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Universality of the minimum modulus for
random trigonometric polynomials
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Abstract: It has been shown in [YZ] that the minimum modulus of random trigonometric
polynomials with Gaussian coefficients has a limiting exponential distribution. We show this
is a universal phenomenon. Our approach relates the joint distribution of small values of the
polynomial at a fixed number m of points on the circle to the distribution of a certain random
walk in a 4m-dimensional phase space. Under Diophantine approximation conditions on
the angles, we obtain strong small ball estimates and a local central limit theorem for the
distribution of the walk.
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1 Introduction

Consider the Kac polynomial

Fn(z) =
n

Â
j=0

x jz j (1.1)

for a sequence of iid random variables x j (real or complex). The study of the distribution of zeros of
Fn, and in particular on the number of real zeros, has a long history: the case that x j 2 {�1,0,1} was
considered by Bloch and Polya [BP31] and Littlewood and Offord [LO38, LO43] in the 1930s, and the
Gaussian case by Kac in the 1940s [Kac43, Kac49]. We refer to [TV15] for an overview of the vast
literature inspired by those early works.

To the best of our knowledge, the question of the size of the minimum modulus over the unit circle
for Kac polynomials was first raised by Littlewood [Lit66], who considered the case of Rademacher signs
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x j =±1.1 In particular, Littlewood asked whether min|z|=1 |Fn(z)|= o(1).2 This question was answered
in the affirmative by Kashin [Kas87]; a significant improvement was later obtained by Konyagin [Kon94],
who showed

P

⇣
min
|z|=1

|Fn(z)|� n�1/2+e
⌘
! 0 (1.2)

as n ! •, for any e > 0. Subsequently, Konyagin and Schlag [KS99] showed that for any e > 0,

limsup
n!•

P

⇣
min
|z|=1

|Fn(z)| en�1/2
⌘
Ce (1.3)

for a universal constant C < •. From the above two estimates, it is thus natural to ask whether n1/2m(Fn)
converges in law, and to identify the limiting distribution.

This question was recently addressed for the case of Gaussian coefficients by a beautiful result of
Yakir and Zeitouni [YZ], which we now recall. As we consider the restriction of Fn over the unit circle
we parametrize z = e(x), where here and throughout we abbreviate e(t) := exp(

p
�1t). The work [YZ]

considers the normalized trigonometric series

Pn(x) =
1p

2n+1

n

Â
j=�n

x je( jx), x 2 R, (1.4)

where x j are iid copies of a real or complex, centered random variable x of unit variance. Note that Pn
has been scaled to have unit variance at each fixed x. Up to a factor of unit modulus, which does not
affect our results, Pn is the restriction of the Kac polynomial (2n+1)�1/2F2n(z) to the unit circle (all of
our arguments extend to the case of odd degree). We denote

mn := min
x2[�p,p]

|Pn(x)|. (1.5)

With our normalization and from (1.2) and (1.3) we expect that mn is typically of order n�1. For the case
of Gaussian coefficients, in [YZ] the limiting distribution of n ·mn was shown to be exponential:

Theorem 1.1 ([YZ]). Assume that x is a standard real or complex Gaussian. Then for any t > 0,

lim
n!•

P

⇣
mn >

t
n

⌘
= e�lt (1.6)

where l = 2
p

p/3.

As shown in [YZ, Section 5], their argument in fact extends to allow some distributions with a small
Gaussian component – specifically, x of the form

x 0+dX (1.7)

1We also refer the readers to [BBM+20] for a recent striking result answering another question of Littlewood.
2Here and throughout the article asymptotic notation is with respect to the limit n ! •; see Section 1.3 for our notational

conventions.
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with d at least of order n�1 logn, where x 0 and X are independent, X ⇠NR(0,1), and x 0 is an arbitrary
random variable satisfying Cramér’s condition. While Cramér’s condition is weaker than assuming a
bounded density, it does not allow x 0 to be discrete.

In the present work we show that the limiting exponential law for mn is universal. Here and in the
sequel, PNR(0,1) denotes a probability measure under which the real variables x or x 0,x 00 are standard
Gaussian.

Theorem 1.2 (Main result). Assume x is a centered sub-Gaussian variable of unit variance, which is
either real-valued, or takes the form 1p

2
(x 0+

p
�1x 00) for iid real variables x 0,x 00. Then for any t > 0,

P

⇣
mn >

t
n

⌘
�PNR(0,1)

⇣
mn >

t
n

⌘
�! 0 (1.8)

as n ! •.

Remark 1.3. In the proof we treat the case (1.4) with real-valued x – the complex case is slightly simpler.
The necessary modifications, as well as an extension to another model of random trigonometric series,
are given in Section 10.

Remark 1.4. The sub-Gaussianity assumption is mainly for convenience, and one can check that for our
arguments it suffices to assume x has a finite moment of sufficiently large order.

As an immediate consequence we extend Theorem 1.1 to general sub-Gaussian coefficients:

Corollary 1.5. The limit (1.6) holds when x is any sub-Gaussian random variable of mean zero and unit
variance.

In particular, (1.6) holds for Rademacher polynomials, which were the focus of the aforementioned
works of Littlewood and others. In fact, the Rademacher case in some sense captures the main challenges
for our proof. We comment on some of these challenges below. See Figure 1 for a numerical illustration
of the universality phenomenon.

We mention that the distribution of the maximum value over a curve for various random analytic
functions has been studied extensively; see for instances the books [AT07, AW09] and the references
therein. Sharp asymptotics for the maximum of random trigonometric polynomials with Rademacher
coefficients were obtained by Salem and Zygmund [SZ54] and Halász [Hal73], and extended to more
general coefficient distributions by Kahane [Kah85]. In recent years there has been particular focus on
characteristic polynomials of random unitary matrices, with g the unit circle [ABB17, PZ17, CMN18,
CZ20], and the Riemann zeta function on a randomly shifted unit interval on the critical axis [ABB+19,
Naj18, Har, ABR]. Such questions are closely tied to a fine understanding of large deviations and
concentration of measure for values of the function at given points.

The minimum modulus has received comparatively less attention. As we explain below, its behavior
is governed by central limit theorems and anti-concentration for the distribution at given points. (Another
well-known instance of the dichotomy of concentration/anti-concentration for large/small values of
random fields is in the study of singular values of random matrices.)

We further note that proving universality for roots of classical random ensembles has become an
active direction of research in recent years, see for instance [BD04, DNV15, DNV18, IKM16, KZ14,
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Figure 1: Histogram of the minimum modulus over 104 points equally spaced points on the unit circle,
for 104 samples of a random degree 20 polynomial Pn(x) of (1.4) with Rademacher (left) and Gaussian
(right) coefficients.

NNV16, NV17, TV15] and the references therein. Our main result stands out from the above works in
two ways: that our focus is not on the statistics of roots, and our method is totally different. Corollary 1.5
can be seen as a polynomial analogue of the result [TV10a] by Tao an Vu where they showed that the
least singular value statistics of random iid matrices is universal, although there is no real connection
between the random matrix model and our random polynomials. It is remarked that the study of both
the minimum modulus of Kac polynomials and of the least singular values of random matrices have
important implications to the study of the condition number of matrices, see for instance [BG05] and
[TV10b].

Finally, we note that since the completion of this work, there has been progress on the related problem
of the distance of the nearest root of Kac polynomials to the unit circle. A beautiful result of Michelen and
Sahasrabudhe [MiSa] establishes the limiting distribution for the Gaussian case, resolving a conjecture
of Shepp and Vanderbei [ShVa]. In recent work with Yakir and Zeitouni [CNYZ] we apply some tools
developed in the present paper to show their result is universal.
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1.1 Some comments on the proof

We briefly sketch some highlights of the proof of Theorem 1.2. Consider the parametrized random
curve {Pn(x) : x 2 [�p,p]} as the trajectory of a particle in the complex plane. Following [KS99] we
approximate the time the particle is closest to the origin by a point in a discrete mesh X= {xa}N

a=1 ⇢
[�p,p]. Since the velocity P0

n(x) is typically of order n, in order to capture this moment we must take N
much larger than n. However, this means that each approach within distance O(1/n) of the origin will
carry several points Pn(x), x 2 X near the origin, so that a union bound over events that Pn(xa) = O(1/n)
is too wasteful to isolate the distribution of mn. Following [YZ], we isolate a single time xa 2 X for each
approach, so that |Pn(xa)| is approximately a local minimum, by considering both Pn(xa) and P0

n(xa) –
the precise criterion is given in Section 2.1. The result is a collection of events Aa , a 2 [N], that xa is an
approximate local minimizer, with each event determined by the positions and velocities of the particle
on the discrete set X. In this way we obtain a point process Mn on R+ of approximate local minima
n|Pn(xa)|, rescaled so that the global minimum is of order one.

For the Gaussian case, it was shown in [YZ] that Mn is approximately a Poisson point process of
intensity 2

p
p/3, from which the result clearly follows. In Section 2.2 we provide a sketch of their

key argument using an invariance principle of Liggett. For universality, our approach is to establish
universality for the joint distribution of

Sn = Sn(a1, . . . ,am) := (Pn(xai),P
0
n(xai))i2[m] 2 C2m

giving the positions and velocities of the particle at any fixed collection of times xa1 , . . . ,xam ; this allows
us to deduce universality for the global minimum by comparison of moments.

The event that the real and imaginary parts of the positions and velocities lie in given ranges, and
moreover that Aai holds for each i2 [m], is the event that the vector Sn lies in a certain compact domain Un
in 4m-(real-)dimensional phase space. While Un has piecewise smooth boundary, its regularity depends
strongly on n, so that estimating its measure under the law of Sn requires precise estimates of the measure
of boxes at polynomially-small scales.

Recalling that Pn is a trigonometric polynomial, we see that Sn is a random walk of the form
Ân

j=�n x jw j, with w j 2 R4m giving the real and imaginary parts of e( jx) and its derivative je( jx) at the
times xa1 , . . . ,xam . In particular, when the coefficients x j are Gaussian, Sn is a Gaussian vector, and so the
main problem is to obtain a quantitative central limit theorem for Sn when the coefficients are general
sub-Gaussian variables. This, as well as a small ball estimate, hinge on a strong decay estimate on the
characteristic function of Sn (Theorem 3.1), which is the main technical component of the proof. (In fact
our argument yields more than a CLT, giving a quantitative Edgeworth expansion for the distribution of
Sn, though for our purposes we only need that each term of the expansion is smooth.)

In our general setting and in particular when the coefficients have discrete distribution, the distribution
of the polynomial and its derivative at given points xa1 , . . . ,xam depends strongly on arithmetic properties
of the xai (compared to the complex Gaussian case of Theorem 1.1 where the distribution is stationary
under rotations.) In particular, the desired control on the characteristic function does not hold for all
choices of the xai – basically when two of the points are too close together or nearly antipodal, or when
e(xai) is close to a root of unity of order no(1) for some i 2 [m]. We handle such “bad” m-tuples with
relatively crude arguments (following [KS99]), and establish the decay estimate on the characteristic
function for “nice” tuples.
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The latter is the most technically challenging part of the proof. A similar estimate for the case m = 2
was obtained in [DNN], but the generalization to higher dimensions, together with the complexity of the
case when x is real-valued, pose significant challenges. For this, roughly speaking, we must show that it
is not possible to simultaneously dilate the steps w j of the walk by a factor K, for any K = nO(1), so that
their projections y j in some common direction all approximately lie in the integer lattice. We argue by
contradiction, showing that if there is such a projection and dilation, then the sequence y j can be locally
approximated by polynomial progressions of controlled degree. Here we crucially use the trigonometric
properties of the steps w j. Combining this information with some judicious differencing manipulations,
we can isolate an angle xi that is well-approximated by a rational of small denominator, contradicting the
smoothness assumption.

To summarize, some highlights of our note include:

1. A nearly sharp characterization, in terms of arithmetic properties, of the collection of arcs of the
circle over which the Kac polynomial is strongly approximated by a Gaussian Kac polynomial (in
the sense of joint distributions at any fixed number of points);

2. Sharp small ball estimates under microscopic scaling for random walks in Rm of the form
Â j x j(g( jt1

n ), . . . ,g( jtm
n )) for various smooth functions g : S1 ! C, such as e(x), or xsinx;

3. Local limit theorems for such high-dimensional random walks;

4. A sub-polynomial decay estimate on the associated characteristic function, which greatly improves
on estimates from [KS99].

All of these results seem to be new and of independent interest.

1.2 Organization

In Section 2 we will discuss the proof of [YZ] and reduce our task to establishing Proposition 2.7,
establishing universality for the joint distribution of low-lying near-local minima over a discrete subset
of the torus. Along the way we recall some lemmas from [YZ], and identify two important arithmetic
properties for collections of points in the torus that will be crucial for subsequent analysis. Section 3
reformulates Proposition 2.7 in terms of a vector-valued random walk, and proves it using a small-ball
estimate (Theorem 3.4) and local central limit theorem (Theorem 3.2), which are consequences of a
strong decay estimate for the characteristic function (Theorem 3.1). The deduction of the main result from
Proposition 2.7 is given in Sections 5 and 6. Theorem 3.4 and Theorem 3.2 are deduced from Theorem 3.1
in Sections 7 and 8, respectively, and Theorem 3.1 is proved in Section 9. Finally, in Section 10 we
describe how our result can be extended to other models of random trigonometric polynomials.

