(n+ 1)dn [H + log s+ (n+ 7)d log(n+ 1)] .

Here the height ht(f) of a polynomial f ∈ Z[x1, . . . , xn] is the logarithm of the maximum
modulus of its coefficients.

Remark. Theorem 1 in [26] is stated for the case that q = 1 and that f1, . . . , fs do not have
common zeros. However, the standard proof of Nullstellensatz gives the above statement
of Theorem 4.5.
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Proof of Lemma 4.4. Define the polynomial P over n̄ ∈ F as

Pn̄(z0, z1, . . . , zr, w0, w1, . . . , wr) =

(
z0 +

r∑
i=1

nizi

)(
w0 +

r∑
i=1

niwi

)
− 1.

Assume that the claim of Lemma 4.4 does not hold, thus the polynomials Pn̄, n̄ ∈ F have
no common zeros with z1 ̸= 0.

By Theorem 4.5, with n = 2r + 2, s = |F| ≤ (2M)r, d = 2, H ≤ 2 logM we have

bzl1 =
∑
n̄∈F

Pn̄Qn̄, (4.8)

where b ∈ Z\{0}, Qn̄ ∈ Z[z0, . . . , zr, w0, . . . , wr] such that

• deg(Qn̄), l ≤ D ≤ C ′
r

• the coefficients of Qn̄ are bounded by MC′
r .

Now replacing z0, . . . , zr and w0, . . . , wr by g0, . . . , gr and ḡ0, . . . , ḡr in (4.8), we have

|g1|l ≤
∑
n̄∈F

|Pn̄(g0, . . . , gr, ḡ0, . . . , ḡd)| |Qn̄(g0, . . . , gr, ḡ0, . . . , ḡd)| .

By (4.3), (4.4), (4.5) we then have(
δ

2rM

)l

≤ DMC′
r(3.2rr!rM r)D

∑
n̄∈F

|Pn̄(g0, . . . , gr, ḡ0, . . . , ḡr)|.

On the other hand, by definition, |Pn̄(g0, . . . , gr, ḡ0, . . . , ḡr)| ≤ ε for any n̄ ∈ F . It thus
follows that (

δ

2rM

)l

≤
(

δ

2rM

)D

≤MC′′
r ε.

However, this is impossible with the choice of ε from Theorem 4.3, completing the proof of
Lemma 4.4. □

5. Proof of Lemma 2.4: verification of Condition 2.1(1)

Let κ = N−3. We will verify Condition 2.1(1) through the following deterministic lemma,
which seems to be of independent interest.

Theorem 5.1. Suppose that γ(t), t ∈ [0, 1] is smooth and has non-vanishing curvature.
Then there exist a constant c and a collection of at most N2 intervals Sα each of length
O(κ) such that the following holds for almost all λ and for any eigenfunction Φ(x) =∑

µ∈Eλ aµe
2πi⟨µ,x⟩ with

∑
µ |aµ|2 = 1.

(1) The number of nodal intersections on ∪Sα is negligible

|NΦ ∩ ∪γ(Sα)| ≪ λN−1,

(2) Condition 2.1(1) on [0, 1] \ ∪Sα: for any a ∈ [0, 1]\ ∪α Sα, we have

|
{
z ∈ B(a,N7/λ) : Φ(γ(z)) = 0

}
| ≪ N7.
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We will prove Theorem 5.1 by relying on Lemma 5.2, Lemma 5.3, and Lemma 5.4 below.

Lemma 5.2. Let ε0 > 0 be given. Then for almost all λ we have

min
µ1 ̸=µ2∈Eλ

∥µ1 − µ2∥ ≫ λ

log3/2+ε0 λ
. (5.1)

We also refer the reader to [6, Lemma 5]) for related estimates.

