RANDOM INTEGRAL MATRICES: UNIVERSALITY OF SURJECTIVITY AND THE
COKERNEL
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ABSTRACT. For a random matrix of entries sampled independently from a fairly general distribution in Z we
study the probability that the cokernel is isomorphic to a given finite abelian group, or when it is cyclic. This
includes the probability that the linear map between the integer lattices given by the matrix is surjective.
We show that these statistics are asymptotically universal (as the size of the matrix goes to infinity), given
by precise formulas involving zeta values, and agree with distributions defined by Cohen and Lenstra, even
when the distribution of matrix entries is very distorted. Our method is robust and works for Laplacians of
random digraphs and sparse matrices with the probability of an entry non-zero only n—1t¢.

1. INTRODUCTION

For square matrices M, x,, of random discrete entries, the problem to estimate the probability p,, of M, xn
being singular has attracted quite a lot of attention. In the 60’s Komlés [16] showed p,, = O(n~1/2) for entries
{0,1} with probability each 1/2. This bound was significantly improved by Kahn, Komlés, and Szemerédi
in the 90’s to p, < 0.999™ for +1 entries. About ten years ago, Tao and Vu [30] improved the bound for +1
entries to p, < (3/4+ 0(1))"™. The most recent record is due to and Bourgain, Vu and Wood [3] who showed
Pn < (% +0(1))™ for £1 entries and gave exponential bounds for more general entries as well. We also refer
the reader to [27] by Rudelson and Vershynin for implicit exponential bounds. For sparse matrices having
entries 0 with probability 1 — a,,, Basak and Rudelson [I] proved p, < e " for a,, > C'logn/n and for
rather general entries, including the adjacency matrices of sparse Erd6s-Rényi random graphs.

When M, «, has integral entries, these results imply that with very high probability the linear map
My wn : Z™ — Z™ is injective. Another important property of interest is surjectivity, it seems natural to
wonder if with high probability M, «, : Z™ — Z" is surjective (see [I18] [21])? However, recent results of the
second author show that the surjectivity probability goes to 0 with n (e.g. that is implied by [34] Corollary
3.4]). The main result of this paper will imply that when the matrix has more columns than rows, e.g.
My (ng1) Z"t1 — Z" we have surjectivity with positive probability strictly smaller than one.

We make the following definition to restrict the types of entries our random matrices will have. We say a
random integer &, is a,-balanced if for every prime p we have

max P(§,=r (modp)) <1-— . (1)
reZ/pZ
Our main result tells us not only whether M, (,4.4) is surjective, but more specifically about the cokernel
Cok(M,,x (n+u)), which is the quotient group Z" /M,y (n44)(Z"T") and gives the failure of surjectivity.

Theorem 1.1. For integers n,u > 0, let M,y (n4v) be an integral n x (n+w) matriz with entries i.i.d copies
of an oy -balanced random integer &,, with a,, > n~ '€ and |£,| < nT for any fived parameters 0 < e < 1
and T > 0 not depending on n. For any fixed finite abelian group B and u > 0,

i P(Cok(Mxtor) ~ B) = ey HC .

n—oo
Here ((s) is the Riemann zeta function. In particular, as n — oo, the map M,y (41) : VAR AUST
surjective with probability approaching [],—, ((k)™' ~ 0.4358. The one extra dimension mapping to Z"
brought the surjectivity probability from 0 to = 0.4358.
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Note that the product J[p2 ., ¢(k)~" in is non-zero for u > 1, but ¢(1)~! = 0. So Theorem
shows that every possible finite cokernel appears with positive probability when u > 1. (Note that when the
matrix has full rank over R, the cokernel must be finite.) Theorem is a universality result because these
precise positive probabilities do not depend on the distribution of §,, the random entries of our matrices.
As a simple example, if we take an n X (n + 1) random matrix with entries all 0 or 1, whether we make
entries 0 with probability ﬁ, %7 or 1 —n~%9 we obtain the exact same asymptotic probability of the map
Z"t! — Z" being surjective. If we take entries from {—17,0,6, 7} with respective probabilities 2,1 1 —1 1
the asymptotic probability of surjectivity is unchanged. Our theorem allows even more general entries as
well.

Further, we prove the following.

Theorem 1.2. Let My (n1u) be as in Theorem|[1.1. We have

oo
lim P(Cok M, (ntw)) 18 cyclic) = 1+p tD(p—1)71 C(k)~ L.
Tlim P (Cok(Mys (i) I« = 11 <)

Note that even when u = 0, the limiting probability here is positive. For u = 0, this probability has been
seen in several papers studying the probability that a random lattice in Z™ is co-cyclic (gives cyclic quotient),
in cases when these lattices are drawn from the nicest, most uniform distributions, e.g. uniform on lattices
up to index X with X — oo [4, 23] 24], or with basis with uniform entries in [-X, X] with X — oo [29).
Stanley and Wang have asked whether the probability of having cyclic cokernel is universal (see |29, Remark
4.11 (2)] and |28 Section 4]). Theorem proves this universality, showing that the same probability of
cocylicity occurs when the lattice is given by n random generators from a rather large class of distributions,
including ones that are rather distorted mod p for each prime p.

Moreover, we show the same results hold if we replace Cok(M,, (n41)) with the total sandpile group of an
Erdds-Rényi simple random digraph, proving a conjecture of Koplewitz [17, Conjecture 1] (see Theorem [1.6]).
This allows some dependence in the entries of our random matrices, since the diagonal of the graph Lapla-
cian depends on the other entries in the matrix. In particular, this says that with asymptotic probability
[Th2, ¢(k)~! ~ 0.4358 an Erdds-Rényi random digraph is co-Eulerian, which Farrell and Levine [8] define
to be any of several equivalent definitions including a simple condition for when chip-firing configurations
on the graph stabilize and the condition that recurrent states in the rotor-router model are in a single or-
bit. In contrast to the distribution of sandpile groups of Erdés-Rényi random graphs, where for each finite
abelian group B, the sandpile group is B with asymptotic probability 0 [33] Corollary 9.3|, for Erdds-Rényi
random digraphs, we show that each finite abelian group appears with positive asymptotic probability as the
total sandpile group. Moreover, the universality in our theorems proves that all of these positive limiting
probabilities do not depend on the edge density of the random graph.

Previous work of the second author [34, Corollary 3.4] determined the probabilities of these Cok(M,, x (n+u))
having any given Sylow p-subgroup for a fixed prime p or finite set of primes p. The two significant advances
of this work over previous work are (1) that we determine the distribution of the entire cokernel, not just
the part of it related to a finite set of primes, and (2) that we allow our random matrix entries to be more
distorted mod p as n increases, for example allowing sparse matrices where entries are non-zero with proba-
bility n~1*¢. Our hypothesis that a,, > n~'*¢ is asymptotically best possible, in terms of the exponent of
n (see the discussion following Equation ().

Our proofs require considering primes in three size ranges separately, and in each range we use different
methods. Our works builds on methods from previous work, including that of Tao and Vu [30, 31] [32], the
first author and Vu [22], Maples [19], the second author [33] [34], and the first author and Paquette [21].
The key ideas original to this paper are in our treatment of large primes, where we prove a result that lifts
structur/ed normal vectors from characteristic p to characteristic 0, crucially for p in a range much smaller
than n™/2.

1.3. Further results and connections to the literature. We also show asymptotic almost sure surjec-
tivity when u — oo with n, proving a conjecture of Koplewitz [18, Conjecture 2].



Theorem 1.4. Let M,y (nqu) be as in Theorem|1.1. Then

lim P(Cok(MnX(nJru)) ~ {id}) =1 (3)

min(u,n)—oco
Theorem [I.1] has several nice corollaries, including the u > 1 cases of Theorem [I.2] and the following.
Corollary 1.5. For any fized u > 0

lim P (M, (niu) : "7 — Z" is surjective) = [ ¢(k)".
n— oo
k=u+1

Also, for any fized u > 1

li_>m P(det(MnX(m_u)) is square—free) = H (1+p“(p—-1)""h H Clk)~L.
p prime k=u-+1

To give a heuristic for why inverse zeta values arise in these probabilities, note that M, , (1) is surjective
if and only if its reduction to modulo p is surjective for all primes p. We then make two idealized heuristic
assumptions on My, (n41)- (i) (uniformity assumption) Assume that for each prime p the entries of M, (5,41)
are uniformly distributed modulo p. In this case, a simple calculation gives the probability for M, (,+1)
being surjective modulo p is [[}_(1 —p~7)(1 —p~"~"). (ii) (independence assumption) We next assume
that the statistics of M, (,41) reduced to modulo p are asymptotically mutually independent for all primes
p. Under these assumptions, as n — oo, the probability that M, (n41) is surjective would be asymptotically
the product of all of the surjectivity probability modulo p, which leads to the number [];2, ¢ (k)= as seen.
The matrices in this paper do not have to satisfy either assumption, and indeed they can violate them
dramatically. For example, if the matrix entries only take values 0 and 1, then they cannot be uniformly
distributed mod any prime > 2, and the matrix entries mod 3 are not only not independent from the entries
mod 5, but they are in fact determined by the entries mod 5. The work of this paper is in showing that even
for rather general random matrices, universality holds and gives the same cokernel distributions as for the
simplest random matrices.

For our Theorem we remark that for v > 1, the limiting probabilities | B|~*|Aut(B)|~' T[;Z,,,, ¢(k)~*
in Theorem do sum to 1 (use [6, Corollary 3.7 (i)] with s = v and k = oo). This gives, for each u > 1,
a probability distribution on finite abelian groups. Cohen and Lenstra [6] introduced these distributions
to conjecture that the v = 1 distribution is the distribution of class groups of real quadratic number fields
(except for the Sylow 2-subgroup). Friedman and Washington [11] later proved that if M,,x,, has independent
entries taken from Haar measure on the p-adics Z,, then for a finite abelian p-group B we have

Jim P (Cok(Man) = B) = Aut(B) ™" [ (1-p7")
=u+1

The limit is proven by giving an explicit formula for the probability for each n. A similar argument shows
that for M,y (n4v) With independent entries taken from Haar measure on 2, the profinite completion of Z
(these are exactly the matrices with entries that satisfy the two heuristic assumptions above), we have for
every finite abelian group B that

lim P (Cok(Mx(nsw) = B) = |B|"*|Aut(B)| " J] ¢k~

n— o0
k=u+1

This is because as Z = Hp Z,, this Haar measure is the product of the p-adic Haar measures. Building on
work of Ekedahl [7], Wang and Stanley [29] find that the cokernels (equivalently, the Smith normal form) of
random n X m matrices for fized n and m and independent, uniform random integer entries in [—X, X| as
X — 0o match those for entries from Haar measure on Z. While this agreement is easy to see for the Sylow
subgroups at any finite set of primes (because X will eventually become larger than all of the primes), it
was a substantial problem to prove this agreement for all primes at once.

Our approach to proving Theorem [I.I]and the u = 0 case of Theorem [I.2]involves considering three classes
of primes (small, medium, and large) separately, and for each class the argument is rather different. For
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small primes, we follow the general approach of [34]: finding the moments (which are an expected number of
surjections) by dividing the a priori possible surjections into classes and obtaining, for each class, a bound
on the number of possible surjections in it and a bound of the probability that any of those surjections are
realized. Our advance over [34] is that we can allow sparser matrices, and to obtain this improvement we
have to both refine the classes into which we divide surjections and the bounds we have for the probabilities
for each class. For medium primes, our starting point is a theorem from [21], which carries out ideas of
Maples [19] to show that, modulo a prime, under likely conditions, each time we add a column to our matrix,
the probability that the new column is in the span of the previous columns (mod a prime) is near to the
probability for a uniform random column. Our contribution is to show the bounds on “likely conditions”
and “nearness of probability” can be turned into a bound on how the ranks of the final matrix compare to
the ranks of a uniform random matrix. We do this via a rather general approach using a coupling of Markov
chains. For large primes, our approach is new. We cannot control whether the rank of our matrix drops
by 1 modulo any particular large prime, but considering columns being added one at a time, once the rank
drops by 1 modulo a prime, we show that it is not likely to drop again. We do this by showing that the
column spaces are unlikely to have a normal vector with many of its coefficients in a generalized arithmetic
progression mod p, and then proving a new inverse Erdds-Littlewood-Offord result over finite fields for sparse
random vectors based on the method from [22] by the first author and Vu. However, the probabilities of
structured normal vectors mod p are still too large to add up over all p, and a key innovation of the paper
is that for primes > e """ we show that having a non-zero structured normal vector mod p is equivalent
to having one in characteristic 0. Fortunately, the bounds for p up to which we can sum the probabilities of
structured normal vectors mod p, and the bounds for p where we can lift structured normal vectors overlap,
and this allows us to control the probability of structured normal vectors at all primes.
In contrast to the result of Corollary[L.5] in the u = 0 case we are unable to determine P (det(M,,x,) is square-free),

though from [34] Corollary 3.4] it follows that

lim sup P (det(M,,xr,) is square-free) < ¢(2)~! H C(k)7H, (4)
and we would conjecture the limit is equal to this value. We can obtain the limiting probability that
Cok(M,, %) is the product of a given finite abelian group B and a cyclic group (see Theorem, and these
are currently the most general classes of abelian groups for which we can obtain universality results for n xn
matrices. Even for nicely distributed matrix entries and fixed n, the question of how often det(M,, ) is
square-free is very difficult (see [26] 2]).

Our main results work for a,, > n~!*¢, which is asymptotically best possible, in terms of the exponent of
n. If the matrix entries are 0 with probability at least 1 —logn/(n+w), then the matrix M, (,,+v) has a row
of all 0’s with non-negligible probability, and thus cannot possibly be surjective or even have finite cokernel.
We also refer the reader to [2I] for some partial results where a, is allowed to be as small as O(logn/n) and
u is comparable to n. Much of the previous work that we build upon has required the matrix entries to be
non-zero with probability bounded away from 0 as n — oo. It is perhaps surprising that even as the matrices
have entries being 0 more and more frequently, the asymptotic probability that M,y (,41) is surjective does
not change from ~ .4358 as long as o, > n~ 112,

Another advantage of our method (compared to existing results in the literature on classical random
matrix theory) is that the bound on the matrix entries can be as large as any polynomial n?" of n. This can
be relaxed somewhat by letting T' — oo slowly, but it cannot be lifted entirely as the example of Koplewitz
shows [18, Section 4.4] (see also the discussion after Lemma [3.1)).

We now explain in more detail the extension of our results to a natural family of random matrices
of dependent entries, namely to the Laplacian of random digraphs. More generally, let M = M, «, =
(%ij)1<i,j<n be a random matrix where z;; = 0 and its off-diagonal entries are i.i.d. copies of an integral
random variable &, satisfying (1f). A special case here is when M is the adjacency matrix of an Erdés-Rényi
simple random digraph T' € G (n,q) where each directed edge is chosen independently with probability ¢
satisfying a,, < ¢ <1 — a,. Let Ly; = (L;;) be the Laplacian of M, that is

L = {—xij if § # j

S xk ifi=j
k=1 Lki =J
4



We then denote Sp; (or St in the case of digraphs) to be the cokernel of L with respect to the group Zf of
integral vectors of zero entry-sum

Sy =Z§/LyZ".
When T is a graph, this group has been called the sandpile group without sink [8] and the total sandpile
group [17] of the graph. The size of this group was has been called the Pham Indez [§], and was introduced
by Pham [25] in order to count orbits of the rotor-router operation. We will show that Theorems and [1.2]
extend to this interesting setting.

Theorem 1.6. Let 0 <e <1 and T > 0 be given. Let M, «., be a integral n X n matrixz with zero diagonal
and off-diagonal entries i.i.d copies of an ay,-balanced random integer &, with o, > n~ 1 and |€,| < nT.
Then for any finite abelian group B,

1 (oo}
lim P ~B)|= ——«—— -1
and

lim P(SMW is cyclz'c) = II a+ee- 1))‘1)g§(k)‘1. (6)

n— oo .
p prime

In particular, every finite abelian group B appears with frequency given in as a total sandpile of

the random digraph 8(n,q) with parameter n='*¢ < ¢ < 1 —n~!*¢. In a paper about the sandpile (or
chip-firing) and rotor-router models, Holroyd, Levine, Mészéros, Peres, Propp, and Wilson asked if there was
an infinite family of non-Eulerian strongly connected digraphs such that the unicycles are in a single orbit of
the rotor-router operation [13| Question 6.5]. Pham [25] then gave an infinite family with a single orbit, and
asked if the probability of a single orbit for an Erdés-Rényi digraph in fact goes to 1. Koplewitz [17] gave
an upper bound on this probability. We have now shown that the desired graphs with a single rotor-router
orbit occur with asymptotic probability [Ty~ ((k) ™! ~ 43.58% (matching the upper bound from [17]) among
Erdos-Rényi digraphs. Moreover, for every k, our result gives an explicit positive asymptotic probability for
exactly k orbits.

Farrell and Levine show that this number of orbits is the size of the total sandpile group [8, Lemma 2.9,
Theorem 2.10], and coined the term co-Eulerian for digraphs where the total sandpile group is trivial. Farrell
and Levine also show that for a strongly connected digraph I' the algebraic condition Sr = {id} is equivalent
to a more combinatorial condition [8, Theorem 1.2], i.e. in this graph a chip configuration o on I' stabilizes
after a finite number of legal firings if and only if |o| < |E| — |V|. Further, they prove that minimal length
of a multi-Eulerian tour depends inversely on the size of the total sandpile group [9, Theorem 5], showing
that |Sr| measures “Eulerianness” of the graph.

Corollary 1.7. Let 0 < £ < 1 be given and let q be a given parameter such that n='+t¢ < ¢ <1 —n~1+e,
Then
lim P(@(n,q) is co-Eulerian) =

n— oo

lim P(é(n, q) is strongly connected, non-Eulerian, and co—Eulem’an) = H C(k)~L
k=2

n—oo

The corollary follows since 8(n, q) is strongly connected and non-Eulerian asymptotically almost surely.
Although our general method to prove Theorem follows the proof method of Theorems and here
the dependency of the entries in each column vector and the non-identical property of the columns pose new
challenges. Among other things, for the medium primes we will need to prove a non-i.i.d. analog of the result
of [21] that we used in the i.i.d. case. For small primes, when «,, is constant, our results specialize to those
of Koplewitz [17], who determined the asymptotic probabilities of given Sylow p-subgroups of these total
sandpile groups for finitely many primes p. However, as in our main theorem, we require a further refined
method to deal with smaller a,.