1.3 Notation

We write C,C0,C0,c etc. to denote positive absolute constants, which may change from line to line, while
C(t) etc. denotes a constant that depends only on the parameter (or set of parameters) t . We use the
standard asymptotic notation f = O(g), f ⌧ g and g � f to mean | f |Cg for some absolute constant
C > 0, and f = Ot(g), f ⌧t g and g �t f to mean | f |C(t)g. For positive sequences { fn},{gn} we
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say that gn = o( fn) and fn = w(gn) if lim fn/gn ! • with n. We allow implied constants to depend on
the sub-Gaussian constant of x without explicitly indicating this.

For a real number x, kxkR/Z denotes the distance from x to the nearest integer, and m = mLeb(·)
denotes the Lebesgue measure on Rd for any d. For a compact interval J ⇢R we write |J| := mLeb(J) for
its length. {t} = t �btc denotes the fractional part of t 2 R. We write en(q) for e(q/n). The singular
values of a matrix M are ordered s1(M)� s2(M)� · · · .

Sequences (x j) j are understood to be sequences of iid copies of the variable x from Theorem 1.2.
We write PNR(0,1) for a probability measure under which the coefficients x j in (1.4) are standard real
Gaussians, and write ENR(0,1) for the associated expectation. (This notation is only used for comparisons
of random variables in law – we do not consider couplings.)

1.4 Acknowledgements

We thank Pavel Bleher, Yen Do, Oanh Nguyen, Oren Yakir and Ofer Zeitouni for helpful discussions and
comments, and to Yakir and Zeitouni for showing us an early draft of their work [YZ] on the Gaussian
case. This project was initiated at the American Institute of Mathematics meeting “Zeros of random
polynomials” in August 2019, where Bleher and Zeitouni were also participants. In particular, the
idea used here and in [YZ] to study local linearizations emerged from those discussions. We thank the
workshop organizers and the Institute for providing a stimulating research environment.

2 Preliminary reductions

Our main objective in this section is to reduce our task to proving Proposition 2.7 below, which gives a
comparison principle for the joint distribution of low-lying values for a discretized process over the circle.
Along the way we recall elements of the proof from [YZ] that we will need. For completeness we also
include a brief description of their argument for the Gaussian case.

2.1 Passage to local linearizations

We begin by recalling the approach from [YZ] for selecting near-local-minimizers of |Pn(x)| on a discrete
set; we refer to Section 1.1 for the high-level motivation of this approach. The criterion for xa to be such
a representative point is in terms of the local linearization Fa of Pn at xa – the intuition is that for the
mesh point xa that is closest to a local minimizer of |Pn(x)|, it will also be close to the minimizer of
|Fa(x)|. A key take-away from this approximation is that all information on near-minimizers of |Pn(x)| is
encoded in the values of Pn and its derivative at the mesh points.

We collect some notation and lemmas from [YZ], with some minor modifications. Let K0 > 4 be a
sufficiently large constant and set

N :=
�

n2

logK0 n

⌫
. (2.1)

We divide [�p,p] into N intervals: letting

xa =
2pa

N
, a = 1, . . . ,N,
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we decompose

[�p,p] =
N[

a=1
Ia , where Ia =

h
xa � p

N
,xa +

p
N

i
.

Note that for the case of real coefficients it suffices to consider xa 2 [0,p].
Define

Ya :=�Re(Pn(xa)P0
n(xa))

|P0
n(xa)|2

, Za := n
Im(Pn(xa)P0

n(xa))

|P0
n(xa)|

. (2.2)

We denote the local linearizations of Pn given by

Fa(x) := Pn(xa)+(x� xa)P0
n(xa). (2.3)

As shown in [YZ, Section 1.3], |Fa(x)| is minimized at x = xa +Ya , where it takes the value |Za |/n; thus

|Fa(xa +Ya)|= |Za |/n = min
x2R

|Fa(x)|. (2.4)

(The sign is kept on Za only for convenience – we mention that the sign encodes whether the origin is to
the left or right of the curve {Pn(x) : x 2 [�p,p]} as x increases through xa , but this fact will not be used.)

We denote the 2pn-periodic trigonometric polynomial

ePn(s) = Pn(s/n), s 2 R. (2.5)

This scaling will often be convenient since all of its derivatives are typically of order 1.
We consider the collection {Za}a2[N] as a point process on R. The scaling by n means we focus on

(signed) low-lying values of |Pn|. Now we give the criterion by which “representative” near-minimizers
are selected. Let Aa :=A0

a \A00
a where

A0
a := {|Ya | p/N, |Za | logn}

and

A00
a : = {|Pn(xa)| n�1/2, |P0

n(xa)| 2 [n log�K0/2 n,C0n
p

logn]} ,

and define the point process

Mn =
N

Â
a=1

dXa , Xa := Za Aa +• Ac
a . (2.6)

The event A0
a is the condition on the local linearization that was described above, while A00

a enforces
some regularity of Pn on Ia .

The following control on the second derivative will be used to show that the local linearizations Fa
are good approximations to Pn at the scale of the intervals Ia .
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Lemma 2.1 (Derivative bounds). For K > 1 and integer k � 0 let Gk(K) be the event that

sup
s2R

|eP(k)
n (s)|= 1

nk sup
x2[�p,p]

|P(k)
n (x)| logK n.

There exists c = c(k)> 0 depending only on k and the sub-Gaussian moment of x such that

P(Gk(K)c) exp(�c log2K n).

Proof. Fix K and k. It suffices to show the claimed bound for R := ReeP(k)
n . By Bernstein’s inequality,

sup
t2[�np,np]

|R0(t)|⌧ sup
t2[�np,np]

|R(t)| ,

so if we assume that supt |R(t)| is attained at t0, then for all |t � t0| c0 for a sufficiently small constant
c > 0, we have

|R(t)|� |R(t0)|� |t � t0| sup
t2[�np,np]

|R0(t)|> |R(t0)|/2.

It follows that if we divide [�np,np] into O(n) intervals Ji of sufficiently small length and with midpoints
ti, then we have supi |R(ti)|> 1

2 supt2[�np,np] |R(t)|. Hence

P( sup
t2[�np,np]

|R(t)|� (logn)K) Â
i

P(|R(ti)|� (logn)K/2)

⌧ nexp(�c0(logn)2K) exp(�c(logn)2K) ,

where we used a sub-Gaussian tail estimate for the upper bound for each ti.

The next proposition shows that near-minimizers are typically well separated. The proof is a
straightforward modification of the proof of [YZ, Lemma 2.11] and is deferred to Appendix A. There is
the minor issue that a local minimizer for Pn may cause a low value for two neighboring linearizations
simultaneously, as accounted for in part (i). This will (unfortunately) present some issues of a purely
technical nature in the proof of Proposition 2.5 below.

Lemma 2.2. On the event G2(K0/2) we have

(i) If Aa and Aa+1 hold, then

Ya 2 [
p
N
� p

N logK0/4 n
,

p
N
].

(ii) Furthermore, Aa and Aa 0 cannot hold simultaneously as long as

2  |a 0 �a| n
log3K0 n

.
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2.2 The Yakir–Zeitouni invariance argument

Now we discuss briefly the key remaining ideas of [YZ] for the Gaussian case (or the case with small
Gaussian component as in (1.7)), which employs a strategy used by Biskup and Louidor in their work on
extreme values of the planar discrete Gaussian free field [BL16] . The approach combines the following
ingredients:

1. A Gaussian computation showing that for any interval [a,b]⇢ R we have limn!• E(Mn([a,b])) =q
p
3 (b�a).

2. A consequence of a general result of Liggett [Lig78]:3 that if the law of a point process is invariant
under adding an independent Gaussian perturbation to each point, then it is a Poisson point process
of constant intensity.

3. A consequence of the Gaussianity of the field {Pn(x)}x2[�p,p]: that if Qn is an independent copy of

Pn, then bPn(x) =
q

1� 1
n2 Pn(x)+ 1

n Qn(x) is identically distributed to Pn(x).

4. The fact that near-minimizers of |Pn| are well separated (from a strengthening of Lemma 2.2).

Roughly speaking, from (3) one can view bPn as a perturbation of Pn by an independent Gaussian field 1
n Qn

of typical size 1/n, which is the scale of the minimum modulus. Thus, the point process bMn is obtained
from Mn by (a slight rescaling and) a perturbation of each point by a standard Gaussian. Now from (4),
the low values of |Pn(x)| occur at points x that are sufficiently separated that (as one can show) the values
of Qn(x) at these near-minimizers are nearly uncorrelated. Hence, the point process bMn is approximately
a point process obtained from Mn by perturbing each Xa by an independent Gaussian. From (2) we get
that bMn, and hence, Mn, is a Poisson point process of constant intensity, and from (1) it follows that the
intensity is

p
p/3. (To apply (2) one cannot actually argue at finite n as just described, but instead one

needs to pass to subsequential limiting point processes, obtained from the tightness implied by (1); in the
end one finds a limiting Poisson point process of the same intensity regardless of the subsequence.)

Morally speaking, the exponential law is then a straightforward consequence of the minimum being
approximately the smallest (absolute) value of a Poisson point process on R. The formal argument
requires some considerable work to justify all of the approximations, and the above sketch glides over
many important points; we invite the reader to see [YZ] for further details.

2.3 Towards universality: matching moments over smooth points

It should be evident that the beautiful argument of [YZ] just described relies heavily and in several different
ways on properties of the Gaussian distribution. Towards establishing Theorem 1.2, our approach is to
establish universality for the joint distribution of Xa at any fixed number of indices a 2 [N] (in particular
this yields universality for the joint intensity functions of the point process Mn). From this one can
deduce universality of moments E(Mn([�t,t])m) of all order, leading to universality for the distribution
function P(mn  t/n).

3For the interested reader, we note that a new proof of Liggett’s general result in a special case sufficient for this application
was recently obtained in [CGS].
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For general x , the main difficulty for studying the joint distribution of Pn(xi) and its derivative
at m different points xi, or even at a single point x, is that the distribution is highly dependent on
arithmetic properties of the points. Consider the case of Rademacher coefficients. At x = 0 we have
Pn(0)= 1p

2n+1 Ân
j=�n x j – while from the Central Limit Theorem this approaches the NR(0,1) distribution,

it does so at the slowest possible rate, and the distribution is only smooth (i.e. comparable to Lebesgue
measure on balls of radius d ) at scales d much larger than 1/

p
n. At x = p/2 we have that Pn(p/2) splits

into independent real and imaginary sums, each tending to the NR(0,1/2) distribution at the slowest
possible rate. The situation is slightly improved at x = p/4, for which one can obtain a meaningful small
ball estimate at scale d ⇠ 1/n with some effort. As we shrink the scale d at which we desire Pn(x) to have
an effectively smooth distribution, the collection of “structured” angles that we must avoid increases.

Thus we see that Diophantine approximation will play a crucial role in our arguments. Indeed, such
considerations played a strong role in the argument of Konyagin and Schlag for the upper bound (1.3).
That work only dealt with the field at single points, however; to compare the joint distribution of Pn and
its derivative at an arbitrary fixed number of points we need finer control.

We quantify the level of approximability of points x by rationals as follows:

Definition 2.3 (Smooth points). For K > 0, we say a point t 2 R is K-smooth if
���

p0t
pn

���
R/Z

>
K
n

8 p0 2 Z\ [�K �1,K +1], p0 6= 0.

We say a tuple (t1, . . . , tm) is K-smooth if tr is K-smooth for each 1  r  m.

Thus in the special case that K < 1 then t 2 R is K-smooth if k t
pnkR/Z > K

n . Observe also that if
n�1+k  k t

pnkR/Z  n�2k then t is nk -smooth.
The following lets us focus on potential minimizers that are smooth.

Lemma 2.4 (Ruling out bad arcs). For k > 0 let Ebad(k) be the set of points x 2 R such that nx is not
nk -smooth. There exist absolute constants k0,c0 > 0 such that

P
�
9x 2 Ebad(k0) : |Pn(x)| n�1+c0

�
= o(1).

Proof. This follows from the argument for [KS99, Lemma 3.3]; one only needs two modifications:

1. Whereas they considered A-smooth points for A fixed, their bounds in fact allow A to grow as fast
as nk0 for k0 sufficiently small. (One also notes that their parameter e may grow as fast as O(n3/4).)

