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Abstract. For a random matrix of entries sampled independently from a fairly general distribution in Z we
study the probability that the cokernel is isomorphic to a given finite abelian group, or when it is cyclic. This
includes the probability that the linear map between the integer lattices given by the matrix is surjective.
We show that these statistics are asymptotically universal (as the size of the matrix goes to infinity), given
by precise formulas involving zeta values, and agree with distributions defined by Cohen and Lenstra, even
when the distribution of matrix entries is very distorted. Our method is robust and works for Laplacians of
random digraphs and sparse matrices with the probability of an entry non-zero only n�1+".

1. Introduction

For square matrices Mn⇥n of random discrete entries, the problem to estimate the probability pn of Mn⇥n

being singular has attracted quite a lot of attention. In the 60’s Komlós [16] showed pn = O(n�1/2) for entries
{0, 1} with probability each 1/2. This bound was significantly improved by Kahn, Komlós, and Szemerédi
in the 90’s to pn  0.999n for ±1 entries. About ten years ago, Tao and Vu [30] improved the bound for ±1
entries to pn  (3/4+ o(1))n. The most recent record is due to and Bourgain, Vu and Wood [3] who showed
pn  ( 1p

2
+ o(1))n for ±1 entries and gave exponential bounds for more general entries as well. We also refer

the reader to [27] by Rudelson and Vershynin for implicit exponential bounds. For sparse matrices having
entries 0 with probability 1 � ↵n, Basak and Rudelson [1] proved pn  e�c↵nn for ↵n � C log n/n and for
rather general entries, including the adjacency matrices of sparse Erdős-Rényi random graphs.

When Mn⇥n has integral entries, these results imply that with very high probability the linear map
Mn⇥n : Zn ! Zn is injective. Another important property of interest is surjectivity, it seems natural to
wonder if with high probability Mn⇥n : Zn ! Zn is surjective (see [18, 21])? However, recent results of the
second author show that the surjectivity probability goes to 0 with n (e.g. that is implied by [34, Corollary
3.4]). The main result of this paper will imply that when the matrix has more columns than rows, e.g.
Mn⇥(n+1) : Z

n+1 ! Zn, we have surjectivity with positive probability strictly smaller than one.
We make the following definition to restrict the types of entries our random matrices will have. We say a

random integer ⇠n is ↵n-balanced if for every prime p we have

max
r2Z/pZ

P(⇠n ⌘ r (mod p))  1� ↵n. (1)

Our main result tells us not only whether Mn⇥(n+u) is surjective, but more specifically about the cokernel
Cok(Mn⇥(n+u)), which is the quotient group Zn/Mn⇥(n+u)(Z

n+u) and gives the failure of surjectivity.

Theorem 1.1. For integers n, u � 0, let Mn⇥(n+u) be an integral n⇥ (n+u) matrix with entries i.i.d copies

of an ↵n-balanced random integer ⇠n, with ↵n � n�1+"
and |⇠n|  nT

for any fixed parameters 0 < " < 1
and T > 0 not depending on n. For any fixed finite abelian group B and u � 0,

lim
n!1

P
⇣
Cok(Mn⇥(n+u)) ' B

⌘
=

1

|B|u|Aut(B)|

1Y

k=u+1

⇣(k)�1. (2)

Here ⇣(s) is the Riemann zeta function. In particular, as n ! 1, the map Mn⇥(n+1) : Zn+1 ! Zn is
surjective with probability approaching

Q1
k=2

⇣(k)�1 ⇡ 0.4358. The one extra dimension mapping to Zn

brought the surjectivity probability from 0 to ⇡ 0.4358.
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Note that the product
Q1

k=u+1
⇣(k)�1 in (2) is non-zero for u � 1, but ⇣(1)�1 = 0. So Theorem 1.1

shows that every possible finite cokernel appears with positive probability when u � 1. (Note that when the
matrix has full rank over R, the cokernel must be finite.) Theorem 1.1 is a universality result because these
precise positive probabilities do not depend on the distribution of ⇠n, the random entries of our matrices.
As a simple example, if we take an n ⇥ (n + 1) random matrix with entries all 0 or 1, whether we make
entries 0 with probability 1

100
, 1

2
, or 1� n�8/9, we obtain the exact same asymptotic probability of the map

Zn+1 ! Zn being surjective. If we take entries from {�17, 0, 6, 7} with respective probabilities 2

3
, 1

n ,
1

6
� 1

n ,
1

6
,

the asymptotic probability of surjectivity is unchanged. Our theorem allows even more general entries as
well.

Further, we prove the following.

Theorem 1.2. Let Mn⇥(n+u) be as in Theorem 1.1. We have

lim
n!1

P
⇣
Cok(Mn⇥(n+u)) is cyclic

⌘
=

Y

p prime

(1 + p�(u+1)(p� 1)�1)
1Y

k=u+2

⇣(k)�1.

Note that even when u = 0, the limiting probability here is positive. For u = 0, this probability has been
seen in several papers studying the probability that a random lattice in Zn is co-cyclic (gives cyclic quotient),
in cases when these lattices are drawn from the nicest, most uniform distributions, e.g. uniform on lattices
up to index X with X ! 1 [4, 23, 24], or with basis with uniform entries in [�X,X] with X ! 1 [29].
Stanley and Wang have asked whether the probability of having cyclic cokernel is universal (see [29, Remark
4.11 (2)] and [28, Section 4]). Theorem 1.2 proves this universality, showing that the same probability of
cocylicity occurs when the lattice is given by n random generators from a rather large class of distributions,
including ones that are rather distorted mod p for each prime p.

Moreover, we show the same results hold if we replace Cok(Mn⇥(n+1)) with the total sandpile group of an
Erdős-Rényi simple random digraph, proving a conjecture of Koplewitz [17, Conjecture 1] (see Theorem 1.6).
This allows some dependence in the entries of our random matrices, since the diagonal of the graph Lapla-
cian depends on the other entries in the matrix. In particular, this says that with asymptotic probabilityQ1

k=2
⇣(k)�1 ⇡ 0.4358 an Erdős-Rényi random digraph is co-Eulerian, which Farrell and Levine [8] define

to be any of several equivalent definitions including a simple condition for when chip-firing configurations
on the graph stabilize and the condition that recurrent states in the rotor-router model are in a single or-
bit. In contrast to the distribution of sandpile groups of Erdős-Rényi random graphs, where for each finite
abelian group B, the sandpile group is B with asymptotic probability 0 [33, Corollary 9.3], for Erdős-Rényi
random digraphs, we show that each finite abelian group appears with positive asymptotic probability as the
total sandpile group. Moreover, the universality in our theorems proves that all of these positive limiting
probabilities do not depend on the edge density of the random graph.

Previous work of the second author [34, Corollary 3.4] determined the probabilities of theseCok(Mn⇥(n+u))
having any given Sylow p-subgroup for a fixed prime p or finite set of primes p. The two significant advances
of this work over previous work are (1) that we determine the distribution of the entire cokernel, not just
the part of it related to a finite set of primes, and (2) that we allow our random matrix entries to be more
distorted mod p as n increases, for example allowing sparse matrices where entries are non-zero with proba-
bility n�1+✏. Our hypothesis that ↵n � n�1+" is asymptotically best possible, in terms of the exponent of
n (see the discussion following Equation (4)).

Our proofs require considering primes in three size ranges separately, and in each range we use di↵erent
methods. Our works builds on methods from previous work, including that of Tao and Vu [30, 31, 32], the
first author and Vu [22], Maples [19], the second author [33, 34], and the first author and Paquette [21].
The key ideas original to this paper are in our treatment of large primes, where we prove a result that lifts
structured normal vectors from characteristic p to characteristic 0, crucially for p in a range much smaller
than nn/2.

1.3. Further results and connections to the literature. We also show asymptotic almost sure surjec-
tivity when u ! 1 with n, proving a conjecture of Koplewitz [18, Conjecture 2].
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Theorem 1.4. Let Mn⇥(n+u) be as in Theorem 1.1. Then

lim
min(u,n)!1

P
⇣
Cok(Mn⇥(n+u)) ' {id}

⌘
= 1. (3)

Theorem 1.1 has several nice corollaries, including the u � 1 cases of Theorem 1.2 and the following.

Corollary 1.5. For any fixed u � 0

lim
n!1

P
�
Mn⇥(n+u) : Z

n+u ! Zn
is surjective

�
=

1Y

k=u+1

⇣(k)�1.

Also, for any fixed u � 1

lim
n!1

P
⇣
det(Mn⇥(n+u)) is square-free

⌘
=

Y

p prime

(1 + p�u(p� 1)�1)
1Y

k=u+1

⇣(k)�1.

To give a heuristic for why inverse zeta values arise in these probabilities, note that Mn⇥(n+1) is surjective
if and only if its reduction to modulo p is surjective for all primes p. We then make two idealized heuristic
assumptions on Mn⇥(n+1). (i) (uniformity assumption) Assume that for each prime p the entries of Mn⇥(n+1)

are uniformly distributed modulo p. In this case, a simple calculation gives the probability for Mn⇥(n+1)

being surjective modulo p is
Qn

j=2
(1 � p�j)(1 � p�n�1). (ii) (independence assumption) We next assume

that the statistics of Mn⇥(n+1) reduced to modulo p are asymptotically mutually independent for all primes
p. Under these assumptions, as n ! 1, the probability that Mn⇥(n+1) is surjective would be asymptotically
the product of all of the surjectivity probability modulo p, which leads to the number

Q1
k=2

⇣(k)�1 as seen.
The matrices in this paper do not have to satisfy either assumption, and indeed they can violate them
dramatically. For example, if the matrix entries only take values 0 and 1, then they cannot be uniformly
distributed mod any prime > 2, and the matrix entries mod 3 are not only not independent from the entries
mod 5, but they are in fact determined by the entries mod 5. The work of this paper is in showing that even
for rather general random matrices, universality holds and gives the same cokernel distributions as for the
simplest random matrices.

For our Theorem 1.1, we remark that for u � 1, the limiting probabilities |B|�u|Aut(B)|�1
Q1

k=u+1
⇣(k)�1

in Theorem 1.1 do sum to 1 (use [6, Corollary 3.7 (i)] with s = u and k = 1). This gives, for each u � 1,
a probability distribution on finite abelian groups. Cohen and Lenstra [6] introduced these distributions
to conjecture that the u = 1 distribution is the distribution of class groups of real quadratic number fields
(except for the Sylow 2-subgroup). Friedman and Washington [11] later proved that if Mn⇥n has independent
entries taken from Haar measure on the p-adics Zp, then for a finite abelian p-group B we have

lim
n!1

P (Cok(Mn⇥n) ' B) = |Aut(B)|�1

1Y

k=u+1

(1� p�k).

The limit is proven by giving an explicit formula for the probability for each n. A similar argument shows
that for Mn⇥(n+u) with independent entries taken from Haar measure on bZ, the profinite completion of Z
(these are exactly the matrices with entries that satisfy the two heuristic assumptions above), we have for
every finite abelian group B that

lim
n!1

P
�
Cok(Mn⇥(n+u)) ' B

�
= |B|�u|Aut(B)|�1

1Y

k=u+1

⇣(k)�1.

This is because as bZ =
Q

p Zp, this Haar measure is the product of the p-adic Haar measures. Building on
work of Ekedahl [7], Wang and Stanley [29] find that the cokernels (equivalently, the Smith normal form) of
random n ⇥m matrices for fixed n and m and independent, uniform random integer entries in [�X,X] as

X ! 1 match those for entries from Haar measure on bZ. While this agreement is easy to see for the Sylow
subgroups at any finite set of primes (because X will eventually become larger than all of the primes), it
was a substantial problem to prove this agreement for all primes at once.

Our approach to proving Theorem 1.1 and the u = 0 case of Theorem 1.2 involves considering three classes
of primes (small, medium, and large) separately, and for each class the argument is rather di↵erent. For
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small primes, we follow the general approach of [34]: finding the moments (which are an expected number of
surjections) by dividing the a priori possible surjections into classes and obtaining, for each class, a bound
on the number of possible surjections in it and a bound of the probability that any of those surjections are
realized. Our advance over [34] is that we can allow sparser matrices, and to obtain this improvement we
have to both refine the classes into which we divide surjections and the bounds we have for the probabilities
for each class. For medium primes, our starting point is a theorem from [21], which carries out ideas of
Maples [19] to show that, modulo a prime, under likely conditions, each time we add a column to our matrix,
the probability that the new column is in the span of the previous columns (mod a prime) is near to the
probability for a uniform random column. Our contribution is to show the bounds on “likely conditions”
and “nearness of probability” can be turned into a bound on how the ranks of the final matrix compare to
the ranks of a uniform random matrix. We do this via a rather general approach using a coupling of Markov
chains. For large primes, our approach is new. We cannot control whether the rank of our matrix drops
by 1 modulo any particular large prime, but considering columns being added one at a time, once the rank
drops by 1 modulo a prime, we show that it is not likely to drop again. We do this by showing that the
column spaces are unlikely to have a normal vector with many of its coe�cients in a generalized arithmetic
progression mod p, and then proving a new inverse Erdős-Littlewood-O↵ord result over finite fields for sparse
random vectors based on the method from [22] by the first author and Vu. However, the probabilities of
structured normal vectors mod p are still too large to add up over all p, and a key innovation of the paper

is that for primes > en
1�"/3

we show that having a non-zero structured normal vector mod p is equivalent
to having one in characteristic 0. Fortunately, the bounds for p up to which we can sum the probabilities of
structured normal vectors mod p, and the bounds for p where we can lift structured normal vectors overlap,
and this allows us to control the probability of structured normal vectors at all primes.

In contrast to the result of Corollary 1.5, in the u = 0 case we are unable to determineP (det(Mn⇥n) is square-free),
though from [34, Corollary 3.4] it follows that

lim sup
n!1

P (det(Mn⇥n) is square-free)  ⇣(2)�1
Y

k�2

⇣(k)�1, (4)

and we would conjecture the limit is equal to this value. We can obtain the limiting probability that
Cok(Mn⇥n) is the product of a given finite abelian group B and a cyclic group (see Theorem 2.4), and these
are currently the most general classes of abelian groups for which we can obtain universality results for n⇥n
matrices. Even for nicely distributed matrix entries and fixed n, the question of how often det(Mn⇥n) is
square-free is very di�cult (see [26, 2]).

Our main results work for ↵n � n�1+", which is asymptotically best possible, in terms of the exponent of
n. If the matrix entries are 0 with probability at least 1� log n/(n+u), then the matrix Mn⇥(n+u) has a row
of all 0’s with non-negligible probability, and thus cannot possibly be surjective or even have finite cokernel.
We also refer the reader to [21] for some partial results where ↵n is allowed to be as small as O(log n/n) and
u is comparable to n. Much of the previous work that we build upon has required the matrix entries to be
non-zero with probability bounded away from 0 as n ! 1. It is perhaps surprising that even as the matrices
have entries being 0 more and more frequently, the asymptotic probability that Mn⇥(n+1) is surjective does
not change from ⇡ .4358 as long as ↵n � n�1+".

Another advantage of our method (compared to existing results in the literature on classical random
matrix theory) is that the bound on the matrix entries can be as large as any polynomial nT of n. This can
be relaxed somewhat by letting T ! 1 slowly, but it cannot be lifted entirely as the example of Koplewitz
shows [18, Section 4.4] (see also the discussion after Lemma 3.1).

We now explain in more detail the extension of our results to a natural family of random matrices
of dependent entries, namely to the Laplacian of random digraphs. More generally, let M = Mn⇥n =
(xij)1i,jn be a random matrix where xii = 0 and its o↵-diagonal entries are i.i.d. copies of an integral
random variable ⇠n satisfying (1). A special case here is when M is the adjacency matrix of an Erdős-Rényi

simple random digraph � 2 �!
G(n, q) where each directed edge is chosen independently with probability q

satisfying ↵n  q  1� ↵n. Let LM = (Lij) be the Laplacian of M , that is

Lij =

(
�xij if i 6= j
Pn

k=1
xki if i = j.
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We then denote SM (or S� in the case of digraphs) to be the cokernel of L with respect to the group Zn
0
of

integral vectors of zero entry-sum
SM = Zn

0
/LMZn.

When � is a graph, this group has been called the sandpile group without sink [8] and the total sandpile

group [17] of the graph. The size of this group was has been called the Pham Index [8], and was introduced
by Pham [25] in order to count orbits of the rotor-router operation. We will show that Theorems 1.1 and 1.2
extend to this interesting setting.

Theorem 1.6. Let 0 < " < 1 and T > 0 be given. Let Mn⇥n be a integral n⇥ n matrix with zero diagonal

and o↵-diagonal entries i.i.d copies of an ↵n-balanced random integer ⇠n, with ↵n � n�1+"
and |⇠n|  nT

.

Then for any finite abelian group B,

lim
n!1

P
⇣
SMn⇥n ' B

⌘
=

1

|B||Aut(B)|

1Y

k=2

⇣(k)�1 (5)

and

lim
n!1

P
⇣
SMn⇥n is cyclic

⌘
=

Y

p prime

(1 + (p2(p� 1))�1)
1Y

k=3

⇣(k)�1. (6)

In particular, every finite abelian group B appears with frequency given in (5) as a total sandpile of

the random digraph
�!
G(n, q) with parameter n�1+"  q  1 � n�1+". In a paper about the sandpile (or

chip-firing) and rotor-router models, Holroyd, Levine, Mészáros, Peres, Propp, and Wilson asked if there was
an infinite family of non-Eulerian strongly connected digraphs such that the unicycles are in a single orbit of
the rotor-router operation [13, Question 6.5]. Pham [25] then gave an infinite family with a single orbit, and
asked if the probability of a single orbit for an Erdős-Rényi digraph in fact goes to 1. Koplewitz [17] gave
an upper bound on this probability. We have now shown that the desired graphs with a single rotor-router
orbit occur with asymptotic probability

Q1
k=2

⇣(k)�1 ⇡ 43.58% (matching the upper bound from [17]) among
Erdős-Rényi digraphs. Moreover, for every k, our result gives an explicit positive asymptotic probability for
exactly k orbits.

Farrell and Levine show that this number of orbits is the size of the total sandpile group [8, Lemma 2.9,
Theorem 2.10], and coined the term co-Eulerian for digraphs where the total sandpile group is trivial. Farrell
and Levine also show that for a strongly connected digraph � the algebraic condition S� = {id} is equivalent
to a more combinatorial condition [8, Theorem 1.2], i.e. in this graph a chip configuration � on � stabilizes
after a finite number of legal firings if and only if |�|  |E|� |V |. Further, they prove that minimal length
of a multi-Eulerian tour depends inversely on the size of the total sandpile group [9, Theorem 5], showing
that |S�| measures “Eulerianness” of the graph.

Corollary 1.7. Let 0 < " < 1 be given and let q be a given parameter such that n�1+"  q  1 � n�1+"
.

Then

lim
n!1

P
⇣�!
G(n, q) is co-Eulerian

⌘
=

lim
n!1

P
⇣�!
G(n, q) is strongly connected, non-Eulerian, and co-Eulerian

⌘
=

1Y

k=2

⇣(k)�1.

The corollary follows since
�!
G(n, q) is strongly connected and non-Eulerian asymptotically almost surely.

Although our general method to prove Theorem 1.6 follows the proof method of Theorems 1.1 and 1.2, here
the dependency of the entries in each column vector and the non-identical property of the columns pose new
challenges. Among other things, for the medium primes we will need to prove a non-i.i.d. analog of the result
of [21] that we used in the i.i.d. case. For small primes, when ↵n is constant, our results specialize to those
of Koplewitz [17], who determined the asymptotic probabilities of given Sylow p-subgroups of these total
sandpile groups for finitely many primes p. However, as in our main theorem, we require a further refined
method to deal with smaller ↵n.

Note that for Mn⇥n with general i.i.d. ↵n-balanced integer entries the results of [1] do not apply to
bound the singularity probability. However, a recent result by Paquette and the first author [21] (following
the preprint [19] of Maples) shows that the singularity probability pn can also be bounded in this case by
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e�c↵nn with ↵n � C log n/n (see also Theorem 5.1). We prove the same bound for the singularity of digraph
Laplacians in Corollary 8.16.

1.8. Outline of the paper. In Section 2, we state our results for each class of primes, and show that
Theorems 1.1, 1.2, 1.4, and 1.6 follow from these results. We will present our main arguments for the i.i.d.
case in Sections 3-7. The main arguments for the graph Laplacian case are in Section 8, building on the
treatments in the i.i.d. case.