Note that for M, y, with general i.i.d. «,-balanced integer entries the results of [1] do not apply to
bound the singularity probability. However, a recent result by Paquette and the first author [21I] (following
the preprint [19] of Maples) shows that the singularity probability p, can also be bounded in this case by
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e~ " with a,, > C'logn/n (see also Theorem. We prove the same bound for the singularity of digraph
Laplacians in Corollary

1.8. Outline of the paper. In Section [2| we state our results for each class of primes, and show that
Theorems and [L.6] follow from these results. We will present our main arguments for the i.i.d.
case in Sections The main arguments for the graph Laplacian case are in Section [8] building on the
treatments in the i.i.d. case.

1.9. Notation. We write P for probability and E for expected value. For an event £, we write & for its
complement. We write exp(z) for the exponential function e”. We use [n] to denote {1,...,n}. For a given
index set J C [n] and a vector X = (z1,...,2,), we write X|; to be the subvector of X of components
indexed from J. Similarly, if H is a subspace then H|; is the subspace spanned by X|; for X € H. For a
vector w = (wy, ..., w,) we let supp(w) = {i € [n]jw; # 0}. We will also write X - w for the dot product
Yo xw;. We say w is a normal vector for a subspace H if X - w = 0 for every X € H.

For 0 < u < n, the matrix M, () is the submatrix of the first n —u columns of M, .. Sometimes we
will write the Laplacian Lys as Lyxn, and 80 Ly, (n—y) is the submatrix of the first n — u columns of L.
We also write Zf /p to denote the set of vectors of zero-entry sum in (Z/pZ)™.

For a finite abelian group G' and a prime p, we write G}, for the Sylow p-subgroup of G. For a set P of
primes, we write Gp =[] ,cp Gp.

Throughout this paper C;, K;,¢;,6,n,€, A, etc will denote positive constants. When it does not create
confusion, the same letter may denote different constants in different parts of the proof. The value of
the constants may depend on other constants we have chosen, but will never depend on the dimension n,
which is regarded as an asymptotic parameter going to infinity. We consider many functions of n and other
parameters, e.g. including u, {§; }i, «, €, T, d, p, ¢ (where for {£; }; we mean their probability distributions). We

say “f(n,...) € Og(g(n,...)),” where S is a subset of the parameters, to mean for any values vy, ..., v, of
the parameters in S, there is exists a constant K > 0 depending on vy, . .., v,,, such that for all n sufficiently
large given v1,...,v,, and all allowed values of the parameters not in S, that |f(n,vi,...,0m,...)] <

Kg(n,v1, ... Vm,...).
2. ORGANIZATION OF THE PROOF OF THEOREMS [I.1, [I.2] [1.4 AND [1.6

We will be mainly focusing on the i.i.d. case to prove Theorems and The results for the
Laplacian case will be shown in a similar fashion. We prove Theorems and for My, » (n4u) by
checking if the Sylow-p subgroup of Cok(M,,«(n+v)) is equal to B, for each prime p (or is cyclic for each
prime p). The argument will then break up into considering primes in three size ranges with totally different
treatments.

For small primes, we prove the following generalization of [34] Corollary 3.4] to sparser matrices, which
requires a refinement of the method of [34].

Proposition 2.1 (Small Primes). Let M,y (n4v) be as in Theorem E Let B be a finite abelian group. Let
P be a finite set of primes including all those dividing |B|. Then

: 1 - -
nlgI;OP(COk(MnX(n-i-u))P ~ B) = m H H(1 -p " ).
peP k=1

Proposition [2.1] is a special case of Theorem [4.1] which allows the matrices to be even sparser and have
non-identical entries. This carries the main term of our estimates.

For medium primes, we combine a result of [21] with a comparison theorem on the evolving of the matrix
ranks to obtain the following.

Proposition 2.2 (Medium Primes). There are constants co,n > 0 such that the following holds. Let
M, (n+u) be as in Theorem Let p be a prime. Then,

P(Mnx(nJru) mod p is not full mnk) < gp~ min(utlan) 4 g(gcoanm) (7)

and
P(Mnx(,b+u) mod p has rank <n — 2) < gp~ Minutdan) 4 §(emcoanny, (8)
6



Propositionwill follow from Theoremwhere we allow the matrices to be sparser. (The big O allows
us to require that n is large enough that a,, > n='*¢ > Cylogn/n.)

Even such a small error bound cannot be summed over all primes, and so for large primes we present a
new approach that considers all large primes together.

Proposition 2.3 (Large Primes). Let d > 0 and let M,y (5 4+vu) and € be as in Theorem E Then,

P(V primes p > el M, (n+1) mod p has rank at least n) >1—0Oqgre(n*), (9)
as well as

P(V primes p > %™ : M, . mod p has rank at least n — 1) >1—0g7r:(n"%). (10)

Proposition [2.3]in proven in Sections [6]and [7] and is the source of the lower bound on «,, in our theorems.
The heart of the paper is proving the three propositions above, as the main theorems follow simply from
these, as we now show.

Proof of Theorems[1.1 and[1.]. We first prove Theorem the case when u — oo, where we need to
consider only medium and large primes. By Equation of Proposition there are cg,n > 0 such that

P(Mnx(n+u) mod p not full rank for some 2 < p < ec"o‘””/Q) < Z (2p~ min(utLlam) L O(g=coann))
QSPSGCUQ"n/2

1
_ —coanpn/2
_O(2min(u,nn) t+e )
Combined with Equation (9)) of Proposition [2.3] (applied to d = ¢y/2) we obtain
1
P(Mnx(n+u) mod p is full rank for all p > 2) >1- OT’E(W 4 e—Coann/2 4 n=e),

completing the proof of Equation .
We next turn to Equation . Let ko be fixed and w > 1 be fixed. By applying Equation of
Proposition for n large enough given 7 and u we have

ecoann/Q

P<Mn><(n+u) mod p is not full rank for some kg < p < 6600‘""/2) < Z (2p~ (D 4 O(e—c0xnmy)
p=ko

1
_ 0(7 + e*COQnH/Q)'
ko

Combined with Equation @D of Proposition we obtain

1
P(Mnx(n_m) mod p is full rank for all p > ko) >1- OT’E(? + e~ C0ann/2 4 n=°).
0

Now let ko be at least as large as the largest prime divisor of |B|, and let P be the collection of primes up
to kg. By Proposition

o 1 O —k—u
SR R=

Putting the two bounds together,

1 = 1

P(Cok(M ~B)> e ] 1—p R =) — O o (— + e—C0onn/2 | p=¢ o aa(1).

( k(Mo (n-+u)) ) ~ BlvAut(B)] L kl |1( p ) T,s(k0+€ +n7%) +ogep,B,u(l)
SKo R=

Taking the limit as n — oo, we obtain

n— oo
p<ko k=1

o 1 o] e 1

~ > — ") — -—)-

hmmfP(Cok(MnX(nﬂ)) B) > Bl At (B)] [1TIIa-»"%" OT,E(kO)
7



As this is true for any fixed kg, we can take kg — oo to obtain,

1 - —k—u
hnn_1>1orolfP(Cok( Mo (ntu)) =~ ) > [Bl“[Aut(B)] 1;[}}:[1(1 -P ).

Since P(Cok(M,,x (n+u)) =~ B) < P(Cok(M, x (n+u))p =~ Bp), Equation gives

limsupP<Cok(MnX(n+u)) ) Bl AW |Aut I H H 1— phu)

nroo p<ko k=1

completing the proof of . O

When u > 1, the probabilities in Theorem sum, over finite abelian groups B, to 1 [34] Lemma 3.2].
From this observation and Fatou’s Lemma, we can conclude that the asymptotic probability of any property
is just the sum over B with that property of the asymptotic probability of B. Thus to deduce Corollary
and the u > 1 cases of Theorem it remains only to sum |B|~%|Aut(B)|~! over B that are of square-free
order or cyclic, which is straightforward.

The proof of Theorem [1.2] n is identical to the proof of Theorem (1.1} using Equations (8] and ( in place
of Equations (7)) and (9), and the fact that Cok(M,x,,) is cyclic if and only if for every prime p, the matrix
M, »» mod p has rank at least n — 1. In fact, the proof gives the following.

Theorem 2.4. Let M, «, be as in Theorem Let B be a finite abelian group and let ko be larger than any
prime divisor of |B|, and define Cg = {B x C|C cyclic, pt|C| for 1 < p < ko}, the set of groups differing
from B by a cyclic group with order only divisible by primes at least ky. Then, we have

1 . -
pppri'r[;be ppp_ri'r(;be a

Now we turn to the Laplacian, where we will follow an almost identical outline (corresponding to the case
u = 1 of our i.i.d. model M, (n44)). Indeed we will prove Theorem |1.6{by checking if the Sylow-p subgroup
of Sy is equal to B, for each prime p (or is cyclic for each prime p) in three size ranges. We prove the
following proposition in Section

Proposition 2.5. Let M, «, and € be as in Theorem @ There are constants cg,d > 0 such that the
following holds.

e (Small Primes) Let B be a finite abelian group. Let P be a finite set of primes including all those
dividing |B|. Then

Jim P((Sar,...)p = B) = |B|\Aut Blaws) L H P (12)

peP k=1
o (Medium primes) Let p be any prime. Then,
P(LMan mod p has rank < n — 2) < 2p72 4 O(em 0™ (13)
and
P(LMan mod p has rank <n — 3) < 2p7 0 4 O(em 0, (14)
e (Large primes) We also have
P(V primes p > %™ . Lyy mod p has full rank in Zg/p> >1—0g471:(n"°), (15)
as well as
P(V primes p > edn™ L,y nry mod p has rank at least n — 2 ) >1—0gr:(n"%). (16)

The deduction of Theorem [L.6] from the above results is similar to the deduction of Theorem [[.1] and
Theorem [I.2] from Propositions and and hence is omitted.
8



3. ODLYZKO’S LEMMA

In this section we give an elementary but extremely useful tool which is a variant of Odlyzko’s lemma [15]
(also [19, Lemma 2.2]). This result will be used in the arguments for small, medium, and large primes. We
will focus on the i.i.d case and refer the reader to Lemma for a similar result regarding the Laplacian.

Lemma 3.1. Let F be a field. For a deterministic subspace V' of F™ of dimension d and a random vector
X € F™ with i.i.d. entries taking any value with probability at most 1 — au,,

PXeV)<(1—a,)" %
We give a short proof of this well-known result for completeness.

Proof. Assume that V' = Span(Hq,...,Hy), where H; = (h;1,..., i), and without loss of generality we
assume the matrix (h;;)1<; j<a has rank d. Consider the event X = (z1,...,24,Zd41,...,%s) € V. Because
(hij)i<i,j<a has rank d, there exist unique coefficients ci,...,cq € F such that

(1,...,mq) = Zci(hila ooy hig).

%

Hence conditioning on (z1,...,zq), if X = (z1,...,24,%d41,...,%,) € V thenforalld+1<j<n
.Tj = Z Cihij.
i
However the probability of each of these events is at most 1 — a,, and so conditioning on (z1,...,z4), the
event X € V holds with probability at most (1 — a,, )"~ O
Corollary 3.2. Let Xq,...,X,_ be random vectors with i.i.d. entries taking any value with probability at

most 1—a.,. Then the probability that X1, ..., X,,—x are linearly independent in F™ is at least 1—a;1(1—an)k.

Proof. Let 0 < ¢ <n —k — 1 be minimal such that X, 1 € span(Xi,...,X;). By Lemma this event is
bounded by (1 — ;)" ¢. Summing over 0 < i < n — k — 1, the probability under consideration is bounded
by Z;:Ok_l(l — )"t < a1 - ap)k. O

In all three arguments, Lemma (Odlyzko’s lemma) will only suffice for the easy part of the argument,
and a stronger, Littlewood-Offord style bound (Lemma Theorem [5.2] Theorem [6.3] Theorem will
be required for the harder part of the argument. The details of the Littlewood-Offord style bound required
are different in each argument, and thus are given in the corresponding sections. Note that Odlyzko’s lemma
is too weak to be used alone for our purposes, because it can produce a bound 1 — «,,, where we require
bounds that go to 0 as n — oo. In this paper, «,, is possibly small. If, however, the matrix entries take
values modulo large primes with probability at most 1 — a,,, and 1 — «, — 0 as n — oo, then we expect
our arguments can all be considerably simplified and only Odlyzko’s lemma would be necessary (and no
Littlewood-Offord style bounds required). For example, such a simplification works to handle the case of
entries chosen uniformly in a interval centered at 0 with size growing at any rate with n.

4. SMALL PRIMES

In this section, we prove the following theorem, which generalizes [34] Corollary 3.4] to smaller «,, and
implies our Proposition The method requires refinement from that of [34], and we discuss the differences
below.

Theorem 4.1. Let u be a non-negative integer and o, a function of integers n such that for any constant
A > 0, for n sufficiently large we have o, > Alogn/n. For every positive integer n, let M(n) be a random
matriz valued in M,y (n4u)(Z) with independent o, -balanced entries. Let B be a finite abelian group. Let P
be a finite set of primes including all those dividing |B|. Then

lim P(Cok(M(n))p ~ B) = m TTTIC-r .
peP k=1
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Note that the entries of the matrix do not have to be identical.

Throughout the section we write Hom(A, B) and Sur(A4, B) for the set of homomorphisms and surjective
homomorphisms, respectively, from A to B. We will always use a to denote a positive integer and R = Z/aZ.
We then study finite abelian groups G whose exponent divides a, i.e. aG = 0. We write G* for Hom(G, R).

4.2. Set-up. We will study integral matrices by reducing them mod each positive integer. We let a be a
positive integer. Let M be the random n X (n 4+ u) matrix with entries in R that is the reduction of M (n)
from Theoremmodulo a. We let X1,..., X4, € R" be the columns of M, and z;; the entries of M (so
that the entries of X; are x;;). For a positive integer n, we let V' = R" with standard basis v; and W = R"
with standard basis w; (these will always implicitly depend on the integers we call a and n). Note for o C [n],
V has distinguished submodules W\, generated by the v; with i € 0. (So i, comes from not using the o
coordinates.) We view M € Hom(W, V) and its columns X as elements of V' so that X; = Mw; = ), x;;v;.
Let G be a finite abelian group with exponent dividing a. We have Cok(M) = V/MW.

We know from [34] that to understand the distribution of Cok(M), it suffices to determine certain
moments. To investigate the moments E(# Sur(Cok(M), G)) (see [5l Section 3.3] for more on why these are
“moments”), we recognize that each such surjection lifts to a surjection V' — G and so we have

E(#Sur(Cok(M),G))= > P(F(MW)=0). (17)
FeSur(V,G)

By the independence of columns, we have
P(F(MW) =0) = [[ P(F(X;) = 0).

Jj=1

So we aim to estimate these probabilities P(F(X;) = 0), which will give us our desired moments.

4.3. Finding the moments. We will first estimate P(F'(X;) = 0) for the vast majority of F', which satisfy
the following helpful property.

Definition 4.4. We say that F' € Hom(V,G) is a code of distance w, if for every o C [n] with |o| < w, we
have FV\, = G. In other words, F'is not only surjective, but would still be surjective if we throw out (any)
fewer than w of the standard basis vectors from V. (If a is prime so that R is a field, then this is equivalent
to whether the transpose map F : G* — V* is injective and has image im(F) C V* a linear code of distance
w, in the usual sense.)

First we recall a lemma from [34] that lets us see how a code F acts on a single column from our matrix.
The following statement is slightly stronger than [34) Lemma 2.1], but one can see this statement follows
directly from the proof of [34] Lemma 2.1].

Lemma 4.5. Let a,n be positive integers, G a finite abelian group of exponent dividing a, and X the
reduction mod a of a random vector in Z™ with independent, a-balanced entries. Let F € Hom(V,G) be a
code of distance w and A € G. We have

- G|l—-1
|P(FX =A) - |G| < | Il exp(—aw/a?).

We then will put these estimates for columns together using this simple inequality.

Lemma 4.6 ([34) Lemma 2.3]). If we have an integer m > 2 and real numbers © > 0 and y such that
ly|/z < 20— 1 and x +y > 0, then

2™ = 2ma™ Hy| < (z 4+ )™ < 2™ + 2ma™ Hy).
The below is a refinement of [34, Lemma 2.4] that allows sparse matrices.

Lemma 4.7 (Bound for codes). Let a > 1 and u > 0 be integers, G be a finite abelian group of exponent
dividing a, the sequence {ay,}n be as in Theorem E, and § > 0. Then there are c1, K1 > 0 such that the
10



following holds. Let M(n) be the reduction modulo a of random matrices M(n) as in Theorem E For every
positive integer n, and F € Hom(V, G) a code of distance én, and A € Hom(W, G), we have

Kin=«

|G|n+u :

Proof. Choose A > a?§~! and n large enough (depending on A and {a;};) so that a,, > Alogn/n. Then
for n large enough given 6, A, u, a, |G|, we have

[P(FNI(n) = 4) — |G| "] <

log 2
exp(—(Alogn/n)én/a®)|G| = exp(—Adlogn/a?)|G| < % < ol/(ntu=1) _q,
n+u—
So for such n we can combine Lemmaand Lemma(with = |G|t and y = +exp(—(Alogn/n)dn/a?))
to obtain
|P(FM = A) — |G|7""| < 2(n+ u) exp(—Adlog n/a”)|G|~" 7+
We take ¢; < Ad/a? — 1 and then for n sufficiently large given u, A, §, a, c1, |G|, {a;}s, we have

2(n+u) )|G|fn7u+1 < nfcl|G|fn7u.