2. Whereas their model takes the sum in (1.4) to run over [0,n] rather than [�n,n], they only
need that the covariance matrix for (RePn(x), ImPn(x)) has eigenvalues bounded below by �
n2 min(1, |x|, |p � x|)2 for min(|x|, |p � x|)� n�1�c for a small absolute constant c > 0, which for
the present model follows from display (2.21) in [YZ]. (One may alternatively apply the proof of
[KS99, Lemma 3.3] but condition on the variables (x j)�n j<0 before applying the Berry–Esseen
theorem.)
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With k0 as in Lemma 2.4 we now consider the thinned point process

M]
n := Â

a:xa /2Ebad(k0)

dXa . (2.7)

Theorem 1.2 will be deduced from the following comparison of moments. The proof is deferred to
Section 5.

Proposition 2.5 (Moment matching). For any fixed t > 0 and integer m � 1 we have

lim
n!•

E

⇣
M]

n
�
[�t,t]

�m
⌘
= lim

n!•
ENR(0,1)

⇣
M]

n
�
[�t,t]

�m
⌘
, (2.8)

where we recall that ENR(0,1) stands for expectation under the Gaussian model from Theorem 1.1.

2.4 Joint distribution over spread points

Expanding the moments in (2.8) leads to consideration of joint events that Xai is small at m different
points xai , 1  i  m. In addition to the smoothness already imposed in the definition of M]

n, we will
require all of the points to be separated from one another, in the following sense:

Definition 2.6 (Spread tuples). For m � 2 and l > 0, we say t = (t1, . . . , tm) 2 Rm is l -spread if
���

tr ± tr0
2pn

���
R/Z

� l
n

81  r < r0  m (and all choices of the signs ±).

For m = 1, we say that t = t 2 R is l -spread if
���

t
2pn

���
R/Z

� l
n
.

It is remarked that in the definition above we prevent tr from being close to tr0 and �tr0 at the same
time, and this condition is necessary to hope for asymptotically independence between Pn(tr) and Pn(tr0),
especially in the case that x is real-valued.

In what follows we denote
sa := nxa , a 2 [N]. (2.9)

Recalling the scaled polynomial eP from (2.5), we have

Ya =�1
n

Re(ePn(sa)eP0
n(sa))

|eP0
n(sa)|2

Za = n
Im(ePn(sa)eP0

n(sa))

|eP0
n(sa)|

. (2.10)

The main step towards the proof of Proposition 2.5 is the following:

Proposition 2.7. Fix an m-tuple of indices (a1, . . . ,am) 2 [N]m. Assume for some k > 0 that sa1 , . . . ,sam

are nk -smooth and that s = (sa1 , . . . ,sam) is 1-spread. Then for any t > 0,
����P
✓ ^

i2[m]

|Xai | t
◆
�PNR(0,1)

✓ ^

i2[m]

|Xai | t
◆����= o(N�m),

where the rate of convergence depends on m,t,k, and K0.
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We prove Proposition 2.7 in Section 3 below, where we convert the task to a problem involving a
random walk in R4m. Before proceeding we collect the following useful property of a smooth m-tuples,
which basically says that we can simultaneously dilate the points tr to be well separated on the torus. This
result will be useful for the proof of Lemma 3.6 below for showing that the distribution of an associated
random walk is genuinely full-dimensional, and also for Section 9 when we bound ’m�1

r=1 kL(tm±tr)
2pn kR/Z

from below for some L.

Lemma 2.8. Assume (t1, . . . , tm) 2 Rm is l -spread for some l > 0, and let l  K = o(n). There exists
an integer L ⇣ n/K such that

���
L · (tr ± tr0)

2pn

���
R/Z

�m l/K 81  r < r0  m (2.11)

(and all choices of the signs). In particular, if (t1, . . . , tm) is w(1)-spread then there exists L  n such that
���

L · (tr ± tr0)
2pn

���
R/Z

�m 1 81  r < r0  m. (2.12)

In case m = 1 then there exists an integer L ⇣ n/K such that k L·t
2pnkR/Z �m l/K.

Proof. The case m = 1 is clear, so we just need to focus on m � 2. Assume towards a contradiction
that there exists e = e(m)> 0 such that for every j 2 [n/2K,n/K] there exists a pair of distinct indices
r,r0 2 [m] such that

min
⇢����

j(tr � tr0)
2pn

����
R/Z

,

����
j(tr + tr0)

2pn

����
R/Z

�
 el/K (2.13)

By pigeonholing, there is a pair of distinct indices r,r0 2 [m] and subset J ⇢ [n/2K,n/K] of size � n/Km2

such that either the first quantity in the minimum in (2.13) is bounded by el/K for all j 2 J, or the
second is bounded by el/K for all j 2 J. We focus on the former case; the latter is handled by a similar
argument.

As |J| is of the same order as its diameter, there exists C = Om(1) so that CJ �CJ contains a
homogeneous arithmetic progression of length � n/K (see for instance [Tao10, Lemma B.3]).

Claim 2.9. Assume that z = eiq , |q |  p/8 such that for all 1  `  M we have |1� z`|  1/32 for a
sufficiently large M. Then |q |= O(1/M).

Proof. By assumption, |q | p/8 and k2kqkR/Z  p/8 for all 1  k  logM, and so we can repeatedly
estimate |q | to obtain |q |= O(1/M).

By the triangle inequality, for e sufficiently small depending on C, by Claim 2.9 this would imply
there exists Cr,r0 = Om(1) such that

����
Cr,r0(tr � tr0)

2pn

����
R/Z

⌧m
el/K
n/K

⌧m el/n. (2.14)

Let N1 be the collection of all pairs (r,r0) such that (2.14) holds, taking Cr,r0 to be the smallest such
positive integer. We have shown that N1 is nonempty. By the assumption that t is l -spread we have that
Cr,r0 > 1 for all (r,r0) 2N1.
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Claim 2.10. Assume that for some x 2 R,d > 0 and positive integer M we have kxkR/Z > d and
kMxkR/Z  d . Then

kxkR/Z > 1/2M.

Proof. Assuming otherwise, we have kMxkR/Z = MkxkR/Z > Md , a contradiction.

From the above claim, (2.14), and the assumption t is l -spread, it follows that if e is sufficiently
small, then ����

tr � tr0
2pn

����
R/Z

� 1/2Cr,r0

for each (r,r0) 2 N1. Set D1 = ’(r,r0)2N1 Cr,r0 = Om(1), and let I1 be intersection of the progression
{1 + `D1}`2Z with [n/2K,n/K]. Applying the triangle inequality, if L = 1 + lD1 2 I1 then for all
(r,r0) 2N1,

����
L(tr � tr0)

pn

����
R/Z

=

����
(1+ lD1)(tr � tr0)

2pn

����
R/Z

�
����

tr � tr0
2pn

����
R/Z

�
����

l D1
Cr,r0

Cr,r0(tr � tr0)

2pn

����
R/Z

� 1/2Cr,r0 � (n/K)Om(el/n)� el/K

provided that e is sufficiently small. Now if no L 2 I1 satisfies the conclusion of our lemma, then for each
L 2 I1 there is a pair (r,r0) /2N1 that violates the condition, and then we repeat the above process, with N2
being the collection of such pairs. Set D2 = ’(r,r0)2N2 Cr,r0 (and so D2 = Om(1)) and let I2 be intersection
of the progression {1+ `D1D2}`2Z with [n/2K,n/K], we then continue the process as above. As each
time we get rid of at least one pair (tr, tr0), the process for differences terminates after

�m
2
�

steps with
Q(n/K) indices left to choose. Finally, we can start the process for tr + tr0 with j (appearing in (2.14))
chosen from these indices; the remaining iterations are identical as above.

3 Random walk in phase space

The key ingredients for the proof of Proposition 2.7 are local small ball estimates and a comparison
principle for an associated random walk in R4m, which we now define.

For a fixed tuple t = (t1, . . . , tm) 2 Rm and j 2 Z we denote the vectors

a j = a j(t) :=
�

sin( jt1/n), . . . ,sin( jtm/n)
�
2 Rm

b j = b j(t) :=
�

cos( jt1/n), . . . ,cos( jtm/n)
�
2 Rm

and
w j = w j(t) =

�
a j , ( j/n)b j , b j ,�( j/n)a j

�
2 R4m . (3.1)

For a finite set J ⇢ Z we let WJ =WJ(t) be the |J|⇥ (4m) matrix with rows w j, j 2 J. Note that w j gives
the values of the functions sin( j

n ·),cos( j
n ·) and their derivatives at the points t1, . . . , tm. We consider the

random walk

Sn(t) :=
n

Â
j=�n

x jw j(t) =WT
[�n,n]x 2 R4m (3.2)

with x = (x j) j2[�n,n] a vector of iid copies of a real-valued x .
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3.1 Control on the characteristic function

The following is the key technical ingredient for controlling the distribution of the random walks Sn(t).

Theorem 3.1. Let t = (t1, . . . , tm)2Rm be nk -smooth and l -spread for some k 2 (0,1) and w(n�1/8m)
l  1. Then for any fixed K⇤ < • and any x 2 R4m with n�1/8  kxk2  nK⇤ ,

|Ee(hSn(t),xi)| exp(� log2 n)

for all n sufficiently large depending on K⇤,m,k, and the sub-Gaussian constant for x .

We note that here the sub-Gaussianity hypothesis enters only to have a uniform anti-concentration
bound for x and could be replaced by a bound on the Lévy concentration function.

We defer the proof of this theorem to Section 9. Now we state the two main consequences of
Theorem 3.1 towards the proof of Theorem 1.2. By combining Theorem 3.1 with an Edgworth expansion,
we will obtain the following quantitative comparison with the Gaussian model. In the following we write
G = Gn(t) 2 R4m for a Gaussian vector with covariance matrix 1

2n+1WT
[�n,n]W[�n,n]. Note that this is the

distribution of 1p
2n+1 Sn(t) with iid standard real Gaussians in place of x j.

Theorem 3.2. Let t = (t1, . . . , tm) be nk -smooth and 1-spread for some k > 0. Fix K > 0 and let Q ⇢R4k

be a box (cartesian product of intervals) with side lengths at least n�K. Then

sup
w2R4m

���P
⇣ 1p

2n+1
Sn(t) 2 Q

⌘
�P

�
Gn(t) 2 Q

����⌧ n�1/2|Q|

where |Q| is the volume of Q, and the implied constant depends only on m,k,K, and the sub-Gaussian
constant for x .

Remark 3.3. The proof shows that in place of the sub-Gaussianity assumption we only need that x has
O(m) finite moments.

We defer the proof of Theorem 3.2 to Section 8.
By standard arguments, the control on the characteristic function of Sn(t) provided by Theorem 3.1

yields an optimal small ball estimate at arbitrary polynomial scales:

Theorem 3.4 (Small ball estimate). With t = (t1, . . . , tm) as in Theorem 3.1, for any K < • and any
d � n�K,

sup
w2R4m

P

✓
1p

2n+1
Sn(t) 2 B(w,d )

◆
= Om,k,K(l�3md 4m).

The proof of Theorem 3.4 is deferred to Section 7. We note the following consequence, giving
anti-concentration for the polynomial Pn (recall the rescaled polynomial ePn from (2.5)).

Corollary 3.5 (Small ball estimate for polynomials). Assume that t is nk -smooth. Then for any K > 0
and d 2 [n�K ,1],

P(|ePn(t/n)| d ) = Ok,K(d 2) and P(|eP0
n(t/n)| d ) = Ok,K(d 2).
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3.2 Non-degeneracy of the covariance matrix

As a first step towards controlling the distribution of Sn(t) we need to show that the random walk is
genuinely 4m-dimensional, which amounts to showing the covariance matrix WT

[�n,n]W[�n,n] has smallest
singular value of order n. This is accomplished by the following lemma, under the (necessary) assumption
that the points t1, . . . , tm are spread.

Lemma 3.6. Let J ⇢ [n] be an interval with |J|� n. If t = (t1, . . . , tm) 2 Rm is l -spread for some l > 0,
then

kWJ(t)uk2
2 �m min(l ,1)6m�3n

uniformly over unit vectors u 2 S4m�1.

Remark 3.7. We note that for the case x j ⇠ NR(0,1), the above control on the covariance matrix
is enough to deduce an optimal small ball estimate at all scales. For general distributions we need
Theorem 3.1, the proof of which amounts to showing that for v of size nO(1), the vector WJ(t)v avoid the
lattice Zn, rather than just the origin as above. The proof below can be read as a warmup to the more
technical proof of Theorem 3.1, where a similar (but more complicated) differencing strategy is used.

Remark 3.8. We point out that if l is growing with n, it is not hard to show by computations similar to
[KS99, Lemma 3.2] that 1

|J|WJ(t)TWJ(t) asymptotically splits into m well-conditioned blocks. However,
when l is bounded or shrinking with n the covariance matrix becomes increasingly degenerate. We note
that [KS99, Lemma 3.2] also contains estimates for the covariance matrix of the real and imaginary parts
of Pn(t) at a single point t that is only n�1/2-spread. In principle it should be possible to extend those
arguments to the above setting with m > 1 and additional columns for P0

n; however, this appears to involve
technical case analysis, and in the end we do not think it would lead to a significantly shorter proof than
the one given below.