1.9. Notation. We write P for probability and E for expected value. For an event E , we write Ē for its
complement. We write exp(x) for the exponential function ex. We use [n] to denote {1, . . . , n}. For a given
index set J ⇢ [n] and a vector X = (x1, . . . , xn), we write X|J to be the subvector of X of components
indexed from J . Similarly, if H is a subspace then H|J is the subspace spanned by X|J for X 2 H. For a
vector w = (w1, . . . , wn) we let supp(w) = {i 2 [n]|wi 6= 0}. We will also write X · w for the dot productPn

i=1
xiwi. We say w is a normal vector for a subspace H if X · w = 0 for every X 2 H.

For 0  u  n, the matrix Mn⇥(n�u) is the submatrix of the first n� u columns of Mn⇥n. Sometimes we
will write the Laplacian LM as Ln⇥n, and so Ln⇥(n�u) is the submatrix of the first n � u columns of LM .
We also write Zn

0
/p to denote the set of vectors of zero-entry sum in (Z/pZ)n.

For a finite abelian group G and a prime p, we write Gp for the Sylow p-subgroup of G. For a set P of
primes, we write GP :=

Q
p2P Gp.

Throughout this paper Ci,Ki, ci, �, ⌘, ",�, etc will denote positive constants. When it does not create
confusion, the same letter may denote di↵erent constants in di↵erent parts of the proof. The value of
the constants may depend on other constants we have chosen, but will never depend on the dimension n,
which is regarded as an asymptotic parameter going to infinity. We consider many functions of n and other
parameters, e.g. including u, {⇠i}i,↵, ", T, d, p, q (where for {⇠i}i we mean their probability distributions). We
say “f(n, . . . ) 2 OS(g(n, . . . )),” where S is a subset of the parameters, to mean for any values v1, . . . , vm of
the parameters in S, there is exists a constant K > 0 depending on v1, . . . , vm, such that for all n su�ciently
large given v1, . . . , vm, and all allowed values of the parameters not in S, that |f(n, v1, . . . , vm, . . . )| 
Kg(n, v1, . . . , vm, . . . ).

2. Organization of the proof of Theorems 1.1, 1.2, 1.4 and 1.6

We will be mainly focusing on the i.i.d. case to prove Theorems 1.1, 1.2, and 1.4. The results for the
Laplacian case will be shown in a similar fashion. We prove Theorems 1.1, 1.2, and 1.4 for Mn⇥(n+u) by
checking if the Sylow-p subgroup of Cok(Mn⇥(n+u)) is equal to Bp for each prime p (or is cyclic for each
prime p). The argument will then break up into considering primes in three size ranges with totally di↵erent
treatments.

For small primes, we prove the following generalization of [34, Corollary 3.4] to sparser matrices, which
requires a refinement of the method of [34].

Proposition 2.1 (Small Primes). Let Mn⇥(n+u) be as in Theorem 1.1. Let B be a finite abelian group. Let

P be a finite set of primes including all those dividing |B|. Then

lim
n!1

P
⇣
Cok(Mn⇥(n+u))P ' B

⌘
=

1

|B|u|Aut(B)|
Y

p2P

1Y

k=1

(1� p�k�u).

Proposition 2.1 is a special case of Theorem 4.1, which allows the matrices to be even sparser and have
non-identical entries. This carries the main term of our estimates.

For medium primes, we combine a result of [21] with a comparison theorem on the evolving of the matrix
ranks to obtain the following.

Proposition 2.2 (Medium Primes). There are constants c0, ⌘ > 0 such that the following holds. Let

Mn⇥(n+u) be as in Theorem 1.1. Let p be a prime. Then,

P
⇣
Mn⇥(n+u) mod p is not full rank

⌘
 2p�min(u+1,⌘n) +O(e�c0↵nn) (7)

and

P
⇣
Mn⇥(n+u) mod p has rank  n� 2

⌘
 2p�min(2u+4,⌘n) +O(e�c0↵nn). (8)
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Proposition 2.2 will follow from Theorem 5.1 where we allow the matrices to be sparser. (The big O allows
us to require that n is large enough that ↵n � n�1+" � C0 log n/n.)

Even such a small error bound cannot be summed over all primes, and so for large primes we present a
new approach that considers all large primes together.

Proposition 2.3 (Large Primes). Let d > 0 and let Mn⇥(n+u) and " be as in Theorem 1.1. Then,

P
⇣
8 primes p � ed↵nn : Mn⇥(n+1) mod p has rank at least n

⌘
� 1�Od,T,"(n

�"), (9)

as well as

P
⇣
8 primes p � ed↵nn : Mn⇥n mod p has rank at least n� 1

⌘
� 1�Od,T,"(n

�"). (10)

Proposition 2.3 in proven in Sections 6 and 7, and is the source of the lower bound on ↵n in our theorems.
The heart of the paper is proving the three propositions above, as the main theorems follow simply from

these, as we now show.

Proof of Theorems 1.1 and 1.4. We first prove Theorem 1.4, the case when u ! 1, where we need to
consider only medium and large primes. By Equation (7) of Proposition 2.2, there are c0, ⌘ > 0 such that

P
⇣
Mn⇥(n+u) mod p not full rank for some 2  p  ec0↵nn/2

⌘


X

2pec0↵nn/2

(2p�min(u+1,⌘n) +O(e�c0↵nn))

=O(
1

2min(u,⌘n)
+ e�c0↵nn/2).

Combined with Equation (9) of Proposition 2.3 (applied to d = c0/2) we obtain

P
⇣
Mn⇥(n+u) mod p is full rank for all p � 2

⌘
� 1�OT,"(

1

2min(u,⌘n)
+ e�c0↵nn/2 + n�"),

completing the proof of Equation (3).
We next turn to Equation (2). Let k0 be fixed and u � 1 be fixed. By applying Equation (7) of

Proposition 2.2, for n large enough given ⌘ and u we have

P
⇣
Mn⇥(n+u) mod p is not full rank for some k0  p  ec0↵nn/2

⌘


ec0↵nn/2X

p=k0

(2p�(u+1) +O(e�c0↵nn))

= O(
1

k0
+ e�c0↵nn/2).

Combined with Equation (9) of Proposition 2.3 we obtain

P
⇣
Mn⇥(n+u) mod p is full rank for all p � k0

⌘
� 1�OT,"(

1

k0
+ e�c0↵nn/2 + n�").

Now let k0 be at least as large as the largest prime divisor of |B|, and let P be the collection of primes up
to k0. By Proposition 2.1,

P
⇣
Cok(Mn⇥(n+u))P ' B

⌘
=

1

|B|u|Aut(B)|
Y

pk0

1Y

k=1

(1� p�k�u) + o{⇠i}i,B,u(1). (11)

Putting the two bounds together,

P
⇣
Cok(Mn⇥(n+u)) ' B

⌘
� 1

|B|u|Aut(B)|
Y

pk0

1Y

k=1

(1�p�k�u)�OT,"(
1

k0
+e�c0↵nn/2+n�")+o{⇠i}i,B,u(1).

Taking the limit as n ! 1, we obtain

lim inf
n!1

P
⇣
Cok(Mn⇥(n+u)) ' B

⌘
� 1

|B|u|Aut(B)|
Y

pk0

1Y

k=1

(1� p�k�u)�OT,"(
1

k0
).
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As this is true for any fixed k0, we can take k0 ! 1 to obtain,

lim inf
n!1

P
⇣
Cok(Mn⇥(n+u)) ' B

⌘
� 1

|B|u|Aut(B)|
Y

p

1Y

k=1

(1� p�k�u).

Since P(Cok(Mn⇥(n+u)) ' B)  P(Cok(Mn⇥(n+u))P ' BP ), Equation (11) gives

lim sup
n!1

P
⇣
Cok(Mn⇥(n+u)) ' B

⌘
 1

|B|u|Aut(B)|
Y

pk0

1Y

k=1

(1� p�k�u),

completing the proof of (2). ⇤

When u � 1, the probabilities in Theorem 1.1 sum, over finite abelian groups B, to 1 [34, Lemma 3.2].
From this observation and Fatou’s Lemma, we can conclude that the asymptotic probability of any property
is just the sum over B with that property of the asymptotic probability of B. Thus to deduce Corollary 1.5
and the u � 1 cases of Theorem 1.2, it remains only to sum |B|�u|Aut(B)|�1 over B that are of square-free
order or cyclic, which is straightforward.

The proof of Theorem 1.2 is identical to the proof of Theorem 1.1, using Equations (8) and (10) in place
of Equations (7) and (9), and the fact that Cok(Mn⇥n) is cyclic if and only if for every prime p, the matrix
Mn⇥n mod p has rank at least n� 1. In fact, the proof gives the following.

Theorem 2.4. Let Mn⇥n be as in Theorem 1.1. Let B be a finite abelian group and let k0 be larger than any

prime divisor of |B|, and define CB = {B ⇥ C |C cyclic, p - |C| for 1 < p < k0}, the set of groups di↵ering

from B by a cyclic group with order only divisible by primes at least k0. Then, we have

lim
n!1

P
⇣
Cok(Mn⇥n) 2 CB

⌘
=

1

|Aut(B)|
Y

p<k0
p prime

(1� p�1)
Y

p�k0
p prime

(1 + (p2 � p)�1)
1Y

k=2

⇣(k)�1.

Now we turn to the Laplacian, where we will follow an almost identical outline (corresponding to the case
u = 1 of our i.i.d. model Mn⇥(n+u)). Indeed we will prove Theorem 1.6 by checking if the Sylow-p subgroup
of SM is equal to Bp for each prime p (or is cyclic for each prime p) in three size ranges. We prove the
following proposition in Section 8.

Proposition 2.5. Let Mn⇥n and " be as in Theorem 1.6. There are constants c0, d > 0 such that the

following holds.

• (Small Primes) Let B be a finite abelian group. Let P be a finite set of primes including all those

dividing |B|. Then

lim
n!1

P
⇣
(SMn⇥n)P ' B

⌘
=

1

|B||Aut(B)|
Y

p2P

1Y

k=1

(1� p�k�1). (12)

• (Medium primes) Let p be any prime. Then,

P
⇣
LMn⇥n mod p has rank  n� 2

⌘
 2p�2 +O(e�c0↵nn) (13)

and

P
⇣
LMn⇥n mod p has rank  n� 3

⌘
 2p�6 +O(e�c0↵nn). (14)

• (Large primes) We also have

P
⇣
8 primes p � ed↵nn : LMn⇥n mod p has full rank in Zn

0
/p
⌘
� 1�Od,T,"(n

�"), (15)

as well as

P
⇣
8 primes p � ed↵nn : LMn⇥(n�1)

mod p has rank at least n� 2
⌘
� 1�Od,T,"(n

�"). (16)

The deduction of Theorem 1.6 from the above results is similar to the deduction of Theorem 1.1 and
Theorem 1.2 from Propositions 2.1, 2.2 and 2.3, and hence is omitted.
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3. Odlyzko’s lemma

In this section we give an elementary but extremely useful tool which is a variant of Odlyzko’s lemma [15]
(also [19, Lemma 2.2]). This result will be used in the arguments for small, medium, and large primes. We
will focus on the i.i.d case and refer the reader to Lemma 8.3 for a similar result regarding the Laplacian.

Lemma 3.1. Let F be a field. For a deterministic subspace V of Fn
of dimension d and a random vector

X 2 Fn
with i.i.d. entries taking any value with probability at most 1� ↵n,

P(X 2 V )  (1� ↵n)
n�d.

We give a short proof of this well-known result for completeness.

Proof. Assume that V = Span(H1, . . . , Hd), where Hi = (hi1, . . . , hin), and without loss of generality we
assume the matrix (hij)1i,jd has rank d. Consider the event X = (x1, . . . , xd, xd+1, . . . , xn) 2 V . Because
(hij)1i,jd has rank d, there exist unique coe�cients c1, . . . , cd 2 F such that

(x1, . . . , xd) =
X

i

ci(hi1, . . . , hid).

Hence conditioning on (x1, . . . , xd), if X = (x1, . . . , xd, xd+1, . . . , xn) 2 V then for all d+ 1  j  n

xj =
X

i

cihij .

However the probability of each of these events is at most 1 � ↵n, and so conditioning on (x1, . . . , xd), the
event X 2 V holds with probability at most (1� ↵n)n�d. ⇤

Corollary 3.2. Let X1, . . . , Xn�k be random vectors with i.i.d. entries taking any value with probability at

most 1�↵n. Then the probability that X1, . . . , Xn�k are linearly independent in Fn
is at least 1�↵�1

n (1�↵n)k.

Proof. Let 0  i  n � k � 1 be minimal such that Xi+1 2 span(X1, . . . , Xi). By Lemma 3.1, this event is
bounded by (1� ↵n)n�i. Summing over 0  i  n� k � 1, the probability under consideration is bounded

by
Pn�k�1

i=0
(1� ↵n)n�i < ↵�1

n (1� ↵n)k. ⇤

In all three arguments, Lemma 3.1 (Odlyzko’s lemma) will only su�ce for the easy part of the argument,
and a stronger, Littlewood-O↵ord style bound (Lemma 4.7, Theorem 5.2, Theorem 6.3, Theorem 7.3) will
be required for the harder part of the argument. The details of the Littlewood-O↵ord style bound required
are di↵erent in each argument, and thus are given in the corresponding sections. Note that Odlyzko’s lemma
is too weak to be used alone for our purposes, because it can produce a bound 1 � ↵n, where we require
bounds that go to 0 as n ! 1. In this paper, ↵n is possibly small. If, however, the matrix entries take
values modulo large primes with probability at most 1 � ↵n, and 1 � ↵n ! 0 as n ! 1, then we expect
our arguments can all be considerably simplified and only Odlyzko’s lemma would be necessary (and no
Littlewood-O↵ord style bounds required). For example, such a simplification works to handle the case of
entries chosen uniformly in a interval centered at 0 with size growing at any rate with n.

4. Small Primes

In this section, we prove the following theorem, which generalizes [34, Corollary 3.4] to smaller ↵n and
implies our Proposition 2.1. The method requires refinement from that of [34], and we discuss the di↵erences
below.

Theorem 4.1. Let u be a non-negative integer and ↵n a function of integers n such that for any constant

� > 0, for n su�ciently large we have ↵n � � log n/n. For every positive integer n, let M(n) be a random

matrix valued in Mn⇥(n+u)(Z) with independent ↵n-balanced entries. Let B be a finite abelian group. Let P
be a finite set of primes including all those dividing |B|. Then

lim
n!1

P(Cok(M(n))P ' B) =
1

|B|u|Aut(B)|
Y

p2P

1Y

k=1

(1� p�k�u).
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Note that the entries of the matrix do not have to be identical.
Throughout the section we write Hom(A,B) and Sur(A,B) for the set of homomorphisms and surjective

homomorphisms, respectively, from A to B. We will always use a to denote a positive integer and R = Z/aZ.
We then study finite abelian groups G whose exponent divides a, i.e. aG = 0. We write G⇤ for Hom(G,R).

4.2. Set-up. We will study integral matrices by reducing them mod each positive integer. We let a be a
positive integer. Let M be the random n⇥ (n+ u) matrix with entries in R that is the reduction of M(n)
from Theorem 4.1 modulo a. We let X1, . . . , Xn+u 2 Rn be the columns of M , and xij the entries of M (so
that the entries of Xj are xij). For a positive integer n, we let V = Rn with standard basis vi and W = Rn+u

with standard basis wj (these will always implicitly depend on the integers we call a and n). Note for � ⇢ [n],
V has distinguished submodules V\� generated by the vi with i 62 �. (So V\� comes from not using the �
coordinates.) We view M 2 Hom(W,V ) and its columns Xj as elements of V so that Xj = Mwj =

P
i xijvi.

Let G be a finite abelian group with exponent dividing a. We have Cok(M) = V/MW .
We know from [34] that to understand the distribution of Cok(M), it su�ces to determine certain

moments. To investigate the moments E(#Sur(Cok(M), G)) (see [5, Section 3.3] for more on why these are
“moments”), we recognize that each such surjection lifts to a surjection V ! G and so we have

E(#Sur(Cok(M), G)) =
X

F2Sur(V,G)

P(F (MW ) = 0). (17)

By the independence of columns, we have

P(F (MW ) = 0) =
mY

j=1

P(F (Xj) = 0).

So we aim to estimate these probabilities P(F (Xj) = 0), which will give us our desired moments.

4.3. Finding the moments. We will first estimate P(F (Xj) = 0) for the vast majority of F , which satisfy
the following helpful property.

Definition 4.4. We say that F 2 Hom(V,G) is a code of distance w, if for every � ⇢ [n] with |�| < w, we
have FV\� = G. In other words, F is not only surjective, but would still be surjective if we throw out (any)
fewer than w of the standard basis vectors from V . (If a is prime so that R is a field, then this is equivalent
to whether the transpose map F : G⇤ ! V ⇤ is injective and has image im(F ) ⇢ V ⇤ a linear code of distance
w, in the usual sense.)

First we recall a lemma from [34] that lets us see how a code F acts on a single column from our matrix.
The following statement is slightly stronger than [34, Lemma 2.1], but one can see this statement follows
directly from the proof of [34, Lemma 2.1].

Lemma 4.5. Let a, n be positive integers, G a finite abelian group of exponent dividing a, and X the

reduction mod a of a random vector in Zn
with independent, ↵-balanced entries. Let F 2 Hom(V,G) be a

code of distance w and A 2 G. We have

��P(FX = A)� |G|�1
��  |G|� 1

|G| exp(�↵w/a2).

We then will put these estimates for columns together using this simple inequality.

Lemma 4.6 ([34, Lemma 2.3]). If we have an integer m � 2 and real numbers x � 0 and y such that

|y|/x  21/(m�1) � 1 and x+ y � 0, then

xm � 2mxm�1|y|  (x+ y)m  xm + 2mxm�1|y|.

The below is a refinement of [34, Lemma 2.4] that allows sparse matrices.

Lemma 4.7 (Bound for codes). Let a � 1 and u � 0 be integers, G be a finite abelian group of exponent

dividing a, the sequence {↵n}n be as in Theorem 4.1, and � > 0. Then there are c1,K1 > 0 such that the
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following holds. Let M̄(n) be the reduction modulo a of random matrices M(n) as in Theorem 4.1. For every

positive integer n, and F 2 Hom(V,G) a code of distance �n, and A 2 Hom(W,G), we have

��P(FM̄(n) = A)� |G|�n�u
��  K1n�c1

|G|n+u
.

Proof. Choose � > a2��1 and n large enough (depending on � and {↵i}i) so that ↵n � � log n/n. Then
for n large enough given �,�, u, a, |G|, we have

exp(�(� log n/n)�n/a2)|G| = exp(��� log n/a2)|G|  log 2

n+ u� 1
 21/(n+u�1) � 1.

So for such n we can combine Lemma 4.5 and Lemma 4.6 (with x = |G|�1 and y = ± exp(�(� log n/n)�n/a2))
to obtain ��P(FM = A)� |G|�n�u

��  2(n+ u) exp(��� log n/a2)|G|�n�u+1.

We take c1 < ��/a2 � 1 and then for n su�ciently large given u,�, �, a, c1, |G|, {↵i}i, we have

��P(FM = A)� |G|�n�u
��  2(n+ u)

n1+(��/a2�1)
|G|�n�u+1  n�c1 |G|�n�u.

We choose K1 large enough so that K1n
�c1

|G|n+u � 2 for n that are not as large as needed above, and the lemma
follows. ⇤

So far, we have a good estimate for P(FM = 0) when F is a code. Unfortunately, it is not su�cient
to divide F into codes and non-codes. We need a more delicate division of F based on the subgroups of
G. In [34], a notion of depth was used to divide the F into classes. Here we require a slightly finer notion
(that we call robustness) to deal with the sparser matrices. Both notions can be approximately understood
as separating the F based on what largest size subgroup they are a code for. For an integer D with prime
factorization

Q
i p

ei
i , let `(D) =

P
i ei.

Definition 4.8. Given � > 0, we say that F 2 Hom(V,G) is robust (or, more precisely, �-robust) for a
subgroup H of G if H is minimal such that

#{i 2 [n]|Fvi 62 H}  `([G : H])�n.

Note that H = G satisfies the above inequality, so every F 2 Hom(V,G) is robust for some subgroup H of
G. An F might be robust for more than one subgroup.

Lemma 4.9. Let � > 0, and a, n be positive integers, and G be a finite abelian group of exponent dividing

a. Let F 2 Hom(V,G) be robust for H. Let ⇡ := {i 2 [n]|Fvi 62 H}. Then F restricted to V\⇡ is a code of

distance �n in Hom(V\⇡, H).

