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Abstract— Vehicle counting is a fundamental component in
Intelligent Transportation System (ITS) for city traffic man-
agement. Although a number of vehicle counting approaches
have been proposed, their essential drawbacks limit the effi-
cacy of vehicle counting in real applications. In this paper,
we propose a CityCam-to-Edge cooperative learning framework
by cooperating multiple city cameras with an edge server to
count vehicles more efficiently. Our learning framework consists
of a lightweight feature extraction scheme deployed on the
city cameras and a vehicle counting model implemented on
the edge server. We devise the lightweight feature extraction
scheme by leveraging multiple convolutional layers with few
kernels in the design of deep learning architecture to reduce the
utilization of parameters for feature extraction, so that the city
cameras’ memory consumption and the data transmission time
can be greatly reduced. Moreover, we design two novel vehicle
counting models, F2F-M and O2O-M, to improve the counting
performance by exploiting the temporal correlation among videos
captured from multiple city cameras in a frame-to-frame manner
and a video-to-video manner, respectively. By combining the
lightweight feature extraction scheme and the proposed vehicle
counting models, we obtain two end-to-end vehicle counting
models, Lite-F2F-M and Lite-O2O-M. Finally, via conducting
extensive experiments, we demonstrate that Lite-F2F-M and Lite-
O2O-M models outperform the state-of-the-art in terms of vehicle
counting accuracy and time efficiency.

Index Terms— CityCam-to-Edge, vehicle counting, cooperative
learning, lightweight scheme.

I. INTRODUCTION

THE U.S. national highway traffic safety administra-
tion (NHTSA) reported 32719 fatalities and 2.313 million

injuries in 2013 [1]. Meanwhile, the U.S. federal highway
administration (FHWA) predicts a 23% increase in vehicle
miles traveled by 2032 (i.e., 1.04% annual growth) [2]. With
the increasing demand on surface transportation, its impact
on traffic safety has become a major concern for trans-
portation agencies [3]–[7]. To facilitate city traffic manage-
ment, Intelligent Transportation System (ITS) [8]–[12] has
been proposed by leveraging connected intelligent devices
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(e.g., vehicle cameras, city cameras, etc.), aiming to alleviate
the pressure of continued growing demand on transportation
and to reduce roadways congestion [13]–[15]. Vehicle count-
ing is one of the core components of ITS for city traffic
management [16], in which the traffic flow information is
obtained by counting vehicles. On the one hand, the real-
time traffic flow information can be exploited for optimizing
traffic signal light timing [17]–[19], gauging congestion level,
and redirecting traffic along less congested routes [20]–[22].
On the other hand, the long-term traffic flow information can
be employed by governments for replanning and redesigning
infrastructure [23]–[25], making transportation systems more
safe and efficient.
So far, a lot of research has been conducted to perform

vehicle counting in various ways. One vein of research is to
count vehicles based on magnetic sensors [26]–[31]. However,
the installation and regular maintenance of these magnetic
sensors usually cause inconvenience to people’s daily life,
such as lane closure and traffic disruption. Additionally, the
reinstallation of these sensors is required when resurfacing or
repairing roadways. What’s worse, these sensors rely on pave-
ment geometry, which means that a deterioration in pavement
will result in unreliable data. Recently, vision-based models
have been widely used to count vehicles more accurately
without traffic disruption by dealing with city cameras’ data.
These vision-based models can be broadly classified into
two categories. i) Conventional models, including the frame
differencing methods [32], [33], the detection-based methods
[34], [35], the tracking-based methods [36]–[39], and the den-
sity estimation-based methods [40], usually suffer the issues of
low-frame-rate, high-occlusion (that means are some vehicles
are hidden by other vehicles in traffic videos), and large-
perspective (that means city cameras arranged along a road
can capture traffic scenes with a large perspective) in traffic
videos captured by city cameras. ii) As the state-of-the-arts,
deep learning-based models [41]–[44] have been developed
recently to improve counting performance, which are usually
implemented on servers after receiving raw traffic videos from
city cameras. However, it is so time-consuming to transmit the
high-resolution traffic videos from city cameras to the servers
in real applications. Therefore, it is challenging to design an
efficient vehicle counting method to process high-resolution
traffic videos while decreasing the data transmission time.
To solve this challenge, in this paper, we propose a

CityCam-to-Edge cooperative learning framework for vehicle
counting, in which a lightweight feature extraction scheme
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is designed for the city cameras, and deep learning-based
vehicle counting models are developed for the edge server.
The lightweight feature extraction scheme deployed on the
city cameras can reduce the utilization of parameters by using
multiple convolutional layers with few kernels in deep learning
architecture for feature extraction, leading to a significant
decrease in the city cameras’ memory consumption. Moreover,
compared with the raw high-resolution traffic videos, the
density map formed by the extracted features has a smaller
size and thus experiences a shorter transmission time. For
the edge server, we propose two vehicle counting models,
termed F2F-M and O2O-M, by incorporating the temporal
correlation of videos captured from multiple city cameras for
performance enhancement. Then, we integrate the lightweight
feature extraction scheme and vehicle counting models to
obtain two end-to-end vehicle counting models, including Lite-
F2F-M and Lite-O2O-M. Finally, through comprehensive real-
data experiments, we demonstrate that our Lite-F2F-M and
Lite-O2O-M models are superior to the state-of-the-art in
terms of vehicle counting performance and time efficiency.
Our multifold contributions are addressed as follows.