Proof of Lemma 3.6. Without loss of generality we may assume l 2 (0,1). Fix a vector u=(u1,u2,u3,u4)2
S4m�1. The jth entry of WJ(t)u is

hw j,ui=
m

Â
r=1

u1
r sin( jtr/n)+u2

r ( j/n)cos( jtr/n)+u3
r cos( jtr/n)�u4

r ( j/n)sin( jtr/n).

Substituting cos( jtr/n) = 1
2(en( jtr)+ en(� jtr)) and sin( jtr/n) =�

p
�1
2 (en( jtr)� en(� jtr)), the above

becomes

1
2

m

Â
r=1

(u3
r �

p
�1u1

r )en( jtr)+(u3
r +

p
�1u1

r )en(� jtr)

+(u2
r +

p
�1u4

r )( j/n)en( jtr)+(u2
r �

p
�1u4

r )( j/n)en(� jtr)

=
D�

e j, ē j,( j/n)e j,( j/n)ē j
�
, Au

E

where
e j := (en( jt1), . . . ,en( jtm))
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and

A =
1
2

0

BB@

�
p
�1Im 0 Im 0p
�1Im 0 Im 0
0 Im 0

p
�1Im

0 Im 0 �
p
�1Im

1

CCA

where Im is the m⇥m identity matrix and 0 is the square matrix of 0s. Since kA�1k= O(1), it suffices to
show

kMvk2
2 �m l 6m�3n

uniformly for v in the complex sphere S4m�1
C , where M 2 Cn⇥4m is the matrix with rows

(e j, ē j,
p
�1( j/n)e j,

p
�1( j/n)ē j).

From Lemma 2.8 there exists an integer L with n ⌧m L < n/100m such that

���
L · (tr ± tr0)

2pn

���
R/Z

�m l 81  r < r0  m.

For notational convenience we will consider M with rows of the general form

(en( jt1), . . . ,en( jtd),
p
�1( j/n)en( jt1), . . . ,

p
�1( j/n)en(td))

satisfying ���
L · (tr � tr0)

2pn

���
R/Z

� l0 81  r < r0  d (3.3)

for some l0 2 (0,1) and n ⌧d L < n/50d, and aim to show

inf
v2S2d�1

C

kMvk2
2 �d l 3d�3

0 n. (3.4)

One passes back to the previous case by taking d = 2m and (t1, . . . , t2m) = (t1, . . . , tm,�t1, . . . ,�tm), and
substituting any c(m)l for l0.

Let P denote the intersection of the interval J with the progression {iL : i 2 Z}, and let MP denote the
submatrix of M with rows indexed by P. Note that |P|⇣d 1. We will first show

inf
v2S2d�1

C

kMPvk2
2 �d l 2d�2

0 . (3.5)

To do this we consider the twisted second-order differencing operators of the form

(Dt0 f )( j) :=
2

Â
a=0

✓
2
a

◆
(�1)ae(�aLt0) f ( j+aL) (3.6)

acting on sequences f : P ! C, for various choices of the parameter t0 2 R. Let us denote

ft( j) = en( jt), gt( j) =
p
�1( j/n)en( jt) = ∂t ft( j).
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For t, t0 2 R and any j 2 P with j+2L 2 P, we have

(Dt0 ft)( j) = en( jt)
2

Â
a=0

✓
2
a

◆
(�1)ae(aL(t � t0)) =

⇥
1� en(L(t � t0))

⇤2 ft( j) (3.7)

and

(Dt0gt)( j) =
2

Â
a=0

✓
2
a

◆
(�1)ae(aL(t � t0))

p
�1

j+aL
n

en(( j+aL)t)

=
p
�1( j/n)(Dt0 ft)( j)+ en( jt)


�2

p
�1

L
n

en(L(t � t0))+2
p
�1

L
n

en(2L(t � t0))
�

=
⇥
1� en(L(t � t0))

⇤2gt( j)�2
p
�1

L
n

en(L(t � t0))
⇥
1� en(L(t � t0))

⇤
ft( j)

=
⇥
1� en(L(t � t0))

⇤2⇥gt( j)+bL(t � t0) ft( j)
⇤

(3.8)

where we write bL(s) :=�2
p
�1 L

n en(Ls)/
⇥
1� en(Ls)

⇤
. In particular, we have

(Dt0 ft0)( j) = (Dt0gt0)( j) = 0 8 j. (3.9)

The key point about the factors 1� en(L ·) and bL(·) is that they are independent of j and hence pass
through the difference operators Dt0 .

For the lower bound (3.5) we partition the sphere into d pieces

Sr = {v 2 S2d�1
C : |vr|2 + |vr+d |2 � 1/d} 1  r  d

and prove the bound separately on each piece. By symmetry it suffices to treat Sd . We abbreviate

G :=
d�1

’
r=1

⇥
1� en(L(td � tr))

⇤2
, H :=

d�1

Â
r=1

bL(td � tr).

Iterating the identities (3.7)–(3.9), we obtain that for any j 2 P such that j+2dL 2 P,
�
Dt1 � · · ·�Dtd�1 ftr

�
( j) = 0 1  r  d �1

and otherwise �
Dt1 � · · ·�Dtd�1 ftd

�
( j) = G · ftd ( j).

Similarly, �
Dt1 � · · ·�Dtd�1gtr

�
( j) = 0 1  r  d �1

and otherwise �
Dt1 � · · ·�Dtd�1gtd

�
( j) = G ·

�
gtd ( j)+H · ftd ( j)

�
.

Fix an arbitrary v 2 Sd . Recognizing the sequences ( ftr( j)) j2P,(gtr( j)) j2P as the 2d columns of MP,
we have

(MPv) j =
d

Â
r=1

vr ftr( j)+ vr+dgtr( j).
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Letting D be the matrix associated to the linear operator Dt1 � · · ·�Dtd�1 on CP, we have

(DMPv) j = vdG ftd ( j)+ v2dG(gtd ( j)+H ftd ( j))

= G · en( jtd)
⇥
vd +

�p
�1( j/n)+H

�
v2d

⇤

for each j 2 P such that j+2dL 2 P. Taking the modulus of each side and square-summing we obtain

Â
j2P: j+2dL2P

|(DMPv) j|2 = |G|2 Â
j2P: j+2dL2P

��vd +
�p

�1( j/n)+H
�
v2d

��2.

From (3.3) we have
G � (cl0)

2d�2, H = O(d/l0).

In particular, since vd ,v2d and H are independent of j, and |vd |2 + |v2d |2 � 1/d, the sum on the right hand
side of the previous display is at least � |P|/d2 �d 1, so

Â
j2P: j+2dL2P

|(DMPv) j|2 �d l 2d�2
0 .

On the other hand, since the matrix D has `2(P) ! `2(P) operator norm O(d), the left hand side is
bounded above by ⌧d kMPvk2

2, and we obtain (3.5) as desired.
It only remains to prove (3.4). Consider the submatrices MP,M1+P, . . . ,Mn0+P composed of rows

indexed by the shifted progressions P,1+P, . . . ,n0 +P, respectively. If n0 < L then these submatrices
are all disjoint. Moreover, letting F denote the 2d-dimensional diagonal matrix with diagonal entries
en(t1), . . . ,en(td),en(t1), . . . ,en(td), we note that Mk+P and MPFk differ by a matrix of norm Od(k/n)
(as they only differing in the dilations by

p
�1 j/n in the last d columns). Since F is unitary we have

s2d(MPFk) = s2d(MP)�d l d�1
0 , and taking n0 = c(d)l d�1

0 n for c(d)> 0 sufficiently small depending
on d, from the triangle inequality we obtain that s2d(Mk+P) �d l d�1

0 for all 1  k  n0. Since 1+
P, . . . ,n0 +P are disjoint, we conclude that for any fixed v 2 S2d�1

C ,

kMvk2
2 �

n0

Â
k=1

kMk+Pvk2
2 �d n0l 2d�2

0 �d l 3d�3
0 n

giving (3.4) as desired.

4 Proof of Proposition 2.7

In this section we combine Theorems 3.2 and 3.4 to prove Proposition 2.7. In fact we will need the
following more general result, which in particular establishes universality for the joint distribution of the
recentered near-local minimizers Yai and corresponding near-local minima Xai .

Proposition 4.1. Fix an m-tuple of indices (a1, . . . ,am) 2 [N]m, and assume s = (sa1 , . . . ,sam) is nk -
smooth and 1-spread for some k > 0. Let J1, . . . ,Jm ⇢ R, J01, . . . ,J

0
m ✓ [�p,p] be arbitrary compact

intervals with lengths in the range [n�L0 ,nL0 ] for some L0 > 0, and denote the event

E=
^

i2[m]

�
Xai 2 Ji, NYai 2 J0i

 
. (4.1)
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We have

��P(E)�PNR(0,1)(E)
��⌧m,k,L0

logO(m) n
n1/2Nm

m

’
i=1

|Ji||J0i |. (4.2)

Moreover, if s is nk -smooth and l -spread for some w(n�1/8m) l  1, then we have the upper bounds

P(E)⌧m,k,L0

logO(m) n
l 3mNm

m

’
i=1

|Ji||J0i | , (4.3)

and

PNR(0,1)(E)⌧m,k,L0

1
l O(m2)Nm

m

’
i=1

|Ji||J0i | . (4.4)

For the above bounds, the point is that the trivial bound on PNR(0,1)(E), obtained by controlling the
Gaussian measure by Lebesgue measure, is of order N�m ’m

i=1 |Ji||J0i | (this will be shown in the proof,
but can also be understood on the heuristic level). For the error in (4.2) we save ⌧ n�1/2+e on this
bound, while in (4.3) we obtain the same order upper bound for P(E) up to a tolerable loss of a factor
l�3m logO(m) n.

We commence with the proof of Proposition 4.1. Let K⇤ > 0 to be chosen sufficiently large and set
d = n�K⇤ . We first describe the event E as a domain in R4m. Let D denote the annulus

D := B(0,C0
p

logn)\B(0, log�K0/2 n)⇢ R2.

For b = (b,b0) 2 R2 we write b
? := (b0,�b), and define the rectangles

Ti(b) =

⇢
a 2 R2 :

a ·b?

kbk2
2 1

n
· Ji , � a ·b

kbk2
2
2 n

N
· J0i
�
, 1  i  m, (4.5)

which have sides of length nkbk2|J0i |/N and |Ji|/n in the direction of b and b
?, respectively. (Here we

write C · Ji for the dilation of Ji by a factor C.) Let

Ui =
n
(a,a0,b,b0) = (a,b) 2 R4 : b 2D, a 2 Ti(b)

o
, U=

m

’
i=1

Ui . (4.6)

Abbreviating henceforth
eS :=

1p
2n+1

Sn(t), (4.7)

one sees that the left hand sides of (4.2) and (4.3) can be expressed as |P(eS 2 U)�P(G 2 U)| and
P(eS 2 U), respectively.

From the dimensions of the rectangles Ti(b) we have from Fubini’s theorem that

mLeb(Ui) =
Z

D
mLeb(Ti(b))db =

D
N
|Ji||J0i | (4.8)
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where we denote
D :=

Z

D
kbkdb ⇠ 2pC0

3
log3/2 n. (4.9)

Thus,

mLeb(U) = (D/N)m
m

’
i=1

|Ji||J0i |=
logO(m) n

Nm

m

’
i=1

|Ji||J0i |. (4.10)

For the measure of U under the law of G, recall from Lemma 3.6 that the norm of the inverse of the
covariance matrix of G has operator norm of size O(l�3m), and hence determinant of size O(l�O(m2)). By
controlling the conditional density of G in directions (a1, . . . ,am) for fixed (b1, . . . ,bm) by the Lebesgue
measure, and then integrating over Dm under the marginal Gaussian measure, we get

P(G 2 U)⌧m,k,L0

1
l O(m2)Nm

m

’
i=1

|Ji||J0i |, (4.11)

giving (4.4) as desired.
We next note that the corners of the rectangles Ti(b) are nO(L0+1)-Lipschitz functions of b 2D. From

this it follows that if K⇤ is sufficiently large depending on L0 and m, we can find sets U� ⇢ U⇢ U+ such
that U� and U+ \U� are unions of cubes in R4m of side length d with disjoint interiors, and such that
mLeb(U+ \U�) n�100mLeb(U) (say).

The bound (4.3) now follows by covering each cube in U+ with balls of bounded overlap and applying
the union bound, Theorem 3.4, and (4.10).

For (4.2), we bound

|P(eS 2 U)�P(G 2 U)| P(eS 2 U+ \U�)+P(G 2 U+ \U�)+Â
Q
|P(eS 2 Q)�P(G 2 Q)|

where the sum runs over the cubes comprising U�. Using the union bound and Theorem 3.4 as we did for
U+, the first two terms above are of size

⌧ mLeb(U+ \U�)⌧ n�100mLeb(U).