Proof. Suppose not. Then there exists a � ⇢ [n] \ ⇡ such that |�| < �n and FV\(⇡[�) lies in some proper
subgroup H 0 of H. In particular, the set of i such that Fvi 62 H 0 is contained in ⇡ [ �. Since

|⇡ [ �|  `([G : H])�n+ �n  `([G : H 0])�n,

we then have a contradiction on the minimality of H. ⇤
We then bound the number of F that are robust for a certain group H, and with certain given behavior

outside of H. The separation of F into classes based on their behavior outside of H did not appear in [34],
but is necessary here to deal with sparser matrices.

Lemma 4.10 (Count of robust F for a subgroup H). Let � > 0, and a, n � 1 be integers, and G be finite

abelian group of exponent dividing a. Let H be a subgroup of G of index D > 1 and let H = G`(D) ⇢
. . . ⇢ G2 ⇢ G1 ⇢ G0 = G be a maximal chain of proper subgroups. Let pj = |Gj�1/Gj |. The number of

F 2 Hom(V,G) such that F is robust for H and for 1  j  `(D), there are wj elements i of [n] such that

Fvi 2 Gj�1 \Gj, is at most

|H|n�
P

j wj

`(D)Y

j=1

✓
n

wj

◆
|Gj�1|wj .

Note that by the definition of robustness we have that wj  `([G : H])�n, or else there are no such F .
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Proof. There are at most
� n
wj

�
ways to choose the i such that Fvi 2 Gj�1 \Gj and then at most |Gj |wj ways

to choose the Fvi. Then there are |H| choices for each remaining Fvi. ⇤

Now for F robust for a subgroup H, we will get a bound on P(FM = 0), where the larger the H, the
better the bound. This is a more delicate bound than [34, Lemma 2.7] that it is replacing, and in particular
takes into account the behavior of F outside of H.

Lemma 4.11 (Probability bound for columns given robustness). Let � > 0, and a, n � 1 be integers, and

G be finite abelian group of exponent dividing a. Let F 2 Hom(V,G) be robust for a proper subgroup H of G
and let D := [G : H]. Let H = G`(D) ⇢ . . . ⇢ G2 ⇢ G1 ⇢ G0 = G be a maximal chain of proper subgroups.

Let pj = |Gj�1/Gj |. For 1  j  `(D), let wj be the number of i 2 [n] such that Fvi 2 Gj�1 \ Gj. Let

X 2 Rn
be a random vector with independent entries that are the reduction mod a of ↵-balanced random

integers. Then for all n,

P(FX = 0) 
⇣
D|G|�1 + exp(�↵�n/a2)

⌘ `(D)Y

j=1

⇣
p�1

j +
pj � 1

pj
exp(�↵wj/p

2

j )
⌘
.

Proof. Assume that X = (x1, . . . , xn). Let �j be the collection of indices i 2 [n] such that Fvi 2 Gj�1 \Gj .

Let � = [`(D)

j=1
�j . Then,

P(FX = 0) =P
⇣X

i2�1

(Fvi)xi 2 G1

⌘
P
⇣ X

i2�1[�2

(Fvi)xi 2 G2

���
X

i2�1

(Fvi)xi 2 G1

⌘
⇥ · · ·

⇥P
⇣ X

i2�1[···[�`(D)

(Fvi)xi 2 H
���

X

i2�1[···[�`(D)�1

(Fvi)xi 2 G`(D)�1

⌘

⇥P
⇣X

i 62�

(Fvi)xi = �
X

i2�

(Fvi)xi

���
X

i2�

(Fvi)xi 2 H
⌘
.

For 1  j  `(D), we will bound the jth factor above by conditioning on the xi with i 2 �1 [ · · · [ �j�1

and then looking at images in Gj�1/Gj . Note for i 2 �j , we have that the reduction of Fvi is non-zero in
Gj�1/Gj . So F restricted to the �j coordinates in the reduction to Gj�1/Gj is a code of length wj . We
then apply Lemma 4.5 to this case to obtain

P
⇣ X

i2�1[···[�j

(Fvi)xi 2 Gj

���
X

i2�1[···[�j�1

(Fvi)xi 2 Gj�1

⌘
 p�1

j +
pj � 1

pj
exp(�↵wj/p

2

j ).

Note that � is the set of i such that Fvi 62 H. By the definition of robust, |�| < `(D)�n. By Lemma 4.9,
the restriction of F to V\� is a code of distance �n in Hom(V\�, H). So conditioning on the Xi with i 2 �,
we can estimate the conditional probability above using Lemma 4.5:

P
⇣X

i 62�

(Fvi)xi = �
X

i2�

(Fvi)xi

���
X

i2�

(Fvi)xi 2 H
⌘
 |H|�1 + exp(�↵�n/a2).

The lemma follows. ⇤

Now we can combine the estimates we have for P(FM = 0) for various types of F with the bounds we
have on the number of F of each type to obtain our main result on the moments of cokernels of random
matrices.

Theorem 4.12. Let u � 0 be an integer, G be a finite abelian group, and the sequence {↵n}n be as in

Theorem 4.1. Then there are c2,K2 such that the following holds. For every positive integer n and random

matrix M(n) as in Theorem 4.1, we have

��E(#Sur(Cok(M(n)), G))� |G|�u
��  K2n

�c2 .

Proof. Let a be the exponent of G. By Equation (17), we need to estimate
P

F2Sur(V,G)
P(FM(n) = 0). Fix

a proper subgroup H of G. We will apply Lemma 4.11 and use the notation from that lemma, along with
12



Lemma 4.10. We then have
X

F2Sur(V,G)

F is robust for H

P(FM(n) = 0)


X

0w1,...,w`(D)`(D)�n
w1 6=0

|H|n�
P

j wj

`(D)Y

j=1

✓
n

wj

◆
|Gj�1|wj

`(D)Y

j=1

⇣
p�1

j +
pj � 1

pj
exp(�↵nwj/p

2

j )
⌘n+u

⇥
⇣
D|G|�1 + exp(�↵n�n/a

2)
⌘n+u

=|H|n
⇣
D|G|�1 + exp(�↵n�n/a

2)
⌘n+u

`(D)Y

j=1

`(D)�nX

wj=0

w1 6=0

|H|�wj

✓
n

wj

◆
|Gj�1|wj

⇣
p�1

j +
pj � 1

pj
exp(�↵nwj/p

2

j )
⌘n+u

.

We have w1 6= 1 since F is a surjection. Now we apply Lemma A.3 from the Appendix to bound the sums.
The D1, d1 from Lemma A.3, will be |Gj�1|/|H| and p�1

j respectively. We choose the �0 of Lemma A.3 so

that �0 > 2/(1� p�1

j ) for all j. For n su�ciently large (in terms of {↵i}i,�0, G), we have ↵n � p2j�
0 log n/n

for all j. Lemma A.3 then gives us that, for � su�ciently small (given G), and n su�ciently large (given G,
�0, �, {↵i}i,), we have

`(D)�nX

wj=1

✓
n

wj

◆✓
|Gj�1|
|H|

◆wj ⇣
p�1

j +
pj � 1

pj
exp(�↵nwj/p

2

j )
⌘n+u

 3n�((1�p�1
j )�

0/2�1).

Let � > a2��1 and � > 2p3/(p � 1) for every prime p | a. For n also su�ciently large (given � and
{↵i}i) that ↵n � � log n/n, and we have

|H|n
⇣
D|G|�1 + exp(�↵n�n/a

2)
⌘n+u

|H|�u
⇣
1 + |H| exp(��� log n/a2)

⌘n+u
.

For n+ u � 2, and n su�ciently large (given �,�, u,G) such that

|H| exp(��� log n/a2) = |H|n���/a2

 log 2

n+ u� 1
 21/(n+u�1) � 1.

By Lemma 4.6,
�
1 + |H| exp(��� log n/a2)

�n+u  1 + 2(n+ u)|H| exp(��� log n/a2).

Putting it altogether we have
X

F2Sur(V,G)

F is robust for H

P(FM(n) = 0)

|H|n
⇣
D|G|�1 + exp(�↵n�n/a

2)
⌘n+u

`(D)Y

j=1

`(D)�nX

wj=0

w1 6=0

|H|�wj

✓
n

wj

◆
|Gj�1|wj

⇣
p�1

j +
pj � 1

pj
exp(�↵nwj/p

2

j )
⌘n+u

|H|�u
⇣
1 + 2(n+ u)|H| exp(��� log n/a2)

⌘
3n�((1�p�1

1 )�
0/2�1)

`(D)Y

j=2

⇣
1 + 3n�((1�p�1

j )�
0/2�1)

⌘
.

We sum this over proper subgroups H of G to bound, for � su�ciently small (given G), and �0 >
2/(1� p�1

j ) for all j, and � > a2��1, and � > 2p3/(p� 1) for every prime p | a, for n su�ciently large given
G, �, �, �0, u, {↵i}i,

X

F2Sur(V,G)

F not code of distance �n

P(FM(n) = 0)  K3n
�c3 .

where K3 is a constant depending on G, �, �, �0, u and c3 > 0 (depending on a, �0).
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Also, from the proof of [34, Theorem 2.9], we can choose � small enough (given G) so that we have for all
n

X

F2Sur(V,G)

F not code of distance �n

|G|�n�u  K4e
�(log 1.5)n

for some K4 depending on u,G, �. We also have (e.g. see the proof of [34, Theorem 2.9]) for all n,
X

F2Hom(V,G)\Sur(V,G)

|G|�n�u  K5e
� log(2)n

for some K5 depending on G. Using Lemma 4.7 we have that for all n,
X

F2Sur(V,G)

F code of distance �n

��P(FM(n) = 0)� |G|�n�u
��  K1n

�c1 .

We now make a choice of � that is su�ciently small for the two requirements above (given G), and we choose
� and �0 as required above, so that for all n su�ciently large (given G, �, �, �0, u, {↵i}i,)
���

X

F2Sur(V,G)

P(FM(n) = 0)� |G|�u
��� =

���
X

F2Sur(V,G)

P(FM(n) = 0)�
X

F2Hom(V,G)

|G|�n�u
���


X

F2Sur(V,G)

F code of distance �n

���P(FM(n) = 0)� |G|�n�u
���+

X

F2Sur(V,G)

F not code of distance �n

P(FM(n) = 0) +
X

F2Hom(V,G)

F not code of distance �n

|G|�n�u

 K1n
�c1 +K3n

�c3 +K4e
�(log 1.5)n +K5e

� log(2)n.

We choose c2  min(c1, c3, log(1.5)) (which depends on G, u, {↵i}i). We choose K2 so that K2 � K1 +K3 +
K4 +K5, and also K2 � |G|nnc2 for any n not su�ciently large for the requirements above (so K2 depends
on G, u, {↵i}i). The theorem follows. ⇤

We now conclude the proof of Theorem 4.1. For each fixed u � 1, we construct a random abelian group
according to Cohen and Lenstra’s distribution mentioned in the introduction. Independently for each p, we
have a random finite abelian p-group Yp such that for each p-group B

P(Yp = B) =

Q1
k=1

(1� p�k�u)

|B|u|Aut(B)| ).

Let P be a set of primes dividing a given number a, we then define a random group Y by taking the group
product

Q
p2P Yp.

Lemma 4.13 ([34, Lemma 3.2]). For every finite abelian group G with exponent dividing a we have

E(#Sur(Y,G)) = |G|�u.

From Theorem 4.12, we have seen that Y and Cok(M(n)) have asymptotic matching “moments” with
respect to all groups G of exponent dividing a. To pass this information back to distribution, we then use
the following result on the moment problem for finite abelian groups.

Theorem 4.14. Let Xn and Yn be sequences of random finitely generated abelian groups. Let a be a positive

integer and A be the set of isomorphism classes of abelian groups with exponent dividing a. Suppose that for

every G 2 A we have a number MG  |^2G| such that limn!1 E(#Sur(Xn, G)) = limn!1 E(#Sur(Yn, G)) =
MG. Then we have that for every H 2 A

lim
n!1

P
�
Xn ⌦ (Z/aZ) ' H

�
= lim

n!1
P(Yn ⌦ (Z/aZ) ' H).

The proof of Theorem 4.14 can be found in the proof of [34, Theorem 3.1], which is stated for MG = |^2G|
but only ever uses the inequality MG  | ^2 G|. (Here ^2G is a particular quotient of the tensor product
G ⌦ G, and all we need here is | ^2 G| � 1.) To prove Theorem 4.1, assume that the exponent of the

14



group B under consideration has prime factorization
Q

p2P pep . Theorem 4.14, applied to the sequence

Xn = Cok(M(n)) and Yn = Y with a =
Q

p2P pep+1, implies that

lim
n!1

P
⇣
Cok(M(n))⌦ (Z/aZ) ' B

⌘
= P(Y ⌦ (Z/aZ) ' B) =

1

|B|u|Aut(B)|
Y

p2P

1Y

k=1

(1� p�k�u).

The proof is then complete because Cok(M(n))⌦ (Z/aZ) ' B if and only if Cok(M(n))P ' B.

5. Medium Primes

In this section we prove the following, which we apply to medium primes for the proof of our main results.

Theorem 5.1. There are constants c0, ⌘, C0,K0 > 0 such that we have the following. Let n, u � 0 be

integers, p be a prime, and let Mn⇥(n+u) be a random matrix n ⇥ (n + u) with independent i.i.d. entries

⇠n 2 Z/pZ. We further assume we have a real number ↵n such that

max
r2Z/pZ

P(⇠n = r) = 1� ↵n  1� C0 log n

n
.

Then we have

P
⇣
rank(Mn⇥(n+u))  n� 1

⌘
 2p�min(u+1,⌘n�1) +K0e

�c0↵nn

and

P
⇣
rank(Mn⇥(n+u))  n� 2

⌘
 2p�min(2u+4,⌘n�1) +K0e

�c0↵nn.

The proof of Theorem 5.1 has two main ingredients. First, we have a result from [21] that says that the
first n � k columns of Mn⇥(n+u) are likely to generate a subspace V such that the probability of the next
column being in V is near to the probability of a uniform random column mod p being in V . (This result
was originally stated in [19] by Maples, but [21] gives a corrected proof using the ideas of [19] and [30].)

Theorem 5.2 ([21, Theorems A.1 and A.4]). There are constants c, ⌘, C0,K > 0 such that the following

holds. Let n, u � 0 be integers with u  ⌘n, p be a prime, and let Mn⇥(n+u) be a random matrix n⇥ (n+ u)
with independent i.i.d. entries ⇠n 2 Z/pZ. We further assume we have a real number ↵n such that

max
r2Z/pZ

P(⇠n = r) = 1� ↵n  1� C0 log n

n
.

For �u < k  ⌘n, let Xn�k+1 be the (n� k + 1)st column of Mn⇥(n+u), and Wn�k be the subspace spanned

by the first n� k columns of Mn⇥(n+u). Then there is an event En�k on the �-algebra generated by the first

n�k columns of Mn⇥(n+u), of probability at least 1�3e�c↵nn, such that for any k0 with max(0, k)  k0  ⌘n
���P
⇣
Xn�k+1 2 Wn�k|En�k ^ codim(Wn�k) = k0

⌘
� p�k0

���  Ke�c↵nn.

We also refer the reader to Theorem 8.2 for a similar statement for the Laplacian with a complete proof.
Note that for a uniform random X 2 (Z/pZ)n, we have P(X 2 V ) = p� codim(V ). Thus, as long as we avoid
certain rare bad events, as we consider more and more columns of our random matrices, the probability
that the next column is in the span of the previous columns is close to what it would be if we were using
uniform random matrices. The following result, proven in Section B in the Appendix, allows us to use that
information to conclude that the rank distribution of our matrices is close to that of uniform random matrices.
This theorem says that if sequences of random variables xi and yi have similar transition probabilities going
from xi to xi+1 and yi to yi+1, at least under conditions that are likely to be true, then the distributions of
xn and yn must stay close.

Theorem 5.3. Let x1, . . . , xn, g0, . . . , gn�1 be a sequence of random variables, and let x0 = 0. Let y1, . . . , yn
be a sequence of random variables, and let y0 = 0. We assume each xi, yi takes on at most countably many

values, and gi 2 {0, 1}. Suppose that for 0  i  n� 1,

P(yi+1 = s|yi = r) = P(xi+1 = s|xi = r and gi = 1) + �(i, r, s)

for all r and s s.t. P(yi = r)P(xi = r and gi = 1) 6= 0.
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Then for all n � 0 and any set A of values taken by xn and yn, we have

|P(xn 2 A)�P(yn 2 A)|

 1

2

n�1X

i=0

X

r

X

s

|�(i, r, s)|P(xi = r) +
n�1X

i=0

P(gi 6= 1),

where r is summed over {r | P(xi = r) 6= 0 and P(yi = r) 6= 0)} and s is summed over {s | P(xi+1 = s) 6=
0 or P(yi+1 = s) 6= 0)}.

We remark that our error bounds come from the �’s and the complement of gi = 1. The explicit form
here will be extremely useful because in the sparse case � and P(gi 6= 0) are not small.

Proof of Theorem 5.1. We take ⌘, C0 as in Theorem 5.2. Since

P(rank(Mn⇥(n+u+1))  m)  P(rank(Mn⇥(n+u))  m),

it su�ces to prove the theorem for u  b⌘nc � 1. Let Xm be the m-th column of Mn⇥(n+u), and Wm the
subspace generated by X1, . . . , Xm. Let x0 = 0 and for 1  i  b⌘nc+ u, define the random variable

xi =

(
k0 if rank(Wn�b⌘nc+i) = n� b⌘nc+ i� k0 and 0  k0  u+ 1

⇤ if rank(Wn�b⌘nc+i)  n� b⌘nc+ i� u� 2.

In other words, xi measures the deficiency (n � b⌘nc + i) � rank(Wn�b⌘nc+i) if this di↵erence is not larger
than u+ 1.

Let yi be the analogous function for a uniform random matrix mod p for 1  i  b⌘nc+ u. Let g0 be the
indicator function of the event that requires both rank(Wn�b⌘nc) = n�b⌘nc and En�b⌘nc from Theorem 5.2.
Let gi be the indicator function for the event En�b⌘nc+i from Theorem 5.2, so from that theorem we have
for i � 1 that P(gi = 1) � 1� 3e�c↵nn.

We will apply Theorem 5.3 to the sequences xi, yi and gi defined above. For this, we will estimate the
error terms �(i, b, a) for various values of i, a and b. First, note that if

rank(Wn�b⌘nc+i)  n� b⌘nc+ i� u� 2,

then

rank(Wn�b⌘nc+i+1)  n� b⌘nc+ i+ 1� u� 2.

So for i � 1,

P(yi+1 = ⇤|yi = ⇤) = P(xi+1 = ⇤|xi = ⇤ ^ gi = 1) = 1.

Therefore, for i � 1 and all a we have

�(i, ⇤, a) = 0.

Next, Theorem 5.2 gives that for i � 1 and 0  k0  u+ 1 (as u+ 1  ⌘n),

�(i, k0, k0) =
��P(yi+1 = k0|yi = k0)�P(xi+1 = k0|xi = k0 ^ gi = 1)

��  Ke�c↵nn.

Furthermore, if xi = k0, the only possibility for xi+1 is either k0 or k0 +1 (which should be interpreted as ⇤
if k0 = u+ 1). It then follows that for i � 1 and all k0, `, we have

�(i, k0, `) =
��P(yi+1 = `|yi = k0)�P(xi+1 = `|xi = k0 ^ gi = 1)

��  Ke�c↵nn.

At the initial position i = 0 we have (by definition) y0 = 0 and so

P(y1 = 0|y0 = 0) = P(y1 = 0) =

n�b⌘ncY

j=0

(1� p�(b⌘nc+j)))

and Theorem 5.2 gives

P(x1 = 0|x0 = 0 and g0 = 1) � 1� p�b⌘nc �Ke�c↵nn.
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Thus for any `,

�(0, 0, `) p�b⌘nc +Ke�c↵nn + 1�
n�b⌘ncY

j=0

(1� p�(b⌘nc+j)))

p�b⌘nc +Ke�c↵nn + p�b⌘nc/(1� p�1).

We can apply Lemma 3.1 to find the P(Xm+1 62 Wm|rank(Wm) = m) for all 0  m  n� b⌘nc � 1.
Taking union bound (see Corollary 3.2), we obtain

P(rank(Wn�b⌘nc) = n� b⌘nc) � 1� ↵�1

n (1� ↵n)
b⌘nc+1.

So

P(g0 = 0)  ↵�1

n (1� ↵n)
b⌘nc+1 + 3e�c↵nn.

We now apply Theorem 5.3. The n from that theorem will be what we call b⌘nc+ u here. We conclude
that for k0 = u or u+ 1,

���P(xb⌘nc+u = k0)�P(yb⌘nc+u = k0)
���

1

2
(b⌘nc+ u)Ke�c↵nn · 2 + (b⌘nc+ u) · 3e�c↵nn

+
⇣
p�b⌘nc +Ke�c↵nn + p�b⌘nc/(1� p�1)

⌘
+
⇣
↵�1

n (1� ↵n)
b⌘nc+1 + 3e�c↵nn

⌘
.