• To the best of our knowledge, this is the first work to
design a CityCam-to-Edge cooperative learning frame-
work by leveraging collaboration between the city cam-
eras and the edge server for vehicle counting.

• To simultaneously reduce the city cameras’ memory
consumption and the data transmission time, we design
a lightweight feature extraction scheme by employing
multiple convolutional layers, each of which has few
kernels in deep learning architecture.

• To improve vehicle counting performance, we propose
F2F-M and O2O-M models, taking into account the
temporal correlation among videos from multiple city
cameras.

• To validate the advantages of our schemes, we set up a
series of real-data experiments to evaluate vehicle count-
ing performance and time efficiency via the comparison
with the state-of-the-art.

The remainder of this paper is organized as follows. Related
works are briefly summarized in Section II. We detail our
proposed models in Section III. In Section IV, we conduct real-
data experiments and analyze all results. Finally, Section V
concludes this paper and discusses our future work.

II. RELATED WORKS

The most recent methods of magnetic sensor-based vehicle
counting and vision-based vehicle counting are summarized in
the following.

A. Magnetic Sensor-Based Vehicle Counting Methods

In vehicle counting methods, 2-axis magnetic sensors and
3-axis magnetic sensors are mainly used. The works of
[26]–[28] analyzed the fluctuations captured from 2-axis mag-
netic sensors for vehicle counting. An enhanced vehicle count-
ing method was proposed by [31] to process 3-axis magnetic
sensors’ signal by considering a normalized cross-correlation
of the 3-axis signal. Besides, the magnetic sensor-based vehi-
cle counting methods have been applied for counting vehicles

Fig. 1. Our CityCam-to-Edge cooperative learning framework.

in parking lots by Andrius et al. [29] and in a street parking
system by Zhang et al. [30]. However, the unreliability of
magnetic sensor signal may cause a performance loss in
these magnetic sensor-based vehicle counting approaches, and
the deployment and maintenance of magnetic sensors usually
bring lane closure, traffic disruption, and other inconvenience
to people’s daily life.

B. Vision-Based Vehicle Counting Methods

Compared with magnetic sensor-based vehicle counting
methods, vision-based methods that utilize city cameras’ data
yield less traffic disruption during installation and mainte-
nance. Also, the city cameras’ data can provide more details
for better understanding traffic flow [44]–[46]. Frame dif-
ferencing methods count vehicles by analyzing the differ-
ence between sequential frames [32], [33], which suffer the
changes of abrupt illumination and background. Detection-
based methods count vehicles by detecting vehicles in each
frame [34], [35] and thus have poor performance when
being applied to high-occlusion videos. Tracking-based meth-
ods count vehicles by tracking each vehicle in each frame
[36]–[39], which fail with low-frame rate videos due to a lack
of motion information. Density estimation-based methods are
proposed to count vehicles by estimating pixel-level density of
images [40], [47], but they suffer from low accuracy when the
images are large-perspective. However, these aforementioned
conventional vehicle counting models cannot work well when
video frames are high-occlusion, high-resolution and large-
perspective. Recently, driven by the explosive progress of
learning methodology, promising deep learning-based meth-
ods are used to process high-occlusion, high-resolution and
large-perspective video frames. Nevertheless, since the deep
learning-based models should be implemented on a server,
expensive costs of data transmission, data computation, and
device memory may be consumed.
To reduce the costs of processing traffic videos, a CityCam-

to-Edge cooperative learning framework is designed as a novel
solution to the problem of vehicle counting by exploiting light-
weight feature extraction and inter-frame temporal correlation
in traffic videos.

III. CITYCAM-TO-EDGE COOPERATIVE LEARNING

Our proposed CityCam-to-Edge cooperative learning frame-
work is presented in Fig. 1. In this framework, the city cameras
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Fig. 2. Examples of annotated traffic video frames and their corresponding density maps.

capture traffic videos to record the real traffic scene and then
run the lightweight feature extraction scheme to extract density
maps from the traffic videos for transmission, and the edge
server implements the F2F-M and O2O-M vehicle counting
models by processing the extracted density maps received from
the city cameras. The challenges in the design of our proposed
frameworks lie in two aspects: i) an effective and lightweight
neural network architecture should be developed for feature
extraction while reducing the utilization of parameters; and
ii) the cooperation of multiple city cameras should be lever-
aged to enhance the accuracy of vehicle counting. The details
of our design are addressed in the following.