For the sum over Q, use Theorem 3.2 to bound each term by ⌧m,k,K⇤ n�1/2mLeb(Q). Altogether we have

|P(eS 2 U)�P(G 2 U)|⌧m,k,K⇤ n�1/2mLeb(U)

and the claim now follows from (4.10). This concludes the proof of Proposition 4.1.

5 Proof of Proposition 2.5 for the real-valued case (moment comparison)

We condition on G2(K0/2) throughout the proof. As remarked before, in the real-valued case it suffices
to work with xa 2 [0,p] because Pn(�x) = Pn(x). We allow implied constants to depend on m and
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t without indication. Recall also that k0 in the definition (2.7) of M]
n is an absolute constant. For

a = (a1, . . . ,am) 2 [N]m we denote events

E(a) :=
⇢ ^

i2[m]

|Xai | t
�
.

We have

E

⇣
M]

n
�
[�t,t]

�m
⌘
= Â

a2E
P(E(a)) = Â

a2E 0
P(E(a))+ Â

a2E\E 0
P(E(a)) (5.1)

where

E :=
�

a = (a1, . . . ,am) 2 [N/2]m : xa1 , . . . ,xam /2 Ebad(k0)
 
,

E 0 :=
�

a 2 E : |xai � xa j |> 4p/n 81  i < j  m
 
.

Note that if x,x0 2 [0,p] such that | x�x0
2p |� l

n then we also have l
n  x+x0

2p  1� l
n . Hence within E 0

the angles are 1-spread and by Proposition 2.7
���� Â

a2E 0
P
�
E(a)

�
� Â

a2E 0
PNR(0,1)

�
E(a)

����� Nmo(N�m) = o(1).

It only remains to bound the sum over a 2 E \E 0.
By Lemma 2.2, under G2(K0/2), it suffices to consider m-tuples of the form

(a1, . . . ,am�k,a1 +1,a2 +1, . . . ,ak +1) (5.2)

consisting of k pairs of points (al,al +1) that are immediate neighbors, for some 0  k  m/2, while the
m� k points xa1 , . . . ,xam�k are separated by at least 4p/(n log3K0 n) in [0,p]. Note also that by the remark
above we also have

xai+xa j
2p � 1/(n log3K0 n).

We divide this class of such a into two sets E1,E2, where E1 is the set of a 2 E \E 0 of the form
(5.2) (possibly with k = 0) such that |xai � xa j | 4p/n for some 1  i < j  m� k, and E2 is the set of
a 2 E \E 0 of the form (5.2) with k � 1 and |xai � xa j |> 4p/n for all 1  i < j  m� k.

For the sum over E1, we have |E1|= O(Nm�k/n) since there are O(N/n) options for the close point
with all others fixed. As the points xa1 , . . . , . . . ,xam�k are separated by at least 4p/(n log3K0 n), from the
upper bound (4.3) in Proposition 4.1 with Ji ⌘ [�t,t] and J0i ⌘ [�p,p], we have

Â
a2E1

P
�
E(a)

�
⌧ (Nm�k/n)⇥N�mtm logO(K0m) n ⌧ 1

n
logO(m) n = o(1).

For the sum over E2, by Lemma 2.2, under G2(K0/2) we have the containment of events

�
|Xai | t , |Xai+1| t

 
⇢
⇢
|Xai | t , Yai 2

hp
N
� p

N logK0/4 n
,

p
N

i�
,
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so for each such a we can bound

P
�
E(a)

�
 P

✓
Ya1 2

hp
N
� p

N logK0/4 n
,

p
N

i
,

^

i2[m�k]

|Xai | t
◆
.

Applying (4.2) with m� k in place of m, l = 1/2 (say), Ji ⌘ [�t,t], J01 = [p(1� log�K0/4 n),p], and
J0i = [�p,p] for 2  i  m� k, the right hand side above is bounded by

PNR(0,1)

✓
Ya1 2

hp
N
� p

N logK0/4 n
,

p
N

i
,

^

i2[m�k]

|Xai | t
◆
+o(N�(m�k)).

Finally, we apply (4.4) to bound the first term above by o(N�(m�k)). Combining the preceding displays
and summing over a 2 E2 gives

Â
a2E2

P
�
E(a)

�
= o(1).

We have thus shown that the sum over a 2 E \ E 0 in (5.1) is o(1), which completes the proof of
Proposition 2.5.

6 Proof of Theorem 1.2 (main result)

We fix k = k0 as in Lemma 2.4, and let t > 0 be arbitrary. As in the previous section we allow implied
constants to depend on m and t . It follows from Proposition 2.5 that

lim
n!•

���P
�
M]

NR(0,1)
([�t,t]) = 0

�
�P

�
M]([�t,t]) = 0

����= 0.

On the other hand, by Theorem 1.1 and Lemma 2.4,

lim
n!•

����PNR(0,1)

⇣
mn >

t
n

⌘
�PNR(0,1)

⇣
M]([�t,t]) = 0

⌘����= 0

and hence it suffices to show

lim
n!•

����P
⇣

mn >
t
n

⌘
�P

⇣
M]([�t,t]) = 0

⌘����= 0.

To this end, recall that on the event G2(K0),

|P(x)�Fa(x)| N�2 sup
x2[�p,p]

|P00(x)| log3K0 n
n2 (6.1)
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for all x 2 Ia . By Lemma 2.4 we have
����P
⇣

mn >
t
n

⌘
�P

⇣
M]([�t,t]) = 0

⌘����

 P

⇣
mn >

t
n
, M]([�t,t])� 1

⌘
+P

⇣
mn 

t
n
, M]([�t,t]) = 0

⌘

 Â
a2[N]:xa /2Ebad(k)

P

⇣
G2(K0) ^ |Xa |< t ^ min

x2Ia
|P(x)|� t/n

⌘

+ Â
a2[N]:xa /2Ebad(k)

P

⇣
G2(K0) ^ |Xa |� t ^ min

x2Ia
|P(x)|< t/n

⌘
+o(1)

 Â
a2[N]:xa /2Ebad(k)

P

✓
|Xa | 2


t � log3K0 n

n
,t + log3K0 n

n

�◆
+o(1),

where we used the definition of Xa and (6.1) in the last estimate.
Applying the bound (4.3) of Proposition 4.1 with m = 1, J1 = [t � n�1 log3K0 n,t + n�1 log3K0 n],

J01 = [�p,p], and l = 1, say (with a single point xa being trivially l -spread), we have

P

✓
Xa 2


t � log3K0 n

n
,t + log3K0 n

n

�◆
⌧ log3K0 n

nN

for each a with xa /2 Ebad(k), as well as the same bound for the event with Xa replaced by �Xa . From
the union bound and summing over a we conclude

����P
⇣

mn >
t
n

⌘
�P

⇣
M]([�t,t]) = 0

⌘����⌧
log3K0 n

n
+o(1) = o(1)

as desired.

7 Proof of Theorem 3.4

Fix t as in the theorem statement. Recall the notation Sn = Sn(t) (we henceforth suppress t) and w j
from (3.2) and (3.1). Let t0 = d�1 and let f j denote the characteristic function of x jw j. By a standard
consequence of Esseen’s inequality (see e.g. [TV06, Lemma 7.17] and its proof) we can bound the small
ball probability by

P(
1p

2n+1
Sn 2 B(w,d ))Cm(

n
t2
0
)4m/2

Z

R4m

����
n

’
j=�n

f j(u)
����e

� nkuk2
2

2t20 du =: J1 + J2 + J3,

where in J1,J2,J3 the integral is restricted to the ranges kuk2  r0 = O(1), r0  kuk2  R = nK⇤ , and
kuk2 > R, respectively for K⇤ > 0 to be chosen sufficiently large.

For J1, from (9.1) and (9.2) below we can bound
����

n

’
j=�n

f j(u)
���� exp

✓
� c inf

a1|a|a2
Â

j
kahw j,u/2pik2

R/Z

◆
.
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Thus, if r0 is sufficiently small, then we have kahw j,u/2pikR/Z = |a|khw j,u/2pik2, and so from
Lemma 3.6 we have

Â
j
kahw j,u/2pik2

R/Z � c0nkuk2
2 min(l ,1)6m�3.

Hence

J1 =Cm(
n
t2
0
)2m

Z

kuk2r0
’

j
f j(u)e

� nkuk2
2

2t20 du

Cm(
n
t2
0
)2m

Z

kuk2r0

e
� nkuk2

2
2t20

�c0nkuk2
2l 6m�3

du

= Om(
1

l 3m(t2
0 +1)2m ) = Om(l�3md 4m).

For J2, recall by Theorem 3.1 that for r0  kuk2  R = nK⇤ we have

|
n

’
j=�n

f j(u)|= O(e� log2 n).

Thus

J2 =Cm(
n
t2
0
)2m

Z

r0kuk2R

n

’
j=�n

f j(u)e
� nkuk2

2
2t20 du

Cm(
n
t2
0
)2m

Z

r0kuk2R
e� log2 ne

� nkuk2
2

2t20 du

⌧m nOm,K⇤ (1)e� log2 n ⌧m,K e�
1
2 log2 n.

For J3, we have

J3 =Cm(
n
t2
0
)4m/2

Z

kuk2�nK⇤

n

’
j=�n

f j(u)e
� nkuk2

2
2t20 du = Om(e�n)

for K⇤ sufficiently large.

8 Proof of Theorem 3.2

For the proof we make use of a quantitative Edgeworth expansion for the distribution of Sn = Sn(t) (we
will suppress the dependence of Sn on t in much of what follows). Our treatment is similar to [DNN]. Let

Vn :=
1

2n+1

n

Â
j=�n

w jwT
j . (8.1)
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be the covariance matrix of Sn/
p

2n+1. Let eQn denote the distribution of Sn/
p

2n+1, and let eQn(x)
denote the cumulative distribution function for this distribution. The theorem below shows that eQn is
asymptotically eQn,•, where

eQn,` :=
`�2

Â
r=0

n�r/2Tr(�F0,Vn ,{cn}), `� 2, (8.2)

for (signed) measures Tr(�F0,Vn ,{cn}) to be defined below. For convenience, the density of eQn,` is
denoted by Qn,` while the density of eQn is denoted by Qn.

Let W be the standard Gaussian vector in R4m. For any covariance matrix V , V 1/2W is the Gaussian
random vector in R4m with mean zero and covariance V . Let f0,V denote the density of its distribution
and let F0,V denote the cumulative distribution function. If V is the identity matrix then we simply write
f and F, respectively. Recall that the cumulants of a random vector X in R4m are the coefficients in the
following formal power series expansion

logE[ez·X ] = Â
n2Nd

cnzn

|n |! , z 2 C4m. (8.3)

From the independence of the random coefficients x j, it follows that the cumulants of Sn are the sum of
the corresponding cumulants of x jw j, which in turn are polynomials in the moments of x and the entries
of w j. Let cn := cn(Sn)/(2n+1), which is the average of cumulants of x jw j,�n  j  n.

Note that cumulants of V 1/2
n W match the cumulants of Sn/

p
2n+1 for any |n | 2, while the higher

order cumulants of the Gaussian vector V 1/2
n W vanish. Therefore,

logE[ez·(Sn/
p

2n+1)] = logE[ez·(V 1/2
n W )]+ Â

n2Nd :|n |�3
(ncn)

zn

|n |!n�|n |/2

= logE[ez·V 1/2
n W ]+ Ầ

�1
( Â

n2Nd :|n |=`+2
cn

zn

|n |!)n
�`/2.

Letting c`(z) = `!Ân2N4m:|n |=` cnzn/|n |! for all z 2 C4m, we obtain

E[ez·(Sn/
p

2n+1)]/E[ez·V 1/2
n W ] = exp[Ầ

�1

c`+2(z)
(`+2)!

n�`/2]

= Â
m�0

1
m!

⇣
Ầ
�1

c`+2(z)
(`+2)!

n�`/2
⌘m

= Ầ
�0

eT`n�`/2,

where eT` is obtained by grouping terms of the same order n�`/2. It is clear that eT` depends only on z and
the average cumulants cn , |n | `+2. We will write eT`(z,{cn}) to stress this dependence. Replacing z
by iz, we obtain the following expansion for the characteristic function of Sn/

p
2n+1:

E[eiz·(Sn/
p

2n+1)] = E[eiz·V 1/2
n W ] Ầ

�0

eT`(iz,{cn})n�`/2.
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Next, let D = (D1, . . . ,D4m) be the partial derivative operator and let eT`(�D,{cn}) be the differential
operator obtained by formally replacing all occurences of iz by �D inside eT`(iz,{cn}). We define the
signed measures T`(�F0,Vn ,{cn}) in (8.2) to have the following density with respect to the Lebesgue
measure:

T`(�f0,Vn ,{cn})(x) :=
⇣
eT`(�D,{cn})f0,Vn

⌘
(x).