Here the first two terms are from the i � 1 summands in each sum, the (b⌘nc + u) is from the sum over i,
the sum over r of P(xi = r) is 1, and the 2 is from the sum over s (for each r there are at most 2 values of
s with non-zero �(i, r, s)). The second two terms are from the i = 0 summands.

Thus for k0 = u or u+ 1, using u  ⌘n,
��P(xb⌘nc+u = k0)�P(yb⌘nc+u = k0)

��  2(K + 3)⌘ne�c↵nn + 3e�c↵nn + 3p�⌘n+1 + ↵�1

n (1� ↵n)
⌘n.

Since (e.g. by [10])

P(yb⌘nc+u = u) =
nY

j=1

(1� p�j�u) � 1�
X

j�1

p�j�u = 1� p�1�u/(1� p�1),

and

P(yb⌘nc+u � u� 1) =
⇣
1 + p�2�u

�1� p�(n�1)

1� p�1

�⌘ nY

j=2

(1� p�j�u)

�1� p�4�2u

1� p�1
� p�(n�1)�2�u

1� p�1
.

we have that

P(rank(Wn+u)  n� 1)  2p�1�u + 2(K + 3)⌘ne�c↵nn + 3e�c↵nn + 3p�⌘n+1 + ↵�1

n (1� ↵n)
⌘n

and

P(rank(Wn+u)  n� 2)  2p�4�2u + 2p�n + 2(K + 3)⌘ne�c↵nn + 3e�c↵nn + 3p�⌘n+1 + ↵�1

n (1� ↵n)
⌘n.

Since u  ⌘n, for some K0 depending on K, c, ⌘, C0, for all n we have

P
�
rank(Wn+u)  n� 1

�
 2p�1�u +K0e

�min(c/2,⌘ log(2)/2)↵nn

and

P
�
rank(Wn+u)  n� 2

�
 2p�4�2u +K0e

�min(c/2,⌘ log(2)/2,log(2))↵nn.

The result follows with c0 = min(c/2, ⌘ log(2)/2, log(2)). ⇤
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6. Large primes

In this section and the next we prove Proposition 2.3.
Notation for Sections 6 and 7: Throughout this and the next section, we fix T > 0 and for each

positive integer n we let ⇠n be an ↵n-balanced random integer with |⇠n|  nT . We define Mn⇥(n+1) to be the
integral n⇥ (n+ 1) matrix with entries i.i.d copies of ⇠n. We do not make a global assumption on the size
of ↵n, but we will need di↵erent assumptions on ↵n for the various results in these two sections. We further
fix d > 0. Let X1, . . . , Xn+1 be the columns of Mn⇥(n+1). We write Mn⇥k for the submatrix of Mn⇥(n+1)

composed of the first k columns. Let Wk be the submodule of Zn spanned by X1, . . . , Xk. We write Xk/p
and Wk/p for their reductions mod p (and more generally use this notation to denote the reduction of an
object from Z to Z/pZ). We let

n0 := n� b3 log n
↵n

c. (18)

Let

Pn :=
n
p prime, p � ed↵nn

o
.

Let E 6=0 be the event that det(Mn⇥n) 6= 0. As mentioned in the introduction section, from [21] and also by
taking the limit as p ! 1 in Theorem 5.1, we have

P(E 6=0) � 1�K0e
�c0↵nn

for absolute constants c0,K0. Our strategy is as follows. We consider the columns of the matrix one at a
time, and check if they are in the span of the previous columns modulo p for each prime in Pn. We cannot
control whether this happens, as Pn contains too many primes, but each p for which this happens is put
on a “watch list” (called Wk) and necessarily divides the determinant of Mn⇥n. If the watch list grows too
large, since all the primes in the watch list are large, then too large a number divides the determinant, and
Mn⇥n must be singular. However, we have already bounded the probability of that occurring. Otherwise, if
our watch list is not too large, for each prime in the watch list, we can bound the probability that the next
column is in the span of the previous columns mod that prime.

Let Wk be the set of primes p 2 Pn such that rank(Wk/p)  k � 1. Let Ck be the event that |Wk| 
(2T + 1) log n/(2d↵n) (the watch list is under control). Note that any p 2 Wk for k  n must divide
det(Mn⇥n). By Hadamard’s bound, | det(Mn⇥n)|  nn/2nTn, and so in particular, when C̄k occurs (“the
watch list is out of control”) then det(Mn⇥n) = 0. (Recall we write Ē for the complement of an event E .)
Let Dk be the event that there is a p 2 Wk such that rank(Wk/p)  k� 2 (the rank drops), this is the event
we want to avoid.

We will show P(C̄k+1_ D̄k+1|C̄k _ D̄k) is large. The goal is to conclude that P(C̄n_ D̄n) is large, and since
we know that P(C̄n) is small, we can conclude that P(D̄n) is large, as desired. Note that since Wk ⇢ Wk+1,
we have that C̄k ⇢ C̄k+1. Thus

P(C̄k+1 _ D̄k+1|C̄k) = 1. (19)

It remains to estimate P(C̄k+1_D̄k+1|Ck^D̄k). We condition on the exact values of X1, . . . , Xk where Ck^D̄k

holds, and so there are at most (2T + 1) log n/(2d↵n) primes p 2 Pn such that rank(Wk/p)  k � 1 and no
prime p 2 Pn such that rank(Wk/p)  k�2. In D̄k+1, as long as for each p 2 Wk, we have Xk+1/p 62 Wk/p.
Consider one prime p 2 Wk, and let V be the value of Wk/p that the conditioned X1, . . . , Xk give. From
Lemma 3.1, P(Xk+1/p 2 V )  (1� ↵n)n�(k�1). Thus,

P(C̄k+1 _ D̄k+1|Ck ^ D̄k) � 1�
✓
(2T + 1) log n

2d↵n

◆
(1� ↵n)

n�(k�1).

In particular, by (19) we conclude that

P(C̄k+1 _ D̄k+1|C̄k _ D̄k) � 1�
✓
(2T + 1) log n

2d↵n

◆
(1� ↵n)

n�(k�1).

Then inductively, we have

P(C̄k _ D̄k) � 1�
k�1X

i=1

✓
(2T + 1) log n

2d↵n

◆
(1� ↵n)

n�(i�1) = 1�
✓
(2T + 1) log n

2d↵n

◆
(1� ↵n)n�k+2

↵n
.
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We defined n0 := n� b 3 logn
↵n

c above and so if we let k = n0 then if we assume ↵n � n�1, we have that

P
�
C̄n0 _ D̄n0

�
� 1�Od,T

�
n�1/2

�
.

Certainly as k gets very close to n, Wk has very small codimension, and so Odlyzko’s bound will not continue
to be strong enough. Thus for the remaining k we will have to use a di↵erent bound.

6.1. Proof of Proposition 2.3 when ↵n � n�1/6+". First, in this section, we will prove Proposition 2.3
for the denser case ↵n � n�1/6+". For these larger ↵n we can present a simpler proof than in the case when
↵n might be as small as n�1+". Odlyzko’s bound is sharp for some spaces, e.g. the hyperplane of vectors
with first coordinate 0, and so if we need to improve on Odlyzko’s bound we cannot expect to do it for
all spaces at once. The overall strategy is to see that apart from some bad subspaces, we can improve on
Odlyzko’s bound, and we can also prove that it is unlikely that Wk is one of those bad spaces. At this level
of generality, this description fits the small and medium primes sections. However, the specifics are very
di↵erent, because the small and medium primes sections treat one prime at a time, and now we are in a
regime where there are just too many possible primes to add the probability of Wk being bad over all the
primes (e.g. adding P(Ēn�k) from Theorem 5.2 over all primes up to nn/2+Tn gives too big a result). On
the other hand, we do not need the same strength of improvement over Odlyzko’s bound that Theorem 5.2
provides, because the bound on the probability of Xk+1/p 2 Wk/p only has to be added over the small
number of primes in the watch list. The following lemma balances these requirements, and its proof will be
delayed till the end of this subsection.

Lemma 6.2. Suppose that ↵n � 6 log n/n. Then there is a set of submodules S of Zn
such that

P(Wn0 2 S) � 1� e�↵nn/8

and for any prime p � ed↵nn, and any submodule H 2 S, for any proper subspace H 0
of (Z/pZ)n containing

H/p,

P
⇣
X/p 2 H 0

⌘
= Od,T

✓p
log n

↵n
p
n

◆
,

where X is any column of Mn⇥n.

Now, we will also condition on G, which we define to be the event that Wn0 2 S (i.e., Wn0 is Good). We
then have

P
⇣
(C̄n0 _ D̄n0) ^ G

⌘
� 1� e�↵nn/8 +Od,T (n

�1/2),

Now let n0  k  n. As before, since C̄k ⇢ C̄k+1, we have

P
⇣
(C̄k+1 _ D̄k+1) ^ G|C̄k ^ G

⌘
= 1.

It remains to estimate P
⇣
(C̄k+1_ D̄k+1)^G|Ck ^ D̄k ^G

⌘
. Again, we condition on exact values of X1, . . . , Xk

such that Ck, D̄k,G hold. Then D̄k+1 holds unless for some p 2 Wk we have Xk+1/p 2 Wk/p. Since Ck holds,
we have a bound on the size of Wk, and since G holds, we can use Lemma 6.2 to bound the probability
that Xk+1/p is in Wk/p. (Note that even if k = n, for p 2 Wk, we have that Wk/p is a proper subspace of
(Z/pZ)n, and that n�1/6 � 2(log n)/n.) We conclude that

P
⇣
(C̄k+1 _ D̄k+1) ^ G|Ck ^ D̄k ^ G

⌘
� 1�

✓
(2T + 1) log n

2d↵n

◆
Od,T

✓p
log n

↵n
p
n

◆
.

Inductively, starting from k = k0 we then have

P
⇣
(C̄n _ D̄n) ^ G

⌘
� 1� b3 log n

↵n
cOd,T

✓
log1.5 n

↵2
n

p
n

◆
� e�↵nn/8 +Od,T (n

�1/2).

So then,

P(D̄n) � 1�Od,T

✓
log2.5 n

↵3
n

p
n

◆
�K0e

�c0↵nn � e�↵nn/8 +Od,T (n
�1/2). (20)

To this end, since ↵n � n�1/6+", we have that

P(D̄n) � 1�Od,T,"(n
�"),
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which is exactly Equation (10). Equation (9) follows similarly, with b3 log n/↵nc, the number of steps in the
induction, replaced by b3 log n/↵nc+ 1.

The key, of course, is to now verify Lemma 6.2, which is the heart of the proof of Proposition 2.3 for
↵n � n�1/6+". We need a way to bound the probability that Xk+1/p 2 Wk/p that works for all p 2 Wk

and is e↵ective for large k. For this, we introduce a version of the classical Erdős-Littlewood-O↵ord result
in Z/pZ.

Theorem 6.3 (forward Erdős-Littlewood-O↵ord, for non-sparse vectors). Let X 2 (Z/pZ)n be a random

vector whose entries are i.i.d. copies of a random variable ⌫n satisfying maxr2Z/pZ P(⌫n = r)  1 � ↵n.

Suppose that w 2 (Z/pZ)n has at least n0
non-zero coe�cients, and ↵n � 4/n0

. Then we have

|P(X · w = r)� 1

p
|  2p

↵nn0 .

A proof of this result due to Maples (based on an argument by Halász) can be seen in [19, Theorem 2.4]
(see also [21, Theorem A.21].) To use Theorem 6.3, we need to know it is unlikely that Wk has normal
vectors with few non-zero entries. First, we will see this is true over R. The approach is standard: there are
few sparse vectors and by the Odlyzko’s bound each is not that likely to be normal to Wk.

Lemma 6.4 (Sparse normal vectors over R unlikely). Suppose ↵n � log n/n and k � n/2. For n su�ciently

large (in an absolute sense), with probability at least 1� e�↵nn/8, the random subspace X1, . . . , Xk does not

have a non-trivial normal vector with less than ↵nn/(32 log n) non-zero entries.

Proof. (of Lemma 6.4) Let l = b↵nn/(32 log n)c. With a loss of a multiplicative factor
�n
l

�
in probability, we

assume that there exists a vector w = (w1, . . . , wl, 0, . . . , 0) which is normal to X1, . . . , Xk. Let Ml⇥k be the
matrix with columns given by the first l coordinates of each of X1, . . . , Xk, which has rank at most l � 1.
With a loss of a multiplicative factor l in probability, we assume that the first row of Ml⇥k belongs to the
subspace H generated by the other l � 1 rows. However, as H has codimension at least k � l, Lemma 3.1
implies a bound (1� ↵n)k�l for this event. Putting together, the event under consideration is bounded by

✓
n

l

◆
⇥ l ⇥ (1� ↵n)

k�l  e(log(32 log n/↵n)+1)↵nn/(32 logn) ⇥ elog(↵nn/(32 logn)) ⇥ e�↵n(k�l).

We then have that the exponent of e in the above bound is


� log log n

log n
+

log(↵�1

n )

log n
+

log(32)

log n
+

1

log n

�
↵nn/32 + log(↵nn)� ↵nn/4  �↵nn/8

for n su�ciently large so that
� log log n

log n
+

log(32)

log n
+

1

log n

�
 1

and so that log(↵nn)  ↵nn/16 (which happens for ↵nn � 22, which is implied by log n � 22). ⇤

We could prove a similar lemma to Lemma 6.4 over Z/pZ for each p, but we could not sum the probabilities
e�↵nn/8 of sparse normal vectors over any meaningful range of primes > ed↵n. However, now we will prove
a deterministic lemma, that lets us lift normal vectors with few non-zero entries from characteristic p, for
large p, to characteristic 0. Then there is only one bad event to avoid instead of one for each p. This aspect
of our argument is unlike previous approaches and uses critically a lower bound on p.

Lemma 6.5 (Lifting sparse normal vectors from Z/pZ to R). Let k, l, n be positive integers, and M a l⇥ k
matrix with integer entries |Mij |  nT

. If p is a prime larger than e(k log k)/2+kT logn
, then the rank of M

over Q is equal to the rank of M/p over Z/pZ. This has the following corollaries.

(1) If Z1, . . . , Zk 2 Zl
are vectors with entries |Zij |  nT

, and Z1/p, . . . , Zk/p are linearly dependent in

(Z/pZ)l, then Z1, . . . , Zk are also linearly dependent in Zl
.

(2) Let Z1, . . . , Zi 2 Zm
be vectors with entries |Zij |  nT

. If there is a non-zero vector w 2 (Z/pZ)m

with at most k non-zero entries that is normal to Z1/p, . . . , Zl/p, then there is a non-zero vector

w0 2 Zm
with at most k non-zero entries and normal to Z1, . . . , Zl.

(3) The kernel of the map M : Zk ! Zl
surjects onto the kernel of the map M : (Z/pZ)k ! (Z/pZ)l.
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Proof. (of Lemma 6.5) The rank is the greater r such that an r ⇥ r minor has non-zero determinant.
Since by Hadamard’s bound, the determinant of a r ⇥ r minor is at most e(r log r)/2+rT logn, for primes
p > e(k log k)/2+kT logn and r  k, a determinant of an r ⇥ r minor vanishes in Z if and only if it vanishes
mod p. Thus we conclude the main statement of the lemma. For the first corollary, consider the `⇥k matrix
with Z1, . . . , Zk as columns. The vectors are linearly dependent if and only if the matrix has rank less than
k. For the second corollary, assume that � = supp(w) ⇢ [m] and Z1|�, . . . , Zl|� are the restrictions of
Z1, . . . , Zl over the components in �. By definition, the k row vectors of the matrix formed by Z1|�, . . . , Zl|�
are dependent when reduced mod p, and thus these vectors are dependent over Z. This gives a non-zero
w0 2 Zm with |supp(w0)|  k that is normal to Z1, . . . , Zl. For the third corollary, we can express M
under the Smith normal form M = S1DS2, where S1 2 GLl(Z) and S2 2 GLk(Z) and D is an integral
diagonal matrix. Then since the ranks of M and D agree over Q and over Z/pZ, we conclude that D has
the same rank over Q or Z/pZ. This implies that the only diagonal entries of D that are divisible by p
are the ones that are 0. From this it follows that the kernel of D : Zk ! Zl surjects onto the kernel of
D : (Z/pZ)k ! (Z/pZ)l. Multiplication by S�1

2
on the left takes these kernels of D to the corresponding

kernels of M , and the statement follows. ⇤

Putting this all together, we can now prove Lemma 6.2. The choices of parameters are rather delicate
here, e.g. we could obtain more non-zero coordinates of a normal vector than Lemma 6.4 provides, but then
we could not use Lemma 6.5 to lift those non-zero coordinates.

Proof of Lemma 6.2. We let k = c↵nn/ log n, where c < 1/32 is a su�ciently small constant (in terms of
d, T ) such that

e(k log k)/2+kT logn < ed↵nn.

Since ↵n � 6 log n/n, it follows that n0 � n/2, and we can apply Lemma 6.4 and find that for su�ciently
large n, with probability at least 1�e�↵nn/8, Wn0 does not have a normal vector with less than k entries. Let
S be the set of submodules of Zn that do not have a normal vector with less than k non-zero coordinates.
Then by Lemma 6.5, for each prime p � ed↵nn, if Wn0 2 S, then the space Wn0/p (and thus any space
containing this space) does not have a non-trivial normal vector with less than k non-zero coordinates. Since
↵n � 6 log n/n, for n su�ciently large in terms of d, c, we have that ed↵nn �

p
↵nk. Thus by Theorem 6.3,

for any prime p � ed↵nn the following holds. Let H be a subspace of (Z/pZ)n that does not have a non-trivial
normal vector with less than k non-zero entries, and then for any proper subspace H 0 of (Z/pZ)n containing
H and with normal vector w,

P(X 2 H 0)  P(X · w = 0)  3p
↵nk

=
3
p
log n

↵n
p
cn

.

⇤

6.6. Proof of Proposition 2.3 in general. Equation (20) shows exactly why n�1/6+" is the threshold
exponent for ↵n such that the above method can work, as the error bound has an ↵3

nn
1/2 in the denominator.

Thus, to obtain results that can work for smaller ↵n, we need a further improvement on Odlyzko’s bound,
which requires that we consider further bad subspaces besides those with sparse normal vectors. We have
the following upgrade to Lemma 6.2, whose proof is rather more involved than that of Lemma 6.2, will be
completed in the next section, and again, is the heart of the proof.

Lemma 6.7. There is an absolute constant c2 > 0 such that the following holds. Suppose that ↵n � n�1+✏
.

There is a set S 0
of submodules of Zn

, such that

P(Wn0 2 S 0) � 1� e�c2↵nn

and for n su�ciently large given d, ✏, T , any prime p � ed↵nn, any submodule H 2 S 0
and any proper

subspace H 0
of (Z/pZ)n containing H/p,

P
⇣
X/p 2 H 0

⌘
 n�3,

where X is any column of Mn⇥n.
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The rest of the proof goes the same as after Lemma 6.2, replacing S with S 0 . We conclude that for
↵n � n�1+", we have that P(D̄k) � 1 � Od,T,"(n�1/2), for k = n, n + 1, which proves Proposition 2.3. We
have not attempted to optimize the error, or even record in Proposition 2.3 the error this argument proves
(as we wanted to give a weaker statement that could be proved by the simpler argument above when the ↵n

were not too small).

7. Proof of Lemma 6.7: Enumeration of Structures

Instead of only avoiding sparse normal vectors, in Lemma 6.7 we will avoid normal vectors with more
general structure. We now need to make some definitions necessary to describe this structure.

7.1. Additive structures in abelian groups. Let G be an (additive) abelian group.

Definition 7.2. A set Q is a generalized arithmetic progression (GAP) of rank r if it can be expressed as
in the form

Q = {a0 + x1a1 + · · ·+ xrar|Mi  xi  M 0
i and xi 2 Z for all 1  i  r}

for some elements a0, . . . , ar of G, and for some integers M1, . . . ,Mr and M 0
1
, . . . ,M 0

r.
It is convenient to think of Q as the image of an integer box B := {(x1, . . . , xr) 2 Zr|Mi  xi  M 0

i}
under the linear map

� : (x1, . . . , xr) 7! a0 + x1a1 + · · ·+ xrar.

Given Q with a representation as above

• the numbers ai are generators of Q, the numbers Mi and M 0
i are dimensions of Q, and Vol(Q) := |B|

is the volume of Q associated to this presentation (i.e. this choice of ai,Mi,M 0
i);

• we say that Q is proper for this presentation if the above linear map is one to one, or equivalently if
|Q| = |B|;

• If �Mi = M 0
i for all i � 1 and a0 = 0, we say that Q is symmetric for this presentation. For later

use, for a symmetric progression Q and for t > 0 we also define that

Qt := {x1a1 + · · ·+ xrar|� tMi  xi  tMi and xi 2 Z for all 1  i  r}.