A. Lightweight Feature Extraction Scheme

The existing object counting methods [43], [48]–[50] firstly
estimate the object density map of one image and then directly
sum the density of every pixel in the whole image to obtain the
object counts. Motivated by these works, our feature extraction
scheme is designed to extract the density maps of images for
vehicle counting. Fully convolutional network (FCN) [51] is a
popular deep neural network to map images into density maps
and is used in our feature extraction scheme. Several examples
of annotated traffic video frames and their corresponding
extracted density maps based on FCN are shown in Fig. 2.
Assume that there are N blocks in FCN and two convo-

lutional layers in each block. Let c ji be the number of input
channels of the j -th convolutional layer in the i -th block,
s ji be the kernel size of the j -th convolutional layer, k j

i be
the number of kernels of the j -th convolutional layer, where
j ∈ {1, 2}. The number of kernels in a layer is equal to the
number of input channels in its next layer, i.e., k1i = c2i .
Accordingly, we can calculate the total number of parameters,
PFCN , in FCN as below:

PFCN =
N∑

i=1

c1i s
1
i k

1
i + c2i s

2
i k

2
i =

N∑

i=1

c1i s
1
i k

1
i + k1i s

2
i k

2
i . (1)

A large number of parameters in FCN consumes too much
memory resource of city cameras. Considering the memory
limitation of city cameras, in this paper, we want to design a
lightweight FCN model with relatively fewer parameters for
extracting density maps in order to lower the city cameras’
memory consumption. In [52], Lan et al. proposed a light-
weight word embedding model by adding one convolutional

layer with few kernels in the original word embedding learning
architecture to reduce the utilization of parameters while main-
taining the word embedding performance. By extending this
idea to a more general scenario, our scheme applies multiple
convolutional layers with few kernels in the architecture of
FCN to obtain lightweight FCN for density map extraction.
Technically speaking, according to the theoretical guidance

that the number of parameters in a lightweight FCN model
should not be larger than the number of parameters in the
original FCN model, we propose 4 rules to devise our
lightweight FCN in this paper. i) Multiple convolutional layers
with few kernels are added between two convolutional layers
from the 1st block to the third last block of the original FCN.
ii) The additional convolutional layers in the same block have
the same number of kernels. iii) The number of kernels of
additional convolutional layers in each block is respectively
set following the same ratio. For example, if the number of
kernels in the first layer of the 2nd block is twice as much as
the number of kernels in the first layer of the 1st block, the
number of kernels in the additional layer of the 2nd block is set
twice as much as the number of kernels in the additional layer
of 1st block. iv) The kernels in all additional convolutional
layers have the same size.
In the original FCN architecture, two deconvolutional layers

are used in the last two blocks (i.e., the (N − 1)-th block
and the N-th block). Thus, to maintain the functions of
convolutional layers and deconvolutional layers, we only add
additional convolutional layers from the 1st block to the
(N−2)-th block in our proposed lightweight FCN. According
to the aforementioned rules, we add L convolutional layers

with
k1i
k11

K kernels in the i -th block (i ∈ [1, N − 2]). Denote sa
as the size of kernels in additional convolutional layers. Since
the number of kernels in a layer is equal to the number of
input channels in its next layer, we can easily compute the
following information in our lightweight FCN: i) the number
of parameters of the first convolutional layer in the i -th block
is c1i s

1
i k

1
i ; ii) the number of parameters of the first additional

convolutional layer in the i -th block is k1i sa
k1i
k11

K; iii) the total

number of parameters of the rest of L − 1 additional convo-

lutional layers in the i -th block is
k1i
k11

Ksa
k1i
k11

K(L − 1); iv) the

parameters of the last convolutional layer in the i -th block

are
k1i
k11

Ks2i k
2
i since c2i = k1i

k11
K. Accordingly, we can get the
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TABLE I

THE ARCHITECTURE OF FULLY CONVOLUTIONAL NETWORK (FCN)

TABLE II

EXAMPLES OF OUR LIGHTWEIGHT FCN

total number of parameters, PLite, in our lightweight FCN as
follows:

PLite =
N−2∑

i=1

c1i s
1
i k

1
i + k1i sa

k1i
k11

K + k1i
k11

Ksa
k1i
k11

K(L − 1)

+ k1i
k11

Ks2i k
2
i +

N∑

i=N−1

c1i s
1
i k

1
i + k1i s

2
i k

2
i . (2)

In order to ensure that the number of parameters in the
lightweight FCN is not larger than that in FCN, we have
PLite ≤ PFCN , which can be equivalently rewritten in Eq. (3)
according to Eq. (1) and Eq. (2).

