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Let G be a nonabelian, simple group with a nontrivial conjugacy class C C G.
Let K be a diagram of an oriented knot in S3, thought of as computational input.
We show that for each such G and C, the problem of counting homomorphisms
71(S?* ~ K) — G that send meridians of K to C is almost parsimoniously #P—
complete. This work is a sequel to a previous result by the authors that counting
homomorphisms from fundamental groups of integer homology 3—spheres to G
is almost parsimoniously #P—complete. Where we previously used mapping class
groups actions on closed, unmarked surfaces, we now use braid group actions.

20F10, 57M27, 68Q17

1 Introduction

Let K be an oriented knot in the 3—sphere S* described by some given knot diagram.
Fox [10, Chapter VI, Exercises 6—7] popularized the idea of a 3—coloring of the
diagram K, which is now also called a Fox coloring; see de la Harpe and Jones [20]. By
definition, such a coloring is an assignment of one of three colors to each arc in K such
that at every crossing, the over-arc and the two other arcs are either all the same color
or all different colors. It is easy to check that the number of 3—colorings of a diagram
is invariant under Reidemeister moves, and is therefore an isotopy invariant of K.

Fox colorings are a special case of the following type of generalized coloring based on
the Wirtinger presentation of the knot group 7;(S3 ~ K) (see Reidemeister [34]): Fix
a finite group G and a conjugacy class C € G that generates G. Then a C —coloring
is an assignment of an element ¢ € C to each arc in K such that at each crossing, one
of the two relations as in Figure 1 holds, depending on the sign of the crossing. The
set of C —colorings is bijective with the set

H(K;G,C):={f:m(S’~K)—> G| f(y) € C}
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Figure 1: The Wirtinger relations.
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of homomorphisms from the knot group to G that take a meridian y of K to some
element in C. (Since the meridians are themselves a conjugacy class of 71 (S> ~ K),
it doesn’t matter which one we choose.) Then #H(K;G,C) = |H(K; G, C)| is an
important integer-valued invariant of knots.

If G = S3 is the symmetric group on three letters and C is the conjugacy class of
transpositions, then H(K; G, C) is precisely the set of Fox colorings of K. In this
case, and in any case when G is metabelian, H(K; G, C) is an abelian group (or
more precisely a torsor over one) that can be calculated efficiently using the Alexander
polynomial of K. However, Fox also considered the set H(K; G, C) for general G
and C. When G = A5, he observed that “A5 is a simple group, so that I know of no
method of finding representations on As other than just trying” [15]. Our main result,
Theorem 1.1, demonstrates that Fox’s frustration was prescient, but see Section 1.1 for
a more careful discussion.

To state our precise result, we first refine the invariants H(K; G, C) and #H(K; G, C).
Let Aut(G, C) be the group of automorphisms of G that take C to itself. Then
Aut(G, C) acts on H(K; G, C), and in particular it acts freely on the surjective maps
in H(K;G,C). Let

Q(K;G,C):={f:m (S~ K) > G | f(y) € C}/Aut(G,C)

be the corresponding quotient set. Regardless of K, the set H(K;G,C) always
contains a unique homomorphism with cyclic image that sends y to each given ¢ € C.
If G is not cyclic and if all other homomorphisms are surjective, then, in these cases,

(1 #H(K:;G,C) =#C +#Aut(G, C)-#0(K; G, C).

Our main theorem implies that if G is nonabelian simple, then #Q(K; G, C) is compu-
tationally intractable, and remains so even when every homomorphism f € H(K; G, C)
is promised to be either surjective or have cyclic image.

Theorem 1.1 Let G be a fixed, finite, nonabelian simple group, and fix a nontrivial
conjugacy class C € G. If K C S? is an oriented knot specified by a knot diagram
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interpreted as computational input, then the invariant #Q(K; G, C) is parsimoniously
#P —complete. The reduction also guarantees that #Q(K; J, E) = 0 for any group J
generated by a conjugacy class E with #E < #C, except when J is a cyclic group.

We note that J in the statement of the theorem is not necessarily a subgroup of G,
although the case that J is a subgroup of G generated by a subset of C is of particular
interest.

Before reviewing the definition of #P—completeness and interpreting Theorem 1.1, we
expand on the relation between H(K;G,C) and Q(K; G, C).

Let ¢ € C and let
H(K.,y:G.c):={f:m(S’~K)—> G| f(y)=c}.

It is easy to see (by conjugation in G') that #H (K, y; G, ¢) is independent of the choice
of ¢ and that

#H(K;G,C)=#C -#H(K,y;G,c).
Let Aut(G, ¢) be the group of automorphisms of G that fix ¢. Then Aut(G, ¢) acts on
H(K,y;G,c), and in particular it acts freely on the surjective maps in H(K,y; G, c¢).
Let

O(K.y:G.0):={[1m (S~ K) > G | f(y) = c}/Aut(G. ¢)

be the corresponding quotient set. Again by examining conjugation in G, we learn that
the natural map Q(K,y;G,c) to Q(K; G, C) is a bijection.

Given that every f € H(K; G, c) has some image J > ¢, we obtain the summation
formula
#H(K.y:G.c)= Y  #Aut(J.c)-#Q(K.y:J.c).
ceJ =G
Given that the conjugacy class of y generates m;(S? ~ K), the conjugacy class E
of ¢ in J generates J as well. So we can also write
) #H(K:G.C)= > #C -#Aut(J, E)-#Q(K: J, E).
ceECJ=G
Finally, if J # G, then necessarily #E < #C. Thus when the conclusion of Theorem 1.1
holds, equation (2) reduces to equation (1).

1.1 Interpretation and previous results

For an introduction to the topic of computational complexity, see our previous article
[28, Section 2.1], as well as Arora and Barak [3] and The complexity zoo [1]. Here
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we just give a brief description the concept of #P—completeness and parsimonious
reduction.

If A is a finite alphabet and A* is the set of finite words in A, a problem in #P is by
definition a function ¢: A* — N given by the equation

c(x) =#y| plx,y) =yes},
where the length of the certificate y is polynomial in the length of x and
p: A* x A* — {yes,no}

is a predicate that can be computed in polynomial time. A counting problem ¢ € #P is
parsimoniously #P—complete when every problem b € #P can be converted to a special
case of ¢. More precisely, ¢ is parsimoniously #P—complete when b(x) = c(f(x))
for some function f: A* — A* that can be computed in polynomial time.

The significance of parsimonious #P—completeness for a counting problem c is that
not only is the exact value of ¢ computationally intractable, but also obtaining any
partial information about ¢ is computationally intractable, assuming standard con-
jectures in complexity theory. To give a contrasting example, the number of perfect
matchings m(I") of a finite, bipartite graph I' is well known to be #P—complete by
the looser standard of Turing—Cook reduction [39]. The exact value of m(T") is thus
intractable. However, the parity of m can be computed in polynomial time (as a
determinant over Z/2), whether m(I") equals 0 can be computed in polynomial time
(see Munkres [33]), and m(I") can be approximated in randomized polynomial time
(see Jerrum, Sinclair and Vigoda [24]). Barring a catastrophe in computer science, no
such partial results are possible for computing #Q(K; G, C) under the hypotheses of
Theorem 1.1, not even with the aid of a quantum computer; see Bennett, Bernstein,
Brassard and Vazirani [5].