Proof of Lemma 5.2. Let R be a parameter and M = R(logR)−3/2−ε0 . Then⏐⏐{(x, y) ∈ Z2 × Z2 : ∥x∥ = ∥y∥ ≤ R, 0 < ∥x− y∥ < M
}⏐⏐

=
∑

v∈Z2\{0},∥v∥<M

|
{
x ∈ Z2 : ∥x∥ = ∥x+ v∥ ≤ R

}
|

=
∑

v∈Z2\{0},∥v∥<M

⏐⏐{∥x∥ ≤ R : 2⟨x, v⟩+ ∥v∥2 = 0
}⏐⏐

≤
∑

v∈Z2\{0},∥v∥<M

|{∥y∥ ≤ 3R : y1v1 + y2v2 = 0}| , (5.2)

where x = (x1, x2), v = (v1, v2) and y = (y1, y2) = 2x+ v.

Now if v2 = 0 then y1 = 0. The contribution to the sum (5.2) is O(MR). Similarly for
v1 = 0. For the other case that v1, v2 ̸= 0, let d = gcd(v1, v2). Then (v1, v2) = d(v′1, v

′
2) with

gcd(v′1, v
′
2) = 1. The equation y1v

′
1+y2v

′
2 = 0 has O (R/∥v′∥) solutions in y with ∥y∥ < 3R.

So by the Abel’s summation formula, with r2(n) being the number of ways to represent n
as a sum of two squares a2 + b2, a, b ∈ Z, we have∑

v∈Z2\{0},∥v∥<M

| {∥y∥ ≤ 3R : y1v1 + y2v2 = 0} |

≪MR+
∑
d<R

∑
v′∈Z2\{0},∥v′∥<M/d

R/∥v′∥ =MR+R
∑
d<R

M2/d2∑
n=1

r2(n)√
n

=MR+R
∑
d<R

⎡⎣∑M2/d2

n=1 r2(n)

M/d
+

M2/d2−1∑
N=1

(
N∑

n=1

r2(n))

(
1√
N

− 1√
N + 1

)⎤⎦ .
By Gauss’ formula

∑x
n=0 r2(n) = (π + o(1))x we have∑

v∈Z2\{0},∥v∥<M

| {∥y∥ ≤ 3R : y1v1 + y2v2 = 0} | ≪ R
∑
d<R

M

d
≪MR logR. (5.3)

Combining Equations (5.2) and (5.3) we obtain⏐⏐{(x, y) ∈ Z2 × Z2 : ∥x∥ = ∥y∥ ≤ R, 0 < ∥x− y∥ < M
}⏐⏐≪MR logR.

On the other hand,⏐⏐{(x, y) ∈ Z2 × Z2 : ∥x∥ = ∥y∥ ≤ R, 0 < ∥x− y∥ < M
}⏐⏐ ≥ ′∑

E<R2

1min{∥x−y∥,∥x∥2=∥y∥2=E,x ̸=y}<M ,
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where
∑′ is the sum over E of sum of two squares, and also note that by a classical result

of Landau [28]⏐⏐{E ∈ Z, E < R2, E = sum of two squares
}⏐⏐ = Θ(R2/

√
logR).

Thus for almost all E ≤ R2 that are sum of two squares, with M = R(logR)−3/2−ε0 ,

min
{
∥x− y∥, ∥x∥2 = ∥y∥2 = E, x ̸= y

}
≥M ≫ R(logR)−3/2−ε0 ≫

√
E(logE)−3/2−ε0 .

□

Now we consider Φ as in Theorem 5.1. Recall that by Condition 1.7(i), the curve γ has an
analytic continuation to [0, 1] + B(0, ε) ⊂ for a sufficiently small ε. Arguing as in Sections
3.2 and 3.3, we get the following.

Lemma 5.3. Let I be any interval with length δ = |I| < ε/2. Then

|{z ∈ I +B(0, δ) : Φ(γ(z)) = 0}| ≤ Cλδ + logN − logmax
t∈I

|Φ(γ(t))| .

Proof of Lemma 5.3. For z ∈ I +B(0, 2δ),∃t ∈ R such that |z − t| < 2δ,

|γ(z)− γ(t)| ≤ cδ.

Hence for µ ∈ Eλ, ⏐⏐⏐ei⟨µ,γ(z)⟩⏐⏐⏐ = ⏐⏐⏐ei⟨µ,γ(z)−γ(t)⟩
⏐⏐⏐ ≤ ecλδ.