[P(FM = A) = |GI7"™"] £ — 557

We choose K large enough so that % > 2 for n that are not as large as needed above, and the lemma
follows. 0

So far, we have a good estimate for P(FM = 0) when F is a code. Unfortunately, it is not sufficient
to divide F' into codes and non-codes. We need a more delicate division of F' based on the subgroups of
G. In [34], a notion of depth was used to divide the F' into classes. Here we require a slightly finer notion
(that we call robustness) to deal with the sparser matrices. Both notions can be approximately understood
as separating the F' based on what largest size subgroup they are a code for. For an integer D with prime
factorization [[, pi’, let £(D) =3, e;.

Definition 4.8. Given § > 0, we say that F' € Hom(V,G) is robust (or, more precisely, d-robust) for a
subgroup H of G if H is minimal such that

#{i € [n]|Fv; € H} < (|G : H])on.

Note that H = G satisfies the above inequality, so every F' € Hom(V, G) is robust for some subgroup H of
G. An F might be robust for more than one subgroup.

Lemma 4.9. Let § > 0, and a,n be positive integers, and G be a finite abelian group of exponent dividing
a. Let F € Hom(V,G) be robust for H. Let m := {i € [n]|Fv; ¢ H}. Then F restricted to V\ is a code of
distance én in Hom(W ., H).

Proof. Suppose not. Then there exists a o C [n] \ 7 such that |0 < én and FV\ (rue) lies in some proper
subgroup H’ of H. In particular, the set of ¢ such that Fv; ¢ H' is contained in 7w U o. Since

T Uo| <G : H))dn + én < L([G : H'])dn,
we then have a contradiction on the minimality of H. |

We then bound the number of F' that are robust for a certain group H, and with certain given behavior
outside of H. The separation of F' into classes based on their behavior outside of H did not appear in [34],
but is necessary here to deal with sparser matrices.

Lemma 4.10 (Count of robust F' for a subgroup H). Let § > 0, and a,n > 1 be integers, and G be finite
abelian group of exponent dividing a. Let H be a subgroup of G of index D > 1 and let H = Gypy C
... C G2 C Gi1 C Gy = G be a mazimal chain of proper subgroups. Let p; = |G;_1/G;|. The number of
F € Hom(V, Q) such that F is robust for H and for 1 < j < £(D), there are w; elements i of [n] such that
Fv, € Gj_1\ G,, is at most

4(D)

S w, n .
= I ()16,
J

j=1

Note that by the definition of robustness we have that w; < ¢([G : H])dn, or else there are no such F.
11



Proof. There are at most (' ) ways to choose the i such that Fv; € G;_1 \ G; and then at most |G;|*/ ways
J
to choose the Fv;. Then there are |H| choices for each remaining Fv;. O

Now for F' robust for a subgroup H, we will get a bound on P(FM = 0), where the larger the H, the
better the bound. This is a more delicate bound than [34] Lemma 2.7] that it is replacing, and in particular
takes into account the behavior of F' outside of H.

Lemma 4.11 (Probability bound for columns given robustness). Let § > 0, and a,n > 1 be integers, and
G be finite abelian group of exponent dividing a. Let F' € Hom(V, G) be robust for a proper subgroup H of G
and let D := [G : H]. Let H = Gypy C ... C Go C G1 C Go = G be a mazximal chain of proper subgroups.
Let pj = |Gj-1/Gj|. For 1 < j < (D), let w; be the number of i € [n] such that Fv; € Gj—1 \ G;. Let
X € R™ be a random wvector with independent entries that are the reduction mod a of a-balanced random
integers. Then for all n,

P(FX=0)< <D|G|_1 + exp(—adn/a® ) i_[ ( —1 ~—— exp(— ozwj/p?)).

Proof. Assume that X = (z1,...,2,). Let o; be the collection of indices ¢ € [n] such that Fv, € G;_1 \ G;.

Let o = Uﬁ( 1)O‘J Then,

P(FX = 0) :P( S (Fue; € Gl)P( S (Fu)a € G2’ S (Fue; € G1>

1€0 i€o1Uo2 €0

X P( Z (F'UZ)(EZ cH Z (F'UZ)(EZ S GZ(D)—l)

i€01U--Uoy(p) 1€01U--Uoy(py_1

X P(Z(F’ul):nZ =— Z(sz)xl Z(sz)xl € H)

iZo i€0 i€o

For 1 < j < (D), we will bound the jth factor above by conditioning on the z; with ¢ € oy U---U0c;_1
and then looking at images in G,;_1/G;. Note for i € ¢;, we have that the reduction of Fv; is non-zero in
Gj-1/G,. So F restricted to the o, coordinates in the reduction to G,;_1/G; is a code of length w;. We
then apply Lemma to this case to obtain

P( Z (Fui)z; € Gj‘ Z (Fv)z; € Gj— 1) < p*1 N A pj -1 exp(— awj/p?).

i€oU---Uo; i€orU--Uoj 1

Note that o is the set of ¢ such that Fv; € H. By the definition of robust, |o| < ¢(D)dén. By Lemma
the restriction of F' to i, is a code of distance én in Hom(W,, H). So conditioning on the X; with i € o,
we can estimate the conditional probability above using Lemma

P(Z(Fvl):cl = fZ(Fvi)xi Z(F’Ul)% € H) < |H|™! + exp(—adn/a?).

iZo i€0 i€o

The lemma follows. U

Now we can combine the estimates we have for P(FM = 0) for various types of F with the bounds we
have on the number of F' of each type to obtain our main result on the moments of cokernels of random
matrices.

Theorem 4.12. Let u > 0 be an integer, G be a finite abelian group, and the sequence {an}, be as in
Theorem[{.1. Then there are co, Ko such that the following holds. For every positive integer n and random
matriz M (n) as in Theorem[4.1, we have

|E(# Sur(Cok(M (n)),G)) — |G| 7| < Kyn™*.

Proof. Let a be the exponent of G. By Equation (I7)), we need to estimate > resur(v,g) P(F'M(n) = 0). Fix
a proper subgroup H of G. We will apply Lemma and use the notation from that lemma, along with
12



Lemma .10l We then have
> P(FM(n) = 0)

FeSur(V,G)
F' is robust for H

D) n (D) pi—1 e
= > 7| I (w,)lelw" 11 (pj’l + 2 exp(—anwj/pi))
0<w1 .. swe(py <U(D)on. j=1 \7 j=1 pj
UJ1?50
1 9 n+u
X <D|G|’ + exp(—anon/a ))
L(D)én 1 N
n - w w — by — nou
=|H| (D\G| ' 4 exp(—andn/a?) ) H Z |H|~ J( )GJ_ | 1( 1+JTeXp(—o¢nwj/p?)) .
j=1 w;=0
w1 #0

We have w; # 1 since F is a surjection. Now we apply Lemma [A.3 from the Appendix to bound the sums.
The Dy, d; from Lemma E7 will be |G;_1|/|H| and p}l respectively. We choose the A’ of Lemma E S0
that A’ > 2/(1—p; ') for all j. For n sufficiently large (in terms of {a;}s, A/, G), we have a,, > p3A'logn/n
for all j. Lemma|A.3 then gives us that, for § sufficiently small (given G), and n sufficiently large (given G,
A6, {a;}i,), we have

£(D)én Wi
n |Gj1|> ! ( 1, b1 2\ —((1=p7hHAa’j2—1)
p; + =——exp —anw~p.) <3n Pj .
() () G 2 exptcnmmr

wj:1
Let A > a?0~! and A > 2p®/(p — 1) for every prime p | a. For n also sufficiently large (given A and
{a;};) that «,, > Alogn/n, and we have
n+u n+u
|H|" <D|G|_1 + exp(—anén/a2)) <|H|™ (1 + |H| exp(—Adlog n/aQ))
For n +wu > 2, and n sufficiently large (given d, A, u, G) such that
log 2
|H|exp(—Adlogn/a?) = |H|n=2/" < 982 < ol/(ntu-1) _q
n+u-—1
By Lemma
(1+ |H|exp(—Ad logn/a2))n+u <1+ 2(n+u)|H|exp(—Adlogn/a?).
Putting it altogether we have
> P(FM(n) =0)

FeSur(V,G)
F' is robust for H

«(D) ¢(D)én
— n ; pj —
S\H|"(D|G\ !+ exp(—ay,dn/a?) ) H E |H| ™™ (wj>|Gj1|wj( + ]p]
j=1 w;=0
’LU17£O

1 9 n—+u
exp(— anwj/pj))

(D)
<|H|™ (1 +2(n + u)|H|exp(—Adlog n/aQ))Sn_((l_pfl)A,/Q_l) H (1 + 3n_((1_p;1)Al/2_1)> .
=2
We sum this over proper subgroups H of G to bound, for § sufficiently small (given G), and A’ >
2/(1 —pj_l) for all j, and A > a?6~!, and A > 2p3/(p — 1) for every prime p | a, for n sufficiently large given
Ga 6; Aa Alv u, {ai}ia

> P(FM(n) = 0) < Ksn™,

FeSur(V,G)
F not code of distance dn

where K3 is a constant depending on G, 4, A, A’, u and ¢3 > 0 (depending on a, A').
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Also, from the proof of [34) Theorem 2.9], we can choose § small enough (given G) so that we have for all
n

Z |G|—n—u < K4e—(log1.5)n

FeSur(V,G)
F not code of distance dn

for some K4 depending on u, G,d. We also have (e.g. see the proof of [34, Theorem 2.9]) for all n,
Z |G|7n7u < K5€710g(2)n
FeHom(V,G)\Sur(V,G)
for some K5 depending on G. Using Lemma |4.7| we have that for all n,

> |P(FM(n) =0) — |G| < Kin™.

FeSur(V,G)
F code of distance dn

We now make a choice of § that is sufficiently small for the two requirements above (given G), and we choose
A and A’ as required above, so that for all n sufficiently large (given G, §, A, A’, u, {a;};,)

> PEMm =0 -G =] Y PFEMm=0)- Y |Gl

FeSur(V,G) FeSur(V,G) FeHom(V,G)
< ) ’P(FM(n) =0)— |G| + ) P(FM(n) = 0) + )
FeSur(V,G) FeSur(V,G) FeHom(V,G)
F' code of distance én F not code of distance dn F not code of distance dn

< Kln—cl +K3n_03 +K4e—(log1.5)n +K56—10g(2)n.

We choose ¢o < min(eq, c3,10g(1.5)) (which depends on G, u, {«;};). We choose K5 so that Ky > K7 + K3+
K4+ K5, and also Ko > |G|™n? for any n not sufficiently large for the requirements above (so Ko depends
on G,u,{a;};). The theorem follows. O

We now conclude the proof of Theorem For each fixed u > 1, we construct a random abelian group
according to Cohen and Lenstra’s distribution mentioned in the introduction. Independently for each p, we
have a random finite abelian p-group Y,, such that for each p-group B

[T, (1 —p )
P(Y,=B) = = .
W =B = T autm)
Let P be a set of primes dividing a given number a, we then define a random group Y by taking the group
product [[ cp Y.

Lemma 4.13 (|34] Lemma 3.2]). For every finite abelian group G with exponent dividing a we have
E(#Sur(Y, @) = |G

From Theorem we have seen that Y and Cok(M (n)) have asymptotic matching “moments” with
respect to all groups G of exponent dividing a. To pass this information back to distribution, we then use
the following result on the moment problem for finite abelian groups.

Theorem 4.14. Let X, and Y, be sequences of random finitely generated abelian groups. Let a be a positive
integer and A be the set of isomorphism classes of abelian groups with exponent dividing a. Suppose that for
every G € A we have a number Mg < |A2G| such that lim,,_, ., E(# Sur(X,,, G)) = lim,, o, E(# Sur(Y,,,G)) =
Mg. Then we have that for every H € A

lim P(X, ® (Z/aZ)~ H) = lim P(Y, ® (Z/aZ) ~ H).

n— 00 n—00

The proof of Theorem can be found in the proof of [34, Theorem 3.1], which is stated for Mg = |A?G]
but only ever uses the inequality Mg < | A2 G|. (Here A?G is a particular quotient of the tensor product
G ® G, and all we need here is | A2 G| > 1.) To prove Theorem assume that the exponent of the
14

G



group B under consideration has prime factorization Hpe pp°?. Theorem applied to the sequence
X, = Cok(M(n)) and Y,, =Y with a = [[,cpp®*", implies that

lim P(Cok(M(n)) © (Z/aZ) = B) = P(Y @ (Z/aZ) = B) = m TITIC- ).

n—oo
pEP k=1

The proof is then complete because Cok(M (n)) ® (Z/aZ) ~ B if and only if Cok(M (n))p ~ B.

5. MEDIUM PRIMES
In this section we prove the following, which we apply to medium primes for the proof of our main results.

Theorem 5.1. There are constants co,n,Co, Ko > 0 such that we have the following. Let n,u > 0 be
integers, p be a prime, and let M,y (n1v) be a random matriz n x (n + u) with independent i.i.d. entries
&n € Z/pZ. We further assume we have a real number oy, such that
Cologn
P& =r)=1-a,<1—- ———.
e (En=71) an < "
Then we have

P(rank(MnX(n_s_u)) S n— ]_) S 2p7 min(u+1,nn—1) + Koefcoann

and
P(rank(MnX(n+u)) <n-— 2) < 2p— min(2u+4,mn—1) + K()e_cDa”n.

The proof of Theorem has two main ingredients. First, we have a result from [21] that says that the
first n — k columns of My, (5, 4+ are likely to generate a subspace V' such that the probability of the next
column being in V' is near to the probability of a uniform random column mod p being in V. (This result
was originally stated in [19] by Maples, but [21] gives a corrected proof using the ideas of [19] and [30].)

Theorem 5.2 (|21, Theorems A.1 and A.4]). There are constants ¢,n,Co, K > 0 such that the following
holds. Let n,u > 0 be integers with u < nn, p be a prime, and let My, (n1v) be a random matriz n x (n +u)
with independent i.i.d. entries &, € Z/pZ. We further assume we have a real number oy, such that

Copl
max P(§n:r):1—an§1—w.
r€Z/pZ n
For —u < k < nn, let X, _p41 be the (n — k +1)st column of M,y (n4u), and Wy _y, be the subspace spanned
by the first n —k columns of My (nyvu)- Then there is an event £,y on the o-algebra generated by the first

n—k columns of My, (ntu), of probability at least 1 —3e~°*"", such that for any ko with max(0, k) < ko < nn

< Ke~¢cann

P(Xn,k+1 € Wi—k|En_i A codim(W,_z) = ko) _pko

We also refer the reader to Theorem for a similar statement for the Laplacian with a complete proof.
Note that for a uniform random X € (Z/pZ)", we have P(X € V) = p~ cdm(V) Thus, as long as we avoid
certain rare bad events, as we consider more and more columns of our random matrices, the probability
that the next column is in the span of the previous columns is close to what it would be if we were using
uniform random matrices. The following result, proven in Section [B in the Appendix, allows us to use that
information to conclude that the rank distribution of our matrices is close to that of uniform random matrices.
This theorem says that if sequences of random variables x; and y; have similar transition probabilities going
from z; to ;41 and y; to y;41, at least under conditions that are likely to be true, then the distributions of
z, and y, must stay close.

Theorem 5.3. Let x1,...,%p,90,---,9n—1 be a sequence of random variables, and let xg = 0. Let y1,...,Yyn
be a sequence of random variables, and let yo = 0. We assume each x;,y; takes on at most countably many
values, and g; € {0,1}. Suppose that for 0 <i<n-—1,

P(yiv1 = slys =r) =P(xiy1 = slz; =7 and g; = 1) + 6(i, 7, 5)

for allr and s s.t. P(y; =r)P(x; =71 and g; = 1) # 0.
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Then for allm > 0 and any set A of values taken by x, and y,, we have

|P(xn c A) - P(yn € A)‘

= % 2_% ZZ 0(i, 7, 8)|P(2; =7) + z_% P(g; #1),

where 1 is summed over {r | P(x; =7) # 0 and P(y; = r) # 0)} and s is summed over {s | P(zi1 = s) #
0 or P(yir1=s) #0)}.

We remark that our error bounds come from the §’s and the complement of g; = 1. The explicit form
here will be extremely useful because in the sparse case ¢ and P(g; # 0) are not small.

Proof of Theorem[5.1. We take 1, Cy as in Theorem Since
P<rank(Mn><(n+u+1)) < m) < P(rank(Mnx(n—i-u)) < m)v

it suffices to prove the theorem for v < |nn| — 1. Let X,, be the m-th column of M,y (,4v), and W, the
subspace generated by Xi,...,X,,. Let 2o = 0 and for 1 <14 < |nn| + u, define the random variable

~Jko i rank(Wo,_pnjyi) =n—[nn] +i—koand 0 < ko <u+1

s if rank(Wy,_ | pnj4i) <n —|nn) +i—u—2.
In other words, x; measures the deficiency (n — [nn] + i) — rank(W,,_|yn|44) if this difference is not larger
than u + 1.

Let y; be the analogous function for a uniform random matrix mod p for 1 < i < [nn] 4+ u. Let go be the
indicator function of the event that requires both rank(W,_|,,|) = n—|nn] and &,_|,, from T heorem@
Let g; be the indicator function for the event &,_|,,|1; from Theorem so from that theorem we have
for i > 1 that P(g; =1) > 1 — 3e ™.

We will apply Theorem to the sequences x;,y; and g; defined above. For this, we will estimate the
error terms 6(i, b, a) for various values of i,a and b. First, note that if

rank(Wy,_ | pnj44) <n —|nn] +i—u—2,
then
rank(Wy,— |pnj4it1) Sn—[gn] +i+1—u—2.
So for i > 1,
P(yis1 =+lys =) =P(zipn =+fzi =xNgi=1)=1.
Therefore, for ¢ > 1 and all a we have
0(i,%,a) = 0.
Next, Theorem 5.2 gives that for i > 1 and 0 < kg <u+1 (as u+ 1 < nn),
8(i, ko, ko) = |P(yir1 = kolyi = ko) — P(wip1 = kolws = ko A gi = 1)| < Ke **"™.