The analogous concepts for existence questions are the complexity class NP and the
NP—completeness property. A decision function d: A* — {yes, no} is in NP if there
is a polynomial-time predicate p such that d(x) = yes if and only if p(x, y) = yes.
The function d is Post—Karp NP—complete if for every e € NP, e(x) = d(f(x)) for
some f computable in polynomial time.

In particular, Theorem 1.1 implies that the existence of a nontrivial C —coloring of a knot
is NP—complete. In fact, Theorem 1.1 implies much more thanks to a reduction due to
Valiant and Vazirani [40]. Namely, distinguishing any two values of a parsimoniously
#P—hard problem is NP-hard with randomized reduction [28, Theorem 2.1].
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Some partial information about the unadjusted counting invariant #H (K; G, C) can be
computed efficiently, for instance that it is always at least #C. However, Theorem 1.1
and (1) together imply that this extra information can be trivial. We call a counting
problem ¢ € #P almost parsimoniously #P—complete if for every b € #P, there is a
reduction ab(x)+ B = c(f(x)) for some universal constants & > 0 and 8 > 0. Almost
parsimonious reductions arise naturally in computational complexity. For example, the
number of 3—colorings of a planar graph with at least one edge is always divisible
by 6; but, after dividing by 6, this number becomes parsimoniously #P—complete; see
Barbanchon [4]. Likewise, Theorem 1.1 shows #H (K; G, C) is almost parsimoniously
#P—complete.

De Mesmay, Rieck, Sedgwick and Tancer [32] state that, besides their results and ours,
they know of no other hardness results concerning knots in the 3—sphere (as opposed
to links in the 3—sphere, by Lackenby [29] and Koenig and Tsvietkova [25]; or knots in
other 3—manifolds, by Agol, Hass and Thurston [2]). In fact, the first author previously
showed that it is #P—hard to approximate the Jones polynomial of a knot [27], using
programmability methods that originate with quantum computing; see Bordewich,
Freedman, Lovasz and Welsh [7]. As in earlier work of Krovi and Russell [26], here
we use an analogous classical programmability approach for classical knot invariants.
We should also mention the prescient result of Jaeger that exact computation of the
HOMFLY polynomial is #P—complete [22], which was soon followed by the same result
for the Jones polynomial, due to Jaeger, Vertigan and Welsh [23]. These early hardness
results were for links rather than knots, but it was widely assumed (albeit without
further investigation until recently) that they probably also hold for knots.

The strongest partial result toward Theorem 1.1 to our knowledge is that of Krovi
and Russell. Taking the straightforward generalization of H(K; G, C) to links L,
they showed that #H (L; A, C) is #P—complete for any fixed m > 5 and any fixed
conjugacy class C of permutations with at least four fixed points. Their reduction is not
almost parsimonious because it has an error term. In particular, they do not obtain that
it is NP—complete to determine whether #H (L; Ay, C) > #C or #Q(L; A, C) > 0.

We conclude with some comments, partly due to one of the referees, on the refined
complexity of coloring invariants of knot diagrams with » crossings. First, there is
a better way to compute #Q(K; G, C) than “just trying” if we take that to be an
exhaustive search over 290 colorings of the edges to see which ones are admissible.
A theorem of Lipton and Tarjan [30] implies that every planar graph I" has pathwidth
O(+/n), and there is a polynomial-time algorithm to find a position for I with this width
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[6, Corollary 23]. Consequently, a standard dynamic programming algorithm (which
may more generally use treewidth rather than pathwidth) can calculate #H(K; G, C)
in time 29V" . We can then use Mébius inversion over subgroups of G to calculate
#Q(K; G,C). Meanwhile, the reductions from #CSAT to #ZSAT in our proof of
Theorem 1.1 are all linear expansions for any fixed G, with the exception of a quadratic
expansion to make circuits planar [28, Section 2.2]. The exponential-time hypothesis
(ETH) of Impagliazzo and Paturi [21], together with the proof of Theorem 1.1, thus
implies a time complexity lower bound of 29V a5 has previously been noted for
related problems for planar graphs; see Lokshtanov, Marx and Saurabh [31]. Thus
Theorem 1.1 is sharp under ETH, up to a constant factor ag in the exponent that
depends on G. However, our methods produce poor lower bounds for o .

1.2 Outline of the proof

Our proof of Theorem 1.1 follows our proof of the analogous theorem for homology 3—
spheres [28], which we assume as a prerequisite for this article. However, Theorem 1.1
is a stronger result because knots are a more restricted class of topological objects.
As a preliminary observation, both #H (K; G, C) and #Q(K; G, C) are in #P by the
same argument as in the 3—manifold case [28, Theorem 2.7].

The reduction begins with a counting version of circuit satisfiability, #CSAT, that is
rather directly parsimoniously #P—complete [28, Theorem 2.2]. The #CSAT problem
can be reduced to a certain version with reversible circuits, #RSAT, and we can assume
in both problems that circuits are planar. Whereas the output to a CSAT circuit
is constrained to yes and the input is any satisfying certificate, both the input and
output of a #RSAT circuit are partially constrained. In turn, #RSAT reduces almost
parsimoniously to an ad hoc reversible circuit problem, called #ZSAT, where

(1) the alphabet is a U-set for some finite group U with a single fixed point called
the “zombie” symbol and otherwise free orbits, and

(2) the gates are U—equivariant permutations.

Finally, #ZSAT reduces to #Q(K; G, C) in a construction in which the circuit becomes
a braid word and suitable initialization and finalization conditions are expressed by plat
closure.

Let D2~[n] denote a disk with 7 punctures. The reduction from #ZSAT to #Q(K:;G,C)
involves a braid group action on the set of surjections

[imi(D*~[2k) — G
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with clockwise monodromy in C at k punctures, counterclockwise monodromy in C
at the other k punctures, and trivial monodromy on the outside. In Theorem 4.7, we
show that when k is large enough, this braid group action is very highly transitive
modulo a certain Schur invariant. High transitivity makes it possible to implement
gates in a precise way that preserves enumeration and does not disturb nonsurjective
homomorphisms. Theorem 4.7 in turn requires two types of group-theoretic ingredients.
The first ingredient, Theorem 4.2, is a refinement of the Conway—Parker theorem (see
Fried and Volklein [16]) that shows that the action is at least transitive when G is any
finite group. This refinement first appeared in a retracted e-print of Ellenberg, Venkatesh
and Westerland [13, Theorem 7.6.1]; the second author of this article later found a
topological proof [38, Theorem 1.1]. The second ingredient is a set of surjectivity
results for group homomorphisms (Section 2).

Acknowledgement The authors were partly supported by NSF grant CCF-1716990.

2 Group theory

In this section, we simply list some surjectivity results in group theory that we will
need to prove Theorem 4.7.