Therefore

|Φ(γ(z))| ≤

⎛⎝∑
µ∈Eλ

|aµ|

⎞⎠ ecλδ <
√
Necλδ.

The Jensen’s inequality (3.6) then implies

|{z ∈ I +B(0, δ),Φ(γ(z)) = 0}| ≤ log
(√

Necλδ
)
− logmax

t∈I
|Φ(γ(t))|

≤ cλδ + logN − logmax
t∈I

|Φ(γ(t))| .

□

To make use of Lemma 5.3 we want to bound the quantity maxt∈I |Φ(γ(t))|.

Lemma 5.4. We have
1

|I|

∫
I
|Φ(γ(t))|2dt ≥ 1/2,

provided that λ satisfies (5.1) of Lemma 5.2 and

|I| > λ−1/2(log λ)3/4+εN.
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Proof of Lemma 5.4. We write∫
I
|Φ(γ(t))|2 dt =

∫
I

⏐⏐⏐⏐⏐∑
µ

aµe
2πi⟨µ,γ(t)⟩

⏐⏐⏐⏐⏐
2

dt = |I|+
∑
µ ̸=µ′

aµāµ′

∫
I
e2πi⟨µ−µ′,γ(t)⟩

≥ |I| −
∑
µ ̸=µ′

|aµ||aµ′ |
⏐⏐⏐⏐∫

I
e2πi⟨µ−µ′,γ(t)⟩

⏐⏐⏐⏐ .
By van der Corput’s lemma on oscillatory integral (see for instance [37], and also [8] for
related settings), ⏐⏐⏐⏐∫

I
e2πi⟨µ−µ′,γ(t)⟩dt

⏐⏐⏐⏐ ≤ 1

∥µ− µ′∥1/2
.

Hence ∫
I
|Φ(γ(t))|2 dt ≥ |I| − log3/4+ε λ

λ1/2
N ≫ |I|/2.

□

Last but not least, we will need another elementary observation that will be useful for the
proof of Theorem 5.1. Recall the set of directions from Lemma 2.4,

D =

{
µ1 − µ2
∥µ1 − µ2∥

, µ1 ̸= µ2, µ1, µ2 ∈ Eλ
}
.

We partition [0, 1] as follows: for every unit direction φ, let Sφ be the interval of t where
the angle between γ′(t) and φ is smaller than κ

Sφ :=
{
t ∈ [0, 1],∠(γ′(t), φ) < κ

}
.

Lemma 5.5. Assume that the arc-length parametrized curve γ(t) has curvature bounded
from below by some c > 0 for all t. Then for each φ, Sφ is an interval and has size O(κ),
where the implied constant depends on c.

Proof of Lemma 5.5. Let a(t) be the angle between γ′(t) and φ. Then the curvature of γ
at t is |a′(t)| by definition. By continuity, the assumption that γ has curvature bounded
from below by c implies that either a′(t) ≥ c for all t or a′(t) ≤ −c for all t. In either case,
the claim follows. □

Let J = [0, 1] \∪φ∈DSφ. We note that J depends on Eλ and γ but not on Φ. We now prove
the main result of this section.

Proof of Theorem 5.1. We first bound |NΦ ∩ ∪γ(Sφ)|. As κ > λ−1/2(log λ)3/4+εN , the
condition of Lemma 5.4 holds. Thus

max
t∈Sφ

|Φ(γ(t))| ≥ 1

|Sφ|

∫
Sφ

|Φ(γ(t))|2dt ≥ 1/2.

Lemma 5.3 implies that

|NΦ ∩ γ(Sφ)| ≪ κλ+ logN − c≪ κλ.

Hence
|NΦ ∩ ∪φγ(Sφ)| ≪ N2κλ≪ λN−1
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proving (1) of Theorem 5.1.