Furthermore, if 2;; = ko, the only possibility for ;41 is either kg or kg + 1 (which should be interpreted as
if ko =wu+1). It then follows that for ¢ > 1 and all ko, ¢, we have

5(2, ko,g) = |P(yi+1 = €|y1 = ko) — P(Ii_;'_l = €|Il = ko Ng; = 1)| < Ke ¢,
At the initial position i = 0 we have (by definition) yo = 0 and so

n—lmn]

P(y1 =0lyo=0)=P(y; =0) = H (1 — p~ (Ll +i)y)
j=0

and Theorem [5.2] gives

P(z; =0lzg =0and go =1) > 1 — p~ L) — gemcann,
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Thus for any ¢,

n—lnn)
5(0,0,0) <p~lml 4 Kemeonn 41— ] (1—p (Lmit9))
7=0

<p~tml 4 Kemeonn 4 pmlml /(1 p7h),

We can apply Lemma to find the P(X,,11 € Wp,|rank(W,,,) = m) for all 0 < m < n— |nn| — 1.
Taking union bound (see Corollary , we obtain

P(rank(W,,_n)) =n— [nn)) > 1 —a; (1 - a1

So
P(go = 0) < a; (1 — ay) I+t 4 3e—cann,

We now apply Theorem The n from that theorem will be what we call [nn] 4+ u here. We conclude
that for kg = v or u + 1,

‘P(xmn]-&-u = ko) — P(yLnnJ+u = kO)’

<5 (L] +u)Ke™ " - 24 (] +u) -3¢

+
/\l\:}\»—l

pftnnj + Ke—cann +p7LnnJ/(1 7p71)> + (a;l(l _ an)[nanrl +3675ann)'

Here the first two terms are from the ¢ > 1 summands in each sum, the (|nn] + ) is from the sum over i,
the sum over r of P(z; = r) is 1, and the 2 is from the sum over s (for each r there are at most 2 values of
s with non-zero (i, r, s)). The second two terms are from the ¢ = 0 summands.

Thus for kg = u or u + 1, using u < nn,

’P(mmnHu = ko) — P(Ynn)+u = ko)| < 2(K + 3)nne > 4 3e=“*" 4+ 3p~ " a1 (1 — o)
Since (e.g. by [10])
P(y[nanru: H 1_ - u >1_Zp i- uzl_p—l—u/(l_p—l)’
j=1 i>1

and

—4—2u P —(n—1)—2—u

l—p—l_ 1—p1

we have that
P(rank(W, 1) <n —1) < 2p7 7% + 2(K + 3)nne ™ 4 3¢~ 4 3p~ " o1 (1 — )™
and
P(rank(W, 1) <n —2) < 2p 472% 41 2p7" 4 2(K + 3)npne ™ 4 3¢~ ™ 4+ 3p~ 1" L a1 (1 — ).
Since u < nn, for some Ky depending on K, ¢, 7, Cy, for all n we have
P (rank(Wy4) <n—1) <2p~ 7" 4+ Koe™ min(e/2,nlog(2)/2)ann
and
P (rank(W, ) <n —2) < 9p—4-2u | [y min(e/2,m108(2)/2l0g(2))ann

The result follows with ¢ = min(c/2,nlog(2)/2,1log(2)). O
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6. LARGE PRIMES

In this section and the next we prove Proposition

Notation for Sections [6] and [T} Throughout this and the next section, we fix T > 0 and for each
positive integer n we let &, be an a,,-balanced random integer with |£,| < nT. We define My, (n41) to be the
integral n x (n + 1) matrix with entries i.i.d copies of §,,. We do not make a global assumption on the size
of a,, but we will need different assumptions on «, for the various results in these two sections. We further
fix d > 0. Let Xy,..., X1 be the columns of M,y (,41). We write My, for the submatrix of My, (1)
composed of the first k columns. Let W), be the submodule of Z™ spanned by Xi,..., X,. We write Xy /p
and Wy, /p for their reductions mod p (and more generally use this notation to denote the reduction of an
object from Z to Z/pZ). We let
3logn

I} (18)

ng:=n-—| 5
n

Let
B, : {p prime, p > eda”n}

Let Exo be the event that det(M,,«,) 7# 0. As mentioned in the introduction section, from [21] and also by
taking the limit as p — oo in Theorem we have

P((c,‘;éo) >1- Koeicoa"n

for absolute constants cg, Ky. Our strategy is as follows. We consider the columns of the matrix one at a
time, and check if they are in the span of the previous columns modulo p for each prime in 9B3,,. We cannot
control whether this happens, as 3,, contains too many primes, but each p for which this happens is put
on a “watch list” (called 20;) and necessarily divides the determinant of M, x,,. If the watch list grows too
large, since all the primes in the watch list are large, then too large a number divides the determinant, and
M, «» must be singular. However, we have already bounded the probability of that occurring. Otherwise, if
our watch list is not too large, for each prime in the watch list, we can bound the probability that the next
column is in the span of the previous columns mod that prime.

Let 20; be the set of primes p € 9B, such that rank(Wy/p) < k — 1. Let Ci be the event that || <
(2T + 1)logn/(2dw,) (the watch list is under control). Note that any p € 20; for £ < n must divide
det(M,x,). By Hadamard’s bound, |det(M, x,)| < n™/?n™™, and so in particular, when C; occurs (“the
watch list is out of control”) then det(Mnxn) = 0. (Recall we write £ for the complement of an event £.)
Let Dy, be the event that there is a p € 20, such that rank(W}/p) < k — 2 (the rank drops), this is the event
we want to avoid.

We will show P(Ci11V Di11|Cr V D) is large. The goal is to conclude that P(C,, V D,,) is large, and since
we know that P(C,) is small, we can conclude that P(D,,) is large, as desired. Note that since 20y C W1,
we have that C; C Cp1. Thus

P(Ck;Jrl \Y Dk+1|Ck) =1. (].9)
It remains to estimate P(Ci11V Dy 1|Ck ADy). We condition on the exact values of X1, ..., X where C;, ADy
holds, and so there are at most (27" + 1) logn/(2da,) primes p € B,, such that rank(Wy/p) < k — 1 and no
prime p € B, such that rank(Wy/p) < k—2. In Dy, as long as for each p € Wy, we have Xi11/p & Wi /p.
Consider one prime p € 2y, and let V' be the value of Wy /p that the conditioned Xi,..., X give. From

Lemma P(Xps1/p€V) < (1—ay,)" * =1 Thus,

(2T +1) 108}”) (1 — )= D),

P(C D Dy)>1-—
(Crs1V Dig1|Cr ADy) > < 2o,

In particular, by we conclude that

s o s 2T + 1)1
P(Cosy V DrosCov D) > 1 (BT EDognY (e,
+ +

2day,

Then inductively, we have

) _ n—k+2
P(Cy v Dy) > Z( (2T +1) logn> (1_0[”)”_(1_1):1_((2T+1)logn> (1—ay) .

P 2da, 2day, U
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We defined ng :=n — \_%J above and so if we let k = ng then if we assume «,, > n~!, we have that
P(éno V’Dno) >1- Od,T(n_l/Q).

Certainly as k gets very close to n, Wy has very small codimension, and so Odlyzko’s bound will not continue
to be strong enough. Thus for the remaining k we will have to use a different bound.

6.1. Proof of Proposition when «, > n~1/6%¢, First, in this section, we will prove Proposition
for the denser case a,, > n~1/6%¢. For these larger o, we can present a simpler proof than in the case when
a,, might be as small as n~17¢. Odlyzko’s bound is sharp for some spaces, e.g. the hyperplane of vectors
with first coordinate 0, and so if we need to improve on Odlyzko’s bound we cannot expect to do it for
all spaces at once. The overall strategy is to see that apart from some bad subspaces, we can improve on
Odlyzko’s bound, and we can also prove that it is unlikely that W} is one of those bad spaces. At this level
of generality, this description fits the small and medium primes sections. However, the specifics are very
different, because the small and medium primes sections treat one prime at a time, and now we are in a
regime where there are just too many possible primes to add the probability of W} being bad over all the
primes (e.g. adding P(€,_;) from Theorem over all primes up to n™/?tT" gives too big a result). On
the other hand, we do not need the same strength of improvement over Odlyzko’s bound that Theorem
provides, because the bound on the probability of Xy11/p € Wy /p only has to be added over the small
number of primes in the watch list. The following lemma balances these requirements, and its proof will be
delayed till the end of this subsection.

Lemma 6.2. Suppose that o, > 6logn/n. Then there is a set of submodules S of Z™ such that
P(W,, €S)>1—e /8
and for any prime p > €™ and any submodule H € S, for any proper subspace H' of (Z/pZ)™ containing

H/p, o
L)

P(X/p € Hl) = Od,T (
where X is any column of My, xn,.

Now, we will also condition on G, which we define to be the event that W,, € S (i.e., W, is Good). We
then have

P((éno \ ﬁno) A g) >1- e_o‘"”/s + Od,T(n_l/Z)’
Now let ng < k < n. As before, since C, C Cj41, we have

P((ék+1 \/'Dk+1) A\ g|ék AN g) =1.

It remains to estimate P ((C_k+1 VDii1) AGICk ADy A Q). Again, we condition on exact values of X1,..., X}
such that Cy, Dy, G hold. Then Dy holds unless for some p € 20; we have Xk11/p € Wi /p. Since Cy, holds,
we have a bound on the size of 2, and since G holds, we can use Lemma to bound the probability
that Xg1/p is in Wy /p. (Note that even if k = n, for p € 2y, we have that Wy /p is a proper subspace of
(Z/pZ)", and that n=/6 > 2(logn)/n.) We conclude that

_ _ _ 2T +1)1 V1
P((Ck+1 V Dj41) A G|Ci A Dy, AQ) >1- (H)Ogn> Oar < Ogn) .

2do,, any/n
Inductively, starting from k = kg we then have

_ _ 310gn log1'5n _ /8 —1/2
>1— _ anpn )
P((Cn VD) A g) > 1[5 25 Our ( ) C + Oar(n~'/?)
So then,

B 1 2.5
P(D,)>1- Our <°g3"

> _ Koe_coa”” _ e—ann/S + Od,T(n_1/2>- (20)

n

To this end, since o, > n~ /%< we have that

P(D,) >1-0471:(n"°),
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which is exactly Equation . Equation @ follows similarly, with |3logn/ay, |, the number of steps in the
induction, replaced by |3logn/ay,]| + 1.

The key, of course, is to now verify Lemma which is the heart of the proof of Proposition for
an > n~ /0t We need a way to bound the probability that Xy 1/p € Wi /p that works for all p € 2
and is effective for large k. For this, we introduce a version of the classical Erdés-Littlewood-Offord result
in Z/pZ.

Theorem 6.3 (forward Erdés-Littlewood-Offord, for non-sparse vectors). Let X € (Z/pZ)™ be a random
vector whose entries are i.i.d. copies of a random variable v, satisfying max,ez/pz P(vn = 1) < 1 — ay.
Suppose that w € (Z/pZ)™ has at least n’ non-zero coefficients, and oy, > 4/n'. Then we have

1 2
P w=r)— | <
P anmn

7°

A proof of this result due to Maples (based on an argument by Haldsz) can be seen in [19] Theorem 2.4]
(see also [21, Theorem A.21].) To use Theorem we need to know it is unlikely that W) has normal
vectors with few non-zero entries. First, we will see this is true over R. The approach is standard: there are
few sparse vectors and by the Odlyzko’s bound each is not that likely to be normal to W.

Lemma 6.4 (Sparse normal vectors over R unlikely). Suppose o, > logn/n and k > n/2. For n sufficiently
large (in an absolute sense), with probability at least 1 — e~*""/8 the random subspace X1, ..., X} does not
have a non-trivial normal vector with less than a,n/(32logn) non-zero entries.

Proof. (of Lemma Let | = [an,n/(32logn)]. With a loss of a multiplicative factor (’}) in probability, we
assume that there exists a vector w = (wq,...,w;,0,...,0) which is normal to X7,..., Xj. Let M;«j be the
matrix with columns given by the first [ coordinates of each of Xy, ..., Xk, which has rank at most [ — 1.
With a loss of a multiplicative factor [ in probability, we assume that the first row of M;«; belongs to the
subspace H generated by the other [ — 1 rows. However, as H has codimension at least k¥ — [, Lemma |3.1
implies a bound (1 — a,,)*~! for this event. Putting together, the event under consideration is bounded by

(?) w1 % (1 _ an)k—l < e(log(32logn/an)+l)ann/(32logn) ~ elog(ann/(SZ logn)) > e—an(k—l).

We then have that the exponent of e in the above bound is

loglogn  log(a;!)  log(32) 1
( logn ]ogn logn logn)a ’I’L/?) + Og(()é n) o n/ a n/8

for n sufficiently large so that

loglogn  log(32) 1
( + 1527

<1
logn logn logn

and so that log(a,n) < a,n/16 (which happens for a,n > 22, which is implied by logn > 22). O

‘We could prove a similar lemma to Lemmaover Z /pZ for each p, but we could not sum the probabilities
e~ /8 of sparse normal vectors over any meaningful range of primes > e%". However, now we will prove
a deterministic lemma, that lets us lift normal vectors with few non-zero entries from characteristic p, for
large p, to characteristic 0. Then there is only one bad event to avoid instead of one for each p. This aspect
of our argument is unlike previous approaches and uses critically a lower bound on p.

Lemma 6.5 (Lifting sparse normal vectors from Z/pZ to R). Let k,l,n be positive integers, and M al x k
matriz with integer entries |M;;| < nT. If p is a prime larger than elklogk)/2+kTlogn then the rank of M
over Q is equal to the rank of M /p over Z/pZ. This has the following corollaries.

(1) If Zv,...,Zx € Z! are vectors with entries |Z;;| < nT, and Z1/p, ..., Zy/p are linearly dependent in
(Z/pZ), then Zy,...,Z are also linearly dependent in Z'.
(2) Let Zu,...,Z; € Z™ be vectors with entries | Z;;| <nT . If there is a non-zero vector w € (Z/pZ)™
with at most k non-zero entries that is normal to Z1/p,...,Z;/p, then there is a non-zero vector
w' € Z™ with at most k non-zero entries and normal to Z1, ..., Z;.
(8) The kernel of the map M : Z* — Z! surjects onto the kernel of the map M : (Z/pZ)* — (Z/pZ)".
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Proof. (of Lemma The rank is the greater r such that an r X r minor has non-zero determinant.
Since by Hadamard’s bound, the determinant of a r x r minor is at most e("1087)/2+rTlogn  for primes
p > elklogk)/24kTlogn and < [k a determinant of an r x 7 minor vanishes in Z if and only if it vanishes
mod p. Thus we conclude the main statement of the lemma. For the first corollary, consider the ¢ x k& matrix
with Z,..., Z as columns. The vectors are linearly dependent if and only if the matrix has rank less than
k. For the second corollary, assume that ¢ = supp(w) C [m] and Zi],,...,Z;|, are the restrictions of
Zy,...,Z; over the components in o. By definition, the k row vectors of the matrix formed by Zi|,, ..., Zi|s
are dependent when reduced mod p, and thus these vectors are dependent over Z. This gives a non-zero
w' € Z™ with |supp(w’)| < k that is normal to Zi,...,Z;. For the third corollary, we can express M
under the Smith normal form M = S1DS,, where 51 € GL;(Z) and Sy € GLi(Z) and D is an integral
diagonal matrix. Then since the ranks of M and D agree over Q and over Z/pZ, we conclude that D has
the same rank over Q or Z/pZ. This implies that the only diagonal entries of D that are divisible by p
are the ones that are 0. From this it follows that the kernel of D : Z¥ — Z! surjects onto the kernel of
D : (Z/pZ)* — (Z/pZ)'. Multiplication by S;* on the left takes these kernels of D to the corresponding
kernels of M, and the statement follows. O

Putting this all together, we can now prove Lemma [6.2l The choices of parameters are rather delicate
here, e.g. we could obtain more non-zero coordinates of a normal vector than Lemma[6.4] provides, but then
we could not use Lemma [6.5] to lift those non-zero coordinates.

Proof of Lemma[6.2. We let k = ca,n/logn, where ¢ < 1/32 is a sufficiently small constant (in terms of
d,T) such that

e(k log k)/24+kT logn < edann.

Since a, > 6logn/n, it follows that ng > n/2, and we can apply Lemma and find that for sufficiently
large n, with probability at least 1 —e~®n"/8, W, does not have a normal vector with less than k entries. Let
S be the set of submodules of Z™ that do not have a normal vector with less than k non-zero coordinates.
Then by Lemma for each prime p > edn if W, € S, then the space W,,,/p (and thus any space
containing this space) does not have a non-trivial normal vector with less than & non-zero coordinates. Since
a, > 6logn/n, for n sufficiently large in terms of d, ¢, we have that e?*=" > \/a,,k. Thus by Theorem [6.3
for any prime p > e4*»" the following holds. Let H be a subspace of (Z/pZ)" that does not have a non-trivial
normal vector with less than & non-zero entries, and then for any proper subspace H' of (Z/pZ)™ containing
H and with normal vector w,

P(X € H) < P(X-w=0)< > — 3Vien

~ Vank  apyen

O

6.6. Proof of Proposition in general. Equation shows exactly why n=/6+¢ is the threshold
exponent for a, such that the above method can work, as the error bound has an a2n'/? in the denominator.
Thus, to obtain results that can work for smaller «,,, we need a further improvement on Odlyzko’s bound,
which requires that we consider further bad subspaces besides those with sparse normal vectors. We have
the following upgrade to Lemma whose proof is rather more involved than that of Lemma will be

completed in the next section, and again, is the heart of the proof.

Lemma 6.7. There is an absolute constant c; > 0 such that the following holds. Suppose that o, > n~11e.

There is a set 8" of submodules of Z"™, such that
P(W,, €8)>1—e "

and for n sufficiently large given d,e, T, any prime p > e*n", any submodule H € S’ and any proper
subspace H' of (Z/pZ)™ containing H/p,

P(X/p c H’) <n3,

where X is any column of My« .
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The rest of the proof goes the same as after Lemma replacing S with &’ . We conclude that for
an > n~1*e we have that P(Dy) > 1 — Od7T7€(n_1/2), for K = n,n + 1, which proves Proposition We
have not attempted to optimize the error, or even record in Proposition the error this argument proves
(as we wanted to give a weaker statement that could be proved by the simpler argument above when the «,
were not too small).