2.1 Surjectivity for products

The following lemma is a mutual corollary of Goursat’s lemma [18] and Ribet’s
lemma [36; 35]. In our research, we first saw it stated by Dunfield and Thurston [12,
Lemma 3.7].

Lemma 2.1 (after Goursat and Ribet [36, Lemmas 5.2.1 and 5.2.2]) If

f:J—>G xGyx---xGy

is a homomorphism from a group J to a product of nonabelian simple groups that
surjects onto each factor, and if no two factor homomorphisms f;:J — G; and
Jj:J = Gj are equivalent by an isomorphism G; = G, then [ is surjective.

Remark Results similar to Lemma 2.1 have appeared many times in the literature with

various attributions and extra hypotheses. Both Ribet and Dunfield and Thurston assume
that the target groups are finite even though their proofs do not use this hypothesis.
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Dunfield and Thurston also state that the result is due to Hall [19]. However, all that
we can find in this citation is an unproven lemma (in his Section 1.6) that can (with a
little work) be restated as a special case of Lemma 2.1.

Say that a group G is Zornian if every proper normal subgroup of G is contained
in a maximal normal subgroup. Clearly every finite group is Zornian, which is the
case that we will need; more generally, every finitely generated group is Zornian [28,
Section 3.2]. The following is also an adaptation of Goursat’s lemma.
Lemma 2.2 (after Goursat [28, Lemma 3.6]) Suppose that

f:J—> Gy xG,
is a group homomorphism that surjects onto G, and suppose that G is Zornian. If no
simple quotient of G is involved in G,, then f(J) contains G.

Finally, we will need the following two related lemmas.

Lemma 2.3 (Ribet [36, Section 5.2]) If
NAG=G1xGyx---xGy
is a normal subgroup of a product of perfect groups that surjects onto each factor G;,
then N = G.
Lemma 2.4 [28, Lemma 3.7] If
G xXGyx o xGy—>J
is a surjective homomorphism from a direct product of groups to a nonabelian simple

quotient J, then it factors through a quotient map f;: G; — J for a single value of i.

2.2 Rubik groups

If X is a finite set, then Sym(X) and Alt(X) denote the symmetric and alternating
groups on X, while Sym(n) = S, and Alt(n) = A, for any positive integer n. If G is
a group and X is a G —set with finitely many orbits, then we denote the group of G —set
automorphisms of X by Symg (X'). We define the Rubik group to be the commutator

subgroup
Rubg (X) := [Symg (X), Symg (X)].

Note that the natural map Symg(X) — Sym(X/G) takes Rubg (X) to Alt(X/G).

Algebraic & Geometric Topology, Volume 21 (2021)



Coloring invariants of knots and links are often intractable 1487

When X is a free G—set with #(G/X) = n, Symg(X) is isomorphic to the restricted
wreath product

Sym(n, G) := G wry, Sym(n) = G x Sym(n).

Likewise, let
Rub(n, G) := [Sym(n, G), Sym(n, G)].

We need two results about Rubik groups from our previous work [28], which we will
restate here.

The first result is an elementary counterpart for Rubik groups to the well-known
corollary of the classification of finite simple groups that a 6—transitive subgroup of
Sym(n) is ultratransitive, meaning that it contains Alt(z) or equivalently that it is
(n—2)—transitive. Say that a group homomorphism

f:J — Sym(n, G)

is G—set k—transitive if it acts transitively on ordered lists of k elements that all lie
in distinct G —orbits. Say likewise that it is G —set ultratransitive if its image contains
Rub(n, G).

Theorem 2.5 [28, Theorem 3.10] Let G be a group and let n > 7 be an integer such
that Alt(n — 2) is not a quotient of G. Suppose that a homomorphism

f:J — Sym(n, G)
from a group J is G —set 2—transitive and that its projection Rub(n, G) — Alt(n) is
6—transitive (and therefore ultratransitive). Then f is G —set ultratransitive.
The other result says Rub(n, G') has a unique simple quotient when Alt(n) is a simple

group.

Lemma 2.6 [28, Lemma 3.11] If G is any group and n > 5, then the only simple
quotient of Rub(n, G) is Alt(n).

3 Equivariant circuits

In this section, we review the ZSAT circuit model from our previous work [28].

Let A be a finite set with at least two elements, considered as a computational alphabet.
A reversible circuit of width n is a bijection A" — A" expressed as a composition of
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bijective gates A¥ — Ak in the pattern of a directed, acyclic graph. The gates are all
chosen from some fixed finite set of bijections.

Let G be a nontrivial finite group acting on 4 with a single fixed point z, the zombie
symbol, and otherwise with free orbits. Let / and F be two proper G —invariant subsets
of A that contain the zombie symbol and are not just that symbol:

(z}SI,FSA.

We interpret I as an initial subalphabet and F as a final subalphabet. An instance
Z of ZSAT G, 4,1,F is a planar reversible circuit with gate set Rubg (A4%). (This gate
set then generates Rubg (Ak ) for each k > 2.) Then a certificate accepted by Z is a
solution to the constraint satisfaction problem

xel” and Z(x)e F",

where n is the width of Z. The counting problem #ZSAT¢ 4,1,F counts the number
of such solutions to Z.

We will need the following technical result from our previous work:

Theorem 3.1 [28, Lemma 4.1] As above, let G act on the alphabet A with a single
fixed point z, and otherwise freely, and let I and F be two proper G —invariant subsets
with{z} S I, F C A. Then #ZSATG, 4,1,F is almost parsimoniously #P—-complete. If
p Is a counting problem in #P, then there is a polynomial-time reduction f € FP such
that

#ZSATG, 4,1,F(f(x)) =#G - p(x) + 1

for every instance x of p, where the +1 term accounts for the trivial, all zombie
solution (z, ..., z). More precisely, the number of free orbits of nontrivial solutions is
parsimoniously #P —complete.

Remark In our previous work, we did not put the zombie symbol z in the sets /
and F, instead setting the initial and final sets to be (/ U {z})" and (F U {z})". We
also assumed the side conditions that I # F, that #4 > 2#(/ U F) +3#G + 1, and
that #1,#F > 2#G. The first two of these conditions were recognized as optional, but
in fact they are all optional. We can emulate the first condition by adding a layer of
unary gates at the beginning or end, and we can attain the other two conditions by
replacing (A4, I, F) by (4%, I*¥, Fk) for some constant k.
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*

Figure 2: Generators for 7y (D? ~[2k]).

4 Braid group actions

The main goal of this section is Theorem 4.7. This theorem is a refinement, in the
special case that G is simple, of a result of Roberts and Venkatesh [37, Theorem 5.1].

4.1 Conjugacy-restricted homomorphisms and colored braid subgroups

Recall that D? ~[2k] denotes the disk D? minus a set [2k] of 2k points. As shown
in Figure 2, place the points in a line and alternately label them 4 and —, and choose
a basepoint * that is not on the same line. Also as shown, choose a list of generators
of m1(D? ~[2k]) represented by simple closed curves ¥, ..., ¥2x, where each y;
winds counterclockwise around the puncture p; when it is positive (when i is odd)
and clockwise when it is negative (when i is even). Finally we choose one more curve

Voo = Vo Vak—1"""Va ' v3¥s ‘v

representing the boundary of the disk. Note that we concatenate from left to right, eg
Y1y» is the element of 71 (D? ~ [2k]) that first traverses y; and then ;.