Now for (2) of Theorem 5.1, let a ∈ J , and let δ = N7/λ, M = N7. Denote also Ĩ =
[a − δ, a + δ]. Our analysis again starts with Lemma 5.3, which in turn implies that for
δ =M/λ ≤ λ−1+ε

|{z ∈ B(a, δ) : Φ(γ(z)) = 0}| ≤
⏐⏐⏐{z ∈ Ĩ +B(0, δ) : Φ(γ(z)) = 0

}⏐⏐⏐
≤ cM + logN − logmax

t∈Ĩ
|Φ(γ(t))|. (5.4)

In what follows we will bound maxt∈Ĩ |Φ(γ(t))| from below. We are going to do this by an
averaging argument.

First, with δ =M/λ ≤ λ−1+ε and t = a+ τ , by Taylor’s expansion

⟨µ− µ′, γ(t)⟩ = ⟨µ− µ′, γ(a)⟩+ ⟨µ− µ′, γ′(a)τ⟩+O
(
∥µ− µ′∥δ2

)
. (5.5)

Since a ∈ J,∠(γ′(a), φ) ≥ κ for all φ ∈ D. So for any µ ̸= µ′,⏐⏐⟨µ− µ′, γ′(a)⟩
⏐⏐ ≥ κ∥µ− µ′∥ ≫ δ∥µ− µ′∥. (5.6)

We thus have

1

|Ĩ|

⏐⏐⏐⏐∫
Ĩ
ei⟨(µ−µ′),γ′(a)τ⟩dτ

⏐⏐⏐⏐≪ 1

δ|⟨(µ− µ′), γ′(a)⟩|
≪ 1

δκ∥µ− µ′∥
=

λ

Mκ∥µ− µ′∥
.

On the other hand, Lemma 5.2 says that ∥µ− µ′∥ ≫ λ
log3/2+ε λ

. Therefore, with sufficiently

large λ, and by (5.5) and (5.6)

1

|Ĩ|

⏐⏐⏐⏐∫
Ĩ
ei⟨(µ−µ′),γ(t)⟩dt

⏐⏐⏐⏐ ≤ 1

|Ĩ|

⏐⏐⏐⏐∫
Ĩ
ei⟨(µ−µ′),γ′(a)τ⟩dτ

⏐⏐⏐⏐+O
(
∥µ− µ′∥δ2

)
≤ N3 log3/2+ε λ

M
.

This leads to the bound

1

|Ĩ|

⏐⏐⏐⏐∫
Ĩ
|Φ(γ(t))dt

⏐⏐⏐⏐2 ≥ 1−
∑
µ̸=µ′

|aµ||a′µ|
1

|Ĩ|

⏐⏐⏐⏐∫
Ĩ
ei⟨(µ−µ′),γ(t)⟩dt

⏐⏐⏐⏐ ≥ 1/2.

So

max
t∈Ĩ

|Φ(γ(t))| > 1/
√
2.

Plugging this bound back to Equation (5.4), we then obtain (2) of Theorem 5.1. □

6. Proof of Lemma 1.11

As Lemma 1.11 is on the angles αµ of the vectors (µ1, µ2) =
√
me2πiαµ in Eλ, it suffices to

restrict to the set G(x) of m of prime factors congruent with 1 modulo 4 (see [19]). Indeed,
let D2 denote the product of prime factors that are congruent with 3 modulo 4 of m, then
in any representation of m as a2 + b2, we have D|a and D|b, so that D does not affect the
angles. Moreover, none of these angles is influenced by the power of 2 dividing m because
if this power is even, the angles are unchanged and if it is odd there is a rotation by π/4.
We define the discrepancy of the angles αµ of the vectors (µ1, µ2) in Eλ as follows

∆m = max {|# {αµ ∈ [α1, α2] mod 1, µ ∈ Eλ} − (α1 − α2)r2(m)| , 0 ≤ α1 ≤ α2 ≤ 1} .
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Denote also

R0(x) = (A+ o(1))
x√
log x

and A =
1

2
√
2

∏
p

(
1− 1

p2

)1/2

.

Note that R0(x) is the number of m ≤ x whose prime divisors are congruent with 1 mod 4
(see again [19]). Lemma 1.11 will easily follows from the following result by Erdős and Hall
or Kátai and Környei.