7. PROOF OF LEMMA [6.7 ENUMERATION OF STRUCTURES

Instead of only avoiding sparse normal vectors, in Lemma [6.7| we will avoid normal vectors with more
general structure. We now need to make some definitions necessary to describe this structure.

7.1. Additive structures in abelian groups. Let G be an (additive) abelian group.

Definition 7.2. A set Q is a generalized arithmetic progression (GAP) of rank r if it can be expressed as
in the form
Q={ao+xa1+  +xr0a,|M; <x; <M and x; € Z for all 1 <i <7}

for some elements ayg, . .., a, of G, and for some integers My, ..., M, and M;,..., M/.

It is convenient to think of @) as the image of an integer box B := {(x1,...,z,) € Z"|M; < x; < M/}
under the linear map

b (z1,...,2) > ag +x101 + - - F+ Zpap.
Given @) with a representation as above
e the numbers a; are generators of @, the numbers M; and M/ are dimensions of @, and Vol(Q) := | B]
is the volume of @ associated to this presentation (i.e. this choice of a;, M;, M]);

e we say that @ is proper for this presentation if the above linear map is one to one, or equivalently if
|Q = |Bl;
o If —M; = M/ for all i > 1 and ag = 0, we say that Q is symmetric for this presentation. For later
use, for a symmetric progression ) and for ¢ > 0 we also define that
Qi :={x1a1 + -+ apa,| —tM; <z; <tM; and z; € Z for all 1 <i <r}.

The following inverse-type idea, which was first studied by Tao and Vu about ten years ago (see for
instance [32]), will allow us prove bounds much sharper than Theorem

Theorem 7.3 (inverse Erdés-Littlewood-Offord). Let e < 1 and C be positive constants. Let n be a positive
integer. Assume that p is a prime that is larger than C'n® for a sufficiently large constant C' depending on
e and C. Let v be a random variable taking values in Z/pZ which is ay-balanced, that is max,cz/,z P(v =

r) <1 — a, where a, > n= 1. Assume w = (w1, ..., wy,) € (Z/pZ)" such that
p(w) = sup P(riwi+ - +vyw, =a) >n"C,
a€Z/pZ
where vy, ...,v, are iid copies of v. Then for any ns/Qafll < n' < n there exists a proper symmetric GAP

Q in Z/pZ of rank r = Oc (1) which contains all but n' coordinates of w, where
Q1 < max {1, 00, (p(w) ™" /(') /%) }.

When «, is a constant, we then recover a variant of [22] Theorem 2.5]. The new, but not too surprising,
aspects here are that the result works for small «;, and for Z/pZ for large enough p. A proof of Theorem
will be presented in Appendix [C by modifying the approach of [22]. We remark that it is in the proof of
Theorem where the requirement a,n’ > n¢/? is crucial (which henceforth requires «,, to be at least
nf/2=1) to guarantee polynomial growth of certain sumsets (see (7). We see that Q@ = {0} includes the
special case of sparse w. Theorem [7.3]is much sharper than Theorem [6.3] and relates the volume of the GAP
involved to the bound for p(w).

We let

n = ’-ne/2ar—11~|
and m = n — n’ for the rest of this section, and we will apply Theorem with this choice of n’ and
C = 3. Thus it will be convenient to let C; be the maximum of C” and the constants from the O¢ . notation
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bounding the rank of volume of |@Q| in Theorem applied with C = 3. We call a GAP Q well-bounded if it
is of rank < C. and |Q| < C.n3. We call a vector w structured if it is non-zero, and there exists a symmetric
well-bounded GAP @ such that all but n’ coordinates of w belong to Q. Note that it is not always true that
p(w) = n~OW if w is structured in this sense.

Our general approach is to see that it is not too likely for W, /p to have structured normal vectors, where
we recall ngy from . We need to handle the case of r = 0 separately from the case of r > 1, as in the
latter case we will use the (a,n/)"/? term crucially. Now, we will give a very different approach to proving
W, /p is unlikely to have sparse vectors than we used in Lemma as Lemma is too weak for small a,.
The method of Lemma [7.4] will actually give better results as «,, gets smaller, while Lemma gets worse.
This method will automatically control sparse vectors for all large primes at once, without any lifting from
characteristic p to characteristic 0. Notably, the bound we get from Lemma will be the largest term in
our error.

Lemma 7.4 (Extremely sparse normal vectors). There are absolute constants c¢1,Cy such that the following
holds. Let B, := 1 — max,ecz P(&, = z), and assume (3, > Cpylogn/n and o, > 6logn/n. For n > 2,
the following happens with probability at most e=*P»"/2: for some prime p > 2nT, the space Who/p has a

non-zero normal vector with at most 144371 non-zero coordinates.

Proof. (of Lemma In fact, we will show that the following holds with probability at least 1 — e=¢18n7/2,
For any 1 < t < 1448, !, and any o € ([7;]), there are at least two columns X;, X; whose restriction
(X; — X;)|» has exactly one non-zero entry. We first show that this will suffice to prove the lemma. Since
(X; — Xi)|o has a unique non-zero entry, and all its entries are at most 2nT in absolute value, for any prime
p > 2nT we have that (X;/p — X;/p)|» has exactly one non-zero entry. Suppose we had a normal vector
w to W, /p with 1 < ¢ < 1443, ! non-zero entries, and let o be the indices of those entries. Since w|, is
normal to (X;/p — X;/p)|s, that would imply that one of the o coordinates of w is zero, which contradicts
the choice of o.

Now we prove the claim from the beginning of the proof. Our method is similar to that of [1, Lemma 3.2]
and [21], Claim A.9]. For k € {1,3,...,2|(no —1)/2] 4+ 1}, consider the vectors Y; = X1 — Xi. The entries
of these vectors are iid copies of the symmetrized random variable 1) = £ — ¢, where ¢’, £ are independent
and have distribution &,. With 1 — 3/ := P(¢) = 0), then 8, < 8/, < 23, as this can be seen by

(1-5,)° <maxP(¢ =x)* < Y P¢=2)"=P@)=0)< maxP(§ =) =1~ f,. (21)

Now let p, be the probability that all Y;|,,7 € {1,3,...,2[(no—1)/2] 41} fail to have exactly one non-zero
entry (in Z), then by independence of the columns and of the entries

Do = (1 _ tﬁ;(l _ B;L)t—l)\_(no-&-l)/ﬂ < (1 _ tﬁ;e_(t_l)ﬂ;’)no/Q < e—ntﬂy’le’(t*”ﬁ;/{

(Recall since o, > 6logn/n we have ng > n/2.) Notice that as 1 < ¢ < 1443, !, we have e=(t"1DFn /4 > ¢
for some positive constant c¢;, and hence

_ _ ’
e_ntﬂ:Le (t 1)1%/4 < (e—clnﬁ,:L)t < n_CICOt/26_Cln6n/27

for any Cp > 0. Thus

Z Z P < Z (?)nmCot/Qeclnﬂn/Q < Z (ntnfchot/2)efcln5"/2 < efcl’ﬂﬁn/?’

1<t<1448;" ae([;”) 1<t<1448;' 1<t<1448; "

provided that n > 2 and Cj is sufficiently large in terms of c;. O

The downside of Lemma is that is rather weak for constant c,. So it needs be combined with an
improvement of Lemma For the improvement, we use Littlewood-Offord (Theorem in place of
Odlyzko’s bound. However, that substitution only makes sense once have have k non-zero coordinates in
our normal vector and o,k is at least a constant. Luckily, Lemma provides us with exactly that. This
strategy is analogous to that used in the proof of |21 Proposition A.8].
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Lemma 7.5 (Moderately sparse normal vectors). There exist absolute constants cy, Co such that the following
holds. Let B, :== 1 — max,cz P(&, = x). Assume o, > % and let p be a prime > 2nT. The following
happens with probability at most (2/3)™*: the space Wy, /p has a non-zero normal vector w with 14443, <
[supp(w)| < con.

Note Lemma [7.5| only bounds the probability of sparse normal vectors modulo one p at a time, unlike
Lemma [7.4] which controls sparse normal vectors modulo all sufficiently big primes.

Proof. (of Lemma For o C [n] with 1448, 1 <t = |o| < con, consider the event that W,,, /p is normal
to a vector w with supp(w) = ¢ but not to any other vector of smaller support size. With a loss of a
multiplicative factor (7}) in probability, we assume that o = {1,...,t}. Consider the submatrix M;y,, of
M, «r, consisting of the first ¢ rows and first ng columns of M,,«,,. Since the restriction w|, of w to the first
t coordinates is normal to all the columns of My, /p, the matrix M;,,,/p has rank ¢t —1 (if p = 0, we mean
rank over R). With a loss of a multiplicative factor ( t’f’l) in probability, we assume that the column space
of Myxn,/p is spanned by its first ¢ — 1 columns.

Note that for p > 2n7, the value of &, is determined by its value mod p, and so 3, = l—max,ez/pz P(§n/p =

x). If we fix Xq,..., X¢—1 such that W;_1],/p has a normal vector with all ¢ coordinates non-zero, then by
Theorem , the probability that X;|,/p € Wi_1|s/p for all t < i < ng is at most
1 2 1 2 2

B no—t+1 < (=4 —— (1—2¢co)n <(Z 'n,/2.
(p Tnt) (p T’nt) (3)

The first inequality follows as long as Cy > 3/c¢o as then we have con > 3logn/wa, and ng > n — ¢gn. Thus
the total probability of the event in the lemma is at most

2
n 2 2
“\n/2 < (Z n/4
> (F) =g
1445, " <t<con

provided that c¢g is sufficiently small absolutely. (I

Now we will show that the probability of having a structured normal vector for a GAP of rank r > 1
(which was defined in the discussion following Theorem is extremely small.

Lemma 7.6 (Structured, but not sparse, normal vectors). Let o, > n~17¢. Let p be a primep > C.n3. The
following event happens with probability O, (pcfn_E"/5): the space Wy, /p has a structured normal vector w,
and W, /p does not have a non-zero normal vector w' such that |supp(w’)| < con with co from Lemma[7.5.

Very roughly speaking, aside from the choices of parameters for the GAPs that might contain the most
elements of w, and of the exceptional elements after applying Theorem the key estimate leading to

Lemma [7.6] is that
o o = Ofa=e

as long as n= (M) < p < O(n_‘f/Q). We now present the details.

Proof. (of Lemma|7.6) Throughout the proof, we assume n is sufficiently large given £. Suppose we have such
a w. By Theorem and [supp(w)| > con, as long as a, > 4/(con), we have p(w) < p~ + 2/ /ancon <
(1+ 2661/2)71_5/2, since p > n/2 and a,, > n~=1te.

Let @ be a symmetric GAP in Z/pZ of rank at most r and volume at most V', such that for some subset
T C [n] of size n' we have for j € ([n]\ 7) that w; € Q. Let Ry,..., R, denote the rows of the matrix M
formed by the columns Xi/p, ..., X,,/p. For n sufficiently large (in terms of €) such that con > n/, we see
that the R; for j € 7 must be linearly independent (or else there would be a normal vector to W, /p with
at most con non-zero coefficients).

First, we will determine how many possible choices there are for the data of @, 7, o, and the w; for
j € 7, without any attempt to be sharp. Then, given those data, we will determine the probability that
Xi,...,X,, could produce the situation outlined above with those data.

So we have at most p” choices of generators for () and at most V" choices of dimensions (to obtain a lower
rank GAP we just take some dimensions to be 0). There are at most 2™ choices of 7, and at most 2™ choices
of 0. There are at most V™ choices of w; for j € ([n]\ 7).
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Given @, 7, o, and the w; for j € 7, we condition on the X; for i € o. Then the 7 entries of w are
determined by the w; for j € ([n]\ 7) and the X; for i € o as follows. From w-X;/p =0 for i € o, it follows

that
S wiRilo=— Y wRl,. (22)
jer F€([nI\7)

Since the R;|, (meaning row R; restricted to the o entries) for j € 7 are linearly independent and |7| = |o],

we conclude that the w; for j € ([n] \ 7) and X; for i € o determine at most one possible choice for the w;
for jer.

For simplicity, we will proceed in two cases. First, we will determine how likely it is for W, /p to have
a normal vector w as in the lemma statement such that p(w) < n~?. From the well-boundedness of Q, we
have that » < C. and V < C.n3. Thus the total number of choices for Q, 7, o, and the w; for j € 7 is at
most p®s (C.n3)¢=T™4" Once we condition on the X; for i € o, the vector w is determined by our choices,
and the probability that w - X;/p = 0 for i € ([no]\ o) is at most n=2("~"") Thus the total probability that
W, /p has a normal vector w as in the lemma statement such that p(w) < n=? is at most

pCe (Cund)Cetmynp=9(no=—n) — O_(pCen=m).

Next we will determine how likely it is for W,,,/p to have a normal vector w as in the lemma statement
such that p(w) > n~?. However, instead of counting the @ from the lemma statement, we are going to count
the @Q provided by Theoremﬁ More specifically, we divide [n™%, (1+2¢, 1/ *)n=¢/2] into dyadic subintervals
I, = [ps,2p¢] and we suppose that p(w) € Iy. Let p = p(w). We can apply Theorem with C = 3 for
p > C.n®. Then there exists a symmetric GAP Q of rank r < C. with |Q| < max((C-(p~/(ann’)"/?,1),
and a subset 7 C [n] of n’ indices such that for j € ([n] \ 7), we have w; € Q. Note that r = 0 would
imply that |supp(w)| < [n°/2a;, '], which contradicts the fact that |[supp(w)| > con. Also, since p~' >
(1+ 2051/2)’1716/2, we have that C/p~'/(a,n')}/? > 1 for some constant C. > C. only depending on ¢. So
r > 1, and

Q= Oc(p™"/(emn')'/?). (23)
Since ¢ was chosen so that p(w) < 2p,, we have that the probability that w - X;/p = 0 for i € ([ng] \ o)

is at most (2p,)"0~l°l. Thus the total probability that there is a w as in the lemma statement such that
p(w) >n~Y is at most

O(logn) O(logn)
S P00 ) 2T 2p e <3 OO0, (a2 gy
{=1 {=1
< O0:(p%en==n/%). (24)

For these inequalities, we use facts including p[l <n?andn—ng = Lgl(;’%j < 3n'~¢logn, and (a,n’)" Y2 <
n=¢/4 and m = n — [n°/2a; '] > n — [n'75/].
O

As good as the bounds in Lemmas and are, they still cannot be summed over all primes p that
might divide the determinant of M, «,. So at some point, we need to lift the structured normal vectors from
characteristic p to characteristic 0. Unlike in Section when we could lift non-sparse normal vectors for
all large primes, our structured vectors here have more noise and we cannot lift until the primes are even
larger. The following lemma does this lifting and is the only place we use that the coefficients of the X;
are bounded. Instead of counting structured vectors in characteristic 0 (or modulo a prime > n"/2), for
which we would need some bound on their coefficients (e.g., see the commensurability results |20, Lemma
9.1] and [30, Theorem 5.2(iii)]), we prove in the following lemma that we can also reduce structured vectors
in characteristic 0 to structured vectors modulo a prime around e ™" This allows us to transfer structured
vectors modulo p for our largest range of p to structured vectors for a single prime pg that is of reasonably
controlled size.

We say a submodule of Z" is admissible if it is generated by vectors with coordinates at most n’ in
absolute value. (In particular, Wy, is always admissible.)
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Lemma 7.7 (Lifting and reducing structured vectors). Let A be an admissible submodule of Z™, and p be
a prime > 6"175/3, and n be sufficiently large given ¢ and T. Then A has a structured normal vector (for a

GAP with integral generators) if and only if A/p has a structured normal vector.

Proof. (of Lemmal[7.7) We will first prove the “if” direction. Assume that the first m = n —n’ entries of the
normal vector w = (w1, ..., w,) belong to a symmetric well-bounded GAP @ with r generators aq,...,a, in
Z/pZ, and w; =Y ,_; zja for 1 < j <m. Let M be the matrix with entries at most n” in absolute value
whose columns generate A. Let Ry,..., R, be the rows of M. We have the equality modulo p

m n T m n
0= ijRj + Z wiR; = Zal(z a:lej) + Z w;iR;.

j=1 j=m+1 =1 j=1 j=m+1
Now for1 <[ <r, let Z; := Z;nzl zjR;. We have |z;;] <|Q| < C.n3. The entries of Z; are then bounded by
C.nT+*, which is < nT*5 for n sufficiently large given e, while the entries of R,,,1,..., R, are bounded by
nT. Let M’ be the matrix whose columns are Z1, ..., Z., Ryy1,... R,. The above identity then implies that
(@1, ..y Qpy Wit 1, ... wy)tis in the kernel of M’. Lemma applied to M’, with k = r +n’ implies that
as long as p > e(klog k)/2+k(T+5)logn (which is satisfied because p > e " andr < O.,and 0/ < nlve/2 41,
and n is sufficiently large given ¢ and T'), then there exist integers af,w;-, reducing mod p to a;,w;, for
1<l <rand m+1<j <n, such that

ia?Zl + i w;R; = 0.
k=1

j=m+1

Let w’ = (w},...,w),) where wj = Y7,_, zja; for 1 < j < m. By definition the w’ for 1 < j < m belong to
the symmetric GAP with generators a; and with the same rank and dimensions as @, and w’ is normal to
A. Further w’ is non-zero since it reduces to w mod p.

The “only if” direction appears easier at first—if we start with a structured normal vector, we can reduce
the generators of the GAP and the normal vector mod p for any prime p. However, the difficulty is that for
general primes p it is possible for the generators a; of the GAP to be not all 0 mod p, but yet the resulting
normal vector w to be 0 mod p. Given A, we choose w minimal (e.g. with ), |w;| minimal) so that the
first m = n — n’ entries (without loss of generality) of the normal vector w = (wy, ..., w;,) to A belong to a
symmetric well-bounded GAP @ with r generators ai,...,a, in Z, and w; = Y _,_, zja; for 1 < j <m and
w is non-zero. Let M, be the nx (r+n’) matrix with entries «;; in the first m rows and r columns, the n’ x n/
identity matrix in the last n’ rows and columns, and zeroes elsewhere. So for a := (a1, ..., ar, Wnt1,- - - wn)t,
we have M,a = w'.