When G is a finite group and C C G is a union of conjugacy classes, we define three
sets of homomorphisms from 71 (D? ~[2k]) to G

Ti(G,C) = {[:m(D*~[2k]) = G | f(yi) € C},

Ri(G.C):={f € Tr(G.C) | [(yeo) =1},
Ri(G,C):={f € Ri(G,C) | f is onto}.
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When G and C are clear from context, we will also use the abbreviations
Ty :=Te(G,C), Ry :=Ri(G,C), Ry :=Ri(G,C).
Note that C' will often but not always be a single conjugacy class.

Since 71 (D? ~[2k]) is freely generated by ¥1, 2, ..., Vak, the set Ty (G, C) is bijec-
tive with C2k By abuse of notation, we will sometimes specify elements of 73 (G, C)
as lists of elements in C.

Since f(¥s0) =1 in both ﬁk and Ry, each such f factors through 7 (S? ~[2k]),
where S? ~[2k] is a punctured sphere obtained by collapsing the boundary dD? to a
point. Also by abuse of notation, we will interpret each such f as having this domain
instead.

The homomorphism sets 73 (G, C), ﬁk (G,C) and Ry (G, C) are all invariant under
the colored braid group By i < By, by definition the subgroup of the braid group that
preserves the labels + and — of the 2k punctures. The goal of this section is to show
that the action of By j is large enough that we can implement gates in ZSAT with it.

4.2 Invariant homology classes and the Conway—Parker theorem

In this subsection, let G be any finite group which is generated by a single conjugacy
class C. We describe the orbits of the By x—action on Ry in the limit as k — co. We
will say that a property of the action holds eventually if it is a stable property in this
limit, ie if it is true for all k£ large enough.

The main tool that we need is the Brand classifying space B(G, C) [8]. This space is
a modification of the usual classifying space B(G) (often written BG) of a group G
“relative” to a conjugacy class C. It has a number of important properties for our
purposes, some described by Brand, and some given by the second author [38]. Before
stating these properties, we first review the definition. The free loop space L B(G)
comes with an evaluation map

ev: LB(G)x S' — B(G),

and it has a connected component L ¢ B(G) whose loops represent the chosen conjugacy
class C € G. We define B(G,C) by gluing B(G) to LcB(G) x D? using the
evaluation map:

(3) B(G,C):= (B(G)U LcB(G) x D?)/ev.
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In other words, an element f € Lc B(G) is also a continuous function f: S' — B(G),
and we identify (f,x) € Lc B(G) x D? with f(x) € B(G) when x € S! =9D?. We
also retain a basepoint for B(G) and thus B(G, C), even though we use the free loop
space rather than the based loop space to define the latter.

Recall also that the homology of a group is by definition the homology of a classifying
space, H.(G) = H«(B(G)).

Remark Following Ellenberg, Venkatesh and Westerland [13], in [37], Roberts and
Venkatesh extend the notation H(G) in an ad hoc way to a reduced Schur multiplier,
which they denote by “H, (G, C)”. We will later denote the reduced Schur multiplier as
M (G, C) instead. It is a subgroup of H,(B(G, C)), which we will also not abbreviate
as “H,(G, C)”. The reason is that we do not know a natural interpretation of either
M(G,C) or H«(B(G,C)) as arelative homology group.

Recall that if A is an abelian group, then Ay, is its torsion subgroup and Agee = A/ Agor
is its free quotient.

Proposition4.1 [38] Let B(G, C) be the Brand classifying space for a finite group G
generated by a conjugacy class C. For each a and b, let £, = S*> ~[a+ b] be a
punctured sphere with a points marked +, b points marked — and a basepoint *. Let
[S?] € Hy(S?) be a fixed orientation of S?. Then:

(1) Let f:m(X4p) — G be a group homomorphism such that each + point has
counterclockwise monodromy in C and each — point has clockwise monodromy
in C. Then f is represented by a pointed map ¢: S> — B(G,C).

(2) Every pointed map ¢: S> — B(G,C) in general position yields a homomor-
phism f:m(2,p) — G asin (1) for some a and b. The maps ¢o ~ ¢; are
homotopic if and only if the homomorphisms fy and f| are connected by a

concordance
fim((S*xI)~L)—>G,

where L is a tangle.
(3) Given that C generates G, B(G, C) is simply connected.

(4) There is an exact sequence
Z()ay ~> Ho(G) 25 Hy(B(G.C)) 2> Z — 0,

where Z(c) C G is the centralizer of any one element ¢ € C. Given that G is
finite, the image of B is Hy(B(G, C))tor-
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(5) Given ¢, and o from (4),
(00¢)(S*)=a—be.

Expanding on Proposition 4.1(1): For a + point, if y € 71(Z, ) is freely homotopic
to the boundary of a small disk centered at that point and containing no other points,
with a parametrization counterclockwise with respect to the orientation [S2], then
f(y) € C. For a — point, f(y) € C when y winds clockwise with respect to the
orientation.

Remark The Brand classifying space B(G, C) exists for any G (not necessarily
finite) and any union of conjugacy classes (not necessarily only one, and not necessarily
generating G ). In general, the homotopy classes [M, B(G, C)] from a smooth manifold
M of any dimension classify the concordance classes of C —branched G —covers of M,
such that the codimension 2 branch locus has a distinguished normal framing. Likewise,
the cobordism groups Q2,(B(G, C)) classify the cobordism classes of such branched
coverings of n—manifolds.

Following Proposition 4.1, we introduce the abuse of notation
fx = ¢u: Hy(S?) = Hy(B(G, C)).

We also define
M(G,C) = Hy(B(G,C))or-

The group M(G, C), the reduced Schur multiplier, is a quotient of the usual Schur
multiplier M (G) = H,(G). Now suppose that

[imi(SEN2k) -G

is an element of ﬁk, with k =a =b. Then a —b = 0, so by parts (4) and (5) of the
proposition,
f+(S?) € Hy(B(G,C))

maps to zero in Hy(B(G, C))ree. It thus lies in M (G, C). We define the (branched)
Schur invariant of f to be

sch(f) := fu([S?]) € M(G. C).
By construction, the function
sch: ﬁk — M(G,C)

is invariant under the action of the colored braid group By i .
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Theorem 4.2 (Ellenberg, Venkatesh and Westerland [38, Theorem 1.1]) Let G be a
finite group generated by a conjugacy class C. Then, eventually, the Schur invariant
yields a bijection

sch: Rk/Bk,k =5 M(G, C).
In particular, sch is eventually injective; ie it is eventually a complete orbit invariant
for the action of By j on Ry .