Theorem 6.1. [19, 25] Let ε > 0 be fixed. Then for all but o (R0(x)) integers m ∈ G(x)
we have

∆m <
r2(m)

(log x)
1
2
log π

2
−ε
. (6.1)

Proof of Lemma 1.11. Assume otherwise that for some r ∈ R2 with |r| = 1
2πλ , the set

{⟨µ, r⟩, µ ∈ Eλ} can be covered by k = O (N ε0) intervals I1, . . . , Ik of length β = N−1 each
in [0, 1]. Consider the disjoint intervals Jj = (j/3k, (j + 1)/3k), 0 ≤ j ≤ 3k− 1. Let ε0 < 1.
As each interval Ii, 1 ≤ i ≤ k, intersects with at most two intervals Ji1 , Ji2 , there is one
interval Jj0 which has no intersection with all I1, . . . , Ik. Thus there is no µ ∈ Eλ such that

⟨µ, r⟩ ∈ Jj0 . (6.2)

On the other hand, with ε = .001, Theorem 6.1 applied to a translation [α1, α2] of Jj0
implies that the number of µ ∈ Eλ with ⟨µ, r⟩ ∈ Jj0 is at least

N |Jj0 | −
r2(m)

(log x)
1
2
log π

2
−ε

=
N

3k
− N

(log x)
1
2
log π

2
−ε
.

Moreover, since
∑

m≤x r2(m) = (π+o(1))x, for almost all m ∈ G(x) we have N = r2(m) ≪
logO(1)(x). Hence automatically in this case k = N ε0 = o

(
(log x)

1
2
log π

2
−ε
)
, and so the

above sum is strictly positive. In other words, Jj0 would contain at least one point of the
set {⟨µ, r⟩, µ ∈ Eλ}, a contradiction with (6.2).

□

7. Proof of Proposition 2.5

Proof of Proposition 2.5. Under the assumptions of Theorem 1.13, we deduce Proposition
2.5 from Theorem 2.2 and Lemma 2.3. The deduction of Proposition 2.5 from Theorem 2.2
and Lemma 2.4 under the setting of Theorem 1.10 is completely analogous.

By Lemma 2.3, Theorem 2.2 holds for the random function H. Let lj = |Ij | = O(1). Let c
be the constant in Theorem 2.2, and let α be a sufficiently small constant depending on c
and k. Let Gj be a smooth function that approximates the indicator function 1[−lj/2,lj/2];

in particular, let Gj be supported on [−lj/2−N−α, lj/2 +N−α] such that 0 ≤ Gj ≤ 1,
Gj = 1 on [−lj/2, lj/2].

∥▽aGj∥ ≤ CNCα, ∀0 ≤ a ≤ 2k. (7.1)
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Let xj be the middle point of Ij . We will approximate Zj by

Tj :=
∑

Gj(ζ − xj)

where the sum runs over all roots ζ of H.

By Theorem 2.2, we have

Eεµ

k∏
j=1

Tj − Eg

k∏
j=1

Tj = O
(
N−c+Cα

)
(7.2)

where the term Cα in the exponent comes from the fact that we have to rescale the functions
Gj before applying Theorem 2.2 due to (7.1) (note that the constant C may change from
line to line). By choosing α to be sufficiently small, we get from (7.2) that

Eεµ

k∏
j=1

Tj − Eg

k∏
j=1

Tj = O
(
N−α

)
. (7.3)

We will show that for each j and for arbitrarily small constant α′,

EεµT k
j = O

(
Nα′

)
(7.4)

and

Eεµ |Tj −Zj |k = O
(
N−α

)
. (7.5)

Assuming (7.4) and (7.5), with α′ = α/2k, by Hölder’s inequality and the triangle inequality,
we have

Eεµ

k∏
j=1

Zj − Eεµ

k∏
j=1

Tj = O
(
N−α/k+α′

)
= O

(
N−α/2k

)
.

Combining this with the same bound for the Gaussian case and with (7.3), we obtain

Eεµ

k∏
j=1

Zj − Eg

k∏
j=1

Zj = O
(
N−α/2k

)
,

completing the proof of Proposition 2.5. □

It remains to prove (7.4) and (7.5). The strategy is first to reduce to the Gaussian case
using Theorem 2.2 and then work with the Gaussian case.