The following inverse-type idea, which was first studied by Tao and Vu about ten years ago (see for
instance [32]), will allow us prove bounds much sharper than Theorem 6.3.

Theorem 7.3 (inverse Erdős-Littlewood-O↵ord). Let " < 1 and C be positive constants. Let n be a positive

integer. Assume that p is a prime that is larger than C 0nC
for a su�ciently large constant C 0

depending on

" and C. Let ⌫ be a random variable taking values in Z/pZ which is ↵n-balanced, that is maxr2Z/pZ P(⌫ =
r)  1� ↵n where ↵n � n�1+"

. Assume w = (w1, . . . , wn) 2 (Z/pZ)n such that

⇢(w) := sup
a2Z/pZ

P(⌫1w1 + · · ·+ ⌫nwn = a) � n�C ,

where ⌫1, . . . , ⌫n are iid copies of ⌫. Then for any n"/2↵�1

n  n0  n there exists a proper symmetric GAP

Q in Z/pZ of rank r = OC,"(1) which contains all but n0
coordinates of w, where

|Q|  max
n
1, OC,"(⇢(w)

�1/(↵nn
0)r/2)

o
.

When ↵n is a constant, we then recover a variant of [22, Theorem 2.5]. The new, but not too surprising,
aspects here are that the result works for small ↵n and for Z/pZ for large enough p. A proof of Theorem 7.3
will be presented in Appendix C by modifying the approach of [22]. We remark that it is in the proof of
Theorem 7.3 where the requirement ↵nn0 � n"/2 is crucial (which henceforth requires ↵n to be at least
n"/2�1) to guarantee polynomial growth of certain sumsets (see (47)). We see that Q = {0} includes the
special case of sparse w. Theorem 7.3 is much sharper than Theorem 6.3, and relates the volume of the GAP
involved to the bound for ⇢(w).

We let
n0 := dn"/2↵�1

n e
and m = n � n0 for the rest of this section, and we will apply Theorem 7.3 with this choice of n0 and
C = 3. Thus it will be convenient to let C" be the maximum of C 0 and the constants from the OC," notation
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bounding the rank of volume of |Q| in Theorem 7.3 applied with C = 3. We call a GAP Q well-bounded if it
is of rank  C" and |Q|  C"n3. We call a vector w structured if it is non-zero, and there exists a symmetric
well-bounded GAP Q such that all but n0 coordinates of w belong to Q. Note that it is not always true that
⇢(w) = n�O(1) if w is structured in this sense.

Our general approach is to see that it is not too likely for Wn0/p to have structured normal vectors, where
we recall n0 from (18). We need to handle the case of r = 0 separately from the case of r � 1, as in the
latter case we will use the (↵nn0)r/2 term crucially. Now, we will give a very di↵erent approach to proving
Wn0/p is unlikely to have sparse vectors than we used in Lemma 6.4, as Lemma 6.4 is too weak for small ↵n.
The method of Lemma 7.4 will actually give better results as ↵n gets smaller, while Lemma 6.4 gets worse.
This method will automatically control sparse vectors for all large primes at once, without any lifting from
characteristic p to characteristic 0. Notably, the bound we get from Lemma 7.4 will be the largest term in
our error.

Lemma 7.4 (Extremely sparse normal vectors). There are absolute constants c1, C0 such that the following

holds. Let �n := 1 � maxx2Z P(⇠n = x), and assume �n � C0 log n/n and ↵n � 6 log n/n. For n � 2,
the following happens with probability at most e�c1�nn/2: for some prime p > 2nT

, the space Wn0/p has a

non-zero normal vector with at most 144��1

n non-zero coordinates.

Proof. (of Lemma 7.4) In fact, we will show that the following holds with probability at least 1� e�c1�nn/2.
For any 1  t  144��1

n , and any � 2
�
[n]
t

�
, there are at least two columns Xi, Xj whose restriction

(Xj �Xi)|� has exactly one non-zero entry. We first show that this will su�ce to prove the lemma. Since
(Xj �Xi)|� has a unique non-zero entry, and all its entries are at most 2nT in absolute value, for any prime
p > 2nT we have that (Xj/p � Xi/p)|� has exactly one non-zero entry. Suppose we had a normal vector
w to Wn0/p with 1  t  144��1

n non-zero entries, and let � be the indices of those entries. Since w|� is
normal to (Xj/p�Xi/p)|�, that would imply that one of the � coordinates of w is zero, which contradicts
the choice of �.

Now we prove the claim from the beginning of the proof. Our method is similar to that of [1, Lemma 3.2]
and [21, Claim A.9]. For k 2 {1, 3, . . . , 2b(n0 � 1)/2c+1}, consider the vectors Yi = Xk+1 �Xk. The entries
of these vectors are iid copies of the symmetrized random variable  = ⇠ � ⇠0, where ⇠0, ⇠ are independent
and have distribution ⇠n. With 1� �0

n := P( = 0), then �n  �0
n  2�n as this can be seen by

(1� �n)
2  max

x
P(⇠ = x)2 

X

x

P(⇠ = x)2 = P( = 0)  max
x

P(⇠ = x) = 1� �n. (21)

Now let p� be the probability that all Yi|�, i 2 {1, 3, . . . , 2b(n0�1)/2c+1} fail to have exactly one non-zero
entry (in Z), then by independence of the columns and of the entries

p� = (1� t�0
n(1� �0

n)
t�1)b(n0+1)/2c  (1� t�0

ne
�(t�1)�0

n)n0/2  e�nt�0
ne

�(t�1)�0
n/4.

(Recall since ↵n � 6 log n/n we have n0 � n/2.) Notice that as 1  t  144��1

n , we have e�(t�1)�0
n/4 � c1

for some positive constant c1, and hence

e�nt�0
ne

�(t�1)�0
n/4  (e�c1n�

0
n)t  n�c1C0t/2e�c1n�n/2,

for any C0 > 0. Thus

X

1t144��1
n

X

�2([n]
t )

p� 
X

1t144��1
n

✓
n

t

◆
n�c1C0t/2e�c1n�n/2 

X

1t144��1
n

(ntn�c1C0t/2)e�c1n�n/2 < e�c1n�n/2,

provided that n � 2 and C0 is su�ciently large in terms of c1. ⇤

The downside of Lemma 7.4 is that is rather weak for constant ↵n. So it needs be combined with an
improvement of Lemma 6.4. For the improvement, we use Littlewood-O↵ord (Theorem 6.3) in place of
Odlyzko’s bound. However, that substitution only makes sense once have have k non-zero coordinates in
our normal vector and ↵nk is at least a constant. Luckily, Lemma 7.4 provides us with exactly that. This
strategy is analogous to that used in the proof of [21, Proposition A.8].

23



Lemma 7.5 (Moderately sparse normal vectors). There exist absolute constants c0, C0 such that the following

holds. Let �n := 1 �maxx2Z P(⇠n = x). Assume ↵n � C0 logn
n and let p be a prime > 2nT

. The following

happens with probability at most (2/3)n/4: the space Wn0/p has a non-zero normal vector w with 144��1

n 
|supp(w)|  c0n.

Note Lemma 7.5 only bounds the probability of sparse normal vectors modulo one p at a time, unlike
Lemma 7.4, which controls sparse normal vectors modulo all su�ciently big primes.

Proof. (of Lemma 7.5) For � ⇢ [n] with 144��1

n  t = |�|  c0n, consider the event that Wn0/p is normal
to a vector w with supp(w) = � but not to any other vector of smaller support size. With a loss of a
multiplicative factor

�n
t

�
in probability, we assume that � = {1, . . . , t}. Consider the submatrix Mt⇥n0 of

Mn⇥n consisting of the first t rows and first n0 columns of Mn⇥n. Since the restriction w|� of w to the first
t coordinates is normal to all the columns of Mt⇥n0/p, the matrix Mt⇥n0/p has rank t�1 (if p = 0, we mean
rank over R). With a loss of a multiplicative factor

� n0

t�1

�
in probability, we assume that the column space

of Mt⇥n0/p is spanned by its first t� 1 columns.
Note that for p > 2nT , the value of ⇠n is determined by its value mod p, and so �n = 1�maxx2Z/pZ P(⇠n/p =

x). If we fix X1, . . . , Xt�1 such that Wt�1|�/p has a normal vector with all t coordinates non-zero, then by
Theorem 6.3 , the probability that Xi|�/p 2 Wt�1|�/p for all t  i  n0 is at most

(
1

p
+

2p
�nt

)n0�t+1  (
1

p
+

2p
�nt

)(1�2c0)n  (
2

3
)n/2.

The first inequality follows as long as C0 � 3/c0 as then we have c0n � 3 log n/↵n and n0 � n� c0n. Thus
the total probability of the event in the lemma is at most

X

144��1
n tc0n

✓
n

t

◆2

(
2

3
)n/2  (

2

3
)n/4.

provided that c0 is su�ciently small absolutely. ⇤
Now we will show that the probability of having a structured normal vector for a GAP of rank r � 1

(which was defined in the discussion following Theorem 7.3) is extremely small.

Lemma 7.6 (Structured, but not sparse, normal vectors). Let ↵n � n�1+"
. Let p be a prime p � C"n3

. The

following event happens with probability O"(pC"n�"n/5): the space Wn0/p has a structured normal vector w,
and Wn0/p does not have a non-zero normal vector w0

such that |supp(w0)|  c0n with c0 from Lemma 7.5.

Very roughly speaking, aside from the choices of parameters for the GAPs that might contain the most
elements of w, and of the exceptional elements after applying Theorem 7.3, the key estimate leading to
Lemma 7.6 is that

(⇢�1/
p
↵nn0)n⇢n0 = O(n�"n/5)

as long as n�O(1)  ⇢  O(n�"/2). We now present the details.

Proof. (of Lemma 7.6) Throughout the proof, we assume n is su�ciently large given ". Suppose we have such
a w. By Theorem 6.3 and |supp(w)| > c0n, as long as ↵n � 4/(c0n), we have ⇢(w)  p�1 + 2/

p
↵nc0n 

(1 + 2c�1/2
0

)n�"/2, since p � n"/2 and ↵n � n�1+".
Let Q be a symmetric GAP in Z/pZ of rank at most r and volume at most V , such that for some subset

⌧ ⇢ [n] of size n0 we have for j 2 ([n] \ ⌧) that wj 2 Q. Let R1, . . . , Rn denote the rows of the matrix M
formed by the columns X1/p, . . . ,Xn0/p. For n su�ciently large (in terms of ✏) such that c0n � n0, we see
that the Rj for j 2 ⌧ must be linearly independent (or else there would be a normal vector to Wn0/p with
at most c0n non-zero coe�cients).

First, we will determine how many possible choices there are for the data of Q, ⌧ , �, and the wj for
j 2 ⌧ , without any attempt to be sharp. Then, given those data, we will determine the probability that
X1, . . . , Xn0 could produce the situation outlined above with those data.

So we have at most pr choices of generators for Q and at most V r choices of dimensions (to obtain a lower
rank GAP we just take some dimensions to be 0). There are at most 2n choices of ⌧ , and at most 2n choices
of �. There are at most V m choices of wj for j 2 ([n] \ ⌧).
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Given Q, ⌧ , �, and the wj for j 2 ⌧ , we condition on the Xi for i 2 �. Then the ⌧ entries of w are
determined by the wj for j 2 ([n] \ ⌧) and the Xi for i 2 � as follows. From w ·Xi/p = 0 for i 2 �, it follows
that X

j2⌧

wjRj |� = �
X

j2([n]\⌧)

wjRj |�. (22)

Since the Rj |� (meaning row Rj restricted to the � entries) for j 2 ⌧ are linearly independent and |⌧ | = |�|,
we conclude that the wj for j 2 ([n] \ ⌧) and Xi for i 2 � determine at most one possible choice for the wj

for j 2 ⌧ .
For simplicity, we will proceed in two cases. First, we will determine how likely it is for Wn0/p to have

a normal vector w as in the lemma statement such that ⇢(w)  n�9. From the well-boundedness of Q, we
have that r  C" and V  C"n3. Thus the total number of choices for Q, ⌧ , �, and the wj for j 2 ⌧ is at
most pC"(C"n3)C"+m4n. Once we condition on the Xi for i 2 �, the vector w is determined by our choices,
and the probability that w ·Xi/p = 0 for i 2 ([n0] \�) is at most n�9(n0�n0

). Thus the total probability that
Wn0/p has a normal vector w as in the lemma statement such that ⇢(w)  n�9 is at most

pC"(C"n
3)C"+m4nn�9(n0�n0

) = O"(p
C"n�n).

Next we will determine how likely it is for Wn0/p to have a normal vector w as in the lemma statement
such that ⇢(w) > n�9. However, instead of counting the Q from the lemma statement, we are going to count

the Q provided by Theorem 7.3. More specifically, we divide [n�9, (1+2c�1/2
0

)n�"/2] into dyadic subintervals
I` = [⇢`, 2⇢`] and we suppose that ⇢(w) 2 I`. Let ⇢ = ⇢(w). We can apply Theorem 7.3 with C = 3 for
p � C"n3. Then there exists a symmetric GAP Q of rank r  C" with |Q|  max((C"(⇢�1/(↵nn0)r/2, 1),
and a subset ⌧ ⇢ [n] of n0 indices such that for j 2 ([n] \ ⌧), we have wj 2 Q. Note that r = 0 would
imply that |supp(w)|  dn"/2↵�1

n e, which contradicts the fact that |supp(w)| > c0n. Also, since ⇢�1 �
(1 + 2c�1/2

0
)�1n"/2, we have that C 0

"⇢
�1/(↵nn0)1/2 � 1 for some constant C 0

" � C" only depending on ". So
r � 1, and

|Q| = O"(⇢
�1/(↵nn

0)1/2). (23)

Since ` was chosen so that ⇢(w)  2⇢`, we have that the probability that w ·Xi/p = 0 for i 2 ([n0] \ �)
is at most (2⇢`)n0�|�|. Thus the total probability that there is a w as in the lemma statement such that
⇢(w) > n�9 is at most

O(logn)X

`=1

pC"O"(⇢
�1

` /(↵nn
0)1/2)C"+m4n(2⇢`)

n0�n0


O(logn)X

`=1

pC"eO"(n)O"((↵nn
0)�1/2)m(⇢�1

` )n�n0

 O"(p
C"n�"n/5). (24)

For these inequalities, we use facts including ⇢�1

`  n9 and n�n0 = b 3 logn
↵n

c  3n1�" log n, and (↵nn0)�1/2 
n�"/4, and m = n� dn"/2↵�1

n e � n� dn1�"/2e.
⇤

As good as the bounds in Lemmas 7.5 and 7.6 are, they still cannot be summed over all primes p that
might divide the determinant of Mn⇥n. So at some point, we need to lift the structured normal vectors from
characteristic p to characteristic 0. Unlike in Section 6.1, when we could lift non-sparse normal vectors for
all large primes, our structured vectors here have more noise and we cannot lift until the primes are even
larger. The following lemma does this lifting and is the only place we use that the coe�cients of the Xi

are bounded. Instead of counting structured vectors in characteristic 0 (or modulo a prime > nn/2), for
which we would need some bound on their coe�cients (e.g., see the commensurability results [20, Lemma
9.1] and [30, Theorem 5.2(iii)]), we prove in the following lemma that we can also reduce structured vectors

in characteristic 0 to structured vectors modulo a prime around en
1�"/3

. This allows us to transfer structured
vectors modulo p for our largest range of p to structured vectors for a single prime p0 that is of reasonably
controlled size.

We say a submodule of Zn is admissible if it is generated by vectors with coordinates at most nT in
absolute value. (In particular, Wk is always admissible.)
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Lemma 7.7 (Lifting and reducing structured vectors). Let A be an admissible submodule of Zn
, and p be

a prime � en
1�"/3

, and n be su�ciently large given " and T . Then A has a structured normal vector (for a

GAP with integral generators) if and only if A/p has a structured normal vector.

Proof. (of Lemma 7.7) We will first prove the “if” direction. Assume that the first m = n�n0 entries of the
normal vector w = (w1, . . . , wn) belong to a symmetric well-bounded GAP Q with r generators a1, . . . , ar in
Z/pZ, and wj =

Pr
l=1

xjlal for 1  j  m. Let M be the matrix with entries at most nT in absolute value
whose columns generate A. Let R1, . . . , Rn be the rows of M . We have the equality modulo p

0 =
mX

j=1

wjRj +
nX

j=m+1

wjRj =
rX

l=1

al(
mX

j=1

xjlRj) +
nX

j=m+1

wjRj .

Now for 1  l  r, let Zl :=
Pm

j=1
xjlRj . We have |xjl|  |Q|  C"n3. The entries of Zl are then bounded by

C"nT+4, which is  nT+5 for n su�ciently large given ", while the entries of Rm+1, . . . , Rn are bounded by
nT . Let M 0 be the matrix whose columns are Z1, . . . , Zr, Rm+1, . . . Rn. The above identity then implies that
(a1, . . . , ar, wm+1, . . . wn)t is in the kernel of M 0. Lemma 6.5 (3) applied to M 0, with k = r+n0 implies that

as long as p � e(k log k)/2+k(T+5) logn (which is satisfied because p � en
1�"/3

, and r  C", and n0  n1�"/2+1,
and n is su�ciently large given " and T ), then there exist integers a0l, w

0
j , reducing mod p to al, wj , for

1  l  r and m+ 1  j  n, such that
rX

k=1

a0lZl +
nX

j=m+1

w0
jRj = 0.

Let w0 = (w0
1
, . . . , w0

n) where w0
j =

Pr
l=1

xjla0l for 1  j  m. By definition the w0
j for 1  j  m belong to

the symmetric GAP with generators a0l and with the same rank and dimensions as Q, and w0 is normal to
A. Further w0 is non-zero since it reduces to w mod p.

The “only if” direction appears easier at first—if we start with a structured normal vector, we can reduce
the generators of the GAP and the normal vector mod p for any prime p. However, the di�culty is that for
general primes p it is possible for the generators al of the GAP to be not all 0 mod p, but yet the resulting
normal vector w to be 0 mod p. Given A, we choose w minimal (e.g. with

P
i |wi| minimal) so that the

first m = n� n0 entries (without loss of generality) of the normal vector w = (w1, . . . , wn) to A belong to a
symmetric well-bounded GAP Q with r generators a1, . . . , ar in Z, and wj =

Pr
l=1

xjlal for 1  j  m and
w is non-zero. Let Mx be the n⇥(r+n0) matrix with entries xjl in the first m rows and r columns, the n0⇥n0

identity matrix in the last n0 rows and columns, and zeroes elsewhere. So for a := (a1, . . . , ar, wm+1, . . . wn)t,
we have Mxa = wt.

Certainly by minimality of w at least some coordinate of w is not divisible by p (else we could divide
the al and wj all by p and produce a smaller structured normal w). Suppose, for the sake of contradiction
that all of the coordinates of w are divisible by p. The entries of Mx are bounded by C"n3, so, as above,

for p � en
1�"/3

, by Lemma 6.5 (3) we have that kerMx|Zr+n0 surjects onto kerMx/p. So a/p is in the kernel
of Mx/p, and choose some lift a0 := (a0

1
, . . . , a0r, w

0
m+1

, . . . w0
n)

t 2 Zn of a/p in the kernel of Mx. Then
a � a0 2 pZn, and Mx(

1

p (a � a0)) = 1

pw. Note that 1

pw is non-zero integral normal vector to A, and the

equality Mx(
1

p (a � a0)) = 1

pw shows that all but n0 of the coordinates of 1

pw belong to a symmetric well-
bounded GAP with integral generators and the same rank and volume as Q, contradicting the minimality
of w. Thus we conclude that w/p is non-zero and thus a structured normal vector of A/p for GAP Q/p. ⇤

We now conclude the main result of this section.

Proof of Lemma 6.7. We let S 0 be the set of submodules H of Zn such that for all primes p > ed↵nn, the
vector space H/p has no structured normal vector w. We assume throughout the proof that n is su�ciently

large given ", T, d. First, we will bound P(Wn0 62 S 0). By Lemma 7.7, for p � en
1�"/4

, if Wn0/p has a
structured normal vector, then Wn0 has a structured normal vector, and then Wn0/p

0 has a structured

normal vector for every prime p0 with en
1�"/3  p0 < en

1�"/4

(of which there is at least 1).
So it su�ces to bound the condition that Wn0/p has a structured normal vector for p is a prime C"n3 

p < en
1�"/4

.
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We will include in our upper bound the probability that Wn0/p has a non-zero normal vector w with

|supp(w)|  c0n for some prime p < en
1�"/4

, which is at most e�c1↵nn/2 + en
1�"/4

(2/3)n/4 by Lemmas 7.4

and 7.5. Then, otherwise, by Lemma 7.6, it is with probability at most en
1�"/4

O",T (eC"n
1�"/4

n�"n/5) that,

for some prime p < en
1�"/4

, the space Wn0/p has a structured normal vector w. We conclude that P(Wn0 2
S 0) � 1� e�c2↵nn for some absolute constant c2.