N−2∑

i=1

k1i sa
k1i
k11

K + k1i
k11

Ksa
k1i
k11

K(L − 1)

+ k1i
k11

Ks2i k
2
i − k1i s

2
i k

2
i ≤ 0. (3)

Theoretically, we can design our lightweight FCN based on
any one kind of FCN using the proposed 4 rules. In this paper,
we take the architecture of FCN in Table I as an example for
density map extraction. Correspondingly, the architecture of
our lightweight FCN is presented in Table II, where we use the
3×3 kernel for all additional convolutional layers (i.e. sa = 9).
From Table I, we know that N = 8, s21 = s22 = s23 = s24 =
s25 = s26 = 9, k11 = 64, k12 = 128, k13 = 256, k14 = 256,

k15 = 256, k16 = 512, k21 = 64, k22 = 128, k23 = 256, k24 = 256,
k25 = 512, and k26 = 512. Then, according to Eq. (3), Eq. (4)
should be satisfied to guarantee that the number of parameters
of our lightweight FCN is not higher than that of the original
FCN, with which especially, the values of K and L can be set
properly and flexibly.

1053(L − 1)K2 + 144000K − 4902912 ≤ 0. (4)

By solving Eq. (4), we further have:
L ≤ �4902912− 144000K

1053K2 � + 1. (5)

Eq. (5) is used as a theoretical constraint to appropriately
set the values of K and L to design the architecture of our
lightweight FCN models, for which experiment settings and
results are demonstrated in Section IV-A.3.

B. Vehicle Counting Models

Through exploiting the temporal correlation among sequen-
tial traffic video frames, multiple city cameras can help each
other to accomplish vehicle counting with an enhanced perfor-
mance. To formulate such a temporal correlation, Long Short-
Term Memory (LSTM) [53], which can maintain internal
hidden states to model the dynamic temporal behavior of
sequences, is adopted in our models. Let LST M(X; �) rep-
resent LSTM function, where X denotes input and � denotes
all parameters used in LSTM neural network. Formally, LSTM
is implemented by the following recurrent functions:

it = σ (Wxi xt + Whiht−1 + Wcict−1 + bi ) , (6)

ft = σ
(
Wx f xt + Wh f ht−1 + Wcf ct−1 + b f

)
, (7)

ct = ft ct−1 + it tanh (Wxcxt + Whcht−1 + bc) , (8)

ot = σ (Wxoxt + Whoht−1 + Wcoct + bo) , (9)

ht = ot tanh (ct ) , (10)

where σ(·) is the logistic sigmoid function, tanh(·) is the
tanh activation function, x is input, and i , f , c, and o are
respectively the input gate, forget gate, memory cell and output
gate activation vectors, the size of which is the same as hidden
vector h. And Wxi , Whi , Wci , Wx f , Wh f , Wcf , Wxc, Whc, Wxo,
Who, and Wco are weight matrices, and bi , b f , bc, bo are bias
terms.
With the LSTM function, we can obtain the final hid-

den vector and map it into a 1-dimension count label by
using a fully connected layer to realize a supervised vehi-
cle counting learning. This whole process is denoted as
FC(LST M(X; �); �), where FC(·) is the function of fully
connected layer, and � represents the parameters of FC(·).
Next, FC(LST M(X; �); �) is utilized in our F2F-M and
O2O-M models for vehicle counting.
1) F2F-M Model: F2F-M model utilizes the temporal corre-

lation among videos captured from multiple city cameras in a
frame-to-frame manner. Suppose there are n consecutive cam-
eras arranged along a road. Let {t1, t2, . . . , tn} be a sequential
time series and I iti (i ∈ [1, n]) be the frame captured by the
i -th city camera at time ti . These n frames have similar vehicle
scenes, which can be used to depict the temporal correlation
among videos and processed by FC(LST M(X; �); �) for
vehicle counting.
First of all, the frame I iti is put into FC(LST M(X; �); �)

to obtain the predicted vehicle count Ci
ti , i.e.,

Ci
ti = FC(LST M(I iti ; �); �). (11)

Since we have the groundtruth vehicle count, 0Ci
ti , for the

frame I iti in the dataset, we can define the loss function of
vehicle counting as:

LCi
ti

= ||Ci
ti − 0C

i
ti ||22. (12)
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As there are n frames as input, finally, we can obtain the
overall loss function of F2F-M model:

LF2F−M =
n∑

i=1

LCi
ti
, (13)

which will be minimized via Adam [54] for training F2F-M
model.
2) O2O-M Model: O2O-M model exploits the temporal

correlation among videos captured from multiple city cameras
in a video-to-video manner. Similarly, suppose there are n
consecutive cameras arranged along a road, and one traffic
video consists of m frames that exist temporal correlation.
Denote I iti+ j−1

as the j -th frame in the video captured by
the i -th camera at time ti+ j−1 (i ∈ [1, n], j ∈ [1,m]).
Then, we can represent {I 1t1, I 1t2 , . . . , I ntn+m−1

} as n videos that
show temporal correlated vehicle scenes captured by these n
consecutive cameras. In O2O-M model, {I 1t1, I 1t2 , . . . , I ntn+m−1

}
is processed by FC(LST M(X; �); �) for vehicle counting.
The loss function of O2O-M model is similar to that of F2F-M
model. While, the main different places are that the input
contains n videos and each video consists of m frames. Thus,
the overall loss function of O2O-M model is formulated as:

LO2O−M =
n∑

i=1

m∑

j=1

LCi
ti+ j−1

, (14)

which is also minimized via Adam to train O2O-M model.