Certainly by minimality of w at least some coordinate of w is not divisible by p (else we could divide
the a; and wj; all by p and produce a smaller structured normal w). Suppose, for the sake of contradiction
that all of the coordinates of w are divisible by p. The entries of M, are bounded by C.n3, so, as above,

for p > 6”175/37 by Lemma we have that ker M,

Zr+n SULjects onto ker M, /p. So a/p is in the kernel

of M,/p, and choose some lift o’ := (a},...,al,w}, 1,...w},)" € Z" of a/p in the kernel of M,. Then
a—ad € pZ"™, and Mw(%(a —a)) = %w. Note that Z%w is non-zero integral normal vector to A, and the
equality Mw(%(a —d)) = %w shows that all but n’ of the coordinates of %w belong to a symmetric well-

bounded GAP with integral generators and the same rank and volume as @, contradicting the minimality
of w. Thus we conclude that w/p is non-zero and thus a structured normal vector of A/p for GAP Q/p. O

We now conclude the main result of this section.

Proof of Lemma[6.77. We let S’ be the set of submodules H of Z" such that for all primes p > edenm the
vector space H/p has no structured normal vector w. We assume throughout the proof that n is sufficiently
large given ,7T,d. First, we will bound P(W,,, ¢ §’). By Lemma for p > 6"175/4, if W,,/p has a
structured normal vector, then W, has a structured normal vector, and then W, /p’ has a structured

normal vector for every prime p’ with en' T <p < en' T (of which there is at least 1).
So it suffices to bound the condition that W,,, /p has a structured normal vector for p is a prime C.n? <

1—c/4

p<e®
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We will include in our upper bound the probability that W,,,/p has a non-zero normal vector w with
|supp(w)| < con for some prime p < e """ which is at most e~1%n/2 4 n' " (2/3)7/4 by Lemmas [7.4
and Then, otherwise, by Lemma it is with probability at most 6”1_5/4051(6C5”1_8/4n’€"/5) that,
for some prime p < 6”175/4, the space W, /p has a structured normal vector w. We conclude that P(W,,, €
S’) > 1 — e %" for some absolute constant cs.

If H € &' and H' is a proper subspace of (Z/pZ)™ containing H/p, then H’' has some non-zero normal
vector w (also normal to H/p). Let p > €™ be a prime. If p(w) < n~™3, then since P(X/p € H') <
P(X/p-w = 0) we have P(X/p € H') < n~3. Otherwise, if p(w) > n=3, we apply Theorem with
C = 3 and find a symmetric well-bounded GAP containing all but n’ coordinates of w, which contradicts
the definition of S'. |

8. LAPLACIAN OF RANDOM DIGRAPHS: PROOF OF THEOREM [1.6

As laid out in Section [2] it suffices to prove Proposition [2.5] and this task consists of three parts, in the
first part we modify the method of Section [4] to justify Equation for the small primes, in the second
part we provide a complete proof for Equation and regarding the medium primes by improving the
method of [19] 21], and in the last part we modify the method of Sections |§| and [7| to prove Equation
and for the large primes.

For 1 < i < m, we say that a random vector X = (z1,...,2,) € Z{, the set of vectors of zero entry
sum in Z", has type T; if v; = —(z1 4+ -+ -1 + Tig1 + - + @) and x1,.. ., Ti—1, Tiy1,. .., T, are iid.
copies of &, from . Recall that Ly, ., is a random matrix with independent columns X; sampled from
T;. Sometimes we will also denote this matrix by L, «, for short.

I. Proof of Equation of Proposition treatment for small primes. In this subsection we
modify the approach of Section 4| toward the Laplacian setting. We first prove the analog of Theorem |4.12
for the Laplacian. We will use the same approach as in [33, Theorem 6.2] to consider an auxiliary matrix
that lets us carry the argument from the i.i.d. case to the Laplacian case. Let a be the exponent of G. Let
R=7/aZ and V = (Z/aZ)". We let M’ be an n x n random matrix with coefficients in R with entries X;;
distributed as (M, xn)qj for i # j and with X;; distributed uniformly in R, with all entries independent. Let
Fy € Hom(V, R) be the map that sends each standard basis element to 1. Now, M’ and Ly, ,, do not have
the same distribution, as the column sums of M’ can be anything and the column sums of Ly, are zero,
ie. FyLy, ., = 0. However if we condition on FyM’ = 0, then we find that this conditioned distribution
of M’ is the same as the distribution of Ly, ., . Given M’ and conditioning on the off diagonal entries, we
see that the probability that FyM’ = 0 is a~™ (for any choice of off diagonal entries). So any choice of off
diagonal entries is equally likely in Ly, ., as in M’ conditioned on FyX = 0.

So for F' € Hom(V, G), we have

P(FLy,,, =0)=P(FM =0|F,M =0)=P(FM' =0and F,M’ =0)a".

Let F € Hom(V,G @ R) be the sum of F' and Fy. Let Z C V denote the vectors whose coordinates sum to
0, i.e.
Z={veV | Fv=0}
Let Sur*(V, G) denote the maps from V to G that are a surjection when restricted to Z. We wish to estimate
E(# Sur(Sa, . G)) = E(#Su(Z/Las, ,, R", G))
= >  P(FLu,, =0)
FeSur(Z,G)
1
= P(FL =0
i > (FL,, =0)
FeSur*(V,G)
=|G[7a" > P(FM' =0).
FeSur*(V,G)
Note that if F: V — G is a surjection when restricted to Z, then F is a surjection from V to G & R.
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Now we need a slight variant on Lemma to bound F € Hom(V,G) such that F is robust for a
subgroup H of G.

Lemma 8.1 (Count of robust F' for a subgroup H). Let 6 > 0, and a,n > 1 be integers, and G be finite
abelian group of exponent dividing a. Let H be a subgroup of G® R of index D > 1 and let H = Gypy C ... C
G2 C G1 C Gy = G ® R be a mazimal chain of proper subgroups. Let p; = |Gj_1/G;|. For n sufficiently
large given G, the number of F € Hom(V,G @ R) such that F' composed with the projection onto R is 1 for
each standard basis vector, and F' is robust for H and for 1 < j < (D), there are w; elements i of [n] such
that Fv; € Gj_1 \ Gj is at most

£(D)

—n =S ws n W
a |H‘ z:.7 J H <w>|GJ1| I

j=1 7
We note that for n sufficiently large in terms of GG, the condition on the projection onto R implies that H
surjects in the projection to R, and otherwise the proof of Lemma [8.1] is analogous to that of Lemma [4.10
(See also [33, Lemma 5.3].) We can then apply Lemma as written to the maps F with range G & R and
the matrix M’. The proof now follows the proof of Theorem except that we are estimating

GI7ta™ > P(FM'=0).
FeSur*(V,G)

The two sums of |G|~™ over various F' are replaced by sums of |G|~™a~", but proofs of the same bounds
can be found in the proof of [33] Theorem 6.2]. We deduce

’E(# Sur(Sy, xn, G)) — |G|_1| < Kon™,
and then deduce Equation of Proposition just as we proved Theorem from Theorem

I1. Proof of Equations and of Proposition treatment for the medium primes.

In this subsection we fix a prime p and will work with Z/pZ. As such, if not specified otherwise, all of the
vectors and subspaces in this subsection are modulo p. For brevity, instead of X;/p or W;/p, we just write
X; or W;. The co-dimensions (coranks) of subspaces, if not otherwise specified, are with respect to Z{ /p.
Although our main result, Theorem works for any subspace W,,_ generated by n — k columns of L, xp,
for simplicity we assume W,,_x = (X1, ..., X,,_x). We show the following variant of Theorem

Theorem 8.2. There are sufficiently small constants ¢, > 0 and sufficiently large constants Cy, K > 0
such that the following holds. Let p be a prime, and let Ly, be a random matriz with independent columns

X; sampled from T; respectively, where we assume that
Cylogn

max P, =r)=1—-a, <1-

25
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Then for 1 < k < nn there exists an event E,_ on the o-algebra generated by X1, ..., Xn_k, all of probability
at least 1 — e~ " such that for any kg with k —1 < kg < nn

‘PX (Xn—k+1 € Wn—k:‘gn—k A codim(W,,_y) = ko) — p_ko < Ke™canm,

n—k+1

Combining with Theorem and with appropriate choices of ¢y and Ky we then deduce the part of
Proposition for medium primes, analogous to the proof of Theorem

Now we give a proof of Theorem Our overall approach is similar to the proof of |21} Theorems A.1
and A.4] (which is built on approaches in [19] [30]), but for the Laplacian we cannot apply these results
because the column vectors, as well as the entries in each column, are not identically distributed any more.

We would like to emphasize that in our argument below the positive constants ¢, 3,9, 7, A are sufficiently
small and allowed to depend only on the constant Cy in the bound of a;,. We first introduce a version
of Lemma [3.1] and Corollary for ay,-dense random variables in the Laplacian setting.

Lemma 8.3. For a deterministic subspace V' of Z{[p (or Z§) of dimension d and for any i
Pyer,(X €V) < (1—ay,)" %"

As a consequence, X1, ..., Xn_1 are linearly independent in Z /p with probability at least 1 —n(1 — av,)
28
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Proof. If suffices to verify the first part. But for this we just project the vectors onto the coordinates of
indices different from i, and then use Lemma (3.1 O

We will also need the following variant of Theorem [6.3
Theorem 8.4 (forward Erdés-Littlewood-Offord for the Laplacian). Suppose that w = (wi,...,w,) €

(Z/pZ)™ does not have any component w; with multiplicity larger that n —m, then for any i

1 2
<

p| - Jo,m’
We remark that the classical Erdés-Littlewood-Offord in characteristic zero implies that if w = (w1, ..., wy)
Z" does not have any component w; with multiplicity larger that n — m, then for any %

2
supPxern (X -w=r)| < .
r€Z [e 7% 11}

Proof. (of Theorem Assume that X = (z1,...,2,) € T; for some 1 < i <n. Then

sup [Pxer, (X -w=r)

1wt + - F Tpw, = 21 (w1 —w;) + -+ T (wim1 — wy) + T (Wi — wi) F -+ @ (We — wy).

By the assumption, at least m entries wy — w;, ..., w, —w; are non-zero. Because x1,...,T;—1,Tit+1,---,Tn
are i.i.d., we then can apply Theorem [6.3 ]

8.5. Sparse subspace. Let 0 < §,1 be small constants (independently from «,). Given a vector space
H < (Z/pZ)"™, we call H d-sparse if there is a non-zero vector w with |[supp(w)| < dn such that w L H.

Lemma 8.6 (random subspaces are not sparse, Laplacian case). There exist absolute constant ¢’ and C" such
that the following holds with o, > %, Let €,8,n be constants such that 0 < e <1/12 and 0 < §,n <e.

e (characteristic p) For &, satisfying Equation , and for 0 <k <nn
Px, .. x, . Wy_i/p is not §-sparse) > 1 — emcann,
e (characteristic zero) For &, satisfying Equation , and for 0 <k <nn

!
—c'apn

Px, . x, ., (Wy_g is not §-sparse in Z™) > 1 —e

This result is actually a special case of Lemma and which will be discussed in due course. In
connection to Theorem [8.4] it is more useful to connect the sparseness property to the one of having an entry
of high multiplicity.

Claim 8.7. Assume that the random subspace W, _y/p does not accept any normal vector in (Z/pZ)™ of
support size at most d, then it does not accept any normal vector with an entry of multiplicity between n —dn
and n — 1 either. The same holds in the the characteristic zero case Z™.

Proof. This is because of the invariance property that if w = (ws,...,w,) is normal to W,,_j then so is any
shifted vector (wy; — wo, ..., w, — wo) to Wy _k. a

To conclude our treatment for the sparse case, given constants ,7,d and the parameter «,, from ,
let Ek dense = Ek,dense(€,M,0) denote the event in the o-algebra generated by Xi,..., X,_j considered in
Lemma then

P(gk,dense) >1- e—c'ann. (26)

As such we can simply condition on this event without any significant loss. In our next move, we will
choose A > 0 to be a sufficiently small constant and show that it is highly unlikely that W,,_/p is some non
d-sparse subspace (module) V' of co-dimension kg with k¥ — 1 < kg < nn such that

e ™ < max [P(X €V) - %|
i, X€T; pro
Let us simply call V' bad if this holds. For motivation, instead of bounding the probability that W;,,_/p
is bad, let us simplify it to bounding the probability that Xi,...,X,,_; all belong to a bad subspace V.
For this we will use the “swapping method” from [15] [30], and this was also adapted by Maples in [19] for
the modulo p case. Roughly speaking, by letting the random variable &, be lazier at zero, the associated
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random vector Y with this lazy random variable will stick to V' more often than X does (see Lemma ,
say [P(X € V) — p%o| < 051P(Y € V) — p%o\ Hence if |[P(X € V) — p%o| is large enough, say larger
than plT(f], then we have that P(X € V) < (2/3)P(Y € V), which in turn leads to a very useful bound
P(Xy,..., X0k €V) < (2/3)" *P(Y1,...,Y, 1 € V). In what follows we will try to exploit this crucial
exponential gain toward the Laplacian setting and toward the event that X,..., X,,_ actually span a bad
subspace.

8.8. Semi-saturated subspace. Given 0 < «,,A < 1. We call a subspace V < Z7 /p of co-dimension
ko < mn (with respect to Z{}/p) semi-saturated (or semi-sat for short) with respect to these parameters if V
is not J-sparse and
1 16
e_Aann < max |P(X S V) - T| S e (27)
1, XET; pro pro
Here we assume
16
pro’
If this condition is not satisfied (such as when p is sufficiently large), then the semi-saturated case can be
omitted. Our main result of this part can be viewed as a structural theorem which says that semi-saturated
subspaces can be “captured” by a set of significantly fewer than p™ vectors.

e—)\ann <

Lemma 8.9. For all 8> 0 and 6 > 0 there exists 0 < A = X\(8,9) < 1 in the definition of semi-saturation
and a deterministic set R C (Z/pZ)"™ of non &-sparse vectors and of size |R| < (28°)"p™ such that every
semi-saturated V' is normal to a vector R € R. In fact the conclusion holds for any subspace V' satisfying

the LHS of ,
Proof. (of Lemma Without loss of generality, assume that e=*»" < |P(X € V) — p%o| where X € T;.
Equivalently, with J = {2,...,n}

v 1
et < |P(X|; € V]y)— —I-

0

By [19, Proposition 2.5] (see also [2I, Lemma A.12]), there exists a deterministic set R’ C (Z/pZ)"~! of
non d-sparse vectors and of size |R’| < (28%)"'p"~! such that V| is normal to a vector R € R’. We then
define R by appending a first coordinate to the vectors of R’ to make them have zero entry-sum. O

Let Fr—k ko,semi—sat De the event that codim(W,,_x) = ko and W,,_j, is semi-saturated.

Lemma 8.10 (random subspaces are not semi-saturated, Laplacian case). Let 8,0 > 0 be parameters such
that B° < 1772/2. With A = X(3,6) from Lemma@ we have

P(]:n—k,ko,semi—sat) < e "

In particularly, with &,_k semi—sqar denotes the event complements Ax_1<ko<nnF n—k ko,semi—sat i the
o-algebra generated by Xi,..., X, _k, then

P(Sn—k,semi—sat) Z 1-— efn/2' (28)
Proof. (of Lemma [8.10) We have
P(Fn—k,ko,semi—sat) = Z P(Wn—k = V) < Z P(Xla vee aXn—k € V)
Vsemi—sat, codim(V)=kg Vsemi—sat, codim(V)=kg

Now for each fixed V' < Zf /p that is semi-saturated of co-dimension ko, by definition

1
P(Xnihes € V) < max [PX V) = ol o

< 17p ko,
So
P(X1,...,Xp_p€V) <17 Fpholn=hk)
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We next use Lemmato count the number Ngepm;_sqr Of semi-saturated subspaces V. Each V is determined
by its annihilator V* in Z2/p (of cardinality p¥°). For V+ we can choose a first vector v; € R, and then
Vay ...,V € Z{/p (linearly independently). By double counting, we obtain an upper bound

Noemi—sat = O((?ﬁé)"p”m) — O((?ﬁé)”pn’%*k?ﬂrko).

Putting together,

P(fn—k,ko,semi—sat) < Z P(Xh e aXn—k S V) = O((265)npnko—kg+ko17n—kp—k0(n—k)>

Vsemi—sat, codim(V)=ko
_ O(17n—k(255)npkopkg(k—ko)) _ O(l7n—k(266)np2k0)7
where we noted that kg > k — 1. Now recall that e rann < 16p*k0, and so
P(Fp—k ko semi—sat) = O(17"7F(2p%)"pk0) = O(17"T17F(28%)meranm),
We then choose /3 so that 28% < 1772 and with A < 1/2 we have
P(Fr—k ko,semi—sat) < € ™.

O

Having worked with subspaces V where max; xe7; |[P(X € V) — p~*0| are still small, we now turn to the

remaining case to apply the swapping method.

8.11. Unsaturated subspace. Let V be a subspace of codimension kg in Z{/p for some k — 1 < kg < nn.
We say that V' is unsaturated (or unsat. for short) if V' is not d-sparse and

max (e~ 16p~F0) < max P(X €V)—pro|.
1, X €T;

In particularly this implies that

16
> —k}o —dan .
nax. P(X € V) > max{17p ' 78 }

In this case, for each 1 < i < n we say that V has type i if
Pxer,(X €eV)= max PXeV)

1<j<n,X€T;

By taking union bound, it suffices to work with unsaturated subspace of type 1. So in what follows X € T3.
The following is from [19, Lemma 2.8] (see also [21, Lemma A.15]).

