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A B S T R A C T

This manuscript is concerned with the numerical study of spatio-temporal solution profiles of the Gardner
equation by implementing a well-known spectral modified numerical scheme based on the Exponential Time
Differencing method proposed by Kassam and Trefethan. The modified scheme takes full advantage of contour
integral method for improving the numerical stability. But it requires judicious selection of contour path with
suitable discretization to minimize the error estimates for solving a particular nonlinear partial differential
equation. The efficiency of the scheme is demonstrated by testing it on some test examples – especially
measuring discrete maximum norm errors and global relative errors. The associated conservative laws are
also numerically verified via attaining very insignificant deviation in the conserved quantities from the initial
values even after a large simulation time.
1. Introduction

Wave motion describes a wide range of phenomena across many
iverse models. Waves are defined by properties and simplest among
hem is that they travel. Waves have a temporal dimension and a mini-
um of one spatial dimension and over time waves propagate a change
n the amplitude of the wave’s medium. There are two fundamental
aves types – traveling waves and plane waves. The former, traveling
aves are real valued and they maintain a shape, called a wave profile
n general, but experiences translation at a constant wave speed 𝑐.
n the other hand, Plane waves are complex valued form of traveling
aves. They have a few parameters to take into account such as wave
umber k and angular velocity w. As physical phenomena, waves have
alilean relativity and are invariant to translation in space and time.
In the Nineteenth century, a special kind of waves, known as

permanent’ or ‘solitary’ waves was discovered. Solitary waves are
onsidered to be special because they can propagate without change on
he surface of shallow inviscid fluid layers. Another attractive feature
f solitary waves is they retain their shape (or individuality) upon
nteraction. In a sense, they behave as particles which has earned
hemselves the name soliton,1 as in modern physics, a suffix-on is used
o indicate the particle property. This occurred in the 1970’s as stud-
es into quasi-particles gained traction. Nowadays, soliton phenomena
re discovered in virtually every discipline of natural sciences, such
s nonlinear optics, plasmas, fluid mechanics, electro-magnetic and
ondensed matter.2,3
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Waves do not necessarily maintain form indefinitely. Two properties
that can factor into this are dispersion and dissipation. Solitons have
the ability to travel long distances without collapsing or spreading
out. Normal waves usually collapse or spread out because they have
different speeds and indexes of refraction depending on their frequency
and a wave can be thought of as a superposition of different frequency
waves. This tendency for the wave profile to spread out is referred to as
dispersion and is modeled by a 𝑢𝑥𝑥𝑥 term. On the other hand, dissipation
is based on a 𝑢𝑥𝑥 term and models the loss of the waves amplitude
and energy. However, the governing equations for solitons are, as a
rule, nonlinear. Due to the effect of nonlinearity, the wave steepens and
then, if further continued, it will break. Now since dispersion causes the
opposite effect of steepening, these two effects provide the equilibrium
to produce a permanent shape. In this way, dispersion (or dissipation)
plays an essential role in generating solitons by engaging in a balancing
act with the nonlinearity. One fundamental equation which describes
the propagation of nonlinear waves in one-dimensional case in a weakly
dispersive medium is the famous Korteweg–de Vries (KdV) equation.4

One of the key physical properties of the nonlinear equations which
admit soliton solutions is that they have infinite numbers of con-
servation laws and associated symmetries which are strongly related
to their integrability. For example, there exists an infinite sequence
of conserved quantities in the KdV equation. Gardner equation, also
known as the extended KdV equation, was originally discovered as
an auxiliary mathematical tool while deriving the infinite set of local
conservation laws of the KdV equation.5 Later it turned out to be a
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fundamental mathematical model for the description of weakly nonlin-
ear dispersive waves, but in the presence of higher order nonlinearity
effects (described by the cubic term). It appears in the following form:

𝑢𝑡 + 𝜇1𝑢𝑢𝑥 + 𝜇2𝑢
2𝑢𝑥 + 𝜇3𝑢𝑥𝑥𝑥 = 0, (1.1)

where, 𝑢 = 𝑢(𝑥, 𝑡) and 𝜇1, 𝜇2 and 𝜇3 are constants. It has two nonlinear
terms in the quadratic

(

(𝑢2)𝑥
)

and cubic
(

(𝑢3)𝑥
)

forms and the dispersive
term is of third order (𝑢𝑥𝑥𝑥). It should be noted that the Gardner
equation could be derived while searching for a new soliton hierarchy
as well. One such funding is recently reported in Ref. 6 where a
novel counterpart of well-known Boiti-Pempinelli-Tu soliton hierarchy
is presented which helps us derive the Gardner equation.