If H 2 S 0 and H 0 is a proper subspace of (Z/pZ)n containing H/p, then H 0 has some non-zero normal
vector w (also normal to H/p). Let p > ed↵nn be a prime. If ⇢(w)  n�3, then since P(X/p 2 H 0) 
P(X/p · w = 0) we have P(X/p 2 H 0)  n�3. Otherwise, if ⇢(w) > n�3, we apply Theorem 7.3 with
C = 3 and find a symmetric well-bounded GAP containing all but n0 coordinates of w, which contradicts
the definition of S 0. ⇤

8. Laplacian of random digraphs: proof of Theorem 1.6

As laid out in Section 2, it su�ces to prove Proposition 2.5 and this task consists of three parts, in the
first part we modify the method of Section 4 to justify Equation (12) for the small primes, in the second
part we provide a complete proof for Equation (13) and (14) regarding the medium primes by improving the
method of [19, 21], and in the last part we modify the method of Sections 6 and 7 to prove Equation (15)
and (16) for the large primes.

For 1  i  n, we say that a random vector X = (x1, . . . , xn) 2 Zn
0
, the set of vectors of zero entry

sum in Zn, has type Ti if xi = �(x1 + · · · + xi�1 + xi+1 + · · · + xn) and x1, . . . , xi�1, xi+1, . . . , xn are i.i.d.
copies of ⇠n from (1). Recall that LMn⇥n is a random matrix with independent columns Xi sampled from
Ti. Sometimes we will also denote this matrix by Ln⇥n for short.

I. Proof of Equation (12) of Proposition 2.5: treatment for small primes. In this subsection we
modify the approach of Section 4 toward the Laplacian setting. We first prove the analog of Theorem 4.12
for the Laplacian. We will use the same approach as in [33, Theorem 6.2] to consider an auxiliary matrix
that lets us carry the argument from the i.i.d. case to the Laplacian case. Let a be the exponent of G. Let
R = Z/aZ and V = (Z/aZ)n. We let M 0 be an n⇥ n random matrix with coe�cients in R with entries Xij

distributed as (Mn⇥n)ij for i 6= j and with Xii distributed uniformly in R, with all entries independent. Let
F0 2 Hom(V,R) be the map that sends each standard basis element to 1. Now, M 0 and LMn⇥n do not have
the same distribution, as the column sums of M 0 can be anything and the column sums of LMn⇥n are zero,
i.e. F0LMn⇥n = 0. However if we condition on F0M 0 = 0, then we find that this conditioned distribution
of M 0 is the same as the distribution of LMn⇥n . Given M 0 and conditioning on the o↵ diagonal entries, we
see that the probability that F0M 0 = 0 is a�n (for any choice of o↵ diagonal entries). So any choice of o↵
diagonal entries is equally likely in LMn⇥n as in M 0 conditioned on F0X = 0.

So for F 2 Hom(V,G), we have

P(FLMn⇥n = 0) = P(FM 0 = 0|F0M
0 = 0) = P(FM 0 = 0 and F0M

0 = 0)an.

Let F̃ 2 Hom(V,G� R) be the sum of F and F0. Let Z ⇢ V denote the vectors whose coordinates sum to
0, i.e.

Z = {v 2 V | F0v = 0}.
Let Sur⇤(V,G) denote the maps from V to G that are a surjection when restricted to Z. We wish to estimate

E(#Sur(SMn⇥n , G)) = E(#Sur(Z/LMn⇥nR
n, G))

=
X

F2Sur(Z,G)

P(FLMn⇥n = 0)

=
1

|G|
X

F2Sur⇤(V,G)

P(FLMn⇥n = 0)

= |G|�1an
X

F2Sur⇤(V,G)

P(F̃M 0 = 0).

Note that if F : V ! G is a surjection when restricted to Z, then F̃ is a surjection from V to G�R.
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Now we need a slight variant on Lemma 4.10 to bound F 2 Hom(V,G) such that F̃ is robust for a
subgroup H of G.

Lemma 8.1 (Count of robust F for a subgroup H). Let � > 0, and a, n � 1 be integers, and G be finite

abelian group of exponent dividing a. Let H be a subgroup of G�R of index D > 1 and let H = G`(D) ⇢ . . . ⇢
G2 ⇢ G1 ⇢ G0 = G � R be a maximal chain of proper subgroups. Let pj = |Gj�1/Gj |. For n su�ciently

large given G, the number of F 2 Hom(V,G�R) such that F composed with the projection onto R is 1 for

each standard basis vector, and F is robust for H and for 1  j  `(D), there are wj elements i of [n] such
that Fvi 2 Gj�1 \Gj is at most

a�n|H|n�
P

j wj

`(D)Y

j=1

✓
n

wj

◆
|Gj�1|wj .

We note that for n su�ciently large in terms of G, the condition on the projection onto R implies that H
surjects in the projection to R, and otherwise the proof of Lemma 8.1 is analogous to that of Lemma 4.10.
(See also [33, Lemma 5.3].) We can then apply Lemma 4.11 as written to the maps F̃ with range G�R and
the matrix M 0. The proof now follows the proof of Theorem 4.12, except that we are estimating

|G|�1an
X

F2Sur⇤(V,G)

P(F̃M 0 = 0).

The two sums of |G|�n over various F are replaced by sums of |G|�na�n, but proofs of the same bounds
can be found in the proof of [33, Theorem 6.2]. We deduce

��E(#Sur(SMn⇥n, G))� |G|�1
��  K2n

�c2 ,

and then deduce Equation (12) of Proposition 2.5, just as we proved Theorem 4.1 from Theorem 4.12.

II. Proof of Equations (13) and (14) of Proposition 2.5: treatment for the medium primes.
In this subsection we fix a prime p and will work with Z/pZ. As such, if not specified otherwise, all of the

vectors and subspaces in this subsection are modulo p. For brevity, instead of Xi/p or Wi/p, we just write
Xi or Wi. The co-dimensions (coranks) of subspaces, if not otherwise specified, are with respect to Zn

0
/p.

Although our main result, Theorem 8.2, works for any subspace Wn�k generated by n� k columns of Ln⇥n,
for simplicity we assume Wn�k = hX1, . . . , Xn�ki. We show the following variant of Theorem 5.2.

Theorem 8.2. There are su�ciently small constants c, ⌘ > 0 and su�ciently large constants C0,K > 0
such that the following holds. Let p be a prime, and let Ln⇥n be a random matrix with independent columns

Xi sampled from Ti respectively, where we assume that

max
r2Z/pZ

P(⇠n = r) = 1� ↵n  1� C0 log n

n
. (25)

Then for 1  k  ⌘n there exists an event En�k on the �-algebra generated by X1, . . . , Xn�k, all of probability

at least 1� e�c↵nn, such that for any k0 with k � 1  k0  ⌘n
���PXn�k+1

⇣
Xn�k+1 2 Wn�k

��En�k ^ codim(Wn�k) = k0
⌘
� p�k0

���  Ke�c↵nn.

Combining with Theorem 5.3 and with appropriate choices of c0 and K0 we then deduce the part of
Proposition 2.5 for medium primes, analogous to the proof of Theorem 5.1.

Now we give a proof of Theorem 8.2. Our overall approach is similar to the proof of [21, Theorems A.1
and A.4] (which is built on approaches in [19, 30]), but for the Laplacian we cannot apply these results
because the column vectors, as well as the entries in each column, are not identically distributed any more.

We would like to emphasize that in our argument below the positive constants c,�, �, ⌘,� are su�ciently
small and allowed to depend only on the constant C0 in the bound (25) of ↵n. We first introduce a version
of Lemma 3.1 and Corollary 3.2 for ↵n-dense random variables in the Laplacian setting.

Lemma 8.3. For a deterministic subspace V of Zn
0
/p (or Zn

0
) of dimension d and for any i

PX2Ti(X 2 V )  (1� ↵n)
n�d�1.

As a consequence, X1, . . . , Xn�k are linearly independent in Zn
0
/p with probability at least 1�n(1�↵n)k�1.
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Proof. If su�ces to verify the first part. But for this we just project the vectors onto the coordinates of
indices di↵erent from i, and then use Lemma 3.1. ⇤

We will also need the following variant of Theorem 6.3.

Theorem 8.4 (forward Erdős-Littlewood-O↵ord for the Laplacian). Suppose that w = (w1, . . . , wn) 2
(Z/pZ)n does not have any component wj with multiplicity larger that n�m, then for any i

sup
r

|PX2Ti(X · w = r)� 1

p
|  2

p
↵nm

.

We remark that the classical Erdős-Littlewood-O↵ord in characteristic zero implies that if w = (w1, . . . , wn) 2
Zn does not have any component wj with multiplicity larger that n�m, then for any i

sup
r2Z

PX2Ti(X · w = r)|  2
p
↵nm

.

Proof. (of Theorem 8.4) Assume that X = (x1, . . . , xn) 2 Ti for some 1  i  n. Then

x1w1 + · · ·+ xnwn = x1(w1 � wi) + · · ·+ xi�1(wi�1 � wi) + xi+1(wi+1 � wi) + · · ·+ xn(wn � wi).

By the assumption, at least m entries w1 �wi, . . . , wn �wi are non-zero. Because x1, . . . , xi�1, xi+1, . . . , xn

are i.i.d., we then can apply Theorem 6.3. ⇤
8.5. Sparse subspace. Let 0 < �, ⌘ be small constants (independently from ↵n). Given a vector space
H  (Z/pZ)n, we call H �-sparse if there is a non-zero vector w with |supp(w)|  �n such that w ? H.

Lemma 8.6 (random subspaces are not sparse, Laplacian case). There exist absolute constant c0 and C 0
such

that the following holds with ↵n � C0 logn
n . Let ", �, ⌘ be constants such that 0 < " < 1/12 and 0  �, ⌘  ".

• (characteristic p) For ⇠n satisfying Equation (25), and for 0  k < ⌘n

PX1,...,Xn�k (Wn�k/p is not �-sparse) � 1� e�c0↵nn.

• (characteristic zero) For ⇠n satisfying Equation (1), and for 0  k < ⌘n

PX1,...,Xn�k (Wn�k is not �-sparse in Zn) � 1� e�c0↵nn.

This result is actually a special case of Lemma 8.21 and 8.22, which will be discussed in due course. In
connection to Theorem 8.4, it is more useful to connect the sparseness property to the one of having an entry
of high multiplicity.

Claim 8.7. Assume that the random subspace Wn�k/p does not accept any normal vector in (Z/pZ)n of

support size at most �, then it does not accept any normal vector with an entry of multiplicity between n��n
and n� 1 either. The same holds in the the characteristic zero case Zn

.

Proof. This is because of the invariance property that if w = (w1, . . . , wn) is normal to Wn�k then so is any
shifted vector (w1 � w0, . . . , wn � w0) to Wn�k. ⇤

To conclude our treatment for the sparse case, given constants ", ⌘, � and the parameter ↵n from (25),
let Ek,dense = Ek,dense(", ⌘, �) denote the event in the �-algebra generated by X1, . . . , Xn�k considered in
Lemma 8.6, then

P(Ek,dense) � 1� e�c0↵nn. (26)

As such we can simply condition on this event without any significant loss. In our next move, we will
choose � > 0 to be a su�ciently small constant and show that it is highly unlikely that Wn�k/p is some non
�-sparse subspace (module) V of co-dimension k0 with k � 1  k0  ⌘n such that

e��↵nn < max
i,X2Ti

|P(X 2 V )� 1

pk0
|.

Let us simply call V bad if this holds. For motivation, instead of bounding the probability that Wn�k/p
is bad, let us simplify it to bounding the probability that X1, . . . , Xn�k all belong to a bad subspace V .
For this we will use the “swapping method” from [15, 30], and this was also adapted by Maples in [19] for
the modulo p case. Roughly speaking, by letting the random variable ⇠n be lazier at zero, the associated
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random vector Y with this lazy random variable will stick to V more often than X does (see Lemma 8.12),
say |P(X 2 V ) � 1

pk0
|  0.51|P(Y 2 V ) � 1

pk0
|. Hence if |P(X 2 V ) � 1

pk0
| is large enough, say larger

than 16

pk0
, then we have that P(X 2 V )  (2/3)P(Y 2 V ), which in turn leads to a very useful bound

P(X1, . . . , Xn�k 2 V )  (2/3)n�kP(Y1, . . . , Yn�k 2 V ). In what follows we will try to exploit this crucial
exponential gain toward the Laplacian setting and toward the event that X1, . . . , Xn�k actually span a bad
subspace.

8.8. Semi-saturated subspace. Given 0 < ↵, �,� < 1. We call a subspace V  Zn
0
/p of co-dimension

k0  ⌘n (with respect to Zn
0
/p) semi-saturated (or semi-sat for short) with respect to these parameters if V

is not �-sparse and

e��↵nn < max
i,X2Ti

|P(X 2 V )� 1

pk0
|  16

pk0
. (27)

Here we assume

e��↵nn <
16

pk0
.

If this condition is not satisfied (such as when p is su�ciently large), then the semi-saturated case can be
omitted. Our main result of this part can be viewed as a structural theorem which says that semi-saturated
subspaces can be “captured” by a set of significantly fewer than pn vectors.

Lemma 8.9. For all � > 0 and � > 0 there exists 0 < � = �(�, �) < 1 in the definition of semi-saturation

and a deterministic set R ⇢ (Z/pZ)n of non �-sparse vectors and of size |R|  (2��)npn such that every

semi-saturated V is normal to a vector R 2 R. In fact the conclusion holds for any subspace V satisfying

the LHS of (27).

Proof. (of Lemma 8.9) Without loss of generality, assume that e��↵nn < |P(X 2 V ) � 1

pk0
| where X 2 T1.

Equivalently, with J = {2, . . . , n}

e��↵nn < |P(X|J 2 V |J)�
1

pk0
|.

By [19, Proposition 2.5] (see also [21, Lemma A.12]), there exists a deterministic set R0 ⇢ (Z/pZ)n�1 of
non �-sparse vectors and of size |R0|  (2��)n�1pn�1 such that V |J is normal to a vector R 2 R0. We then
define R by appending a first coordinate to the vectors of R0 to make them have zero entry-sum. ⇤

Let Fn�k,k0,semi�sat be the event that codim(Wn�k) = k0 and Wn�k is semi-saturated.

Lemma 8.10 (random subspaces are not semi-saturated, Laplacian case). Let �, � > 0 be parameters such

that �� < 17�2/2. With � = �(�, �) from Lemma 8.9 we have

P(Fn�k,k0,semi�sat)  e�n.

In particularly, with En�k,semi�sat denotes the event complements ^k�1k0⌘nFn�k,k0,semi�sat in the
�-algebra generated by X1, . . . , Xn�k, then

P(En�k,semi�sat) � 1� e�n/2. (28)

Proof. (of Lemma 8.10) We have

P(Fn�k,k0,semi�sat) =
X

V semi�sat, codim(V )=k0

P(Wn�k = V ) 
X

V semi�sat, codim(V )=k0

P(X1, . . . , Xn�k 2 V ).

Now for each fixed V  Zn
0
/p that is semi-saturated of co-dimension k0, by definition

P(Xn+k+j 2 V )  max
i,X2Ti

|P(X 2 V )� 1

pk0
|+ 1

pk0
 17p�k0 .

So

P(X1, . . . , Xn�k 2 V )  17n�kp�k0(n�k).
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We next use Lemma 8.9 to count the number Nsemi�sat of semi-saturated subspaces V . Each V is determined
by its annihilator V ? in Zn

0
/p (of cardinality pk0). For V ? we can choose a first vector v1 2 R, and then

v2, . . . , vk0 2 Zn
0
/p (linearly independently). By double counting, we obtain an upper bound

Nsemi�sat = O
⇣
(2��)npn

(pn�1)k0�1

|V ?|k0�1

⌘
= O

⇣
(2��)npnk0�k2

0+k0

⌘
.

Putting together,

P(Fn�k,k0,semi�sat) 
X

V semi�sat, codim(V )=k0

P(X1, . . . , Xn�k 2 V ) = O
⇣
(2��)npnk0�k2

0+k017n�kp�k0(n�k)
⌘

= O
⇣
17n�k(2��)npk0pk0(k�k0)

⌘
= O

⇣
17n�k(2��)np2k0

⌘
,

where we noted that k0 � k � 1. Now recall that e��↵nn  16p�k0 , and so

P(Fn�k,k0,semi�sat) = O(17n�k(2��)np2k0) = O(17n+1�k(2��)ne2�↵nn).

We then choose � so that 2�� < 17�2 and with � < 1/2 we have

P(Fn�k,k0,semi�sat)  e�n.

⇤

Having worked with subspaces V where maxi,X2Ti |P(X 2 V )� p�k0 | are still small, we now turn to the
remaining case to apply the swapping method.

8.11. Unsaturated subspace. Let V be a subspace of codimension k0 in Zn
0
/p for some k � 1  k0  ⌘n.

We say that V is unsaturated (or unsat. for short) if V is not �-sparse and

max(e�d↵n, 16p�k0) < max
i,X2Ti

|P(X 2 V )� p�k0 |.

In particularly this implies that

max
i,X2Ti

P(X 2 V ) � max{17p�k0 ,
16

17
e�d↵n}.

In this case, for each 1  i  n we say that V has type i if

PX2Ti(X 2 V ) = max
1jn,X2Tj

P(X 2 V ).

By taking union bound, it su�ces to work with unsaturated subspace of type 1. So in what follows X 2 T1.
The following is from [19, Lemma 2.8] (see also [21, Lemma A.15]).

Lemma 8.12. There is a ↵0
n-balanced probability distribution ⌫ on Z/pZ with ↵0

n = ↵n/64 such that if

Y = (y1, . . . , yn) 2 (Z/pZ)n is a random vector with i.i.d. coe�cients y2, . . . , yn distributed according to ⌫
and y1 = �(y2 + · · ·+ yn) then for any unsaturated proper subspace V in Zn

0
/p

|P(X 2 V )� 1

pk0
|  (

1

2
+ o(1))|P(Y 2 V )� 1

pk0
|.

(To be more precise, [19, Lemma 2.8] and [21, Lemma A.15] stated for vectors of i.i.d. entries, but for
Lemma 8.12 we just need to truncate the first coordinate from all vectors.) For short, we will say that the
vector Y from Lemma 8.12 has type T 0

1
. It follows from the definition of unsaturation and from Lemma 8.12

that

PX2T1(X 2 V )  2

3
PY 2T 0

1
(Y 2 V ).

Definition 8.13. Let V be a subspace in (Z/pZ)n. Let dcomb 2 {1/n, . . . , n2/n}. We say that V of type 1
has combinatorial codimension dcomb if

(1� ↵)dcomb  PX2T1(X 2 V )  (1� ↵n)
dcomb�1/n. (29)
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Now as we are in the unsaturated case, P(X 2 V ) � 16

17
e��↵nn, and so

dcomb  2�n. (30)

In what follows we will fix dcomb from the above range, noting that d is su�ciently small, and there are only
O(n2) choices of dcomb.

Let be fixed any 0 < �1 < �2 < 1/3 such that

16(�2 � �1)(1 + log
1

�2 � �1
) < �1. (31)

Set

r = b�1nc and s = n� k � b�2nc.
Let Y1, . . . , Yr 2 T 0

1
be random vectors with entries distributed by ⌫ obtained by Lemma 8.12, and

Z1, . . . , Zs 2 T1 bee i.i.d. copies of a type 1 vector generated by µ. Note that in what follows the subspaces
V are of given combinatorial dimension dcomb as in Equation (29) and (30).

Lemma 8.14 (random subspaces are not unsaturated, Laplacian case).

P
⇣
X1, . . . , Xn�k span an unsat. V of type 1 of dim. between r + s and n� k

⌘
 (3/2)��1n/4.