Lemma 8.12. There is a al,-balanced probability distribution v on Z/pZ with o, = «,/64 such that if
Y = (y1,..-,Yn) € (Z/PpZ)" is a random vector with i.i.d. coefficients ya,...,yn distributed according to v
and y1 = —(y2 + -+ + yn) then for any unsaturated proper subspace V in Zg /p
1 1 1
P(XeV)- %\ < (g +o))PY eV) - 1%|
(To be more precise, [19, Lemma 2.8] and [21, Lemma A.15] stated for vectors of i.i.d. entries, but for
Lemma we just need to truncate the first coordinate from all vectors.) For short, we will say that the

vector Y from Lemma has type 7. It follows from the definition of unsaturation and from Lemma
that

2
Pxer (X €V) < gPYGT{ Yev).

Definition 8.13. Let V be a subspace in (Z/pZ)". Let deomp € {1/n,...,n?/n}. We say that V of type 1
has combinatorial codimension d.omsp if

(1 _ a)dcomub S PXE7—1 (X c V) S (1 _ an)dcomb_l/n_ (29)
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Now as we are in the unsaturated case, P(X € V) > %e"\""", and so

deomp < 2\n. (30)

In what follows we will fix deomp from the above range, noting that d is sufficiently small, and there are only

O(n?) choices of deomp.
Let be fixed any 0 < §; < d3 < 1/3 such that

16((52 - (51)(1 + log

1
5y — 51) < 01. (31)

Set
r=|6n] and s =n—k— |dan].

Let Yi,...,Y,. € T/ be random vectors with entries distributed by v obtained by Lemma [8.12] and
Z4,...,Zs € Ty bee i.i.d. copies of a type 1 vector generated by p. Note that in what follows the subspaces
V' are of given combinatorial dimension d.,mp as in Equation and .

Lemma 8.14 (random subspaces are not unsaturated, Laplacian case).
P(Xl, ooy Xpn—g span an unsat. V of type 1 of dim. between r + s and n — k;) < (3/2)*51"/4.

Note that the event considered here is significantly harder to control than the event discussed in the
paragraph preceding Subsection This is also the place where [19] treated incorrectly by relying on [19]
Proposition 2.3] (although our situation here is more technical with vectors of dependent and extremely
sparse entries.) To prove Lemma we will actually show

Lemma 8.15. Assume that V is any subspace of type 1 and of dimension between r + s and n — k and
deomp < 2An. Then we have

P(Xl,...,Xn,k span V) <@/ Y P(Yl,...,YMZl,...,ZS,X(“),...,X(i"*k*T*S) span v),

(ilw--yinfkf'rfs)

where (i1,...,in—k—r—s) Tanges over all subsets of sizen —k —r —s of {1,...,n— k}.

To conclude Lemma we just use (3/2)""/2 (ﬁ;f) < (3/2)7%"/* (basing on Equation (3I)) and the
fact that for each fixed (i1,...,%p—g—r—s)

> P(Y1,....Y, Zh, ..., Zg, X0 X Gnorr—s) gpan V) < 1.
V<(Z/pZ)", type 1, codim(V)>k

Proof. (of lemma [3.15) We use the swapping method from [19, [30]. First of all, by independence between
Xi7 }/jv Zla

P(Xl, .oy Xpn_k span V) X P(Y17 Yo 7y, ..., Zs linearly independent in V)
= P<X1, vy Xn_gspan VAYY, ..., Y, Zy,..., Zs linearly independent in V). (32)

Roughly speaking, the linear independence of Y7, ..., Z; is to guarantee that we then can add a few other X;
to form a new linear span of V, and by this way we can free the other X; from the role of spanning (see for
instance Equation ) We next estimate P(Y1,...,Y,, Z1,..., Z; linearly independent in V'). By product
rule,

P(Zl,...,ZS,Yl,...,YT linearly independent in V)
:P(Y,. e V) ><P(Y,._1 V.Y, 1 & (V,)|Y, € V) X e X P(Y1 EV,Y) ¢ (Ya,...,Y)[Ya,...,Y, lin. in V)x
xP(ZseV,ZS¢(Y1,...7Yr>|Y1,...,YTlin. inV)><~-~><

><P(21 EV.Zi ¢ (Zoeo 2o, Y1so Y ) 2oy 2o, Yh, ..., Y, lin. in V).
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We first estimate the terms on Y;. By Lemma |8.3
P(y;- EV,Yi ¢ (Yirt,...,V,)[Visr,...Y, lin. in V) >P(Y; e V) — (1—a,)n—r=-1,

This then can be estimated from below by

N W

P(Y,eV)—(1—a,)" (-1 ng(Xi eV)—(1—al )01 > Z(1 — q)deoms — (1 — o))"~ (rD~1

Zg(l —a)deomt (1 — (1 — )™/ 236 deomn
where we used that o, = a,,/64 and n —r > (1 — §1)n > n/2. Similarly,
P(Zl- EV,Zi & (Zisrse 2o Viso oY) Zisrs o 2 VA, ,YT) > P(Z € V) — (1 — ofyr—(r+s=i=1
> (1 = ap)deoms — (1 — )= (Fs=D=1 > (1 _ g )deoms _ (1 — q,,)"/256

where we used that r + s =n —k — (|dan] — [01n]) > n/2. Putting together

r+s
P(Yl, ..., Zs linearly independent in V) > (3/2)7(1 — ay) +)deoms (1 (1 —an) 256*dwmb)

> (3/2)77 (1 — o) () deome (33)

where we used deomp < 2An and A is sufficiently small.

Now we estimate the probability P(X1, ..., X,,— span VAYy, ..., Y, Z1,..., Z, linearly independent in V).
Since Y1,...,Y,, Z1,..., Zs are linearly independent in V and Xg41,...,X,, span V, there exist n—k—r—3s
vectors X () X (in—r-r—s) which together with Y3,...,Y,, Z1,..., Zs, span V, and the remaining vectors
Xin—k-r=st1 _  Xin—r belong to V. Thus,

P(Xl, cos Xp—gspan VAYy, ..., Y, . Z1,. .., Z, linearly independent in V)

< > PV Ze X0 X span VA Xk X e V)

(i17~~-7in7k—7‘7s)

< Y Pz, X0 X span V)P(X ok Xk e V)

(ilyw-vin—k—rfs)

< Z P(y17 ey Zs, X(il), e X (in—k—r—s) span V) (1— a)(r‘i‘s)(dconlb_l/n)’ (34)

(i15eeesin—k—r—s)

where in the last step we used the upper bound (1 — a)%em=1/" for each P(X®) € V).

Putting , and together,
P(Xl, ooy Xp_span V AYy, ..., Zs linearly independent in V)

P(Xl, .oy Xp_k Span V) =
P (Yl, ..., Zs linearly independent in V)

S (3/2)_7‘+1(1 _ an)_(r+s)dcorrlb X

x> PV Ze X0 X span V) (1= ) () om0
(i11<"7i’n7’\571"78)
<@ Y PV 20 X0 X span V).
(i17"'7in7k57'f‘75)

O

Remark that r+s =n—k— (|d2n] — [01n]) < n—k—nn if n is sufficiently small. As a consequence, if we
let £k unsat denote the complement of the event in Lemma in the o-algebra generated by Xi,..., X, &
then

P(gn—k,unsat) >1- (3/2)—5171/4. (35)
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We now conclude the proof of Theorem Let & —k,denses En—k,semi—sats En—k unsat De the events intro-
duced in (26), (28), and let &,_j be their intersection. If we choose ¢ < min{c’, A} then by definition,
on these events, if codim(W,,_x) = ko then for a random vector X of any type T;

1 —COp N
[PX € Wp) = ] < emen,

completing the proof.
Finally, we conclude this section with an interesting consequence of Theorem in light of singularity
bounds for random matrices from [1}, 3 [15] [16] [27] [30].

Corollary 8.16 (Non-singularity of the Laplacian). There exist absolute constants co, Ko > 0 such that
the following holds. Assume that the i.i.d. entries are distributed according to a random variable &, taking
integral values and such that

Cologn

maxP(¢, =2)=1-a, <1-—

X , for a sufficiently large constant Cy.
AS

Then with probability at least 1 — Koe™ ™ the matriz Ly (n—1) of any n —1 columns of Lyx, has rank
n—11in R".

Note that we do not require &, to be bounded at all, and our sparseness is almost best possible.

Proof. (of Corollary We assume L, (,—1) to be the matrix of the first n — 1 columns. For primes p
sufficiently large given n, we will show that L, ,,—1) /p has rank n — 1 with probability at least 1 — e~ %*n".
Given n, we choose a p large enough that P(§, = « (mod p)) < 1 — Cy(logn)/n. By Lemma [8.3] it suffices
to bound the probability that L, ,—1)/p has rank between n —nn and n — 2. For this we can deduce from
Theorem that if 1 < k < nn for some sufficiently small 7, then

P(rank(LnX(n,l)/p) =(Mn-1)— k;) = O(nk(p_k2 + e_co‘"")). (36)

Indeed, the event rank(L,,» (,,—1)/p) = (n—1)—k implies that there exist k& column vectors X, , ..., X;, which
belong to the subspace of Z{} /p of dimension (n — 1) — k generated by the remaining column vectors X; for
1% i1,...,1x. With a loss of a factor of (";1) in probability, we assume that {iy,...,ix} = {n—k,...,n—1}.
We then use Theorem (with the vectors and subspaces below being mod p)

P(Xn_k7 cors X1 € Wh_g—1 Acodim(W,,_g—1) = k)
=P (Xo oo X1 € Wo g A1 Acodim(Wy 1) = k) + O™ ")
<P (X s Xt € Waio1 |1 Acodim(Wi 1) = k) + O(e ")
<(pt + 0temm) 0 = 0 o),

proving , and hence the corollary by taking p large enough, given n. O

ITI. Proof of Equations and of Proposition treatment for large primes. Now we
modify the approach of Section [6] and [7] to the Laplacian setting. Let d > 0 be a constant and

P = {p prime, p > ed“"”}-
Let 5;%) be the event that L, ,—1) has rank n — 1 in R". It follows from Corollary that

P(El)) > 1~ Kpemeoonn,

Our strategy is similar to the proof of Proposition Recall that Wy, is the submodule of Z{ spanned by

X1,..., Xk. Let 20x be the set of primes p € P, such that rank(Wy/p) < k — 1. Let Cy be the event that

|20| < (27 + 1)logn/(2day,) (the watch list is not too big). Note that any p € 20, for £ < n must divide

det(Lpx(n—1)). By Hadamard’s bound, |det(L,xmn-1))| < n™2pT™ and so in particular, when Cj, occurs
34



then det(Ly,x(,—1)) = 0. Let Dy be the event that there is a p € 2, such that rank(W}/p) < k — 2, this is
the event we want to avoid for all p.

We will show that P(Cry1 V Diy1|Ck A Dy), and hence P(Cry1 V Dyy1|Ck V Dy), are large. The goal is
to conclude that P(C, V D,,) is large, and since we know that P(C,) is small, we can conclude that P(D,,)
is large, as desired. Now to estimate P(Cry1 V Dii1|Crx A Di) we will condition on the exact values of
X1,..., Xy where Ci, A Dy, holds, and so there are at most (27 + 1) logn/(2Aay,) primes p € B,, such that
rank(W}, /p) < k — 1 and no prime p € %B,, such that rank(W},/p) < k — 2. In this case Dy, as long as for
each p € 2y, we have Xy 1/p & Wy /p. Consider one prime p € 2, and let V' be the value of W /p that
the conditioned X3,..., X} give. From Lemma P(Xpi1/p€V) < (1 —ay,) D=0-0 = (1 —a)"F,
Thus,

P(Cr1 V Dps1|Ce ADy) > 1 — <(2T+1)1°g”> (1 — an)"*.

2do,

In particular, we have the same lower bound for P(Cy11 V Dy41|Cr V Dy), and then inductively, we have

k—1

5 A 2T +1)logn i 2T + 1) logn\ (1 — a,)"F+1

D0 > 1= 3 (F R ) -1 (B Bt
i=1 n n n

Set ng :=n — [3logn/a,]. Then by using a,, > n~17¢ we have that
P (Coy V Dyg) = 1— Oz (n='1?).
We then have the following analog of Lemma [6.2
Lemma 8.17. Suppose that o, > 6logn/n. Then there is a set of submodules St of Z§ such that
P(W,, € S) >1—e *nn/8

dann

and for any prime p > e , and any submodule H € Sy, for any proper subspace H' of Z{ /p containing

H/p,

P(X/peH') = Our (@) ,

an\/n

where X is any column of Lyxn.

Lemma[8.17] can be shown exactly the same way Lemma[6.2] was deduced. Indeed, we can use Lemmal[6.5
to lift the existence of sparse normal vector on any modulo p with p > e**™ to the existence of sparse
normal vector on characteristic zero, for which we then can use Lemma (or Lemmas and to
show that this event is unlikely. We then apply Theorem (combined with Claim to get the desired
probability bound when the normal vectors are non-sparse.

Now similarly to the iid case, Lemma allows us to justify Equations and (16]) only for a,, >
n~1/6%¢ To extend to o, > n~ ', we will have to need the following analog of Lemma

€

Lemma 8.18. There is an absolute constant co > 0 such that the following holds. Suppose that o, > n~11¢.
There is a set St of submodules of Zfy, such that

P(W,, €8})>1— e @2nn

and for n sufficiently large given d,e, T, any prime p > e*n"  any submodule H € S}, and any proper
subspace H' of (Zo/p)"™ containing H/p,

maxPxer, (X/p € H’) <n 3
7

The deduction of Equations and from this lemma is similar to how Proposition was deduced
from Lemma It remains to verify Lemma [8.18] For this we will make use of Theorem and the
following corollary of Theorem for vectors from 7;.

Theorem 8.19 (inverse Erdés-Littlewood-Offord for the Laplacian). Lete < 1 and C' be positive constants.
Assume that p is a prime that is larger than C'nC for a sufficiently large constant C' depending on e and
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C. Let & be a random variable taking values in Z/pZ which is c,-balanced with a, > n='*. Assume
w = (w,...,w,) € (Z/pZ)" such that
p(w) - max sup P(glwl +-+ fnwn = a) Z TLiC,
1:(517'“;5”)67"5 aEZ/pZ
Then for any nc/2a~! < n’ < n, there exists 1 < i < n and there exists a proper symmetric GAP Q in Z/pZ
of rank v = O (1) which contains all but n' elements of {w1 — wy, ..., wy —w;} (counting multiplicity),
where

QI < max {1, Oc.c(p(w) ™ /(an') /)|

8.20. Proof of Lemma Our method is similar to Section [7} so we will be brief. First we need an
analog of Lemma to estimate the probability that for some large prime p the module W, /p of Z§ /p
accepts an extremely sparse normal vector.

Lemma 8.21. There are absolute constants c1, Co such that the following holds. Let B, := 1—max,ecz P(&, =
x), and assume B, > Cplogn/n and o, > 6logn/n. For n > 2, the following happens with probability at
most e~ 1Pn/2: for some prime p > 2nT, the subspace W, /p has a non-zero normal vector with at most
144871 non-zero coordinates.

We also need an analog of Lemma which will allow us to control the event that for some prime p of
order e°™ or p = 0 the subspace W, /P accepts a normal vector of o(n) non-zero entries.

Lemma 8.22. There exist absolute constants co, Co such that the following holds. Let 8, := 1—max,cz P(&, =
x). Assume a, > % and let p be a prime > 2nT. The following happens with probability at most
(2/3)"/4: the subspace Wi, /p has a non-zero normal vector w with 1443, < |supp(w)| < con.

Lemmas [8.21] and will be verified in Appendix D] by following the proofs of Lemmas [7.4] and

We next discuss an analog of Lemma |7.6| on the existence of structured but not sparse normal vectors
of W, /p. Similarly to Section [7, we let n’ = [n°/2a;;'] and m = n — n/, and we will apply Theorem
with this choice of n’ and C = 3. By replacing w = (wy,...,wy) by (w1 — w;,...,w, —w;) if needed (note
that this shifted vector is again a normal vector of W, /p because this subspace consists of vectors of zero
entry sum modulo p), we can simply say that Theorem implies structure for wy, ..., w,. We call a GAP
Q well-bounded if it is of rank < C. and |Q| < C.n3, where C. is the maximum of C’ and the constants
from the O¢ bounding the rank of volume of |Q]. Motivated by this, and similarly to Section |7} we call a
vector w structured if it is non-zero, and there exists a symmetric well-bounded GAP @ such that all but n’
coordinates of w belong to Q.

Lemma 8.23. Let a,, > n~'7¢. Let p be a prime with p > C.n3. The following event happens with
probability O.(pCen=="/%): the space Wy, /p has a structured normal vector w, and W, /p does not have a
non-zero normal vector w' such that |supp(w’)| < con with ¢q from Lemma[8.22,

Lemmal8.18|then can be shown by combining Lemmas|3.21] and[7.7]the way Lemmal6.7]was concluded
in the end of Section[7] Finally, the proof of Lemma is almost identical to that of Lemma the only
difference is that we need to apply Theorems and instead of Theorems and [7.3]in the argument
leading to Equations and , and thus we again omit the detail.
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APPENDIX A. INEQUALITY LEMMAS
We have a straightforward inequality (easily checked by considering the cases when A <1 and 4 > 1).
Lemma A.1. Let0<d; <1 and A >0, and n > 1 be an integer. Then we have
(di + (1 — dy)exp(—A))" < max (exp(—(1 — d1)An/2), ((1 +d1)/2)").
The following is a standard estimate with binomial coefficients.

Lemma A.2. Let D1 > 0. For every f > 0, for all 6 > 0 sufficiently small (given D1, f), we have that for
all sufficiently large n (given D1, f,d), that
[o7]

> (Z) Dy < exp(fn).

k=0
We put these lemmas together to obtain the inequality below.
Lemma A.3. Let D1 > 0 and 0 < dy < 1. Then for positive y sufficiently small (given Dy and d;), the
following holds. Let A" > 2/(1 — dy). For n sufficiently large (given D1,dy,~,A’) we have

Lyn)
Z (Z) D (dy + (1 = dy) exp(—(A' logn/n)k))n < 3p~((=d0al/2-1)
k=1

Proof. For n > 2, we have that (A’logn/n)k > 0. So by Lemma [A.T with A = (A’logn/n)k, we have

Lyn] n
Z (k) D¥(dy 4 (1 — dy) exp(—(A"logn/n)k))"

k=1
Lyn] n\ lyn) .
< ; (k) DY exp(—(1—di)An/2) + kZ:l (k) DY ((1+dy)/2)

5 (1)t exol-1 - ) Gog /2 + 3 (3) Pt @+ ar.

k k=1

We have
n

r (Z) DY exp(—(1 = d1)A'(logn)k/2) > (k +

if and only if

1) Dl exp(—(1 — dy)A logn(k +1)/2)

n—k D,
T AU
If (1 —dy)A’/2 > 1, then for n sufficiently large given D;,d; and A’, we have
n—=k Dy Din B Dy 1

k41 n(l—d)A/2 = 9n(1—di)A’/2 — 9p(i—di)A//2—1 = 9~
So, if (1 —dj)A’/2 > 1, then for n sufficiently large given Dy, d; and A’; we have

1 [n ’ n 1 ’
. < >D’f exp(—(1 —dy)A'(logn)k/2) > <k‘ 4 1> Dl exp(—(1 — dy)A logn(k +1)/2).