Remark Theorem 4.2 first appeared in an arXiv e-print by Ellenberg, Venkatesh and
Westerland [13]. This e-print was later withdrawn for unrelated reasons, but (besides
that arXiv versions are permanent) the argument was later cited and sketched by Roberts
and Venkatesh [37]. The second author [38] then found a topological proof of the
same result using the Brand classifying space. The new results of [38] also hold for
surfaces with either genus or punctures or both, and thus subsume a result of Dunfield
and Thurston [12, Theorem 6.23]. In fact, Theorem 4.2 also holds when C is a union
of conjugacy classes rather than just one. (In full generality, the Schur invariant sch( 1)
lies in a torsor of the reduced Schur multiplier M (G, C) rather than directly in this
abelian group.) The original result along these lines is the unpublished Conway—Parker
theorem, which is the case C = G, and which was later proven in the literature by
Fried and Volklein [16].

We will use two basic properties of the Schur invariant, one of which requires a
definition: say that f € ﬁk bounds a plat if there is an inclusion S2~[2k]— B3 such
that f* extends to a homomorphism from the fundamental group of the complement of
a trivial tangle in B3 with oriented arcs.

Lemma 4.3 The Schur invariant has the following properties:

(1) If fe R, and g€ ﬁb, with boundary sum f#g € §a+b, then sch(f #g) =
sch( /) 4+ sch(g).
Q) If fe ﬁk bounds a plat, then sch( f) = 0.

Proof (1) The boundary sum of f and g corresponds to the group law in
72(B(G, C)) =[S?, B(G, O)].
Thus,
sch(f #g) = (f #2)+([S?) = fx([S] + g«([S?]) = sch(/) + sch(g).
(2) The map f is nullconcordant by hypothesis, hence sch( /) = 0 is nullhomologous
by Proposition 4.1. a
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Our reduction from ZSAT to #H (G, C) makes special use of maps f € ﬁk with
sch( f) = 0. Hence we define

RY:={f € Ry|sch(f) =0}, RY:={fe Ry|sch(f)=0}.
4.3 The perfect case

In this subsection, we establish some further properties of the reduced Schur multiplier
M (G, C) with the additional assumption that G is perfect. Not all of the properties
require this hypothesis, but everything listed is at least better motivated in that case.
We begin with the following interpretation of M (G, C), which is explained by Roberts
and Venkatesh [37, Section 4B]. If G is a perfect group, then it has a canonical central
extension
M(G)— G — G,

called the Schur cover G of G. In general the conjugacy classes in G can be larger
than their counterparts in G, in the sense that two preimages g, g2 € G of one element
g € G can be conjugate to each other. The reduced multiplier M (G, C) is the finest
possible quotient of M (G) such that, in the corresponding central extension

M(G,C)— G —> G,

two distinct preimages cq, ¢y € G of ¢ € C are never conjugate. In other words, if
C’ C C is any one conjugacy class in the preimage C of C, then C decomposes as

C=M(G,C)-C,

where each mC’ with m € M (G, C) is a distinct conjugacy class.

Lemma 4.4 If C generates G and G is perfect, then
#Ry 1 . #R) 1

lim ——=—-=_—, 1 = .
koo (BC)2K — #G' koo (HC)K  #G -#M(G.C)

Dunfield and Thurston [12, Lemmas 6.10 and 6.13] proved a version of Lemma 4.4 for
maps from fundamental groups of closed surfaces instead of punctured disks. Roberts
and Venkatesh [37, equations (3.7) and (4.6)] proved a version for punctured disks, but
with the homomorphism sets quotiented by the conjugation action of G.

Proof We begin by establishing the first limit, except with a numerator of #R , rather
than #Rj . Consider an infinite list

61,6‘2,03,...€C
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of elements of C chosen independently and uniformly at random. The first 2k of these
elements describe a homomorphism

fr:m(D?>~[2k]) = G

with f; € Ty following the conventions in Section 4.1. Then f; € R; when the
product

e =1 —1

8k = Cyp C2k—1""C3Cy (1
equals 1, since gz = f%(Yoo). The first limit can thus be restated as saying that the
probability that gz = 1 converges to 1/#G as k — oco. To argue this, we note the
inductive relation
—1

8k = Crp C2k—18k—1>

and we let M be the corresponding stochastic transition matrix, independent of %, on

probability distributions on gj drawn from G. One can check these three properties
of M:

(1) M commutes with both left and right multiplication by G.
(2) M is symmetric, M = M T, and thus doubly stochastic.
(3) Each diagonal entry of M equals 1/#C.

We apply the Perron—Frobenius theorem to the matrix M, in the doubly stochastic
case. By this theorem, either M k converges to a constant matrix as k — oo, or G
has a nontrivial equivalence relation ~ such that M descends to a permutation on the
quotient set G/~. Since the diagonal of M is entirely nonzero, this permutation must
be the identity. Since M commutes with both left and right multiplication by every
g € G, the set quotient G/~ must be a group quotient G/ N by some normal group
N < G. The conjugacy class C descends to a conjugacy class £ which generates G/ N.
Since M acts by the identity on G/N, E must have a single element. Thus G/ N
would be a cyclic group if it existed, contradicting that G is perfect.

This establishes the first limit with numerator ﬁk instead of Ry . For the stated limit,
observe that in the given random process, the image of f; is monotonic; more precisely,
it almost surely increases to G' and stays there. By contrast, the condition gz =1 is
recurrent. Therefore the limiting probability that f; € ﬁk is the same as the limiting
probability that f; € Ry .

We reduce the second limit to the first one, just as Roberts and Venkatesh reduce their
equation (4-6) to their equation (3-7) [37]. Recall that G is the central extension of G
by M(G,C), and that Gisa perfect group because the full Schur cover G of the
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perfect group G is perfect. Let C' C G bea conjugacy class that lifts C. (Any such
lift generates G.) Then f € Ry has a surjective lift /” € Ty (G, C’). Following [37,
Section 4E], we can recognize the Schur invariant sch( f) as

sch(/) = f'(Voo).

independent of the choice of C’. Therefore the second limit for the group G is
equivalent to the first limit for the group G, as desired. a

The remaining properties concern the Cartesian power (G¢, Y of (G, C) and require
some algebraic topology to state properly. If we identify B (Ge) with B(G)%, then this
identification extends to a natural map

v: B(G', CY - B(G,C)*

in the following way. By the definition of B(G, C), equation (3), we need to describe

a map ‘ ‘
¥1: Lee B(GY) x D* — (Lc B(G) x D?)

that commutes with the evaluation maps. For this purpose, we let ¥ be the product of

two maps
Ya2: Loe B(GY) =5 Le B(G)',  A: D* — (D)L

The map 1, is another natural isomorphism, while A is the diagonal embedding.
With these choices, ¥; = ¥, x A commutes with the evaluation map, completing the
construction of .

Lemma 4.5 Let £ > 0 be an integer and assume that C generates G and G is perfect.
Then:
(1) ct generates Gt.
(2) The Kiinneth theorem yields the isomorphism
Hy(B(G,C)% = Hy(B(G, C))*.
(3) The map v commutes with the natural equivalence
Ry (G, CY =~ Ry (G, O,
Using (1), this equivalence also commutes with the Schur invariant:
sch((/1. /2., fo)) = (sch(f1).sch(f2). ... sch(fp)).
(4) The induced map
Yt Hy(B(GY.C)) — Hy(B(G.C)) = Hy(B(G.C))"

is injective.
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Proof (1) C! generates a normal subgroup N < G* that surjects onto each factor,
so Lemma 2.3 tells us that N = G*.