C. End-to-End Vehicle Counting Models

In this section, we propose two end-to-end vehicle counting
models, Lite-F2F-M and Lite-O2O-M, by combining our
proposed lightweight FCN mentioned in Section III-A and two
vehicle counting models, F2F-M and O2O-M, introduced in
Section III-B.
1) Lite-F2F-M Model: Lite-F2F-M model is based on

F2F-M model. Compared with F2F-M, the different point
is that the lightweight feature extraction scheme is used as
a data preprocessing method for vehicle counting in Lite-
F2F-M. Denote our lightweight FCN as Li te(X; �), where
X represents input and � represents the parameters of our
lightweight FCN. In Lite-F2F-M, the input also has n frames
represented by {I 1t1, I 2t2, . . . , I ntn }. Then, the density map Fi

ti
should firstly be extracted from the frame I iti through our
lightweight FCN, i.e.,

Fi
ti = Li te(I iti ; �). (15)

Since we have the groundtruth density map in the dataset, the
loss function of density map estimation for I iti is defined as
follows:

LDi
ti

= ||Fi
ti − 0F

i
ti ||22, (16)

where 0Fi
ti is the groundtruth density map of I iti . Then, for

vehicle counting, the density map Fi
ti should be put into

FC(LST M(X; �); �) to get the predicted vehicle count Ci
ti

for I iti ; that is,

Ci
ti = FC(LST M(Fi

ti ; �); �). (17)

Given the groundtruth vehicle count annotated in the dataset,
the loss function of vehicle counting is defined to be:

LCi
ti

= ||Ci
ti − 0C

i
ti ||22. (18)

With n frames as input, the overall loss function will be:

LLite−F2F−M =
n∑

i=1

LDi
ti

+ λ

n∑

i=1

LCi
ti
, (19)

where λ is the weight to balance two loss terms. The overall
loss function of Lite-F2F-M will also be minimized via Adam.
Algorithm III-C.1 outlines the pseudo code of the training
process of Lite-F2F-M model.

Algorithm 1 Lite-F2F-M Training Algorithm

Input: n frames: {I 1t1, I 2t2 , . . . , I ntn }
Output: parameters of Li te(·), LST M(·), FC(·): �, �, �.
1: for i = 1 to n do
2: Fi

ti = Li te(I iti ; �)

3: LDi
ti

= ||Fi
ti − 0Fi

ti ||22
4: Ci

ti = FC(LST M(Fi
ti ; �); �)

5: LCi
ti

= ||Ci
ti − 0Ci

ti ||22
6: end for
7: LLite−F2F−M =

n∑
i=1

LDi
ti

+ λ
n∑

i=1
LCi

ti

8: �, �, � ← Adam(L, �,�,�)

2) Lite-O2O-M Model: On the basis of O2O-M model,
we build Lite-O2O-M model, where n videos are first put
into our lightweight FCN to obtain the density maps and then
processed for vehicle counting. The input of Lite-O2O-M are n
videos denoted by {I 1t1, I 1t2 , . . . , I ntn+m−1

}. Similar to the overall
formulation of Lite-F2F-M model, the overall loss function of
Lite-O2O-M model is expressed by Eq. (20), which is also
minimized via Adam.

LLite−O2O−M =
n∑

i=1

m∑

j=1

LDi
ti+ j−1

+ λ

n∑

i=1

m∑

j=1

LCi
ti+ j−1

. (20)

Algorithm III-C.1 presents the pseudo code of the training
process of Lite-O2O-M.

Algorithm 2 Lite-O2O-M Training Algorithm

Input: n videos: {I 1t1, I 1t2 , . . . , I ntn+m−1
}

Output: parameters of Li te(·), LST M(·), FC(·): �, �, �.
1: for i = 1 to n do
2: for j = 1 to m do
3: Fi

ti+ j−1
= Li te(I iti+ j−1

; �)

4: LDi
ti+ j−1

= ||Fi
ti+ j−1

− 0Fi
ti+ j−1

||22
5: Ci

ti+ j−1
= FC(LST M(Fi

ti+ j−1
; �); �)

6: LCi
ti+ j−1

= ||Ci
ti+ j−1

− 0Ci
ti+ j−1

||22
7: end for
8: end for
9: LLite−O2O−M =

n∑
i=1

m∑
j=1

LDi
ti+ j−1

+ λ
n∑

i=1

m∑
j=1

LCi
ti+ j−1

10: �, �, � ← Adam(L, �,�,�)
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Fig. 3. An example for illustrating differences between Lite-F2F-M model
and Lite-O2O-M model.