The Gardner equation has been used to model rogue waves in
layered fluids, such as in atmosphere and river mouths, including
both solitons and undular bore solutions.7 One of the best known
applications of this equation is modeling of large-amplitude internal
waves.8,9 The Gardner Equation is not limited to water alone. Its appli-
cability can be found in diverse situations in plasma physics. Another
significant feature of Gardner equation is its ability to describe the
propagation of negative ion acoustic plasma waves,10,11 a phenomenon
found in planetary magnetospheres and in the mesosphere. The Gard-
ner equation is also used to study various dynamics of positron-acoustic
solitons which helps understanding auroral acceleration, supernova,
pulsars environments, cluster explosions, and active galactic nuclei,
etc.12 Apart from describing its significance amid numerous interesting
physics phenomena, the Gardner equation is also being rigorously
investigated to generate many other families of periodic and localized
solitary wave solutions e.g., by performing the bifurcation theory of
dynamical systems13 to Eq. (1.1).

This paper is an effort to employ a spectral modified exponential
time differencing (ETD) method (presented by Kassam and Trefethan14)
to study the numerical solutions to the Gardner equations. Over the
years various types of ETD Runge–Kutta (ETDRK) methods for solving
nonlinear problems have been proposed and studied. Among them, the
fourth order ETD method proposed by Cox and Matthews15 is worth
mentioning in which, new Runge–Kutta versions of ETD schemes were
introduced to obtain higher order accuracy. This method is known as
Exponential Time Differencing fourth-order Runge–Kutta (ETDRK4). But
it suffers from numerical instability which was explored in Ref. 14.
This paper14 also includes a modified version of ETDRK4 capable of
evaluating computationally sensitive expressions with high accuracy.
Therefore, the modified version (also popular as mETDRK4) can be
considered to be an improvement upon ETDRK4 method. Arguably
mETDRK4 is the first fully practical ETD method for general use.

2. ETDRK schemes

2.1. ETDRK4 scheme

In this section, first we will briefly introduce the ETD method, then
introduce the ETDRK4 and mETDRK4 methods. To demonstrate that,
let us consider a general first order ODE:
𝑑𝑢
𝑑𝑡

= 𝑐𝑢 + 𝑓 (𝑢, 𝑡), (2.1)

where 𝑐 is constant and 𝑓 represents the nonlinear terms. We can
recast Eq. (2.1) in the form 𝑢̇ = L(𝑢) + N(𝑢), where L and N are linear
and nonlinear functions, respectively. Rearranging the terms of (2.1),
i.e., moving the linear term to the left side, and multiplying both sides
of (2.1) by the integrating factor of 𝑒−𝑐𝑡, (2.1) can be rewritten as:
𝑑
𝑑𝑡

(

𝑒−𝑐𝑡𝑢
)

= 𝑒−𝑐𝑡𝑓.

Now, step by step, first integrating both sides over the interval from
= 𝑡𝑛 to 𝑡 = 𝑡𝑛 + ℎ = 𝑡𝑛+1, then by allowing a change of variable for 𝑡,
amely 𝜏 = 𝑡 − 𝑡𝑛 allows us to recast the scheme as:

𝑛+1 = 𝑒𝑐ℎ𝑢𝑛 + 𝑒𝑐(𝑡𝑛+ℎ)
ℎ
𝑒−𝑐𝜏𝑓 (𝑢(𝜏 + 𝑡𝑛), 𝜏 + 𝑡𝑛)d𝜏. (2.2)
∫0

2

q. (2.2) can be further generalized by expressing it as a system of
DEs:

𝑡 = 𝐋𝑢 + 𝐍(𝑢, 𝑡), (2.3)

where 𝐋 and 𝐍 are linear and nonlinear discretization operators, respec-
tively. At this point, based on the method of approximating the integral
in the R.H.S. of (2.2), different ETD schemes can be derived. Provided
below the formulae of the fourth order scheme of this type based on
Runge–Kutta time stepping as introduced in Ref. 15. In this paper it
was argued that the derivation of this scheme requires a symbolic
manipulation system as they are not obvious.