(2) Proposition 4.1(3) says that B(G, C) is simply connected when C generates G,

in particular that
H(B(G,C)) =0.

Moreover, Hy(B(G, C)) = Z since B(G, C) is connected. Thus the Kiinneth theorem
simplifies to the stated isomorphism.
(3) The main step is to review the construction of a map
$:S? — B(G,C)
representing [ € ﬁk (G), and to then relate ¢ to the map . Given
[imi(S?~[2k]) - G,

we remove 2k open disks from S? instead of just 2k point punctures to obtain a
surface S2~kD? with k boundary circles around the punctures. We can define a map

¢: S? < [2k] - B(G)

using the map f, and then use a fiber D? from the attachment L B(G) x D? to
extend ¢ across each puncture.

If we replace (G, C) by (G%, C*) in this construction, then it commutes with ¥
because the same extension disk in S? is used ¢ times for each puncture. Moreover, if
¥; is the i™ component of the map v, then the composition ¢; = ; o ¢ matches the
i™ component f; of f. Together with the Kiinneth isomorphism from the previous
part of the lemma, this establishes that the i component of sch( f) is sch( f;), as

desired.

(4) Let ¢ € C and consider the diagram

Z( Y — Hy(GY L5 Hy(BGE. CY) —25 7

T
¢ k<t ) gt ¢ oxt )
Z(c)y, — Hy(G)* — Hy(B(G,C))" — Z
where each row is taken from Proposition 4.1(4) and is thus exact. Meanwhile the first
vertical map is the elementary isomorphism from group theory; the second map is from

the Kiinneth theorem and is an isomorphism because G is perfect; the third map is as
indicated; and the fourth is the diagonal embedding of Z into Z*.
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We claim that the diagram is commutative. Working from the left, the first square
commutes by the definition of the map « [38]. Given any group homomorphism
f 1 Ax B — G, there is always a biadditive map

it Aup X Bup = Hy(A) x Hy(B) > Hy(A x B) L5 Hy(G),

where the middle arrow is the Kiinneth map. The map « is a linear restriction of fix,
where A = Z(c) and B = {c¢). It is easy to confirm that « for the group G* does the
same thing as k<t for the group G. The second square is commutative by the way
that v is constructed: since it is the identity on B(G*Y) = B(G)¢, B and B*¢ also do
the same thing. Finally, the third square commutes because ¢ and o>t do the same
thing by Proposition 4.1(5). By the Hurewicz theorem, we can represent any element
of Hy(B(G*,C*)) by amap from S? and thus by a homomorphism

fim(Zap) — G

Splitting this homomorphism f into £ homomorphisms to G, the difference a — b is
replicated ¢ times.

To complete the proof, since the diagram is commutative, the four lemma says that v,
is injective. a

4.4 An ultratransitivity theorem

Theorem 4.2 says that the action of By x on Rg is transitive for all k& large enough. Our
goal now is Theorem 4.7, which, among other things, gives a complete description of
this action when G is nonabelian simple. The structure of our argument is similar to one
direction of the full monodromy theorem of Roberts and Venkatesh [37, Theorem 5.1].
However, Theorem 4.7 refines this special case of Roberts and Venkatesh in the same
way that our prior result [28, Theorem 5.1] refines a result of Dunfield and Thurston
[12, Theorem 7.4].

From here to the end of this article, we choose an element ¢ € C and we declare the
abbreviations
U := Aut(G,c) € U := Aut(G, C).

In this subsection we will only use U, but we will need the subgroup U soon enough.
The group U acts on 132 because we can compose a homomorphism

[imi(D*~[2k) - G
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with an element o € Aut(G, C). To see that U preserves the property sch( /') =0, note
that U acts by group homomorphisms on H,(B(G, C)) and sch(x o f) =« -sch(f).
It acts freely on the subset Rg because these homomorphisms are surjective. Moreover,
the actions of By  and Aut(G,C) on Rz commute. In other words, the corresponding
permutation representation is a map

p: By g — Sme(Rg).

Lemma 4.6 Let G be a nonabelian simple group, let C € G be a conjugacy class
and let £ > 0. Then By i eventually (as k — oo) acts U-set £— —transitively on R0

Proof We choose k large enough that the conclusion of Theorem 4.2 holds for the
finite group G* and the conjugacy class C £ Let

fis foreoos J€RY
lie in distinct U—orbits and consider the product homomorphism
f=fix fax-x form((D?~[2k)°) — G*.

By Lemma 2.1, f is surjective. Since sch(fj) =0 forall j =1,...,£, Lemma 4.5

implies that sch(f) =0. If
el,ez,...,egeR,‘g

is another such list of homomorphisms with the same properties, with product e, then
Theorem 4.2 says e and f are in the same orbit of By j, as desired. a

Besides the map p already defined, let
01,E" B = Sym(T (J, E))
be the action map of the braid group for every finite group J generated by a set of
conjugacy classes E C J. Also let
¢: By — Sym(k)?

be the forgetful map that only remembers the permutation of the braid strands.

Theorem 4.7 Let G be a finite, nonabelian, simple group and let C € G be a
conjugacy class. Then the image of By j under the joint homomorphism p X o X ¢,

P XX 1_[ O'_],E:Bk,k—)Sme(Rg)Xsym(k)ZX l_[ Sym(Ty (J, E)),

JOF J2OE
#E <#C #E<#C

eventually contains Rubg; (R]g), where here each group J is generated by a union of
conjugacy classes E C J.
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In other words, we can find a set of pure braids that act by the entire Rubik group
on Rg, while simultaneously acting trivially on every T (J, E) with #E < #C. It
follows that such braids also act trivially on the set ﬁk ~ Ry of nonsurjective maps
in ﬁk.

Proof Following Dunfield and Thurston [12] and Roberts and Venkatesh [37], we
use the corollary of the classification of finite simple groups that every 6—transitive
permutation group on a finite set is ultratransitive. Lemma 4.6 shows By ; eventually
acts Aut(G, C)—set 6-transitively on Rz. It follows that By j eventually acts 6—
transitively (in the usual sense) on R,(z /Aut(G, C). By Theorem 2.5, the image of p
contains Rubg; (Rg).

For the rest of the properties of the joint homomorphism, Lemma 2.2 tells us it is enough
to show that RubU(Rg) does not have any simple quotients that are subquotients of

Sym(k)*x [] Sym(Tk(J. E)).