Proof of (7.4). By Theorem 2.2, we have

EεµT k
j − EgT k

j = O
(
N−α′

)
.

Therefore, it suffices for the rest of this proof of (7.4) to assume that the random variables
ε1,µ, ε2,µ are Gaussian and show that

EgT k
j = O

(
Nα′

)
. (7.6)
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Note that Tj is bounded by Xj defined to be the number of roots of H in the interval
[xj − l, xj + l] for l = lj/2 +N−α = O(1). By Jensen’s inequality (3.6), we have

Xj = O(1) log
K

|H(xj)|

where K = maxz∈B(xj ,2l) |H(z)|. Thus,

EgX
k
j = O(1)Eg| logK|k +O(1)Eg| log |H(xj)||k. (7.7)

Since H(xj) is standard Gaussian,

Eg| log |H(xj)||k ≤
√
2√
π

∫ 1

0
| log x|kdx+

√
2√
π

∫ ∞

1
| log x|ke−x2/2dx = O(1) (7.8)

where the implicit constant depends on k. The first integral is bounded by integration by

parts and second integral is bounded by O
(∫∞

1 e−x2/3dx
)
= O(1).

Furthermore, as |H(xj)| ≤ K = O
(

1√
N

∑
µ |ε1,µ|+ |ε2,µ|

)
, we have

Eg| log |K||k = O
(
logkN

)
. (7.9)

Combining the bounds (7.8) and (7.9) with (7.7), we obtain (7.6), and thus (7.4). □

Proof of (7.5). Note that |Tj −Zj | is less than the number of roots of H in a union of two
intervals of length N−α. Approximating the indicator function of each of these intervals by a
smooth test function supported on an interval of length 10N−α and applying Theorem 2.2 to
this test function, it suffices to show that for any interval J = [a, b] of length b−a = O (N−α),
the number of roots of H in J , which is denoted by Y satisfies

EgY
k = O

(
N−α

)
. (7.10)

Assume that it holds for k = 1. That is EgY = O (N−α). We have

EgY
k ≤ EgY

k1Y≥2 + EgY. (7.11)

To control the event Y ≥ 2, we use the following lemma which is a direct application of [32,
Lemma 8.6] to our setting. We refer the interested reader to a sketch of the proof of [32,
Lemma 8.6] in Section 9.

Lemma 7.1. Under the assumptions of Theorem 1.13, for every x ∈ B1 and any suffi-
ciently small constant α, the probability that H has at least 2 roots in B(x,N−α) is at most

O
(
N−3α/2

)
.

By Lemma 7.1,

Pg(Y ≥ 2) = O
(
N−3α/2

)
. (7.12)

By Lemma 2.3, Conditions 2.1(2) and 2.1(3) hold which together with the Jensen’s inequal-
ity (3.6) give

P
(
Y ≥ Nα/2k

)
= O

(
N−A

)
(7.13)
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for any constant A. We thus break up the first term on the right of (7.11) into

EgY
k1Y≥2 = Eg

(
Y k12≤Y≤Nα/2k

)
+Eg

(
Y k1Nα/2k<Y≤N

)
+Eg

(
Y k1Y >N

)
=: E1+E2+E3.

(7.14)
To bound E1, we use (7.12)

E1 ≤
(
Nα/2k

)k
Pg (Y ≥ 2) = O

(
N−α

)
. (7.15)

Similarly, by (7.13) with A := k + α,

E2 ≤ NkPg

(
Y ≥ Nα/2k

)
= O

(
N−α

)
. (7.16)

For E3, by Lemma 2.3, Condition 2.1(1) holds for C1 = 1. We use this, (7.13) with
A = α(k + 2)/2 and Hölder’s inequality to get

E3 ≤
(
Eg

(
Y k+21Y >N

))k/(k+2)
P (Y > N)2/(k+2) = O

(
N−2A/(k+2)

)
= O

(
N−α

)
. (7.17)