𝑎𝑛 = 𝑒𝐋ℎ∕2𝑢𝑛 + 𝐋−1(𝑒𝐋ℎ∕2 − 𝐈)𝐍(𝑢𝑛, 𝑡𝑛)
𝑏𝑛 = 𝑒𝐋ℎ∕2𝑢𝑛 + 𝐋−1(𝑒𝐋ℎ∕2 − 𝐈)𝐍(𝑎𝑛, 𝑡𝑛 + ℎ∕2)

𝑐𝑛 = 𝑒𝐋ℎ∕2𝑎𝑛 + 𝐋−1(𝑒𝐋ℎ∕2 − 𝐈)
(

2𝐍(𝑏𝑛, 𝑡𝑛 + ℎ∕2) − 𝐍(𝑢𝑛, 𝑡𝑛)
)

𝑢𝑛+1 = 𝑒𝐋ℎ𝑢𝑛 + ℎ−2𝐋−3
{

[

−4 − 𝐋ℎ + 𝑒𝐋ℎ(4 − 3𝐋ℎ + (𝐋ℎ)2)
]

𝐍(𝑢𝑛, 𝑡𝑛)

+ 2
[

2 + 𝐋ℎ + 𝑒𝐋ℎ(−2 + 𝐋ℎ)
](

𝐍(𝑎𝑛, 𝑡𝑛 + ℎ∕2) + 𝐍(𝑏𝑛, 𝑡𝑛 + ℎ∕2)
)

+
[

−4 − 3𝐋ℎ − (𝐋ℎ)2 + 𝑒𝐋ℎ(4 − 𝐋ℎ)
]

𝐍(𝑐𝑛, 𝑡𝑛 + ℎ)
}

In this updated formula for ETDRK4, if we separately treat the expres-
sions in square brackets as coefficients, we can write

𝑄 = 𝐋−1 (𝑒𝐋ℎ∕2 − 1
)

𝛼 = ℎ−2𝐋−3[−4 − 𝐋ℎ + 𝑒𝐋ℎ(4 − 3𝐋ℎ + (𝐋ℎ)2)
]

𝛽 = ℎ−2𝐋−3[2 + 𝐋ℎ + 𝑒𝐋ℎ(−2 + 𝐋ℎ)
]

𝛾 = ℎ−2𝐋−3[−4 − 3𝐋ℎ − (𝐋ℎ)2 + 𝑒𝐋ℎ(4 − 𝐋ℎ)
]

. (2.4)

These coefficients are higher order analogues of 𝑔(𝑧), defined as (𝑒𝑧 −
1)∕𝑧. Accurate computation of this function poses a formidable problem
which is well documented in the literature of numerical analysis. This
problem is particularly discussed by Higham16 and Friesner et al.17 in
their monographs.

The equations in (2.4) suffer from catastrophic cancellation if im-
plemented directly in this format. In fact, the last three equations have
expressions similar to the form which causes rounding errors rapidly.

2.2. mETDRK4 method

In order to efficiently implement the ETDRK4 scheme in general,
Kassam and Trefethen proposed to evaluate these expressions with
high accuracy by using an approximation based on contour integration
from complex analysis. More specifically, using the Cauchy integral
representation on a circle with radius 1 centered at 𝑧 for |𝑧| < 𝑧0, we
have

𝜙𝑙(𝑧) =
1
2𝜋𝑖 ∫𝛤

𝜙𝑙(𝑠)
𝑠 − 𝑧

d𝑠 where 𝜙𝑙(𝑧) =
∞
∑

𝑘=𝑙

1
𝑘!

𝑧𝑘−𝑙 =
∞
∑

𝑘=0

1
(𝑘 + 𝑙)!

𝑧𝑘

Note that, from the above expression, if we write 𝜙𝑙(𝑧) as
1
𝑧𝑛

(

𝑒𝑧 −
𝑙−1
∑

𝑘=0

𝑧𝑘

𝑘!

)

, it actually allows us to attain first 𝑙 ‘𝜙’ functions

involved in an ETD method of order 𝑙. First few values are as follows:
𝜙1(𝑧) = (𝑒𝑧 − 1)∕𝑧, 𝜙2(𝑧) =

(

𝑒𝑧 − 𝑧 − 1
)

∕𝑧2,

𝜙3(𝑧) =
(

𝑒𝑧 − 𝑧2∕2 − 𝑧 − 1
)

∕𝑧3,…

As 𝑙 increases, these functions become increasingly difficult to eval-
uate for small 𝑧, mainly due to the subtraction error. For scalar case,
one can use the explicit formula and truncated Taylor series for large
and small 𝑧, respectively. But when 𝑧 is a matrix, numerical instability
occurs because usually 𝑧 has large, and more critically, very small (zero
or close to zero) eigenvalues.