Note that the event considered here is significantly harder to control than the event discussed in the
paragraph preceding Subsection 8.8. This is also the place where [19] treated incorrectly by relying on [19,
Proposition 2.3] (although our situation here is more technical with vectors of dependent and extremely
sparse entries.) To prove Lemma 8.14 we will actually show

Lemma 8.15. Assume that V is any subspace of type 1 and of dimension between r + s and n � k and

dcomb  2�n. Then we have

P
⇣
X1, . . . , Xn�k span V

⌘
 (3/2)�r/2

X

(i1,...,in�k�r�s)

P
⇣
Y1, . . . , Yr, Z1, . . . , Zs, X

(i1), . . . , X(in�k�r�s) span V
⌘
,

where (i1, . . . , in�k�r�s) ranges over all subsets of size n� k � r � s of {1, . . . , n� k}.

To conclude Lemma 8.14 we just use (3/2)�r/2
�n�k
r+s

�
 (3/2)��1n/4 (basing on Equation (31)) and the

fact that for each fixed (i1, . . . , in�k�r�s)
X

V(Z/pZ)n, type 1, codim(V )�k

P(Y1, . . . , Yr, Z1, . . . , Zs, X
(i1), . . . , X(in�k�r�s) span V )  1.

Proof. (of lemma 8.15) We use the swapping method from [19, 30]. First of all, by independence between
Xi, Yj , Zl,

P
⇣
X1, . . . , Xn�k span V

⌘
⇥P

⇣
Y1, . . . , Yr, Z1, . . . , Zs linearly independent in V

⌘

= P
⇣
X1, . . . , Xn�k span V ^ Y1, . . . , Yr, Z1, . . . , Zs linearly independent in V

⌘
. (32)

Roughly speaking, the linear independence of Y1, . . . , Zs is to guarantee that we then can add a few other Xi

to form a new linear span of V , and by this way we can free the other Xi from the role of spanning (see for
instance Equation (34)). We next estimate P(Y1, . . . , Yr, Z1, . . . , Zs linearly independent in V ). By product
rule,

P
⇣
Z1, . . . , Zs, Y1, . . . , Yr linearly independent in V

⌘

= P
⇣
Yr 2 V

⌘
⇥P

⇣
Yr�1 2 V, Yr�1 /2 hYri|Yr 2 V

⌘
⇥ · · ·⇥P

⇣
Y1 2 V, Y1 /2 hY2, . . . , Yri|Y2, . . . , Yr lin. in V

⌘
⇥

⇥P
⇣
Zs 2 V, Zs /2 hY1, . . . , Yri|Y1, . . . , Yr lin. in V

⌘
⇥ · · ·⇥

⇥P
⇣
Z1 2 V, Z1 /2 hZ2, . . . , Zr, Y1, . . . , Yri|Z2, . . . , Zs, Y1, . . . , Yr lin. in V

⌘
.
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We first estimate the terms on Yi. By Lemma 8.3

P
⇣
Yi 2 V, Yi /2 hYi+1, . . . , Yri|Yi+1, . . . Yr lin. in V

⌘
� P(Yi 2 V )� (1� ↵0

n)
n�(r�i)�1.

This then can be estimated from below by

P(Yi 2 V )� (1� ↵0
n)

n�(r�i)�1 �3

2
P(Xi 2 V )� (1� ↵0

n)
n�(r�i)�1 � 3

2
(1� ↵)dcomb � (1� ↵0

n)
n�(r�i)�1

�3

2
(1� ↵n)

dcomb(1� (1� ↵n)
n/256�dcomb),

where we used that ↵0
n = ↵n/64 and n� r � (1� �1)n � n/2. Similarly,

P
⇣
Zi 2 V, Zi /2 hZi+1, . . . , Zs, Y1, . . . , Yri|Zi+1, . . . , Zs, Y1, . . . , Yr

⌘
� P(Zi 2 V )� (1� ↵0)n�(r+s�i)�1

� (1� ↵n)
dcomb � (1� ↵0

n)
n�(r+s�i)�1 � (1� ↵n)

dcomb � (1� ↵n)
n/256

where we used that r + s = n� k � (b�2nc � b�1nc) � n/2. Putting together

P
⇣
Y1, . . . , Zs linearly independent in V

⌘
� (3/2)r(1� ↵n)

(r+s)dcomb

⇣
1� (1� ↵n)

n/256�dcomb

⌘r+s

� (3/2)r�1(1� ↵n)
(r+s)dcomb , (33)

where we used dcomb  2�n and � is su�ciently small.
Now we estimate the probabilityP(X1, . . . , Xn�k span V ^Y1, . . . , Yr, Z1, . . . , Zs linearly independent in V ).

Since Y1, . . . , Yr, Z1, . . . , Zs are linearly independent in V and Xk+1, . . . , Xn span V , there exist n�k� r�s
vectors X(i1), . . . , X(in�k�r�s), which together with Y1, . . . , Yr, Z1, . . . , Zs, span V , and the remaining vectors
Xin�k�r�s+1 , . . . , Xin�k belong to V . Thus,

P
⇣
X1, . . . , Xn�k span V ^ Y1, . . . , Yr, Z1, . . . , Zs linearly independent in V

⌘


X

(i1,...,in�k�r�s)

P
⇣
Y1, . . . , Zs, X

(i1), . . . , X(in�k�r�s) span V ^Xin�k�r�s+1 , . . . , Xin�k 2 V
⌘


X

(i1,...,in�k�r�s)

P
⇣
Y1, . . . , Zs, X

(i1), . . . , X(in�k�r�s) span V
⌘
P
⇣
Xin�k�r�s+1 , . . . , Xin�k 2 V

⌘


X

(i1,...,in�k�r�s)

P
⇣
Y1, . . . , Zs, X

(i1), . . . , X(in�k�r�s) span V
⌘
(1� ↵)(r+s)(dcomb�1/n), (34)

where in the last step we used the upper bound (1� ↵)dcomb�1/n for each P(X(i) 2 V ).
Putting (32), (33) and (34) together,

P
⇣
X1, . . . , Xn�k span V

⌘
=

P
⇣
X1, . . . , Xn�k span V ^ Y1, . . . , Zs linearly independent in V

⌘

P
⇣
Y1, . . . , Zs linearly independent in V

⌘

 (3/2)�r+1(1� ↵n)
�(r+s)dcomb⇥

⇥
X

(i1,...,in�k�r�s)

P
⇣
Y1, . . . , Zs, X

(i1), . . . , X(in�k�r�s) span V
⌘
(1� ↵n)

(r+s)(dcomb�1/n)

 (3/2)�r/2
X

(i1,...,in�k�r�s)

P
⇣
Y1, . . . , Zs, X

(i1), . . . , X(in�k�r�s) span V
⌘
.

⇤

Remark that r+s = n�k� (b�2nc�b�1nc) < n�k�⌘n if ⌘ is su�ciently small. As a consequence, if we
let Ek,unsat denote the complement of the event in Lemma 8.14 in the �-algebra generated by X1, . . . , Xn�k

then

P(En�k,unsat) � 1� (3/2)��1n/4. (35)
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We now conclude the proof of Theorem 8.2. Let En�k,dense, En�k,semi�sat, En�k,unsat be the events intro-
duced in (26), (28), (35) and let En�k be their intersection. If we choose c  min{c0,�} then by definition,
on these events, if codim(Wn�k) = k0 then for a random vector X of any type Ti

|P(X 2 Wn�k)�
1

pk0
|  e�c↵nn,

completing the proof.
Finally, we conclude this section with an interesting consequence of Theorem 8.2 in light of singularity

bounds for random matrices from [1, 3, 15, 16, 27, 30].

Corollary 8.16 (Non-singularity of the Laplacian). There exist absolute constants c0,K0 > 0 such that

the following holds. Assume that the i.i.d. entries are distributed according to a random variable ⇠n taking

integral values and such that

max
x2Z

P(⇠n = x) = 1� ↵n  1� C0 log n

n
, for a su�ciently large constant C0.

Then with probability at least 1 � K0e�c0↵nn the matrix Ln⇥(n�1) of any n � 1 columns of Ln⇥n has rank

n� 1 in Rn
.

Note that we do not require ⇠n to be bounded at all, and our sparseness is almost best possible.

Proof. (of Corollary 8.16) We assume Ln⇥(n�1) to be the matrix of the first n � 1 columns. For primes p
su�ciently large given n, we will show that Ln⇥(n�1)/p has rank n� 1 with probability at least 1� e�c↵nn.
Given n, we choose a p large enough that P(⇠n ⌘ x (mod p))  1� C0(log n)/n. By Lemma 8.3, it su�ces
to bound the probability that Ln⇥(n�1)/p has rank between n� ⌘n and n� 2. For this we can deduce from
Theorem 8.2 that if 1  k  ⌘n for some su�ciently small ⌘, then

P
⇣
rank(Ln⇥(n�1)/p) = (n� 1)� k

⌘
= O

⇣
nk(p�k2

+ e�c↵nn)
⌘
. (36)

Indeed, the event rank(Ln⇥(n�1)/p) = (n�1)�k implies that there exist k column vectorsXi1 , . . . , Xik which
belong to the subspace of Zn

0
/p of dimension (n� 1)� k generated by the remaining column vectors Xi for

i 6= i1, . . . , ik. With a loss of a factor of
�n�1

k

�
in probability, we assume that {i1, . . . , ik} = {n�k, . . . , n�1}.

We then use Theorem 8.2 (with the vectors and subspaces below being mod p)

P
⇣
Xn�k, . . . , Xn�1 2 Wn�k�1 ^ codim(Wn�k�1) = k

⌘

=P
⇣
Xn�k, . . . , Xn�1 2 Wn�k�1 ^ En�k�1 ^ codim(Wn�k�1) = k

⌘
+O(e�c↵nn)

P
⇣
Xn�k, . . . , Xn�1 2 Wn�k�1|En�k�1 ^ codim(Wn�k�1) = k

⌘
+O(e�c↵nn)


⇣
p�k +O(e�c↵nn)

⌘k
+O(e�c↵n) = O(p�k2

+ e�c↵n),

proving (36), and hence the corollary by taking p large enough, given n. ⇤

III. Proof of Equations (15) and (16) of Proposition 2.5: treatment for large primes. Now we
modify the approach of Section 6 and 7 to the Laplacian setting. Let d > 0 be a constant and

Pn =
n
p prime, p � ed↵nn

o
.

Let E(L)

6=0
be the event that Ln⇥(n�1) has rank n� 1 in Rn. It follows from Corollary 8.16 that

P(E(L)

6=0
) � 1�K0e

�c0↵nn.

Our strategy is similar to the proof of Proposition 2.3. Recall that Wk is the submodule of Zn
0
spanned by

X1, . . . , Xk. Let Wk be the set of primes p 2 Pn such that rank(Wk/p)  k � 1. Let Ck be the event that
|Wk|  (2T + 1) log n/(2d↵n) (the watch list is not too big). Note that any p 2 Wk for k  n must divide
det(Ln⇥(n�1)). By Hadamard’s bound, | det(Ln⇥(n�1))|  nn/2nTn, and so in particular, when C̄k occurs
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then det(Ln⇥(n�1)) = 0. Let Dk be the event that there is a p 2 Wk such that rank(Wk/p)  k � 2, this is
the event we want to avoid for all p.

We will show that P(C̄k+1 _ D̄k+1|Ck ^ D̄k), and hence P(C̄k+1 _ D̄k+1|C̄k _ D̄k), are large. The goal is
to conclude that P(C̄n _ D̄n) is large, and since we know that P(C̄n) is small, we can conclude that P(D̄n)
is large, as desired. Now to estimate P(C̄k+1 _ D̄k+1|Ck ^ D̄k) we will condition on the exact values of
X1, . . . , Xk where Ck ^ D̄k holds, and so there are at most (2T + 1) log n/(2�↵n) primes p 2 Pn such that
rank(Wk/p)  k � 1 and no prime p 2 Pn such that rank(Wk/p)  k � 2. In this case D̄k+1, as long as for
each p 2 Wk, we have Xk+1/p 62 Wk/p. Consider one prime p 2 Wk, and let V be the value of Wk/p that
the conditioned X1, . . . , Xk give. From Lemma 8.3, P(Xk+1/p 2 V )  (1 � ↵n)(n�1)�(k�1) = (1 � ↵)n�k.
Thus,

P(C̄k+1 _ D̄k+1|Ck ^ D̄k) � 1�
✓
(2T + 1) log n

2d↵n

◆
(1� ↵n)

n�k.

In particular, we have the same lower bound for P(C̄k+1 _ D̄k+1|C̄k _ D̄k), and then inductively, we have

P(C̄k _ D̄k) � 1�
k�1X

i=1

✓
(2T + 1) log n

2d↵n

◆
(1� ↵n)

n�i = 1�
✓
(2T + 1) log n

2d↵n

◆
(1� ↵n)n�k+1

↵n
.

Set n0 := n� b3 log n/↵nc. Then by using ↵n � n�1+" we have that

P
�
C̄n0 _ D̄n0

�
� 1�Od,T

�
n�1/2

�
.

We then have the following analog of Lemma 6.2.

Lemma 8.17. Suppose that ↵n � 6 log n/n. Then there is a set of submodules SL of Zn
0
such that

P(Wn0 2 SL) � 1� e�↵nn/8

and for any prime p � ed↵nn, and any submodule H 2 SL, for any proper subspace H 0
of Zn

0
/p containing

H/p,

P
⇣
X/p 2 H 0

⌘
= Od,T

✓p
log n

↵n
p
n

◆
,

where X is any column of Ln⇥n.

Lemma 8.17 can be shown exactly the same way Lemma 6.2 was deduced. Indeed, we can use Lemma 6.5
to lift the existence of sparse normal vector on any modulo p with p � ea↵nn to the existence of sparse
normal vector on characteristic zero, for which we then can use Lemma 8.6 (or Lemmas 8.21 and 8.22) to
show that this event is unlikely. We then apply Theorem 8.4 (combined with Claim 8.7) to get the desired
probability bound when the normal vectors are non-sparse.

Now similarly to the iid case, Lemma 8.17 allows us to justify Equations (15) and (16) only for ↵n �
n�1/6+". To extend to ↵n � n�1+", we will have to need the following analog of Lemma 6.7.

Lemma 8.18. There is an absolute constant c2 > 0 such that the following holds. Suppose that ↵n � n�1+✏
.

There is a set S 0
L of submodules of Zn

0
, such that

P(Wn0 2 S 0
L) � 1� e�c2↵nn

and for n su�ciently large given d, ✏, T , any prime p � ed↵nn, any submodule H 2 S 0
L, and any proper

subspace H 0
of (Z0/p)n containing H/p,

max
i

PX2Ti

⇣
X/p 2 H 0

⌘
 n�3.

The deduction of Equations (15) and (16) from this lemma is similar to how Proposition 2.2 was deduced
from Lemma 6.7. It remains to verify Lemma 8.18. For this we will make use of Theorem 8.4 and the
following corollary of Theorem 7.3 for vectors from Ti.

Theorem 8.19 (inverse Erdős-Littlewood-O↵ord for the Laplacian). Let " < 1 and C be positive constants.

Assume that p is a prime that is larger than C 0nC
for a su�ciently large constant C 0

depending on " and

35



C. Let ⇠ be a random variable taking values in Z/pZ which is ↵n-balanced with an � n�1+"
. Assume

w = (w1, . . . , wn) 2 (Z/pZ)n such that

⇢(w) = max
i,(⇠1,...,⇠n)2Ti

sup
a2Z/pZ

P(⇠1w1 + · · ·+ ⇠nwn = a) � n�C ,

Then for any n"/2↵�1  n0  n, there exists 1  i  n and there exists a proper symmetric GAP Q in Z/pZ
of rank r = O",C(1) which contains all but n0

elements of {w1 � wi, . . . , wn � wi} (counting multiplicity),

where

|Q|  max
n
1, OC,"(⇢(w)

�1/(↵n0)r/2)
o
.

8.20. Proof of Lemma 8.18. Our method is similar to Section 7, so we will be brief. First we need an
analog of Lemma 7.4 to estimate the probability that for some large prime p the module Wn0/p of Zn

0
/p

accepts an extremely sparse normal vector.

Lemma 8.21. There are absolute constants c1, C0 such that the following holds. Let �n := 1�maxx2Z P(⇠n =
x), and assume �n � C0 log n/n and ↵n � 6 log n/n. For n � 2, the following happens with probability at

most e�c1�nn/2: for some prime p > 2nT
, the subspace Wn0/p has a non-zero normal vector with at most

144��1

n non-zero coordinates.

We also need an analog of Lemma 7.5, which will allow us to control the event that for some prime p of
order eo(n) or p = 0 the subspace Wn0/p accepts a normal vector of o(n) non-zero entries.

Lemma 8.22. There exist absolute constants c0, C0 such that the following holds. Let �n := 1�maxx2Z P(⇠n =
x). Assume ↵n � C0 logn

n and let p be a prime > 2nT
. The following happens with probability at most

(2/3)n/4: the subspace Wn0/p has a non-zero normal vector w with 144��1

n  |supp(w)|  c0n.

Lemmas 8.21 and 8.22 will be verified in Appendix D by following the proofs of Lemmas 7.4 and 7.5.
We next discuss an analog of Lemma 7.6 on the existence of structured but not sparse normal vectors

of Wn0/p. Similarly to Section 7, we let n0 = dn"/2↵�1

n e and m = n � n0, and we will apply Theorem 8.19
with this choice of n0 and C = 3. By replacing w = (w1, . . . , wn) by (w1 � wi, . . . , wn � wi) if needed (note
that this shifted vector is again a normal vector of Wn0/p because this subspace consists of vectors of zero
entry sum modulo p), we can simply say that Theorem 8.19 implies structure for w1, . . . , wn. We call a GAP
Q well-bounded if it is of rank  C" and |Q|  C"n3, where C" is the maximum of C 0 and the constants
from the OC," bounding the rank of volume of |Q|. Motivated by this, and similarly to Section 7, we call a
vector w structured if it is non-zero, and there exists a symmetric well-bounded GAP Q such that all but n0

coordinates of w belong to Q.

Lemma 8.23. Let ↵n � n�1+"
. Let p be a prime with p � C"n3

. The following event happens with

probability O"(pC"n�"n/5): the space Wn0/p has a structured normal vector w, and Wn0/p does not have a

non-zero normal vector w0
such that |supp(w0)|  c0n with c0 from Lemma 8.22.

Lemma 8.18 then can be shown by combining Lemmas 8.21, 8.22 and 7.7 the way Lemma 6.7 was concluded
in the end of Section 7. Finally, the proof of Lemma 8.23 is almost identical to that of Lemma 7.6, the only
di↵erence is that we need to apply Theorems 8.4 and 8.19 instead of Theorems 6.3 and 7.3 in the argument
leading to Equations (23) and (24), and thus we again omit the detail.
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Appendix A. Inequality Lemmas

We have a straightforward inequality (easily checked by considering the cases when A  1 and A > 1).

Lemma A.1. Let 0 < d1 < 1 and A > 0, and n � 1 be an integer. Then we have

(d1 + (1� d1) exp(�A))n  max
�
exp(�(1� d1)An/2), ((1 + d1)/2)

n �.
The following is a standard estimate with binomial coe�cients.

Lemma A.2. Let D1 > 0. For every f > 0, for all � > 0 su�ciently small (given D1, f), we have that for

all su�ciently large n (given D1, f, �), that

b�ncX

k=0

✓
n

k

◆
Dk

1
 exp(fn).

We put these lemmas together to obtain the inequality below.

Lemma A.3. Let D1 > 0 and 0 < d1 < 1. Then for positive � su�ciently small (given D1 and d1), the
following holds. Let �0 > 2/(1� d1). For n su�ciently large (given D1, d1, �,�0

) we have

b�ncX

k=1

✓
n

k

◆
Dk

1

�
d1 + (1� d1) exp(�(�0 log n/n)k)

�n  3n�((1�d1)�
0/2�1).

Proof. For n � 2, we have that (�0 log n/n)k > 0. So by Lemma A.1 with A = (�0 log n/n)k, we have

b�ncX

k=1

✓
n

k

◆
Dk

1
(d1 + (1� d1) exp(�(�0 log n/n)k))n


b�ncX

k=1

✓
n

k

◆
Dk

1
exp(�(1� d1)An/2) +

b�ncX

k=1

✓
n

k

◆
Dk

1
((1 + d1)/2)

n

=

b�ncX

k=1

✓
n

k

◆
Dk

1
exp(�(1� d1)�

0(log n)k/2) +

b�ncX

k=1

✓
n

k

◆
Dk

1
((1 + d1)/2)

n .

We have

r ·
✓
n

k

◆
Dk

1
exp(�(1� d1)�

0(log n)k/2) �
✓

n

k + 1

◆
Dk+1

1
exp(�(1� d1)�

0 log n(k + 1)/2)

if and only if

r � n� k

k + 1

D1

n(1�d1)�
0/2

.

If (1� d1)�0/2 > 1, then for n su�ciently large given D1, d1 and �0, we have

n� k

k + 1

D1

n(1�d1)�
0/2

 D1n

2n(1�d1)�
0/2

=
D1

2n(1�d1)�
0/2�1

 1

2
.