Combining (7.15), (7.16) and (7.17), we obtain

EgY
k1Y≥2 = O

(
N−α

)
. (7.18)

For the second term on the right of (7.11), by the Kac-Rice type formula (see Kac [24] or
Edelman-Kostlan [18, Theorem 3.1]), one has for every x ∈ B1,

EgY ≤
∫ b

a

√
S(t)
P(t)2

dt,

where P(t) = Varg(H(t)) = 1, Q(t) = Varg(H
′(t)) = 1

N

∑
µ

⟨
µ, 1λγ

′(t)
⟩2

= O (1), R(t) =

Covg(H(t), H ′(t)) = 0, and S = PQ−R2 = PQ. And so, for every t,

S(t)
P(t)2

=
Q(t)

P(t)
= O (1)

which leads to

EgY = O(1)

∫ b

a
1dt = O

(
N−α

)
. (7.19)

From (7.11), (7.18), and (7.19), we obtain (7.10), completing the proof of (7.5). □

8. Proof of Theorems 1.10 and 1.13

In this section, we deduce Theorems 1.10 and 1.13 from Proposition 2.5.

Proof of Theorem 1.10. We partition the set B2 into M = O(λ) intervals I1, . . . , IM each of
length O(1). Applying Proposition 2.5 to every k-tuple of these intervals, we get

EεµZk
B2

= EgZk
B2

+O
(
λk/N c

)
(8.1)

where ZB2 is the number of zeros of H in B2.
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Let Z be the number of zeros of H in [0, λ] and Z ′ = Z −ZB2 be the number of zeros of H
in [0, λ] \ B2. By (7.4), the number of roots Zj of H in each interval Ij satisfies

EεµZh
j = O (Nα)

for any small constant α and any h ≤ k.

Thus, EεµZh
B2

= O
(
λhNα

)
. By Theorem 5.1, Z ′ = O

(
λN−1

)
a.e. Hence, by choosing

α < 1− c

EεµZk − EεµZk
B2

= O
(
λkN−1+α

)
= O

(
λkN−c

)
.

This together with (8.1) complete the proof of Theorem 1.10. □

Proof of Theorem 1.13. We partition the interval [0, λ] into λ intervals I1, . . . , Iλ of length
1 and apply Proposition 2.5 to every k-tuple of these intervals. □

9. Sketch of the proof of Theorem 2.2

To make the note self-contained, we present here the main ideas of the proof; the reader is
invited to consult [32] for a complete treatment. We first show universality of the complex
roots and then deduce Theorem 2.2 from it.

Theorem 9.1 (Local universality for complex roots). Under the assumption of Theorem
2.2, there exists a constant c such that the following holds. For any numbers z1, . . . , zk in

B and for every smooth function G : Ck → C supported on
∏k

j=1B(zj , c) with |▽aG(z)| ≤ 1

for all 0 ≤ a ≤ 2k + 4 and z ∈k, we have

Eξµ

∑
i1,...,ik

G (ζi1 , . . . , ζik)− Eξ̃µ

∑
i1,...,ik

G
(
ζ̃i1 , . . . , ζ̃ik

)
= O

(
N−c

)
, (9.1)

where the ζi are the roots of H, the ζ̃i are the roots of H̃, the sums run over all possible
assignments of i1, . . . , ik which are not necessarily distinct.

Sketch of proof of Theorem 9.1. For simplicity, we assume k = 1.

Let X =
∑
G (ζi) and X̃ =

∑
G
(
ζ̃i

)
. We need to show that

EξµX − Eξ̃µ
X̃ = O

(
N−c

)
.

By the Green’s formula,

X =
∑
i

G(ζi) = − 1

2π

∫
B(z1,c)

log |H(z)|△G(z)dz.

Let K : R → R be a smooth function supported on the interval [−2N c1 , 2N c1 ] that ap-
proximates the identity function. By Conditions 2.1 (1)-(3), we can approximate EξµX by
EξµX

′ where

X ′ = − 1

2π

∫
B(z1,c)

K (log |H(z)|)△G(z)dz.