The Cauchy integral formula in matrix form appears as:

𝜙𝑙(𝑧) =
1 𝜙𝑙(𝑠)(𝑠𝐈 − 𝑧)−1d𝑠,

2𝜋𝑖 ∫𝛤
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where the contour 𝛤 encloses all the eigenvalues of 𝑧. The integral can
e approximated by using the periodic trapezium rule which is known
o be a spectral method in this case. The approximations can be carried
ut by considering a circle of 𝑀 points 𝑧𝑘 = 𝑒2𝜋𝑖𝑘∕𝑀 :

𝜙𝑙(𝑧) ≈
1
𝑀

𝑀
∑

𝑘=1
𝜙𝑙

(

𝑧 + 𝑒2𝜋𝑖𝑘∕𝑀
)

, 𝑙 ≥ 0. (2.5)

When 𝐋 is real, we can select our contour 𝛤 to be a circle of radius
𝑅. We integrate over the upper-half of the complex plane and take the
real part of the result. By discretizing the contour path with the points

𝑡𝑘 = 𝑅 exp
(

𝑖(𝑘 − 𝑘0)𝜋∕𝑀
)

for 𝑘 = 1, 2, 3,…𝑀, (2.6)

a contour integral

𝜙𝑙(ℎ𝐋) =
1
2𝜋𝑖 ∫𝛤

𝜙𝑙(𝑠)(𝑠𝐈 − ℎ𝐋)−1d𝑠,

an be approximated as

𝑙(ℎ𝐋) =
1
𝑀


𝑀
∑

𝑘=1
𝑡𝑘𝜙𝑙(𝑡𝑘)(𝑡𝑘𝐈 − ℎ𝐋)−1.

Though the approximation in Eq. (2.5) was originally designed
for scalar or diagonal matrices, a general form of Eq. (2.5) intended
for non-diagonal cases is proposed in Ref. 14. This approximation
remedies the numerical instability to a reasonable extent! The functions
in Eqs. (2.4) can now be computed by using Eq. (2.5). For example, 𝑄
can be approximated as follow: let 𝑞 = 𝐋ℎ and the function 𝑄 becomes

𝑄 = 𝐋−1 (𝑒𝐋ℎ∕2 −1
)

= ℎ𝑒
𝑞∕2 −1
𝑞

= ℎ
𝑀

𝑀
∑

𝑘=1

𝑒(𝑞+𝑧𝑘)∕2 − 1
𝑞 + 𝑧𝑘

= ℎ
𝑀

𝑀
∑

𝑘=1

𝑒(𝐋ℎ+𝑧𝑘)∕2 − 1
𝐋ℎ + 𝑧𝑘

,

here 𝑧𝑘 = 𝑒2𝜋𝑖𝑘∕𝑀 denote the roots of unity.
Upon evaluating the functions 𝑄, 𝛼, 𝛽 and 𝛾 which heavily involve

the linear operator as shown in (2.3), we have the choice to evaluate
the nonlinear term spectrally or pseudo-spectrally while carrying out
the Runge–Kutta time-stepping scheme. As we know, the Gardner
equation has two nonlinear terms: 𝑢𝑢𝑥 and 𝑢2𝑢𝑥. The term 𝑢𝑢𝑥 can be
evaluated spectrally by recasting it as (1∕2)(𝑢2)𝑥. Similarly, 𝑢2𝑢𝑥 can be
written as (1∕3)(𝑢3)𝑥. For the present work, we have evaluated both
terms spectrally though the cubic term poses the relatively severe case
of nonlinearity. For complicated nonlinear term (e.g., 𝑢2𝑢𝑥) one can
apply the pseudo-spectral approximation in the following manner: first
evaluate 𝑢𝑥 = 

[

−1(𝑖𝑘𝑢̂)
]

where 𝑢̂ =  (𝑢) – the Fourier transform
of 𝑢; then, 𝑢2𝑢𝑥 can be approximated by multiplying 

[

−1(𝑖𝑘𝑢̂)
]

by
𝑢2. Though pseudospectral approach performs better while evaluating
complicated nonlinear terms, for many cases, using this approach re-
quires setting up substantially small time steps, thus increasing the
overall computational time of the method.

3. Numerical simulations and discussions

In this section, we present the results of numerical experiments car-
ried out by implementing the mETDRK4 scheme on three test problems
in order to demonstrate the efficiency and accuracy of the scheme.
Similar test problems are numerically studied in Ref. 18 where a collo-
cation method based on exponential B-spline is successfully applied. All
the numerical experiments are conducted in MATLAB 9.3 platforms. In
order to determine the accuracy of the schemes, we have measured the
discretized maximum norm errors 𝐿∞ and global relative error (GRE)
defined as:

𝐿∞ = max
𝑖

|𝑒𝑖|, 𝐺𝑅𝐸 =

∑

𝑖
|𝑒𝑖|

∑

|𝑢𝑖|
,

𝑖

3

where 𝑒𝑖 = 𝑢𝑖 − 𝑈𝑖, 𝑢𝑖
(

= 𝑢(𝑥𝑖, 𝑡)
)

, and 𝑈𝑖
(

= 𝑈 (𝑥𝑖, 𝑡)
)

are the 𝑖th exact
and numerical solutions, respectively. The summation is taken over all
grid points together.