D. Model Comparison

An illustrative example is presented in Fig. 3 to compare
the difference between Lite-F2F-M model and Lite-O2O-M
model from the perspective of data process.
Assume that five consecutive cameras are arranged along

a road and every video captured by each camera con-
tains 8 frames. In our Lite-F2F-M model, we use one frame
from each video (i.e., totally, 5 frames) in every training round,
in which the temporal information among these frames is
leveraged to improve the accuracy of vehicle counting. Differ-
ently, in our Lite-O2O-M model, we employ 5 videos in every
training round. Accordingly, not only the temporal information
among the 5 videos but also the temporal information among
the 8 frames in one video can be exploited to enhance the
accuracy of vehicle counting.

IV. EXPERIMENTS

In this section, extensive experiments are conducted to
validate the superiority of our proposed Lite-F2F-M and Lite-
O2O-M models over the state-of-the-art in vehicle count-
ing performance and time efficiency. The codes of our
model implementation are now available at https://github.com/
ahahnut/Lite-F2F-V2V-M.

A. Experiment Settings

The dataset, baselines, our models’ architectures are
described below.
1) Dataset: TRANCOS [43] contains 1244 images of traffic

scenes collected from surveillance camera videos with 46796
annotated vehicles in total. Since we take the cooperation
of multiple city cameras into account, we create our own
dataset from TRANCOS to satisfy the need of our application
scenario. In the experiments, we consider 5 city cameras that
record the traffic information along a road. For the images that
show a similar vehicle scene, we treat every 8 image frames
as one video, pick 40 images to form 5 videos, and assign one
video to each camera’s records. Totally, there are 23 videos
in each city camera. This default setting has been used as an
example to illustrate the difference between our Lite-F2F-M
model and our Lite-O2O-M model in Section III-D.
Moreover, other different settings are configured in the

following experiments to study the influence of camera density

TABLE III

SETTINGS AND PARAMETERS OF LIGHTWEIGHT FCN IN EXPERIMENTS

TABLE IV

THE ARCHITECTURE OF LIGHTWEIGHT FCN (LITE1_1)

and inter-frame time difference on our two proposed models
in Section IV-D and Section IV-E, respectively.
2) Baselines: We compare our proposed models with two

baseline schemes.
• Baseline 1. In [47], the authors developed a deep learning
model to do vehicle counting based on FCN. They
designed a supervised learning model to learn the vehicle
counts from density maps extracted by FCN without con-
sidering the temporal information among video frames.

• Baseline 2. In [41], the authors proposed a deep learning
model based on FCN-LSTM. They improved the base-
line 1 model by considering the temporal information
among video frames with the help of LSTM, which is
the state-of-the-art approach for vehicle counting.

3) Architecture of Lightweight FCN: According to the idea
of our proposed lightweight feature extraction scheme in
Section III-A, we set K = {8, 12, 16} and L = {1, 2, 3},
the settings of which satisfy Eq. (5) to get 9 architectures
of lightweight FCN for experiments. In Table III, we list
these 9 settings of lightweight FCN, termed Lite1_1, Lite1_2,
Lite1_3, Lite2_1, Lite2_2, Lite2_3, Lite3_1, Lite3_2, Lite3_3,
and calculate the number of parameters used in these nine
lightweight architectures. From Table III, we can see that
our proposed 9 lightweight architectures indeed decrease the
utilization of parameters compared with the original FCN.
Besides, we present the details of these 9 lightweight archi-
tectures in Table IV-Table XII.
Actually, according to Eq. (5) in our lightweight feature

extraction scheme, we can obtain a number of lightweight
architectures by properly choosing the values of K and L.
Due to the page limitation, only nine of them are presented
for performance evaluation in this paper.
4) Architecture of F2F-M and O2O-M: Both F2F-M model

and O2O-M model have the same deep learning architecture.
Specifically, we use 3 LSTM layers and set the size of hidden
vector h as 100. In addition, one FC layer is used after 3
LSTM layers to map the final 100-dimension hidden vector
into a 1-dimension count label.
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TABLE V

THE ARCHITECTURE OF LIGHTWEIGHT FCN (LITE1_2)

TABLE VI

THE ARCHITECTURE OF LIGHTWEIGHT FCN (LITE1_3)

TABLE VII

THE ARCHITECTURE OF LIGHTWEIGHT FCN (LITE2_1)

TABLE VIII

THE ARCHITECTURE OF LIGHTWEIGHT FCN (LITE2_2)

TABLE IX

THE ARCHITECTURE OF LIGHTWEIGHT FCN (LITE2_3)

TABLE X

THE ARCHITECTURE OF LIGHTWEIGHT FCN (LITE3_1)

5) Architectures of Lite-F2F-M and Lite-O2O-M: By com-
bining F2F-M or O2O-M with 9 lightweight FCN archi-
tectures Litex_y where x, y ∈ {1, 2, 3}, we can obtain 18

TABLE XI

THE ARCHITECTURE OF LIGHTWEIGHT FCN (LITE3_2)

TABLE XII

THE ARCHITECTURE OF LIGHTWEIGHT FCN (LITE3_3)

Fig. 4. End-to-End vehicle counting methods in experiments.

end-to-end vehicle counting methods as demonstrated in Fig. 4
for comprehensive performance evaluation.