RANDOM EIGENFUNCTIONS ON FLAT TORI 29

Let X̃ ′ be the corresponding identity for H̃. To show that EξµX
′ − Eξ̃µ

X̃ ′ = O (N−c), it

suffices to show that for each z ∈ B(z1, c),

EξµK (log |H(z)|)△G(z)− Eξ̃µ
K
(
log |H̃(z)|

)
△G(z) = O

(
N−c

)
.

This can be done by the Lindeberg swapping argument. In particular, by smoothing the
log function, we can further reduce the task to showing that for any z ∈ B(z1, c), and for
any smooth function L : C → C having bounded derivatives up to order 3,

EξµL (H(z))− Eξ̃µ
L
(
H̃(z)

)
= O

(
N−c

)
.

The swapping method uses the triangle inequality to bound the above difference by a sum
of 2N differences each of which involves changing only one random variable to Gaussian.
For example, one of these differences is EL (H0(z)) − EL (H1(z)) where H0(z) = H(z) =∑

µ ξµfµ(z) and H1(z) = ξ̃µ1fµ1(z) +
∑

µ ̸=µ1
ξµfµ(z). We then Taylor expand the function

L (H0(z)) (and L (H1(z))) as a function of one variable ξµ (and ξ̃µ respectively). Making

use of the assumption that the first and second moments of ξµ and ξ̃µ are the same, one
can see that upon taking expectation, the first three terms in the Taylor expansions cancel
out, leaving us with a small error term. Adding up these errors terms, one obtains N−c as
desired. The reader may notice that this is quite similar to a classical proof of the Central
Limit Theorem using the swapping argument. □

Sketch of proof of Theorem 2.2. For simplicity, we again assume that k = 1.

The idea is to reduce it to Theorem 9.1. This is done by showing that in a ball B(x,N−α)
where x ∈ B, the number of non-real roots of H is negligible with high probability. Since the
non-real roots appear in conjugate pairs, if H has at least one non-real root in B(x,N−α),
it indeed has at least 2. Thus, it reduces to proving the following version of Lemma 7.1 for
the general setting of Theorem 2.2.

Lemma 9.2. Under the assumptions of Theorem 2.2, for every x ∈ B and any suffi-
ciently small constant α, the probability that H has at least 2 roots in B(x,N−α) is at most

O
(
N−3α/2

)
.

This key lemma together with some standard approximation arguments will finish the proof
of Theorem 2.2. □

Sketch of proof of Lemma 9.2. Using Theorem 9.1, this lemma is reduced to the Gaussian

case. Let γ = N−α. Let g(z) = H̃(x) + H̃ ′(x)(z − x) and p(z) = H̃(z)− g(z). By Rouché’s
theorem,

Pξ̃µ

(
H̃ has at least 2 roots in B(x, 2γ)

)
≤ Pξ̃µ

(
min

z∈∂B(x,2γ)
|g(z)| ≤ max

z∈∂B(x,2γ)
|p(z)|

)
.

Both g(z) and p(z) have zero mean. The second part of Condition 2.1(5) shows that for all
z ∈ B(x, 2γ),

Var(p(z)) = O
(
N−(4+ε)αVar(H̃(x))

)
.
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Thus with probability at least 1−O
(
N−3α/2

)
,

max
z∈∂B(x,2γ)

|p(z)| = O

(
N−2α

√
Var(H̃(x))

)
. (9.2)

Now, for g, note that since g is a linear function with real coefficients, one has

min
z∈∂B(x,2γ)

|g(z)| = min |g(x± 2γ)|.

The first part of Condition 2.1(5) shows that g(x±2γ) is normally distributed with variance

Var(g(x± 2γ)) ≥ 1/2Var(H̃(x)).

Therefore, with probability at least 1−O
(
N−3α/2

)
,

|g(x± 2γ)| ≥ N−3α/2
√

Var(H̃(x)).

Combining this with (9.2), we obtain Lemma 9.2. □
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[19] P. Erdős and R. Hall, On the angular distribution of Gaussian integers with fixed norm, Discrete Math.,
200 (1999), 87-94.
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