The following result gives a quantitative comparison between eQn and eQn,`; cf. also [DNN, Theorem
4.1]. For convenience of notation, for each `> 0, let

r` :=
1
n Â
�n jn

kw jk`2 ·E|x |`.

Thus r` = O`,m(E|x |`) = O`,m(1) if x is sub-Gaussian. To stay slightly more general, here we only
assume that x has bounded moments up to some sufficiently large order. For a given measurable function
f : R4m ! R, define

M`( f ) := sup
x2R4m

| f (x)|
1+kxk`2

.

Theorem 8.1 (Edgeworth expansion). Assume E|x |`+4m+1 < • for some `� 4. Let f : R4m ! R be a
measurable function such that M`( f )< •. Suppose that t = (t1, . . . , tm) is nk -smooth and 1-spread for
some k > 0. Then for any fixed K⇤ > 0 and any n�K⇤  e  1,

|
Z

f (x)d eQn(x)�
Z

f (x)d eQn,`(x)|

 CM`( f )(n�(`�1)/2 + e� log2 n)+w f (2e :
`+4m�2

Â
r=0

n�r/2Tr(�f0,Vn : {cn})

where for a density f ,

w f (e : f) =
Z
( sup

y2B(x,e)
f (y)� inf

y2B(x,e)
f (y))df(x),

for some C =C({rk,k  `},k,K⇤)> 0.

Proof of Theorem 8.1. This follows from [DNN, Section 4] (which in turns follows the approach of
[BR10] with some important modifications, see also [BCP19]). For completeness we sketch the proof
below. Let d = 4m. For convenience, we assume that e = n�K⇤ and denote

eHn = eQn � eQn,`,

and let Hn be its density. As usual the characteristic function of Hn is cHn(h) =
R
Rd eit·h eHn(dt).

Let eK be a probability measure supported inside the unit ball B(0,1) = {x 2 Rd : kxk  1} (whose
density is denoted by K) such that its characteristic function bK(h) satisfies

|Da bK(h)|= O(e�khk1/2
2 ), |a| `+d +1. (8.4)
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Such a measure could be constructed using elementary arguments, see for instance [BR10, Section
10]. We then let eKe be the e-dilation of K, namely eKe(A) = eK(e�1A) and e�1A := {x/e : x 2 A} for all
measurable A. Some simple computation yields

|
Z

f (y)d eHn(y)|  C`M`( f )
Z
(1+ktk2)

`|Hn ⇤Ke |(t)dt + w̄ f (2e : | eQn,`|)

= O
⇣

max{
Z

|Da(cHn)(h)Db (cKe)(h)|dh : |a|+ |b | `+d +1}
⌘
.

Following [BR10] (see [DNN, Corollary 4.3] for a different proof) we can show that for some c1 > 0
sufficiently small we have

Z

khk2c1
p

n
|DacHn(h)DbcKe(h)|dh = O

⇣Z

khk2c1
p

n
|DacHn(h)|dh

⌘

= O(n�(`+d�1)/2).

It thus remains to consider the range khk2 � c1
p

n. We use triangle inequality to estimate (where Qn is
the density of eQn)
Z

khk2�c1
p

n
|Da bHn(t)Db bKe |dh 

Z

khk2�c1
p

n
|Da bQn(t)Db bKe |dh

+
Z

khk2�c1
p

n
|Da(

`�2+d

Â
r=0

n�r/2Pr(ih : {cn ,n}))exp(�1/2hh ,Bnhi)|dh ,

where B2
n =V�1

n (defined in (8.1).)
The second term can be controlled by O(e�cn) thanks to the Gaussian decay of exp(�1/2hh ,Bnhi).
Let fi(h)=Eeih ·wi . Then for |a| `+d+1 we have Da

h (fi(h/
p

n))= n�|a|/2O(EkXn,ik|a|
2 )=O(1).

Thus,

|Da bQn(h)|= |Da(
n

’
i=1

fi(
hp

n
))|= O( Â

g1+···+gn=a
|

n

’
i=1,gi=0

fi(
hp

n
)|),

while we also have |Db bKe(h)| = O(e |b |e�(ekhk2)1/2
) = O(e�(ekhk2)1/2

). Thus, it remains to control, for
each (g1, . . . ,gn) with |g1|+ · · ·+ |gn| `+d +1 and each r > 0 independent of n:

Jg(n,e) =
Z

khk2�r
p

n
|

n

’
i=1,gi=0

fi(
hp

n
)|e�(ekhk2)1/2

dh

= nd/2
Z

khk2�r
|

n

’
i=1,gi=0

fi(h)|e�(n�K⇤+1/2khk2)1/2
dh .

Clearly it suffices to consider r  khk2  nK⇤�1/2+t because the integral for khk2 � nK⇤�1/2+t is
extremely small. Again, because a is fixed, by throwing away from the set {wi} a fixed number of
elements, let us assume that a = 0 for simplicity 4. To this end, by Theorem 3.1 for sufficiently large n
we have

|’
i

fi(h)| e� log2 n.

4In the general case a 6= 0 we apply Theorem 10.2 instead of Theorem 3.1.
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Thus we just shown that, with e = n�K⇤ we have Jg(n,e) = O(e� log2 n), completing the proof.

We turn now to the proof of Theorem 3.2. We follow [DNN, Section 5] with some slight modifications.
We are free to assume K is larger than any fixed constant. By approximating Q with a union of smaller
boxes with disjoint interiors it suffices to establish the claim for boxes of the form Q = w+Bm(d ) with
Bm(d ) := ’4

i=1[�di,di]m ⇢ R4m for arbitrary di 2 [n�2K ,1] for 1  i  4 (assuming K � 1, say). Let
h ,e > 0 to be chosen later, and towards an application of Theorem 8.1 we fix some K⇤ > 2K. In the
sequel we abbreviate d := n�2K . We let

g :=
1

16d1d2d3d4
1w+Bm(d )

be the L1-normalized indicator for the box w+Bm(d ) ⇢ R4m. For 1  i  4 let ji,h : R! [0,1] be a
C•(R) function with support inside [�di,di] such that

(i) ji,h(x) = d�1
i for |x| di(1�h), and

(ii) |j(k)
i,h (x)|= Ok(d

�(k+1)
i h�k) for any k � 0,

and set

f (x) =
m

’
r=1

4

’
i=1

ji,h(wi
r + xi

r)

where we write w = (w1, . . . ,w4),x = (x1, . . . ,x4) 2 R4m. We have

k— f (x)k2 ⌧m
2

d 4m+1h

uniformly in x. Recall that w̄ f (e : f) =
R
(supy2B(x,e) f (y)� infy2B(x,e) f (y))f(x)dx, and f is the density of

a Gaussian vector. Consequently, for any polynomial p(x) with bounded degree and bounded coefficients
we have

w̄ f (e : p(x)f0,Vn(x)) = O(h�1d�4m�1e),

where the implied constant depends on the eigenvalues of Vn, and on the degree and coefficients of p. In
particular, the final error term in Theorem 8.1 can be expressed as

`+4m�2

Â
r=0

n�r/2Tr(�f0,Vn : {cn}) = p(x)f0,Vn(x)

for some polynomial p with degree at most 4m+ ` and coefficients bounded by the first 4m+ ` moments
of x . Therefore

w̄ f (2e :
`+4m�2

Â
r=0

n�r/2Tr(�f0,Vn : {cn})) = O(h�1d�4m�1e), (8.5)

where the implied constant depends on the eigenvalues of Vn and the moments up to order O(m) of x .
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Recall the shorthand notation eS := Sn(t)/
p

2n+1 from (4.7), and that G has the distribution of eS with
standard real Gaussians in place of the variables x j. From Theorem 3.4 and Corollary 3.5,

��E f (eS)�Eg(eS)
��  (

C
d
)4m

m

Â
r=1

P(||RePn(sr)|�d1| hd1)+P(|ReP0
n(sr)|�d2| hd2)

+ P(||ImPn(sr)|�d3| hd3)+P(|ImP0
n(sr)|�d4| hd4)

⌘

⌧m (
C
d
)4mh

where we used in the last line that di  1 for each 1  i  4. Recalling the notation M`( f ) from
Theorem 8.1, we have M`( f )  k fk• = O(1/d )4m for any ` � 0. By Theorem 8.1 and (8.5) (with
`= 16mK +3), after keeping the first term of the expansion, and by the triangle inequality we have

���E f (eS)�E f (G)
���

���
Z

f (x)
`�2

Â
r=1

n�r/2Tr(�f0,Vn(x),{cn})
���

+M`( f )O
⇣

n�8mK�1 + e� log2 n
⌘
+ w̄ f (2e :

4m+1

Â
r=0

n�r/2Tr(�f0,Vn : {cn}))

= O(n�1/2)+(C/d )4mO(n�8mK�1 + e� log2 n)+O((C/d )4m+1h�1e),

where we used the fact that |
R

f (x)Tr(�f0,Vn(x),{cn})|= O(1) with the implied constant depending on
the moments of x up to order r and on the implicit constant from (ii) of j . In particular, the above is also
true for the Gaussian case. Consequently, again by the triangle inequality

|Eg(eS)�Eg(G)|  |Eg(eS)�E f (eS)|+ |E f (G)�Eg(G)|+ |E f (eS)�E f (G)|

⌧m n�1/2 +(
1
d
)4m(n�8mK�1 + e� log2 n +d�1h�1e +h) = O(n�1/2),

where we took h = e1/2 and e = n�K⇤ with K⇤ sufficiently large compared to K.

9 Proof of Theorem 3.1

We assume throughout this section that n is sufficiently large depending on m,k,K⇤ and the sub-Gaussian
constant for x . We first recall a definition and fact from [TV08]. For a real number w and a random
variable x , define the x -norm of w as

kwkx := (Ekw(x �x 0)k2
R/Z)

1/2,

where x 0 is an iid copy of x . For instance, if x has the Rademacher distribution P(x =±1) = 1/2, then
kwk2

x = k2wk2
R/Z/2. For any real number w we have

|Ee(wx )| exp(�ckw/2pk2
x )

for an absolute constant c > 0.
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Now with f j : R4m ! C the characteristic function of x jw j, we have
���Ee

�
hSn(t),xi

����= |’
j

f j(x)|= ’
j
|Ee(x jhw j,xi)| exp(�cÂ

j
khw j,x/2pik2

x ). (9.1)

Furthermore, as x is sub-Gaussian and of unit variance, there exist positive constants a1,a2,c > 0
depending only on the sub-Gaussian moment of x such that P(a1 < |x �x 0|< a2)� c, and so

Â
j
khw j,x/2pik2

x = EÂ
j
khw j,x/2pi(x �x 0)k2

R/Z � c inf
a1|a|a2

Â
j
kahw j,x/2pik2

R/Z. (9.2)

It hence suffices to show that Â j kahw j,x/2pik2
R/Z � log3 n uniformly for |a| 2 [a1,a2]. Fixing an

arbitrary such a, since a1,a2 ⇣ 1 we will abuse notation and absorb a into the definition of x. Recalling
(3.1), since w j +w� j = 2(0,0,b j,�( j/n)a j) and w j �w� j = 2(a j,( j/n)b j,0,0), for x = (x1,x2,x3,x4)2
R4m and each 0  j  n, we have from the triangle inequality that

khw j,xik2
R/Z+khw� j,xik2

R/Z � 1
2

max
�
khw j +w� j,xik2

R/Z , khw j �w� j,xik2
R/Z

 

= 2max
n
khb j,x3i� ( j/n)ha j,x4ik2

R/Z , kha j,x1i+( j/n)hb j,x2ik2
R/Z

o
.

Recalling our assumption kxk2 � n�1/8, we will assume kx3k2
2 + kx4k2

2 � 1
2 n�1/4; the complementary

case that kx1k2
2 +kx2k2

2 � 1
2 n�1/4 can be handled by the same argument. Fix now a vector (y,y0) 2 R2m

satisfying
n�1/8  k(y,y0)k2  nK⇤

and denote

y( j) = y( j; t) := hb j,yi� ( j/n)ha j,y0i=
m

Â
r=1

yr cos( jtr/n)� y0r( j/n)sin( jtr/n) . (9.3)

With (y,y0) playing the role of (x3,x4), to establish Theorem 3.1 our task thus reduces to establishing the
following:

Proposition 9.1. Let t =(t1, . . . , tr)2Rm be nk -smooth and l -spread for some k 2 (0,1) and w(n�1/8m)
l < 1. Then

n

Â
j=0

ky( j)k2
R/Z > log4 n.

Turning to prove the proposition, we henceforth denote

T := log4 n.