B. Evaluation of Vehicle Counting Performance

We train the two baseline models and our Lite-F2F-M
and Lite-O2O-M models by using the default dataset setting
described in Section IV-A.1 with the learning rate lr =
0.001, the balance weight of two loss terms λ = 0.001,
and the number of training epochs ep = 150. After that,
we use well-trained models to count the vehicles in 40 frames
for testing. The mean absolute error (MAE) is calculated
based on the groundtruth counts and the predicted counts.
A smaller MAE value indicates a better counting performance.
All the results are reported in Table XIII, which shows that
there are 4 end-to-end methods (including Lite2_1-F2F-M,
Lite2_2-F2F-M, Lite3_3-F2F-M, and Lite3_1-O2O-M) more
accurate than the baseline models. Especially, Lite3_1-O2O-
M has the best performance, which means that Lite-O2O-M
model is more efficient than Lite-F2F-M model in terms of
vehicle counting performance thanks to the consideration of
the temporal correlation among videos captured from multiple
city cameras in a video-to-video manner.
Furthermore, we investigate our proposed end-to-end vehi-

cle counting methods from the aspects of counting accuracy,
memory consumption, and cost-efficiency. i) The models’
counting accuracy (Acc.) is computed as (1 − MAE/GT ) ×
100%, where GT denotes the ground-truth vehicle counts.
ii) Since our lightweight feature extraction scheme aims to
reduce the memory consumption in city cameras, the ratio of
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TABLE XIII

MAE RESULTS OF METHODS TRAINED BY 5 CAMERAS AND
8 FRAMES IN ONE VIDEO (OURS V.S. BASELINES)

TABLE XIV

RESULTS OF ACC., PCT AND ACC./PCT (OURS V.S. BASELINES)

Fig. 5. Comparison results of Acc., PCT and Acc./PCT (Ours v.s. baselines).

the memory consumption in lightweight FCN to the memory
consumption in the original FCN is used to measure the
reduction of memory consumption. This ratio is denoted by
PCT with a range of [0, 100%]. A lower PCT value implies
a larger decrease in memory consumption. iii) The ratio of
counting accuracy to memory consumption is used to indicate
the cost-efficiency for the compared schemes.
From the observations on Table XIV and Fig. 5, we can

obtain three conclusions. i) Lite3_1-O2O-M method is the
most efficient vehicle counting method since it has the highest
counting accuracy. ii) Lite2_1-F2F-M method is the most cost-
saving vehicle counting method due to its lowest PCT value.
iii) Lite2_2-F2F-M method is the most cost-efficient vehicle
counting method owing to its highest value of Acc./PCT.

C. Evaluation of Time Efficiency

In the two baseline models, the raw high-resolution traffic
videos are directly sent from the city cameras to the edge
server, which only costs data transmission time. While, in our

TABLE XV

TIME CONSUMPTION FOR DIFFERENT FRAMES (OURS V.S. BASELINES)

proposed models, density maps are extracted from traffic
videos and then sent from the city cameras to the edge server,
which costs both the data extraction time and data transmission
time. The raw data size, the density map size, and the data
extraction time can be recorded when running vehicle counting
models. IEEE 802.11p is adopted as a communication standard
in vehicular networks, where the data is transmitted via
wireless network in a short-range communication environment
with the maximum wireless transmission speed at 27Mb/s [55].
The data transmission time equals the data size divided by
transmission speed.
In our experiments, when running our four efficient end-

to-end vehicle counting methods analyzed in Section IV-B,
including Lite2_1-F2F-M, Lite2_2-F2F-M, Lite3_3-F2F-M,
and Lite3_1-O2O-M, on two Tesla V100-pcie GPUs,
we record the time of extracting 40/80/160/320 frames and
show the results in Table XV. After that, we calculate
the data transmission time for 40/80/160/320 frames in
baselines and our models. The total time consumption of
the two baselines is equal to the data transmission time,
while the total time consumption of our proposed mod-
els consists of data transmission time and data extraction
time.
We present the data transmission time and total time con-

sumption in Fig. 6 and Table XV, from which we obtain three
critical findings. i) From Fig. 6a, we can see that the data
transmission time of our models is much lower than that of
two baselines, implying that our proposed Lite-F2F-M and
Lite-O2O-M models greatly improve the data transmission
efficiency. ii) In Fig. 6b, notice that the total time consumption
of our models is also much lower than that of baselines even
if there are the extra data extraction time in our models, which
means the utilization of lightweight FCN in our models indeed
greatly reduce the time consumption for vehicle counting
by taking relatively little time to extract features. iii) The
discrepancy of data transmission time/total time consumption
between baselines and our models becomes larger with the
increase of frames, indicating that our models will become
more time efficient when transmitting a larger number of traffic
videos.
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Fig. 6. Comparison result of time efficiency (Ours v.s. baselines).