J2FE
#E <#C

By Lemmas 2.6 and 2.4, it suffices to show that Alt(Rg / U ) is not a subquotient of
Sym(7(J, E)) for any group J generated by a union of conjugacy classes E, nor a
subquotient of Sym(k). To prove this, we show that Alt(Rg / U ) is eventually larger
than any of these other groups. This follows from comparing #7T% (J, E) = #E2¥ to
the bound in Lemma 4.4, which shows that

lim (#R)!/?%F = #C.
k—o0

Meanwhile Sym(k) by definition acts on a set that only grows linearly in k&, not
exponentially. a

Remark Although our proof of Theorem 4.7 (hence also our main theorem) depends
on the classification of finite simple groups via the 6—transitivity corollary, we conjecture
that the classification can be avoided. The analogous step in our previous work [28]
is a result of Dunfield and Thurston [12, Theorem 7.4], which they argue in the same
way. However, they point out that they could use a nonclassification result of Dixon
and Mortimer [11, Theorem 5.5B], which says that a permutation group on a finite set
is ultratransitive if it is both 2—transitive, and locally £—transitive on a single subset
of size £ = Q(log k). They show that this transitivity theorem suffices (for mapping
class groups of unmarked, closed surfaces) when the Schur invariant vanishes thanks
to a result of Gilman [17], but the argument can be extended to any value of the Schur
invariant. It would suffice to find an analogue of Gilman’s theorem for braid groups.
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5 Proof of Theorem 1.1

As before, let G be a nonabelian simple group, let C € G be a nontrivial conjugacy
class (which necessarily generates G') and let ¢ € C be a distinguished element. Again,
let

U := Aut(G,¢) € Aut(G,C) :=U.

Also for this section, choose some fixed k large enough for the conclusions of
Theorem 4.7.

Remark Although our proof of Theorem 1.1 is similar to that of our previous result
for mapping class groups [28], we will face a new technical difficulty. Namely, even
though the available braid actions are ﬁ—equivariant, the reduction from ZSAT is
locally only U-equivariant. We will define a zombie symbol z using the distinguished
element ¢, which is not a U-invariant choice. If we represented z using all of C or in
any other U-invariant manner, then the construction could only produce an intractable
link invariant rather than specifically a knot invariant.

5.1 Alphabets and gadgets

In this subsection, we will define a U—set alphabet A with subsets I, ' € A and a
zombie symbol z € I N F such that ZSATy 4,1 F satisfies Theorem 3.1 and is thus
almost parsimoniously #P—complete, for use to the end of this article. Then we will
define pure braid gadgets, which we will later use to replace gates in a ZSAT circuit.
Here a gadget is a semirigorous concept in theoretical computer science, by definition
a local combinatorial replacement to implement a complexity reduction. Our gadget
to replace one gate will be a braid with a fixed number of strands. We will later
concatenate these braid gadgets to replace an entire circuit with a braid with a linear
number of strands.

Let the zombie symbol be
z:=(c,c,...,c) € ﬁg
and let the alphabet be
A:={z}U{(g1.82.. .. 82k) € R} | g1 = gax =}

That is, the nonzombie symbols in A are surjections with trivial Schur invariant such
that the first and last punctures map to ¢ specifically. The initialization and finalization

Algebraic & Geometric Topology, Volume 21 (2021)



1502 Greg Kuperberg and Eric Samperton

W

Figure 3: These two sets of red plats impose the initial and final constraints, respectively.

*

conditions are specified by restricting to homomorphisms that factor through the two
trivial tangles in Figure 3, respectively. Precisely, we define the initial and final
subalphabets by

I:={(g1.82.....82k) € A| g2i = g2i—1 foralli <k},
F:={(g1.82...-,82k) € A| g2i = gai+1 foralli <k —1}.

It is straightforward to verify that U, A, I and F satisfy the conditions of Theorem 3.1.

We now construct braid gadgets that simulate gates in Rubg(42). Let D? ~[4k] be a
pointed disk with 4k punctures, and divide it into two half-disks by a straight line, so
that each half contains the basepoint and half of the 4k punctures, as in Figure 4. This
allows us to identify Ty x Ty, = C 2k €2k with Ty =~ C**. It is straightforward
to verify that this identification takes Rg X Rg to a subset of Rg - In particular, we
identify 4% with a subset of ng U{(z,2)}.

*

Figure 4: Splitting D? ~ [4k] as a boundary sum of two copies of D? ~ [2k].
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Corollary 5.1 For every gate § € Ruby(A?), there is a braid word b(§), interpreted
also as a braid element b(38) € By »i , with the following properties:

(1) b(8) acts on A? as §.
(2) b(6) acts trivially on ng ~U- (4?).

(3) b(8) acts trivially on Tay(J, E) = E*k for every group J generated by a union
of conjugacy classes E with #E < #C.

(4) b(d) is a pure braid, ie b(8) € PB4y < Bk ok -

The existence of h(3) follows immediately from Theorem 4.7. In fact, for each §
in Rubgy(A4?) there are infinitely many braids that satisfy properties (1)—(4), but it is
important for our reduction that we fix some suitable b(§) for each §.

Note that property (1) specifies the action of 5(§) on A2, but it implies more than
that, because the action of By o is U—equlvarlant while A2 is only closed under the
action of U. This action has a unique U—equlvarlant extension to U - (A?). Meanwhile,
property (3) implies that »(8) acts trivially on Rzk ~ Ry , so together the first three
properties specify all of the action of 5(§) on R\ However, b(§) is not fully
specified on all of R2k because we place no restrlctlons on its effecton f € R3, with
nonvanishing Schur invariant, s # 0.

We record as a lemma several invariance properties of b(§) that we have already
discussed, either here or previously.

Lemma 5.2 If § € Ruby(A4?), then b(8) € PB,j acting on I’ézk preserves all of the
sets
(A2 SU-U) S U S (R S Ry, & Ry

Note that it is easy to confuse the set A2 with the slightly larger U - (42) and (U - 4)?,
and the set (ﬁg)z with the slightly larger ﬁgk' In the proof, it will be crucial that
each b(§) preserves both A2 and (ﬁg)z.

5.2 The reduction

Let Z be an instance of ZSATy, 4,1,F, with U, A, I and F as in Section 5.1. Recall
this means Z is a planar U-equivariant reversible circuit over the alphabet A. Suppose
that Z has width n, so that it acts on n symbols; and length £, so that it has £ gates.
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(D*~[2k])2

V2k,2

Y1,272,2

*k

Figure 5: Punctured disks that encode n symbols of a ZSAT circuit.