In the remainder of this section we suppose towards a contradiction that

n

Â
j=0

ky( j)k2
R/Z  T . (9.4)
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From (9.4) and Markov’s inequality we have

|{ j 2 [0,n]\Z : ky( j)kR/Z > 1/T}| 2T 3

and it follows that there is an interval J ⇢ [n] of length at least n/T 6 such that

ky( j)kR/Z  1/T 8 j 2 J. (9.5)

We henceforth fix such an interval J = [n1,n2].
Next we claim we can find q0 2 Z\ [1,nk ] and s1, . . . ,sm 2 R such that

q0tr/2pn� sr 2 Z (9.6)

and
m

Â
r=1

s2
r  mn�2k/m. (9.7)

Indeed, considering the sequence of points ({qt1/2pn}, . . . ,{qtm/2pn}) 2 [0,1]m for 1  q  nk , it
follows from Dirichlet’s principle that

m

Â
r=1

|{q1(tr/2pn)}�{q2(tr/2pn)}|2  mn�2k/m

for some 1  q1,q2  nk . Then we have

|(q1 �q2)tr/2pn� pr|2  mn�2k/m

for some p1, . . . , pm 2Z. Now (9.6) and (9.7) follow by taking q0 = q1�q2 and sr = (q1�qr)tr/2pn� pr.
Fixing such q0,s1, . . . ,sr, we have

|en(q0tr)�1|= |e(2psr)�1| 2pm1/2n�k/m 8 1  r  m. (9.8)

We next combine (9.5) and (9.8) to deduce some smoothness of the sequence y( j) over j 2 J, via
Lemma 9.2 below. For g : [n]! C and positive integers k,q we define the discrete differential of order k
and step q as

Dk
qg : [n]! C , (Dk

qg)( j) :=
k

Â
i=0

✓
k
i

◆
(�1)ig( j+ iq).

For any integer q and t 2 R,

k

Â
i=0

✓
k
i

◆
(�1)ien(( j+ iq)t) = (1� en(qt))ken( jt).

Taking real parts on both sides, we obtain

k

Â
i=0

✓
k
i

◆
(�1)i cos(( j+ iq)t/n) = Re

⇥
(1� en(qt))ken( jt)

⇤
,
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and differentiating in t yields

k

Â
i=0

✓
k
i

◆
(�1)i j+ iq

n
sin(( j+ iq)t/n) = Re

h
∂t
⇥
(1� en(qt))ken( jt)

⇤i
.

Combining the previous two identities over t = tr,r 2 [m] we obtain the identity

(Dk
qy)( j) = Re

 m

Â
r=1

yr(1� en(qtr))ken( jtr)� y0r∂t
⇥
(1� en(qtr))ken( jtr)

⇤�
. (9.9)

Denoting henceforth
ft,`( j) := (1� en(`q0t))ken( jt), (9.10)

substituting q = `q0 in the above identity yields

(Dk
`q0

y)( j) = Re
 m

Â
r=1

yr ftr,`( j)+ y0r∂tr ftr,`( j)
�

(9.11)

Lemma 9.2. There exists k = OK⇤,k,m(1) such that for any `� 1 and any j 2 J such that [ j, j+k`q0]⇢ J,

(Dk
`q0

y)( j)⌧K⇤,k,m
k

Â
i=0

ky( j+ i`q0)kR/Z.

Proof. Fix k � 1 to be chosen sufficiently large depending on K⇤,k,m. From (9.8), for `= 1 we have

| ftr,1( j)| (2pm1/2n�k/m)k < n�kk/2m

and
| f 0tr,1( j)| kq0(2pm1/2n�k/m)k�1 +(2pm1/2n�k/m)k < n�kk/2m

and hence

|(Dk
q0

y)( j)| n�kk/2m
m

Â
r=1

|yr|+ |y0r|< mnK⇤�kk/2m.

Let p( j) denote the closest integer to y( j). From the triangle inequality and (9.5) it follows that

|(Dk
q0

p)( j)|< mnK⇤�kk/2m +
2k

T

as long as { j, j+q0, . . . , j+ kq0}⇢ J. Taking k = b4mK⇤/kc+1, the right hand side is smaller than 1.
Since the numbers (Dk

q0
p)( j) are integers, it follows that

(Dk
q0

p)( j) = 0

for all j such that { j, j+q0, . . . , j+ kq0}⇢ J. By repeated application of the above for j running over
progressions j0, j0 +q0, j0 +2q0, . . . with j0 2 J, we deduce that for any j such that [ j, j+ kq0]⇢ J =
[n1,n2] there exists a polynomial Q j of degree at most k�1 such that

p( j+ iq0) = Q j(i) 8 0  i  (n2 � j)/q0.
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Thus we have (Dk
`q0

p)( j) = 0 for all `� 1 and j such that [ j, j+k`q0]⇢ J. Hence, for such j we conclude
by the triangle inequality that

|(Dk
`q0

y)( j)|= |(Dk
`q0

y)( j)� (Dk
`q0

p)( j)| 2k
k

Â
i=0

ky( j+ i`q0)kR/Z

as desired.

Note that kyk2 +ky0k2 � n�1/8. Thus either (1) there exists i such that |y0i|� n�1/16 (with room to
spare) or (2) |y0i|  n�1/16 for all i and there exists i such that |yi|�m n�1/8. In what follows we will
mainly working with the first case (which is significantly harder as one needs to deal with differentials of
order two). We will comment in Remark 9.4 below how to handle the second case. For the rest of the
section, without loss of generality we will assume

|y01|�m n�1/16 (9.12)

On the other hand, by applying Lemma 9.2 to linear combinations of shifts of Dk
`q0

y we can show the
following:

Lemma 9.3. For any positive integers j,L,L0 and ` such that [ j, j+ k`q0 + 4(m� 1)L+ 3L0] ⇢ J, we
have

L0

n

�����y
0
1
�
1� en(2L0t1)

�2�1� en(`q0t1)
�k

m

’
r=2

�
1� en(L(t1 � tr))

�2�1� en(L(t1 + tr))
�2

�����

⌧K⇤,k,m
k

Â
i=1

4(m�1)

Â
a=0

3

Â
b=0

ky( j+ i`q0 +aL+bL0)kR/Z. (9.13)

We defer the proof of Lemma 9.3 for now and conclude the proof of Proposition 9.1.
Recall from (9.5) that J = [n1,n2] ⇢ [n] has length |J| � n/T 6. Consider any ` � 1 such that

k`q0  |J|/2. From Lemma 2.8 we can choose L ⇣ n/T 7 = o(|J|) such that
����

L · (tr ± tr0)
2pn

����
R/Z

�m
l
T 7

for all distinct r,r0 2 [m] and all choices of the signs.
Furthermore, because t1 is smooth, we can choose L0 such that n/T 8  L0 = o(|J|) and

|1� en(2L0t1)|> l 2 = w(n�1/4m).

From these choices of `,L and L0, together with (9.12), we have that the left hand side in (9.13) is at least

�m n�1/16l 4T�16(l/T 7)4(m�1)|1� en(`q0t1)|k.

On the other hand, from (9.4) and the Cauchy–Schwarz inequality we have
n

Â
j=0

ky( j)kR/Z 
p

nT , (9.14)
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and it follows that that we can choose j so that the right hand side in Equation (9.13) is OK⇤,k,m(T 1/2n�1/2).
Thus,

|1� en(`q0t1)| n�1/3k (9.15)

and this holds for any integer `� 1 such that `kq0  |J|/2. Applying Claim 2.9, we conclude

kq0t1/2pnkR/Z = n�1 logO(1) n.

But since we chose q0  nk this contradicts the assumption that t1 is nk -smooth. This concludes the proof
of Proposition 9.1 and hence of Theorem 3.1.

Proof of Lemma 9.3. We begin by recording some identities. Recall the definition of ft,`( j) from (9.10).
To lighten notation we will suppress the subscript ` as it is fixed throughout the proof. First note that

gt( j) := ∂t ft( j) =
p
�1


j
n
� k`q0

n
�
1� en(`q0t)

��1
�

ft( j). (9.16)

In particular, we have
ft( j) = f�t( j) , gt( j) =�g�t( j)

and from (9.11) we can express

1
2
(Dk

`q0
y)( j) =

m

Â
r=1

yr ftr( j)+ yr f�tr( j)+ y0rgtr( j)� y0rg�tr( j). (9.17)

As in the proof of Lemma 3.6 we will eliminate terms in the above sum by repeated application of the
twisted second-order differencing operators defined in (3.6). For a positive integer L and t0 2 R we have

Dt0 ft( j) =
2

Â
a=0

✓
2
a

◆
(�1)aen(�aLt0) ft( j+aL)

= ft( j)
2

Â
a=0

✓
2
a

◆
(�1)aen(aL(t � t0))

=
⇥
1� en(L(t � t0))

⇤2 ft( j).

Note that the sequences ft( j) from that proof differ from the present definition by a factor (1�en(`q0t))k.
This is a key point: whereas there our aim was to lower bound Â j |y( j)|2, here we have the more difficult
task of lower bounding Â j ky( j)k2

R/Z (which we are doing by contradiction, starting from the assumption
(9.4)). We are now in a similar position as in the proof of Lemma 3.6 thanks to Lemma 9.2 and the
application of the differencing operators Dk

`q0
, which is responsible for the extra factor (1� en(`q0t))k.

Differentiating the above expression for Dt0 ft( j) yields

Dt0gt( j) =
⇥
1� en(L(t � t0))

⇤2∂t ft( j)+
p
�1

L
n

ft( j)
2

Â
a=0

✓
2
a

◆
(�1)aa · en(aL(t � t0))

=
⇥
1� en(L(t � t0))

⇤2∂t ft( j)�2
p
�1

L
n
⇥
1� en(L(t � t0))

⇤
en(L(t � t0)) ft( j)

=
⇥
1� en(L(t � t0))

⇤2⇥gt( j)+bL(t � t0) ft( j)
⇤

(9.18)
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with bL(s) :=�2
p
�1 L

n en(Ls)/[1� en(Ls)], as in (3.8). In particular,

Dt0 ft0( j) = Dt0gt0( j) = 0. (9.19)

Now for general t 2 R, two applications with t0 and �t0 yield

Dt0 �D�t0 ft( j) =
⇥
1� en(L(t � t0))

⇤2⇥1� en(L(t + t0))
⇤2 ft( j) (9.20)

and
Dt0 �D�t0gt( j) = ∂t

h⇥
1� en(L(t � t0))

⇤2⇥1� en(L(t + t0))
⇤2 ft( j)

i
. (9.21)

For compactness, we write
dL(s) := 1� en(Ls)

for the remainder of the proof. Applying the above identities with t0 = tm and t running over tr, r 2 [m�1],
we obtain

1
2

⇣
Dtm �D�tm �Dk

`q0
y
⌘
( j)

=
m�1

Â
r=1

�
yr + y0r∂tr

�
dL(tr � tm)2dL(tr + tm)2 ftr( j)+dL(�tr � tm)2dL(�tr + tm)2 f�tr( j)

�
.

Iteratively applying Dtr �D�tr for r = m�1,m�2, . . . ,2, we get

1
2
�
Dt2 �D�t2 � · · ·�Dtm �D�tm �Dk

`q0
y
⌘
( j)

= y1 ft1( j)
m

’
r=2

dL(t1 � tr)2dL(t1 + tr)2 + y1 f�t1( j)
m

’
r=2

dL(�t1 � tr)2dL(�t1 + tr)2

+ y01∂t


ft( j)

m

’
r=2

dL(t � tr)2dL(t + tr)2
�

t=t1
+ y01∂t


f�t( j)

m

’
r=2

dL(�t � tr)2dL(�t + tr)2
�

t=t1
,

and we have passed from a sum of 4m terms (see (9.17)) to a sum of 4. Now we will reduce from four
terms to one. Let L0 be a positive integer and define D0

t0 as in (3.6) with L0 in place of L. For any univariate
function G we have

D0
t0 ft0( j)G(t0) = G(t0)D0

t0 ft0( j) = 0 ,
D0

t0∂t
⇥

ft( j)G(t)
⇤

t=t0
= G(t0)D0

t0gt0( j)+G0(t0)D0
t0 ft0( j) = 0

(using (9.19)). Set

G(t) :=
m

’
r=2

dL(t � tr)2dL(t + tr)2
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for which we have G(t) = G(�t). Application of D0
�t1 to the previous expression for 1

2(Dt2 �D�t2 � · · ·�
Dtm �D�tm �Dk

`q0
y)( j) eliminates the second and fourth terms on the right hand side, leaving

1
2

⇣
D0
�t1 �Dt2 �D�t2 � · · ·�Dtm �D�tm �Dk

`q0
y
⌘
( j)

= y1 ft1( j)dL0(2t1)2G(t1)+ y01D0
�t1∂t

h
ft( j)G(t)

i

t=t1

= y1 ft1( j)dL0(2t1)2G(t1)+ y01gt1( j)dL0(2t1)2G(t1)+ y01 ft1( j)dL0(2t1)2G0(t1)

= ft1( j)


y1dL0(2t1)2G(t1)+ y01
p
�1

j
n

dL0(2t1)2G(t1)

� y01
p
�1

k`q0

n
�
1� en(`q0t1)

��1dL0(2t1)2G(t1)+ y01dL0(2t1)2G0(t1)
�
,

where in the final line we substituted (9.16). Now since ft1( j+L0) = en(L0t1) ft1( j), we can eliminate all
but the second term inside the brackets by multiplying both sides by en(L0t1) and subtracting the result
from the equation with j replaced with j+L0. We thus obtain

1
2

⇣
D0
�t1 �Dt2 �D�t2 � · · ·�Dtm �D�tm �Dk

`q0
y
⌘
( j+L0)

� en(L0t1)⇥
1
2

⇣
D0
�t1 �Dt2 �D�t2 � · · ·�Dtm �D�tm �Dk

`q0
y
⌘
( j)

= y01
p
�1

L0

n
dL0(2t1)2G(t1) ft1( j).