TABLE XVI

MAE RESULTS OF OUR END-TO-END METHODS TRAINED BY 4 CAMERAS

AND 8 FRAMES IN ONE VIDEO

D. Impact of City Camera Density

The MAE results of Lite-F2F-M and Lite-O2O-M models
under the default dataset setting (i.e., 5 city cameras arranged
along the road and 8 frames in every video) are presented in
Table XIII for analysis. In order to investigate the impact of
city camera density on Lite-F2F-M and Lite-O2O-M models,
we further train Lite-F2F-M and Lite-O2O-M models by
taking into account two more different dataset settings: i) 4 city
cameras arranged along the road and 8 frames in each video,
and ii) 3 city cameras arranged along the road and 8 frames
in each video. The corresponding MAE results are reported in
Table XVI and Table XVII.
From Table XVI, we find that Lite3_3-F2F-M is the best

architecture with the lowest MAE among 9 different archi-
tectures of Lite-F2F-M model and Lite3_1-O2O-M is the
best architecture with the lowest MAE among 9 different
architectures of Lite-O2O-M model. In Table XVII, Lite3_3-
F2F-M is the best architecture of Lite-F2F-M model, and
Lite3_1-O2O-M is the best architecture of Lite-O2O-M model.
Additionally, we draw the MAE results of Lite1_1-F2F-M,

Lite1_3-F2F-M, Lite3_1-F2F-M, Lite1_1-O2O-M, Lite1_3-
O2O-M, and Lite3_1-O2O-M in Fig. 7 for further analysis.
Through observing Fig. 7, we can reach a conclusion that
with the increase of city camera density, the temporal corre-
lation among the captured videos becomes stronger, thereby
enhancing the performance of Lite-F2F-M and Lite-O2O-M
models.

TABLE XVII

MAE RESULTS OF OUR END-TO-END METHODS TRAINED BY 3 CAMERAS

AND 8 FRAMES IN ONE VIDEO

Fig. 7. Impact of city camera density on MAE.

E. Impact of Inter-Frame Time Difference

For the purpose of understanding the impact of inter-frame
time difference on our proposed models, we train Lite-F2F-M
and Lite-O2O-M models by using two more different dataset
settings, including i) 5 city cameras arranged along the road
and 4 frames sampled from a video, and ii) 5 city cameras
arranged along the road and 2 frames sampled from a video.
The MAE results are listed in Table XVIII and Table XIX.
In Table XVIII, Lite3_3-F2F-M is the best architecture

with the lowest MAE among 9 different architectures of
Lite-F2F-M model, and Lite3_1-O2O-M is the best architec-
ture with the lowest MAE among 9 different architectures
of Lite-O2O-M model. The results in Table XIX show that
Lite3_3-F2F-M has the best performance among 9 different
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TABLE XVIII

MAE RESULTS OF OUR END-TO-END METHODS TRAINED BY
5 CAMERAS AND 4 FRAMES IN ONE VIDEO

TABLE XIX

MAE RESULTS OF OUR END-TO-END METHODS TRAINED BY
5 CAMERAS AND 2 FRAMES IN ONE VIDEO

Fig. 8. Impact of inter-frame time difference on MAE.

architectures of Lite-F2F-M model and Lite3_1-O2O-M is the
best selection among 9 different architectures of Lite-O2O-M
model.
For a clearer illustration, we plot the MAE results of

Lite1_1-F2F-M, Lite1_3-F2F-M, Lite3_1-F2F-M, Lite1_1-
O2O-M, Lite1_3-O2O-M, and Lite3_1-O2O-M in Fig. 8,
which indicates that the influence of inter-frame time dif-
ference on Lite-F2F-M is litter, but a smaller inter-frame
time difference can help reduce MAE of Lite-O2O-M due to
the increase of temporal correlation among frames in each
video.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed a CityCam-to-Edge cooperative
learning framework for vehicle counting. To the best of our

knowledge, this is the first work to integrate multiple city
cameras with an edge server to accomplish the goal of vehicle
counting. Specifically, for the city cameras, we present a
lightweight feature extraction scheme to obtain the lightweight
FCN by adding multiple convolutional layers with few kernels
in FCN, aiming at reducing city cameras’ memory consump-
tion and data transmission time. For the edge server, we pro-
pose F2F-M and O2O-M models to enhance the counting per-
formance by utilizing the temporal correlation among videos
captured from multiple city cameras. Accordingly, two end-
to-end vehicle counting models can be obtained, termed Lite-
F2F-M and Lite-O2O-M. Through a comprehensive compari-
son with the state-of-the-art, the advantages of our Lite-F2F-M
and Lite-O2O-M can be validated. Especially, Lite-O2O-M
model is superior to Lite-F2F-M model in terms of vehicle
counting owing to the consideration of the temporal correlation
in a video-to-video manner.
In our future work, we will investigate how to reconstruct

the traffic videos by using the extracted density maps received
from the city cameras with performance guarantee. These
reconstructed videos can be further exploited for real-time traf-
fic surveillance, such as vehicle detection, vehicle recognition
and vehicle tracking.
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