Consider the disk D? ~ [2kn] with 2kn punctures and a separate basepoint * € 0.D?.
Divide it into 7 disks (D?~[2k]); with 1 <i <n so that each one contains the basepoint,
as indicated in Figure 5. Also pick generators {y;j ;} for each 71 ((D? ~ [2k]);) as
indicated in the figure, where 1 < j <2k.

yi y2 3 (D*~[2kn])®
[5(3)

5@ | > 7 Kz< > b(Z)
[5(1)
X1 X2 X3 (D*~[2kn])©

Figure 6: Reducing a circuit Z with n = 3 variables to the knot K 7.
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As in Figure 6, we convert Z into a braid diagram b(Z) by replacing each strand in Z
with 2k parallel strands and each gate §) in Z with the braid gadget b(8"™), where
here 1 <m < {. Let K(Z) be the oriented link diagram formed by the plat closure
of b(Z) indicated in the figure, and, for each m with 0 <m < £, let (D2 ~ [2kn])™
be a disk transverse to the braid, so that these disks and the braid gadgets alternate.
Each disk (D2~ [2kn])" is also divided into subdisks {(D? ~ [2kn])l(m)} as before,
with loops {)/j("?)}. Finally, let y € 7;(S3 ~ K(Z)) be the indicated meridian. In
other words, yo =y, 01 .
We are interested in homomorphisms
[im(SPSK(2)— G

such that f(yg) = ¢. Using the system of disks and loops just defined, we can restrict
f to other maps and elements as follows:

£ 2 (D2~ [2kn)™) = G,

S 7 (D~ 2KD(™) > G,

= s ec

We can also write fi(m) € Ty = C?*, and we can think of the map fi(m) as a list of
the group elements ( fj('f));‘:l . For simplicity we rename the first and last levels of f':

p=s0 q:=s0.
The inclusion map
1 T (D2 < [2kn)) ) — 71 (S3 <~ K(Z))

is always a surjection and never a bijection. Our goal is to show that a map p from the
former extends to a map f from the latter if and only if p corresponds to a solution
to the circuit Z with ¢ = Z(p). (Moreover, we show that there are no nontrivial
solutions if we replace G with a group J generated by a smaller conjugacy class.)

Lemma 5.3 Let Z be an instance of ZSATy, 4,1, F and let #Z denote the number of
solutions to Z. Then the diagram K(Z) and meridian y, have the following properties:

(1) K(Z) is aknot.

(2) If J is a noncyclic group generated by a conjugacy class E with #E < #C, then
#O(K(Z);J,E)=0.

(3) #H(K(Z).,v0:G.c) =#Z.
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Proof (1) Every braid gadget 5(6) as in Corollary 5.1 is a pure braid, so our choice
of plats in Figure 6 guarantees that K(Z) is a knot, rather than a link with more than
one component.

(2) Let J be a group generated by a conjugacy class E such that #E < #C, and retain
the notation f, p and ¢ defined above for the group G. Following Corollary 5.1, an
arbitrary gadget b(8) acts on 15z (J, E) by definition, and acts trivially by construction.
In particular, each braid gadget b(8") acts on some pair ( /; (m=1) fl(m 1)) and does
nothing to that pair. Thus, for the purpose of computing either #H(K(Z); J, E) or
#Q(K(Z); J, E), K(Z) is equivalent to the unknot. Since by hypothesis J is not
cyclic, we obtain #Q(K(Z); J, E) = 0, as desired.

(3) Let X(Z) be the set of solutions to the circuit Z. We will show that X (Z) =
H(K(Z),yo;G,c) in the natural sense. If ¢ = Z(p) is a solution to Z, then, by
definition,

(pl’pZ""’pl’l)EIn’ Z(P):(QI’QZv---vCIn)EFn-

By Corollary 5.1, each braid gadget b(§) acts on A2 exactly as § does, and therefore
the braid b(Z) acts on A" exactly as the circuit Z does. By the definition of the initial
subalphabet 7, the map p = f© factors through the plat attached to the bottom of the
braid b(Z). Meanwhile, the definition of the alphabet A together with the definition
of the final subalphabet F' together imply that ¢ = h(Z) - p factors through the plat
attached to the top of b(Z). Most of the U-turns at the top of the plat are internal to one
symbol ¢; € A, and these force ¢g; € F. The others connect either ¢,4 ; with g1 ;41
or ¢ak n With g1 1. These constraints hold automatically in the alphabet 4, because
they reduce to the equation ¢ = c¢. Finally, p; € 4 also gives us that f(yo) = ¢. This
establishes that X (Z) C H(K(Z), yy; G, ¢). In fact it establishes a little more, namely
that any other element of H(K(Z), yo: G, ¢) cannot come from p = f© e 4",

Conversely, let f € H(K(Z), yo: G,c)~ X(Z) be a hypothetical spurious homomor-
phism. Then, tautologically, p = f© ¢ T} = (C 2k but we quickly obtain an
important restriction. Each p; factors through the initial plat attached to (D2~ [2k])(0)
so Lemma 4.3 tells us that sch(p;) = 0 and thus that p; € R . Moreover, Lemma 5.2
tells us that every braid gadget preserves this condition, so f (m) ¢ R0 for every m
and i. In other words, we can interpret h(Z) as a circuit that uses the larger alphabet
RYD 4.

We claim that we can further restrict the alphabet to U-A.1f pi = fi(o) € R2 ~U-4
for some i, then Corollary 5.1 also tells us that no gate gadget changes this value, so
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that, in particular, ¢; = p;. But then the initial and final plat closures together tell us
that
pi=(e.e,....e)

for some e € C, which thus means that
pi =¢qi €Inn(G) -{z} < U-A

after all. By Lemma 5.2, the condition that p = f(© ¢ (17 - A)" is also preserved
through every gate gadget in b(Z).

We now show that £ U - A" for every m. The condition that fi(m) e U- A tells
us that each symbol fl.(m) begins and ends with the same group element e € C, and
what we would like to know is that e does not depend on i. The final plat closure
makes this immediate for ¢ = f(é), and then Lemma 5.2 tells us that the condition is
preserved in reverse £ as m decreases.

Finally, because p = f© ¢ U-A" and f(vo) = ¢, we conclude that p € A". O

To conclude the proof of Theorem 1.1, the knot K(Z) can be constructed from Z
in polynomial time as a function of the number of gates in Z, since it is just direct
replacement of each gate § by the corresponding gate gadget H(§). Although we do
not know how large k& must be for Corollary 5.1 to hold, for any fixed G and C itis a
constant amount of effort to find such a k and then compute a fixed () for each §.
Thus it is a parsimonious reduction from #ZSATy 4.1 F to #H(—, G, ¢) that preserves
the #P—completeness properties stated in Theorem 3.1.

Remark As in our previous work [28], the proof of Theorem 1.1 establishes an
efficient bijection between Q(K(Z), yo; G, ¢) and the orbits of nontrivial solutions
to #ZSATy, 4,1,F » and therefore the set of certificates in any problem in #P. This
conclusion is a refinement of parsimonious reduction which is known as Levin reduction.

6 Open problems

As with our previous theorem about homology 3—spheres [28], we conjecture that
#Q(K; G, C) is also computationally intractable when K is a randomly chosen knot.
There are various inequivalent models for choosing a knot at random [14], and we
believe that #0(K; G, C) should be intractable for many of them. Hardness in random
cases is a known property for some #P—complete problems [9].
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Also in our previous work, we first had in mind that the analogous invariant #Q (M ; G)
is intractable for 3—manifolds M ; later we sharpened the construction to make M
a homology 3—sphere. Theorem 1.1 is in keeping with the analogy that a homology
3—sphere is like a knot, while a general 3—manifold is like a link. However, a deeper
analogy is that a homology 3—sphere, among 3-manifolds, is like a knot with trivial
Alexander polynomial, among knots. We conjecture that Theorem 1.1 also holds for
knots with trivial Alexander polynomial. This would better motivate the restriction that
G should be a nonabelian simple group.
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