2 \k
In particular, that implies

[yn]

Z (:) DF exp(—(1 — dy)A'(logn)k/2) <on—((—d)a’/2-1)
=1

For the second sum, let f = —log(l + d1/2)/2 > 0 and note that f + log((1 + d1/2)) < 0. Then by
Lemma @, we have that for v sufficiently small given D1, d; that for all n sufficiently large (given D1, d1,7)

Lyn)
Z (Z) DY (14 dy)/2)" < exp(fn +log(1 + dy/2)n) = exp(log(1 + dy/2)n/2).
k=1
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For n sufficiently large given dq, A/, we have
exp(log(1 + dy /2)n/2) < n~(17A)A/271),

The lemma follows. |

APPENDIX B. APPROXIMATE TRANSITION PROBABILITIES: PROOF OF THEOREM [5.3

First, we prove the following simplified version of the theorem. Using a coupling, we show that if the
transition probabilities of two sequences of random variables are close, then the distribution of the random
variables must be close.

Lemma B.1. Let w and w’ be sequences of random variables with wg = wj = 0, for each i >0
P(w;,, = a|lw; = b) = P(wi1 = alw; = b) + (i, b, a)
for all a and b such that P(w, =b) = P(w; =b) #0 ,

and w; and w; only take on countably many values. Then for any n > 0 and any set A of values taken by
wy, or wl, we have

n’

|P(w, € A) — P(w], € A)

N

Yo DD blbPwi=b) <5 Y maxd 80 be)l,

0<i<n—1 b c 0<i<n—1

where b is summed over {b | P(wy = b) # 0 and P(wj, =b) # 0)} and ¢ is summed over {c | P(w;11 =¢) #
0 or P(wl,, = c) # 0)}.
Proof. Let S; be the set of values taken on by w; and w}. Let p be Lebesgue measure on the interval [0, 1].

For each ¢ > 0 and b € S;, we can choose measurable functions ¢;; : [0,1] — S;+1 and gbé)b :[0,1] = Sita
such that for all ¢ € S;,

P(wis1 = clw; = b) = p(¢;;(c)) and  P(wiyy = clwj =b) = u((¢);; (0)),

and p({z € [0,1]|¢i () # ¢} ,(2)}) = %Zcesiﬂ [0(7,b,c)]. (If b isn’t a value taken by one of the variables,
we will just take ¢;p = (bg,b.) Then we construct Markov chains z; and z}, with zy = x{, = 0, and to
determine ;41 and x,,, we pick a random z € [0, 1], and then let ;1 = ¢; »,(z) and x; 11 = ¢; .. (). Note
that for all ¢ > 0 and all b € S; and ¢ € S;41, we have

w\»—*

P(zip1 =cz; =b) = P(wiyq = clw; =b) and P(2),, = cla] =b) = P(w;, = clw] =b).

Thus, for all n > 0, we have P(z; = a) = P(w; = a) and P(z; = a) = P(w, = a). Note that z,, and
x;, are equal, unless for some 0 < i < n — 1, we have that x; = xzj, but ;11 # 2}, ,, and in particular,
Giz; () # ¢; .. (). To see how likely this is for a given 4, we sum over all b € S;, and have

Pz =2 ANwip1 # 2l q) < Z P(z; =b)P(x; = x;, =bAwip1 # x|z, =)

beSs;
<> Pz = 0)P(¢ip(x) # ¢ y(x)]a; = b)
beS;
1
<> Pz = b5 > 16(i,b,c)l.
beS; cESit1

So
P(x, # z)) ZZ ZP b)|6(i, b, )],

and from this the result follows, since
|P(w, € A) — P(w,, € A)| = |P(z, € A) — P(z}, € A)| < max(P(z, € ANz, & A),P(x, € ANz € A)).
(Il

Theorem [5.3] will follow by applying Lemma to a modified sequence.
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Proof of Theorem[5.3 . We insert half-steps Tiy1/2 = (24,9;) and Yit1/2 = (¥i,1). We compare the transi-
tional probabilities as follows, first for 7 integral:

P(yi+1/2 = Dlyi=r) - P($i+1/2 = (r]x;i=r)=P(g # lz;=7)
and
P(@/i+1/2 =(r,0)|yi=71) — P($i+1/2 =(rDl|zi=r)=-P(g # Ui = 7).
Also for 7 integral, we have
Pyi+1 = slyit12 = (1,1)) = P(wiy1 = slwiy1y0 = (1, 1)) = 0(i, 7, 8).
Then applying Lemma [B.I] we have
P(an € A) — P(y, € A)

n—1

ZZZPgl#l\xz—r) ZZZ|52T8|P =)
z=0

n—1

Z (9 #1) + ZZZ\(;ZTS\P T).

=0

APPENDIX C. INVERSE THEOREM: PROOF OF THEOREM 1,3

We first introduce a more general structure in finite additive groups.

Definition C.1. A set P in a given finite additive group G is a coset progression of rank r if it can be
expressed as in the form of

H+Q,
where H is a finite subgroup of G, and Q = {ao+z1a1+ - -+zra,|M; < x; < M and z; € Z for all 1 <i <r}
is a GAP of rank r.

o We say that P with this presentation (i.e. choice of H, a;, M;, M]) is proper if the sums h + ag +
x1a1 + -+ zpap, h € H M; < x; < M/ are all distinct.

e More generally, given a positive integer ¢t we say that P is t-proper with this presentation if H 4 tQ
is proper.

o If —M; = M/ for all i > 1 and ag = 0, then we say that P with this presentation is symmetric.

To prove Theorem we will make use of two results from [31] by Tao and Vu. The first result allows
one to pass from coset progressions to proper coset progressions without any substantial loss.

Theorem C.2. [31 Corollary 1.18] There exists a positive integer Cy such that the following statement
holds. Let Q be a symmetric coset progression of rank d > 0 and let t > 1 be an integer. Then there exists a
t-proper symmetric coset progression P of rank at most d such that we have

Q C P C Q(Cld)?’d/zt'

We also have the size bound

Q| < |P| < t4(Crd)* ?|q)].

The second result, which is directly relevant to us, says that as long as |kX| grows slowly compared to
|X|, then it can be contained in a structure. This is a long-ranged version of the Freiman-Ruzsa theorem.

Theorem C.3. 31 Theorem 1.21] There exists a positive integer Cy such hat the following statement holds:
whenever d,k > 1 and X C G is a non-empty finite set such that

k4 X|>2 kX,
then there exists a proper symmetric coset progression H + Q of rank 0 < d' < d — 1 and size |H + Q| >
256d
2-272"7" pd | X| and z, ' € G such that

202d226d

9Cd220d

+(H+Q)CkX Ca' +2
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Note that any GAP Q = {ap + z1a1 + - - + zra.| — N; < 2; < N; for all 1 < ¢ < r} is contained in a
symmetric GAP Q' = {xpa0 + z101 + -+ zra,| =1 < 2o < 1,—N; < z; < N; for all 1 <i < r}. Thus, by
combining Theorem with Theorem we obtain the following

Corollary C.4. Whenever d,k > 1 and X C G is a non-empty finite set such that
2,6d
KX 2 2700 kx|,
then there exists a 2-proper symmetric coset progression H + P of rank 0 < d' < d and size |H + P| <
256d
24(Cyd)34° /22427 | L X | such that
kX CH+ P

As for Theorem [7.3] . the explicit constants in Corollary m IC.4] will not be important. (Although a more
careful analysis would allow «,, to be as small as n ~1+0(1zTog Tog w) here, and hence in our main theorems.
But in order to keep our presentation simple we will not work with this technical assumption, only staying
with a,, > n~17¢.) Now we give a detailed proof of Theorem In general our method follows that of [22],
but the details are more complicated because we have to obtain an actual inverse result in Z/pZ, as well as

we need to take into account the almost sharp sparsity of the randomness.

Proof. (of Theorem [7.3)) First, for convenience we will pass to symmetric distributions. Let ¢ = v; — 5 be
the symmetrization of v and let v’ be a lazy version of 1) that

iP(p=x)ifz#0
P/ =2)=1iP@W =1x)+3, ifz=0.

Notice that ¢’ is symmetric as 1 is symmetric. Similarly to , we can check that max, P(¢y = z) < 1—ay,,
and so

HW=@={

supP(' =2) <1 —a,/2.

We assume that {0,+tq,...,=£t;} is the range of ¢' and P(¢' =t;) = P(¢/ = —t;) = B;/2 for 1 < j <1,
and that P(¢)' = 0) = fy, where t;, £¢;, # 0 mod p for all j; # jo.

Consider a € Z/pZ where the maximum is attained, p = p(w) = P(S = a), here S = vjwi+- - -+vw, = a.
Using the standard notation e,(x) for exp(2mv/—1x/p), we have

p=P(S=a)=Br 3 e@S-a)=Br Y e@S)e(-ma)<- Y [Ee@s).  (67)

p x€Z/pZ p x€Z/pZ T€Z/pZ
By independence

n

e 1 2matjw;
|Ee,(xS)| = H |Ee, (xviw;)] H B (|Ee, (zvw;)|* +1)) H |Ee, (xy)'w;)| = H BO—'—ZBJ —1).

i=1 i=1 i=1

It follows that

BRIl ﬁo+25j cos 2770 < LS T ﬂo+2ﬂj|cos T e

r€Z/pZi=1 wEZ/le 1

73 \ —

where we made the change of variable  — x/2 (in Z/pZ) and used the triangle inequality.
By convexity, we have that |sin7z| > 2||z|| for any z € R, where ||z|| := [|z||g/z is the distance of z to
the nearest integer. Thus,

1
lcos 22| <1 — = sin? = < 1— 2|22 (39)
p 2 2 p
Hence for each w;

Txt;w; xtjw; rtjw;
0+ZﬂJ|COS |<1—2251H 1 < exp( 22@” 1%).

Jj=1
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Consequently, we obtain a key inequality

n

Sl Z 1_[ﬁo-i-z:ﬁﬂcosmvtwl|)§1 Z exp( ZZZBJHH wz ) (40)

IGZ/pZ% 1 prZ/pZ i=1j5=1

Large level sets. Now we consider the level sets Sy, := {£| >0, 23:1 @th]Tw 2 <m}. We have

*CSPS% Y exp( 2ZZBJIIxtw’ < - + Zexp m = 1))|Sm].

Tr€Z/pZ i=1 j=1 m>1

As p is assumed to be much larger than n¢, and as Y. ., exp(—m) < 1, there must be is a large level set
Sy, such that a
|Sm| exp(—m +2) = pp. (41)

~¢ we can assume that m = O(logn).

In fact, since p > n

Double counting and the triangle inequality. By double counting we have

3 Zﬂgllxt Wi $ ZZ@H“ YR < ]S

i=1xz€S,, j=1 TES, i=1 j=1

So, for most w;

> Zﬂjn“ L2 < Sl (42)

zE€ESm j=1
More precisely, by averaging, the set of w; satisfying has size at least n — n’. We call this set W’. The
set {wy, ..., w, }\W’ has size at most n’ and this is the exceptional set that appears in Theorem In the
rest of the proof, we are going to show that W’ is a dense subset of a proper GAP.

Since || - || is a norm, by the triangle inequality, we have for any a € kW’
! xtja
> Z:Bgllfll2 kZ*ISmI (43)
€Sy, j=1

More generally, for any k¥’ < k and a € ¥'W’

xtja 2m
> Zﬁg |7II2 <KL Sml. (44)

€S j=1

Dual sets. Set
l

=> Bi=1-ho
j=1
Then by definition of 1, we have
D> /2 >nT e

Define

={al 3 ZM“ LR ST

TESy, j=1
where the constant 200 is ad hoc and any sufficiently large constant would do. We have

1S <
ISmI

To see this, define T, :== >~ g 2221 B, cos 22 Jw . Using the fact that cos 27wz > 1—100|z||? for any 2z € R,
we have, for any a € S},

(45)

xt;a ’n
T.> 1—10026J||—|| 5 Sml-

TESm
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2maz
p

One the other hand, using the basic identity »_, ., /pz CO8 = pI.—o, we have (taking into account that

tjl 7é tjz mod p)
l
2 2 ;2
> Ta < 2pISml 3B < 2plSi| max 853 B)) < 2plSiler,”
a€Z/pZ J i=1

Equation then follows from the last two estimates and averaging.
Next, for a properly chosen constant ¢; we set

!
k.= C1 Anlt .
m
By we have UF,_, k'W’' C S,. Next, set
w” = w'u{o}.

We have kW < S, U {0}. This results in the critical bound

kW' = O( = O(p~exp(—m +2)). (46)

L)
|Sm]
The long range inverse theorem. We are now in the position to apply Corollary with X as the set of

distinct elements of W' As k = Q(\/%) =Q(y/ ‘fﬁgﬁ;),

p—l < nc < k,4C'/E+1. (47)

It follows from Corollary that £X is a subset of a 2-proper symmetric coset progression H + P of
rank 7 = O¢ ., (1) and cardinality
|H + P| < Oc¢|kX]|.
Now we use the special property of Z/pZ that it has only trivial proper subgroups. As |[kX| = O(n%), and
as p > nY, the only possibility that |[kX| > |H + P| is that H = {0}. Consequently, kX is now a subset of
P, a 2-proper symmetric GAP of rank r = O¢ ,(1) and cardinality

|P| < Occ|kX]. (48)
To this end, we apply the following dividing trick from [22) Lemma A.2].

Lemma C.5. Assume that 0 € X and that P = {>_,_, w;a; : |z;| < N;} is a 2-proper symmetric GAP that
contains kX. Then

i=1

Proof. (of Lemma Without loss of generality, we can assume that k = 2'. It is enough to show that
271X c {300 wia; ¢ |zy) < N;/2}. Since 0 € X, 271X € 2'X C P, any element z of 2'~1 X can be written
as x = y.._, x;a;, with |z;| < N;. Now, since 2z € P C 2P and 2P is proper GAP (as P is 2-proper), we
must have 0 < |2z;] < N;. O

Combining and Lemma [C.5| we thus obtain a GAP @ that contains X and

—r —r " — aézn/ —r
1Qf = Oceo (K" [EX]) = Ociey (K™"[EW[) = Oceq (p texp(—m)( ) )

= Oc.eo (P~ (ayn/) ™),

concluding the proof. O
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APPENDIX D. SPARSE SUBSPACES FOR THE LAPLACIAN CASE: PROOF OF LEMMAS [R.21] AND 822

Our methods are almost identical to those of Lemma [7.4] and with a few minor exceptions.

Proof. (of Lemma Argue similarly as in the proof of Lemma it suffices to show that the following
holds with probability at least 1 — e~¢18»"/2_ For any 1 < t < 14431, and any o € ([?]), there are at least
two columns X;, X; with 4, j ¢ o whose restriction (X; — X;)|, has exactly one non-zero entry.

For a given o of size ¢, assume that {i1,...,jn,—t} C [no]\o. Fori € {1,3,...,2|(no—t)/2] —1}, consider
the vectors V; = Xj,, |0 — Xj,|o. Note that as j;,ji41 ¢ 0 and X;, € Tj, and Xj,,, € Tj,,,, the entries
of Y; are iid copies of the symmetrized random variable ¢ = £ — £/, where &, are independent and have
distribution &,. Recall that with 1—3/, = P(¢) = 0), then 8, < 8/, < 23,,. Now let p, be the probability that
all Yi|o,1 € {1,3,...,2[(no—t)/2] — 1} fail to have exactly one non-zero entry (in Z), then by independence
of the columns and of the entries

Dy = (1 B tﬁ;(l B ﬁ;)t—l)L(ng—t)/% < (1 _ tB;Le—(t—l)B;L)L(no—t)/2j < e—nt,@;e*ﬁ*l)ﬁ%/;;’

where we used ng —t > n/2 because a,, > 6logn/n and t < 1443, The rest of the proof is similar to that
of Lemma [7.4] O

Proof. (of Lemma For o C [n] with 14483, <t = |o| < con, consider the event that W, /p is normal
to a vector w with supp(w) = o but not with any other vector of smaller support size. With a loss of a
multiplicative factor () in probability, we assume that o = {1,...,¢}. Consider the submatrix L¢xy, of
L., xn consisting of the first ¢t rows and first ng columns of Ljxn,. Since the restriction w|, of w to the first
t coordinates is normal to all the columns of Ly, /p, the matrix Ly, /p has rank ¢t — 1 (if p = 0, we mean
rank over R). We assume that the column space of Lix,,/p is spanned the columns {X;,,...,X;,_,} for
some {i1,...,%—1} C [ng].

Note that for p > 2nT, the value of &, is determined by its value mod p, and so 3,, = l—max,ez/pz P(§n/p =
x). If we fix X;, |0, ..., X4, , |0 such that the subspace W, . ;, ,|o/p generated by these vectors has a normal
vector with all ¢ coordinates non-zero, then by Theorem , the probability that X;|,/p € Wi, i, 1le/P
for all ¢ € [no]\(o U {i1,...,it—1}) (as for these vectors the entries of T; restricted to o are independent) is

at most
1 2 )n072t71 < (1 + 2 )(17360)71 < (g)n/2

T R 3

as long as () is sufficiently large and ¢ is sufficiently small. Thus the total probability of the event in the

lemma is at most
n no 2 n/2 2 ’I’L/4
Z < (Z .
S (O )e=6

1448, 1 <t<con
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