Recalling our definitions of dL0(2t1),G(t1), and ft1( j), the claimed bound now follows from taking the
modulus of both sides, applying the triangle inequality to the left hand side, and applying Lemma 9.2
applied at various shifts of y .

Remark 9.4. For the case that |y0i|  n�1/16 and |y1| �m n�1/8 in place of (9.12), we can show the
following simpler analogue of Lemma 9.3 (see also [DNN, Lemma 10.5] for a bivariate variant).

Lemma 9.5. For any positive integers j,L,L0 and ` such that [ j, j+ k`q0 + 4(m� 1)L+ 3L0] ⇢ J, we
have

L0

n

�����y1
�
1� en(`q0t1)

�k
m

’
r=2

�
1� en(L(t1 � tr))

�2�1� en(L(t1 + tr))
�2

�����

⌧K⇤,k,m
k

Â
i=1

4(m�1)

Â
a=0

3

Â
b=0

ky( j+ i`q0 +aL+bL0)kR/Z+O(2kn�1/16). (9.22)

Here the additional bound 2kn�1/16 on the RHS is caused by applying triangle inequalities basing on
(9.9) (where we use |y0i|⌧ n�1/16 for all i to bound all the terms involving ∂t by O(n�1/6) and move to
the right hand side during the differential process). The proof of Lemma 9.5 can be carried out exactly
the same way we proved Lemma 9.3, and in fact it is simpler because we don’t have to take care any of
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the terms involving ∂t because we started with the variant of (9.9) without the ∂t term. From Lemma 9.5,
by using the assumption that |y1|� n�1/8 we can deduce (9.15), and hence conclude Proposition 9.1 the
same way.

Before concluding this section, as our approach to prove Proposition 9.1 starts with (9.5), by passing
to subintervals of J when needed (where we note that at least one of such subintervals still has length
W(n/T 6)), we obtain the following analogue of Theorem of Theorem 3.1 (where we recall f j(x) from
(9.1)).

Theorem 9.6 (Decay of the truncated characteristic function). Let t = (t1, . . . , tm) 2 Rm be nk -smooth
and l -spread for some k 2 (0,1) and w(n�1/8m) l < 1. Then for any index set I ⇢ [n] with |I|= O(1),
and for any fixed K⇤ < • and any v 2 R4m with n�1/8  kvk2  nK⇤ the following holds for sufficiently
large n

’
j/2I

|f j(x)| exp(� log2 n).

10 Complex coefficients and extensions

10.1 Theorem 1.2 when x is complex-valued

In the case that the random coefficients are complex-valued, our polynomial can be written as

Pn(x) =
n

Â
k=�n

(xk +
p
�1x 0

k)(cos(kx)+
p
�1sin(kx))

= x0 +
p
�1x 0

0 +
n

Â
k=1

(xk +x�k)cos(kx)� (x 0
k �x 0

�k)sin(kx)

+
p
�1

n

Â
k=1

(x 0
k +x 0

�k)cos(kx)+(xk �x�k)sin(kx)

where xk,x 0
k are iid copies x . By limiting to only the imaginary part, the corresponding random walk of

interest is

Tn(t) :=
n

Â
j=1

x (1)
j u j +x (2)

j v j

where x (1)
j ,x (2)

j are independent sub-Gaussian of mean zero and variance one with the property that

x (1)
j � x

0(1)
j ,x (2)

j � x
0(2)
j have the same distribution (here x

0(1)
j and x

0(2)
j are independent copies of x (1)

j

and x (2)
j respectively), and where for a fixed tuple t = (t1, . . . , tm) 2 Rm and j 2 Z we denote the vectors

(see also (3.1))

u j = u j(t) :=
�
a j , ( j/n)b j

�
, v j = v j(t) :=

�
b j ,�( j/n)a j

�
. (10.1)

Because this random walk is only on R2m with the steps u j,v j compensating each other, we can establish
all of our previous results under the following weakly spreading condition.
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Definition 10.1. For m � 2 and l > 0, we say t = (t1, . . . , tm) 2 Rm is weakly l -spread if
���

tr � tr0
2pn

���
R/Z

� l
n

81  r < r0  m.

Under this condition we have the following analog of Theorem 3.1.

Theorem 10.2 (Decay of the characteristic function). Let t = (t1, . . . , tm) 2 Rm be nk -smooth and weakly
l -spread for some k 2 (0,1) and w(n�1/8m) l < 1. Then for any fixed K⇤ < • and any x 2 R2m with
n�1/8  kxk2  nK⇤ ,

|Ee(hTn(t),xi)| exp(� log2 n)

for all n sufficiently large depending on K⇤,m,k, and the sub-Gaussian constants.

We next sketch the main idea to prove this result. Fix a vector n�1/8  k(y,y0)k2  nK⇤ , recalling
(9.3), we further denote

y 0( j) := y 0( j; t) = hb j,yi� ( j/n)ha j,y0i=
m

Â
r=1

yr sin( jtr/n)+ y0r( j/n)cos( jtr/n) . (10.2)

The main proposition is the following analog of Proposition 9.1.

Proposition 10.3. Let t = (t1, . . . , tr) 2 Rm be nk -smooth and assume that t is weakly l -spread for some
k 2 (0,1) and w(n�1/8m) l < 1. Then

n

Â
j=0

ky( j)k2
R/Z+

n

Â
j=0

ky 0( j)k2
R/Z > log4 n.

We next sketch the proof, omitting most details. We follow the proof of Proposition 9.1 with some
simplifications, that instead of focusing on (Dk

`q0
y)( j) as the real part of Âm

r=1 yr f j,`(tr)+ y0r∂tr ftr,`( j)
in (9.11) we can study the sum directly. This would allow use to shorten the differential process
significantly, namely in the proof of Lemma 9.3 we will only need to consider D0

t1 �Dt2 � · · ·�Dtm (without
negative perturbations), leading to a simpler multiplicative factor ’m

r=2
�
1� en(L(t1 � tr))

�2 (without
(1� en(L(t1 + tr)))2), hence justifying the weakly spreadness condition.

Finally, one can similarly prove Lemma 3.6, Theorem 3.2, and Theorem 3.4 for the random walk
Tn(t) above under the weakly spreadness condition on t. Using these results, we can now conclude the
proof of Proposition 2.5 for the complex-valued case as in Section 5 where we can now allow the xai to
vary entirely over [�p,p].

10.2 Other extensions

As noted in Remark 1.3, with minor modifications our arguments extend Theorem 1.2 to Pn of the
general form Pn(x) = |Jn|�1/2 Â j2Jn x je( jx) for any sequence of finite intervals Jn ⇢ Z with |Jn|! •. By
multiplying by the phase e(�n0x), which does not change the minimum modulus, where J = [n0,n1], one
sees it suffices to consider the form

Pn(x) =
1p

n+1

n

Â
j=0

x je( jx). (10.3)
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Our arguments also extend to another well-studied class of trigonometric polynomials, of the form

Pn(x) =
1p

n+a

p
ax0 +

n

Â
j=1

x j cos( jx)+h j sin( jx)
�
, (10.4)

where the variables x j,h j are iid copies of a random variable x , and a > 0 is a fixed parameter. We note
that for this model it is natural to focus only on the complex x case as otherwise Pn is likely to have roots.

Theorem 10.4. Theorem 1.2 extends to hold for Pn of the forms (10.3) and (10.4).

For the model (10.4), by combining with Theorem 1.1 we obtain the following:

Corollary 10.5. The limit (1.6) holds also for the model (10.4) with x a complex variable as in Theo-
rem 1.2, and a = 1/2.

Proof. From Theorem 10.4 it suffices to verify that (1.6) holds under PNR(0,1). Note that under this
measure, x j, j � 0 and h j, j � 1 are iid standard complex Gaussians. Set z0 = x0 and for 1  j  n set
z j := 1p

2
(x j +h j), z� j := 1p

2
(x j �h j). From the rotational invariance of the complex Gaussian law it

follows that z j,�n  j  n are iid standard complex Gaussians. Then one verifies that with the change
of variables, (10.4) becomes

Pn(x) =
1p

2n+2a

n

Â
j=�n

z je( jx).

The claim now follows from the complex Gaussian case of Theorem 1.1 and the choice a = 1/2.

We comment on the minor modifications of the proof of Theorem 1.2 that are needed to obtain Theo-
rem 10.4. The probabilistic Lemmas 2.1 and 2.4 follow from straightforward modifications. Lemma 2.2
is deterministic and does not depend on the specific form of Pn after conditioning on the good event. The
remainder of the argument only depends on the specific model through the the matrix W in the definition
(3.2) of the random walks Sn(t), and the only proofs that need modification are those of Lemma 3.6 and
Theorem 3.1. For the model (10.4), we may condition on x0 and h j, j � 1. As the trigonometric series is
now real, we only need to consider a 2m-dimensional walk of the form

n

Â
j=1

x jv j

with notation as in (10.1). The n⇥m matrix V with rows v j is a submatrix of W[�n,n] as defined in (3.1)
one checks that the argument for Lemma 3.6 yields the same bound on the smallest singular value of V .
Moreover, the proof of Theorem 3.1 began by reduction of the problem to the submatrix V (see (9.3)), so
the result also holds in this case.

A Separation of near-minimizers

In this appendix we prove Lemma 2.2, restated below, along similar lines to the proof of [YZ, Lemma
2.11].
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Lemma A.1. On the event G2(K0/2) we have

(i) If Aa and Aa+1 hold, then

Ya 2 [
p
N
� p

N logK0/4 n
,

p
N
].

(ii) Furthermore, Aa and Aa 0 cannot hold simultaneously as long as

2  |a 0 �a| n
log3K0 n

.

Proof. We first show (i). Assume that Aa holds and Ya 2 [0, p
N � p

N logK0/4 n
). Then

|Fa(xa +p/N)|= |Za/n+(p/N �Ya)P0(xa)|� |(p/N �Ya)P0(xa)|� |Za |/n

� 1
N logK0/4 n

⇥ n
logK0/2 n

� logn
n

� logK0/4 n
n

� logn
n

� logK0/4 n
n

.

Now for x 2 Ia+1 and under G2(K0/2)

|Fa+1(x)�Fa(x)| |Fa+1(x)�P(x)|+ |Fa(x)�P(x)|
⌧ N�2 sup

x2[�p,p]
|P00(x)|

⌧ log3K0 n
n2 .

So if x 2 Ia+1 then

|Fa+1(x)|� |Fa(x)|� |Fa+1(x)�Fa(x)|
� |Fa(xa +p/N)|� |Fa+1(x)�Fa(x)|

� logK0/4 n
n

,

where |Fa(x)|� |Fa(xa +p/N)| because xa +p/N is closer than x to the minimizer xa +Ya . The above
implies that |Za+1|= n|Fa+1(Ya+1 + xa+1)|> logn and hence that Aa+1 does not hold.

We turn to prove (ii). For x 2 Ia 0 we have

|Fa(x)�Fa 0(x)| |Fa(x)�P(x)|+ |Fa 0(x)�P(x)|
⌧ (xa � xa 0)2 sup

x2[�p,p]
|P00(nx)|

 (xa � xa 0)2n2 logK0/2 n.
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On the other hand, on Aa , for all x 2 Ia 0

|Fa(x)|� |Fa(xa 0 �p/N)|� |Fa(xa 0 �p/N)�Fa(Ya)|� |Fa(Ya)|
� |(xa 0 �p/N �Ya)P0(xa)|� |Za |/n

� n|xa 0�1 � xa | log�K0/2 n� logn
n

� n|xa 0�1 � xa | log�K0/2 n.

Thus for all x 2 Ia 0 ,

|Fa 0(x)|� |Fa(x)|� (xa � xa 0)2n2 logK0/2 n

� |xa 0�1 � xa |n log�K0/2 n� (xa � xa 0)2n2 logK0/2 n

� n|xa 0�1 � xa |(log�K0/2 n�4|xa 0�1 � xa |n logK0/2 n)

� n|xa 0�1 � xa |(log�K0/2 n�4n�1 log3K0/2 n)

� |xa 0�1 � xa |n log�K0/2 n � logK0/2 n
n

,

implying |Za 0 |> logn and hence that Aa 0 does not hold.
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