So, if (1� d1)�0/2 > 1, then for n su�ciently large given D1, d1 and �0, we have

1

2
·
✓
n

k

◆
Dk

1
exp(�(1� d1)�

0(log n)k/2) �
✓

n

k + 1

◆
Dk+1

1
exp(�(1� d1)�

0 log n(k + 1)/2).

In particular, that implies

b�ncX

k=1

✓
n

k

◆
Dk

1
exp(�(1� d1)�

0(log n)k/2) 2n�((1�d1)�
0/2�1).

For the second sum, let f = � log(1 + d1/2)/2 > 0 and note that f + log((1 + d1/2)) < 0. Then by
Lemma A.2, we have that for � su�ciently small given D1, d1 that for all n su�ciently large (given D1, d1, �)

b�ncX

k=1

✓
n

k

◆
Dk

1
((1 + d1)/2)

n  exp(fn+ log(1 + d1/2)n) = exp(log(1 + d1/2)n/2).

37



For n su�ciently large given d1,�0, we have

exp(log(1 + d1/2)n/2)  n�((1�d1)�
0/2�1).

The lemma follows. ⇤

Appendix B. Approximate transition probabilities: proof of Theorem 5.3

First, we prove the following simplified version of the theorem. Using a coupling, we show that if the
transition probabilities of two sequences of random variables are close, then the distribution of the random
variables must be close.

Lemma B.1. Let w and w0
be sequences of random variables with w0 = w0

0
= 0, for each i � 0

P(w0
i+1

= a|w0
i = b) = P(wi+1 = a|wi = b) + �(i, b, a)

for all a and b such that P(w0
i = b) = P(wi = b) 6= 0 ,

and wi and w0
i only take on countably many values. Then for any n � 0 and any set A of values taken by

wn or w0
n, we have

|P(wn 2 A)�P(w0
n 2 A)|  1

2

X

0in�1

X

b

X

c

|�(i, b, c)|P(wi = b)  1

2

X

0in�1

max
b

X

c

|�(i, b, c)|,

where b is summed over {b | P(wk = b) 6= 0 and P(w0
k = b) 6= 0)} and c is summed over {c | P(wi+1 = c) 6=

0 or P(w0
i+1

= c) 6= 0)}.

Proof. Let Si be the set of values taken on by wi and w0
i. Let µ be Lebesgue measure on the interval [0, 1].

For each i � 0 and b 2 Si, we can choose measurable functions �i,b : [0, 1] ! Si+1 and �0i,b : [0, 1] ! Si+1

such that for all c 2 Si,

P(wi+1 = c|wi = b) = µ(��1

i,b (c)) and P(w0
i+1

= c|w0
i = b) = µ((�0)�1

i,b (c)),

and µ({x 2 [0, 1]|�i,b(x) 6= �0i,b(x)}) = 1

2

P
c2Si+1

|�(i, b, c)|. (If b isn’t a value taken by one of the variables,

we will just take �i,b = �0i,b.) Then we construct Markov chains xi and x0
i, with x0 = x0

0
= 0, and to

determine xi+1 and x0
i+1

, we pick a random x 2 [0, 1], and then let xi+1 = �i,xi(x) and xi+1 = �0i,xi
(x). Note

that for all i � 0 and all b 2 Si and c 2 Si+1, we have

P(xi+1 = c|xi = b) = P(wi+1 = c|wi = b) and P(x0
i+1

= c|x0
i = b) = P(w0

i+1
= c|w0

i = b).

Thus, for all n � 0, we have P(xi = a) = P(wi = a) and P(x0
i = a) = P(w0

i = a). Note that xn and
x0
n are equal, unless for some 0  i  n � 1, we have that xi = x0

i, but xi+1 6= x0
i+1

, and in particular,
�i,xi(x) 6= �0i,xi

(x). To see how likely this is for a given i, we sum over all b 2 Si, and have

P(xi = x0
i ^ xi+1 6= x0

i+1
) 

X

b2Si

P(xi = b)P(xi = x0
i = b ^ xi+1 6= x0

i+1
|xi = b)


X

b2Si

P(xi = b)P(�i,b(x) 6= �0i,b(x)|xi = b)


X

b2Si

P(xi = b)
1

2

X

c2Si+1

|�(i, b, c)|.

So

P(xn 6= x0
n) 

1

2

n�1X

i=0

X

b2Si

X

c2Si+1

P(xi = b)|�(i, b, c)|,

and from this the result follows, since

|P(wn 2 A)�P(w0
n 2 A)| = |P(xn 2 A)�P(x0

n 2 A)|  max(P(xn 2 A ^ x0
n 62 A),P(xn 62 A ^ x0

n 2 A)).

⇤

Theorem 5.3 will follow by applying Lemma B.1 to a modified sequence.
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Proof of Theorem 5.3 . We insert half-steps xi+1/2 = (xi, gi) and yi+1/2 = (yi, 1). We compare the transi-
tional probabilities as follows, first for i integral:

P(yi+1/2 = (r, 1)|yi = r)�P(xi+1/2 = (r, 1)|xi = r) = P(gi 6= 1|xi = r)

and
P(yi+1/2 = (r, 0)|yi = r)� P (xi+1/2 = (r, 1)|xi = r) = �P(gi 6= 1|xi = r).

Also for i integral, we have

P(yi+1 = s|yi+1/2 = (r, 1))�P(xi+1 = s|xi+1/2 = (r, 1)) = �(i, r, s).

Then applying Lemma B.1, we have

|P(xn 2 A)�P(yn 2 A)|

 1

2

n�1X

i=0

X

r

2P(gi 6= 1|xi = r)P(xi = r) +
1

2

n�1X

i=0

X

r

X

s

|�(i, r, s)|P(xi = r)

=
n�1X

i=0

P(gi 6= 1) +
1

2

n�1X

i=0

X

r

X

s

|�(i, r, s)|P(i = r).

⇤

Appendix C. Inverse theorem: proof of Theorem 7.3

We first introduce a more general structure in finite additive groups.

Definition C.1. A set P in a given finite additive group G is a coset progression of rank r if it can be
expressed as in the form of

H +Q,

whereH is a finite subgroup ofG, andQ = {a0+x1a1+· · ·+xrar|Mi  xi  M 0
i and xi 2 Z for all 1  i  r}

is a GAP of rank r.

• We say that P with this presentation (i.e. choice of H, ai, Mi, M 0
i) is proper if the sums h + a0 +

x1a1 + · · ·+ xrar, h 2 H,Mi  xi  M 0
i are all distinct.

• More generally, given a positive integer t we say that P is t-proper with this presentation if H + tQ
is proper.

• If �Mi = M 0
i for all i � 1 and a0 = 0, then we say that P with this presentation is symmetric.

To prove Theorem 7.3 we will make use of two results from [31] by Tao and Vu. The first result allows
one to pass from coset progressions to proper coset progressions without any substantial loss.

Theorem C.2. [31, Corollary 1.18] There exists a positive integer C1 such that the following statement

holds. Let Q be a symmetric coset progression of rank d � 0 and let t � 1 be an integer. Then there exists a

t-proper symmetric coset progression P of rank at most d such that we have

Q ⇢ P ⇢ Q
(C1d)

3d/2t.

We also have the size bound

|Q|  |P |  td(C1d)
3d2/2|Q|.

The second result, which is directly relevant to us, says that as long as |kX| grows slowly compared to
|X|, then it can be contained in a structure. This is a long-ranged version of the Freiman-Ruzsa theorem.

Theorem C.3. [31, Theorem 1.21] There exists a positive integer C2 such hat the following statement holds:

whenever d, k � 1 and X ⇢ G is a non-empty finite set such that

kd|X| � 22
C2d226d

|kX|,
then there exists a proper symmetric coset progression H + Q of rank 0  d0  d � 1 and size |H + Q| �
2�2

C2d226d

kd
0 |X| and x, x0 2 G such that

x+ (H +Q) ⇢ kX ⇢ x0 + 22
C2d226d

(H +Q).
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Note that any GAP Q = {a0 + x1a1 + · · · + xrar| � Ni  xi  Ni for all 1  i  r} is contained in a
symmetric GAP Q0 = {x0a0 + x1a1 + · · ·+ xrar|� 1  x0  1,�Ni  xi  Ni for all 1  i  r}. Thus, by
combining Theorem C.3 with Theorem C.2 we obtain the following

Corollary C.4. Whenever d, k � 1 and X ⇢ G is a non-empty finite set such that

kd|X| � 22
C2d226d

|kX|,

then there exists a 2-proper symmetric coset progression H + P of rank 0  d0  d and size |H + P | 
2d(C1d)3d

2/22d2
C2d226d |kX| such that

kX ⇢ H + P.

As for Theorem 7.3, the explicit constants in Corollary C.4 will not be important. (Although a more

careful analysis would allow ↵n to be as small as n�1+O(
1

log log log n ) here, and hence in our main theorems.
But in order to keep our presentation simple we will not work with this technical assumption, only staying
with ↵n � n�1+".) Now we give a detailed proof of Theorem 7.3. In general our method follows that of [22],
but the details are more complicated because we have to obtain an actual inverse result in Z/pZ, as well as
we need to take into account the almost sharp sparsity of the randomness.

Proof. (of Theorem 7.3) First, for convenience we will pass to symmetric distributions. Let  = ⌫1 � ⌫2 be
the symmetrization of ⌫ and let  0 be a lazy version of  that

P( 0 = x) =

(
1

2
P( = x) if x 6= 0

P( 0 = x) = 1

2
P( = x) + 1

2
, if x = 0.

Notice that  0 is symmetric as  is symmetric. Similarly to (21), we can check that maxx P( = x)  1�↵n,
and so

sup
x

P( 0 = x)  1� ↵n/2.

We assume that {0,±t1, . . . ,±tl} is the range of  0 and P( 0 = tj) = P( 0 = �tj) = �j/2 for 1  j  l,
and that P( 0 = 0) = �0, where tj1 ± tj2 6= 0 mod p for all j1 6= j2.

Consider a 2 Z/pZ where the maximum is attained, ⇢ = ⇢(w) = P(S = a), here S = ⌫1w1+· · ·+⌫nwn = a.
Using the standard notation ep(x) for exp(2⇡

p
�1x/p), we have

⇢ = P(S = a) = E
1

p

X

x2Z/pZ

ep(x(S � a)) = E
1

p

X

x2Z/pZ

ep(xS)ep(�xa)  1

p

X

x2Z/pZ

|Eep(xS)|. (37)

By independence

|Eep(xS)| =
nY

i=1

|Eep(x⌫iwi)| 
nY

i=1

(
1

2
(|Eep(x⌫iwi)|2+1)) =

nY

i=1

|Eep(x 
0wi)| =

nY

i=1

(�0+
lX

j=1

�j cos
2⇡xtjwi

p
).

It follows that

⇢  1

p
|
X

x2Z/pZ

nY

i=1

(�0 +
lX

j=1

�j cos
2⇡xtjwi

p
)|  1

p

X

x2Z/pZ

nY

i=1

(�0 +
lX

j=1

�j | cos
⇡xtjwi

p
|), (38)

where we made the change of variable x ! x/2 (in Z/pZ) and used the triangle inequality.
By convexity, we have that | sin⇡z| � 2kzk for any z 2 R, where kzk := kzkR/Z is the distance of z to

the nearest integer. Thus,

| cos ⇡x
p
|  1� 1

2
sin2

⇡x

p
 1� 2kx

p
k2. (39)

Hence for each wi

�0 +
lX

j=1

�j | cos
⇡xtjwi

p
|  1� 2

lX

j=1

�jk
xtjwi

p
k2  exp(�2

lX

j=1

�jk
xtjwi

p
k2).
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Consequently, we obtain a key inequality

⇢  1

p

X

x2Z/pZ

nY

i=1

(�0 +
lX

j=1

�j | cos
⇡xtjwi

p
|)  1

p

X

x2Z/pZ

exp(�2
nX

i=1

lX

j=1

�jk
xtjwi

p
k2). (40)

Large level sets. Now we consider the level sets Sm := {⇠|
Pn

i=1

Pl
j=1

�jkxtjwi

p k2  m}. We have

n�C  ⇢  1

p

X

x2Z/pZ

exp(�2
nX

i=1

lX

j=1

�jk
xtjwi

p
k2)  1

p
+

1

p

X

m�1

exp(�2(m� 1))|Sm|.

As p is assumed to be much larger than nC , and as
P

m�1
exp(�m) < 1, there must be is a large level set

Sm such that
|Sm| exp(�m+ 2) � ⇢p. (41)

In fact, since ⇢ � n�C , we can assume that m = O(log n).

Double counting and the triangle inequality. By double counting we have

nX

i=1

X

x2Sm

lX

j=1

�jk
xtjwi

p
k2 =

X

x2Sm

nX

i=1

lX

j=1

�jk
xtjwi

p
k2  m|Sm|.

So, for most wi

X

x2Sm

lX

j=1

�jk
xtjwi

p
k2  m

n0 |Sm|. (42)

More precisely, by averaging, the set of wi satisfying (42) has size at least n� n0. We call this set W 0. The
set {w1, . . . , wn}\W 0 has size at most n0 and this is the exceptional set that appears in Theorem 7.3. In the
rest of the proof, we are going to show that W 0 is a dense subset of a proper GAP.

Since k · k is a norm, by the triangle inequality, we have for any a 2 kW 0

X

x2Sm

lX

j=1

�jk
xtja

p
k2  k2

m

n0 |Sm|. (43)

More generally, for any k0  k and a 2 k0W 0

X

x2Sm

lX

j=1

�jk
xtja

p
k2  k0

2m

n0 |Sm|. (44)

Dual sets. Set

↵0
n :=

lX

j=1

�j = 1� �0.

Then by definition of  , we have
↵0
n � ↵n/2 � n�1+".

Define

S⇤
m := {a|

X

x2Sm

lX

j=1

�jk
xtja

p
k2  ↵0

n

200
|Sm|}

where the constant 200 is ad hoc and any su�ciently large constant would do. We have

|S⇤
m|  8p

|Sm| . (45)

To see this, define Ta :=
P

x2Sm

Pl
j=1

�j cos
2⇡atjx

p . Using the fact that cos 2⇡z � 1�100kzk2 for any z 2 R,
we have, for any a 2 S⇤

m

Ta �
X

x2Sm

(1� 100
lX

j=1

�jk
xtja

p
k2) � ↵0

n

2
|Sm|.
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One the other hand, using the basic identity
P

a2Z/pZ cos 2⇡az
p = pIz=0, we have (taking into account that

tj1 6= tj2 mod p)

X

a2Z/pZ

T 2

a  2p|Sm|
X

j

�2

j  2p|Sm| max
1jl

�j(
lX

j=1

�j)  2p|Sm|↵0
n
2
.

Equation (45) then follows from the last two estimates and averaging.
Next, for a properly chosen constant c1 we set

k := c1

r
↵0
nn

0

m
.

By (44) we have [k
k0=1

k0W 0 ⇢ S⇤
m. Next, set

W
00
:= W 0 [ {0}.

We have kW
00 ⇢ S⇤

m [ {0}. This results in the critical bound

|kW
00
| = O(

p

|Sm| ) = O(⇢�1 exp(�m+ 2)). (46)

The long range inverse theorem. We are now in the position to apply Corollary C.4 with X as the set of

distinct elements of W
00
. As k = ⌦(

q
↵0

nn
0

m ) = ⌦(
q

↵0
nn

0

logn ),

⇢�1  nC  k4C/"+1. (47)

It follows from Corollary C.4 that kX is a subset of a 2-proper symmetric coset progression H + P of
rank r = OC,✏0(1) and cardinality

|H + P |  OC,"|kX|.

Now we use the special property of Z/pZ that it has only trivial proper subgroups. As |kX| = O(nC), and
as p � nC , the only possibility that |kX| � |H + P | is that H = {0}. Consequently, kX is now a subset of
P , a 2-proper symmetric GAP of rank r = OC,✏0(1) and cardinality

|P |  OC,"|kX|. (48)

To this end, we apply the following dividing trick from [22, Lemma A.2].

Lemma C.5. Assume that 0 2 X and that P = {
Pr

i=1
xiai : |xi|  Ni} is a 2-proper symmetric GAP that

contains kX. Then

X ⇢ {
rX

i=1

xiai : |xi|  2Ni/k}.

Proof. (of Lemma C.5) Without loss of generality, we can assume that k = 2l. It is enough to show that
2l�1X ⇢ {

Pr
i=1

xiai : |xi|  Ni/2}. Since 0 2 X, 2l�1X ⇢ 2lX ⇢ P , any element x of 2l�1X can be written
as x =

Pr
i=1

xiai, with |xi|  Ni. Now, since 2x 2 P ⇢ 2P and 2P is proper GAP (as P is 2-proper), we
must have 0  |2xi|  Ni. ⇤

Combining (48) and Lemma C.5 we thus obtain a GAP Q that contains X and

|Q| = OC,✏0(k
�r|kX|) = OC,✏0(k

�r|kW
00
|) = OC,✏0

 
⇢�1 exp(�m)(

r
↵0
nn

0

m
)�r

!

= OC,✏0(⇢
�1(↵0

nn
0)�r),

concluding the proof. ⇤
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Appendix D. Sparse subspaces for the Laplacian case: proof of Lemmas 8.21 and 8.22

Our methods are almost identical to those of Lemma 7.4 and 7.5, with a few minor exceptions.

Proof. (of Lemma 8.21) Argue similarly as in the proof of Lemma 7.4, it su�ces to show that the following
holds with probability at least 1� e�c1�nn/2. For any 1  t  144��1

n , and any � 2
�
[n]
t

�
, there are at least

two columns Xi, Xj with i, j /2 � whose restriction (Xj �Xi)|� has exactly one non-zero entry.
For a given � of size t, assume that {i1, . . . , jn0�t} ⇢ [n0]\�. For i 2 {1, 3, . . . , 2b(n0� t)/2c�1}, consider

the vectors Yi = Xji+1 |� � Xji |�. Note that as ji, ji+1 /2 � and Xji 2 Tji and Xji+1 2 Tji+1 , the entries
of Yi are iid copies of the symmetrized random variable  = ⇠ � ⇠0, where ⇠0, ⇠ are independent and have
distribution ⇠n. Recall that with 1��0

n = P( = 0), then �n  �0
n  2�n. Now let p� be the probability that

all Yi|�, i 2 {1, 3, . . . , 2b(n0� t)/2c� 1} fail to have exactly one non-zero entry (in Z), then by independence
of the columns and of the entries

p� = (1� t�0
n(1� �0

n)
t�1)b(n0�t)/2c  (1� t�0

ne
�(t�1)�0

n)b(n0�t)/2c  e�nt�0
ne

�(t�1)�0
n/4,

where we used n0 � t > n/2 because ↵n � 6 log n/n and t  144��1

n . The rest of the proof is similar to that
of Lemma 7.4. ⇤

Proof. (of Lemma 8.22) For � ⇢ [n] with 144��1

n  t = |�|  c0n, consider the event that Wn0/p is normal
to a vector w with supp(w) = � but not with any other vector of smaller support size. With a loss of a
multiplicative factor

�n
t

�
in probability, we assume that � = {1, . . . , t}. Consider the submatrix Lt⇥n0 of

Ln⇥n consisting of the first t rows and first n0 columns of Ln⇥n0 . Since the restriction w|� of w to the first
t coordinates is normal to all the columns of Lt⇥n0/p, the matrix Lt⇥n0/p has rank t� 1 (if p = 0, we mean
rank over R). We assume that the column space of Lt⇥n0/p is spanned the columns {Xi1 , . . . , Xit�1} for
some {i1, . . . , it�1} ⇢ [n0].

Note that for p > 2nT , the value of ⇠n is determined by its value mod p, and so �n = 1�maxx2Z/pZ P(⇠n/p =
x). If we fix Xi1 |�, . . . , Xit�1 |� such that the subspace Wi1,...,it�1 |�/p generated by these vectors has a normal
vector with all t coordinates non-zero, then by Theorem 6.3 , the probability that Xi|�/p 2 Wi1,...,it�1 |�/p
for all i 2 [n0]\(� [ {i1, . . . , it�1}) (as for these vectors the entries of Ti restricted to � are independent) is
at most

(
1

p
+

2p
�nt

)n0�2t�1  (
1

p
+

2p
�nt

)(1�3c0)n  (
2

3
)n/2

as long as C0 is su�ciently large and c0 is su�ciently small. Thus the total probability of the event in the
lemma is at most

X

144��1
n tc0n

✓
n

t

◆✓
n0

t� 1

◆
(
2

3
)n/2  (

2

3
)n/4.

⇤
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