The conservation laws also validate the accuracy of the proposed
algorithm. These laws describe the conservation of fundamental phys-
ical quantities. The associated conserved quantities are expected to
keep their initial values as time proceeds.19 Numerical investigation of
associated conserved quantities provides a rigorous validation of the ef-
ficacy of the numerical scheme especially in the case of nonavailability
of the analytical solutions. The lowest three conservation laws are

𝑀 = ∫

∞

−∞
𝑢d𝑥, 𝐸 = ∫

∞

−∞
𝑢2d𝑥, 𝐻 = ∫

∞

−∞

(

𝛼1𝑢
3 + 𝛼2𝑢

4 + 𝛼3(𝑢𝑥)2
)

d𝑥

which correspond to conservation of linear momentum, energy and the
Hamiltonian, respectively. The conserved quantities can be measured
by evaluating the integrals albeit for a finite computational domain
– which is done by employing the trapezoidal numerical integration
method with the aid of a built-in MATLAB function, trapz. To find
the constants 𝛼1, 𝛼2, and 𝛼3, we have used the concept of Fréchet
derivative which is also known as the variational derivative.20 The
Fréchet derivative, 𝛿𝐹∕𝛿𝑢, of the operator 𝐹 {𝑢}, is defined by

∫

∞

−∞
𝑣 𝛿𝐹
𝛿𝑢

d𝑥 = lim
𝜖→0

𝜕
𝜕𝜖 ∫

∞

−∞
𝐹 (𝑢 + 𝜖𝑣)d𝑥

or all continuous 𝑣. Then it can be shown that, if 𝐹 (𝑢) = 𝑓 (𝑢, 𝑢𝑥, 𝑢𝑥𝑥,…),
hen 𝛿𝐹∕𝛿𝑢 corresponds to the Euler–Lagrange operator, i.e.,

𝛿𝐹
𝛿𝑢

=
𝜕𝑓
𝜕𝑢

− d
d𝑥

𝜕𝑓
𝜕𝑢𝑥

+ d2

d𝑥2
𝜕𝑓
𝜕𝑢𝑥𝑥

⋯ . (3.1)

𝐹 (𝑢) can be selected in such a way that upon applying the R.H.S.
expression from Eq. (3.1), we can exactly attain the terms in the R.H.S
of the Eq. (1.1), re-written by keeping only the 𝑢𝑡 term in the L.H.S. and
moving every other terms to the R.H.S. 𝐹 (𝑢) will provide the integrand
in the expression of the Hamiltonian.

In order to measure the absolute relative changes of these quantities
at any time 𝑡 > 0, 𝐶(𝑀𝑡), 𝐶(𝐸𝑡), and 𝐶(𝐻𝑡) are defined as

(𝑀𝑡) =
|

|

|

|

𝑀𝑡 −𝑀0
𝑀0

|

|

|

|

, 𝐶(𝐸𝑡) =
|

|

|

|

𝐸𝑡 − 𝐸0
𝐸0

|

|

|

|

, 𝐶(𝐻𝑡) =
|

|

|

|

𝐻𝑡 −𝐻0
𝐻0

|

|

|

|

,

where 𝑀0, 𝐸0 and 𝐻0 are initial, 𝑀𝑡, 𝐸𝑡 and 𝐻𝑡 are the quantities at
the time 𝑡 > 0.

3.1. Test example 01

In this example, we use the Gardner equation with the parameters
chosen as 𝜇1 = 4, 𝜇2 = −3 and 𝜇3 = 1 for Eq. (1.1) which gives:

𝑢𝑡 + 4𝑢𝑢𝑥 − 3𝑢2𝑢𝑥 + 𝑢𝑥𝑥𝑥 = 0, (3.2)

It admits an exact solution:

𝑢𝑒(𝑥, 𝑡)=
2

12+3
√

14 cosh
[ (−𝑥+5)

3 + 𝑡
27

]

,

which also allows us to avail the initial data 𝑢0(𝑥) = 𝑢(𝑥, 𝑡 = 0). The
Gardner equation produces a single solitary wave with this form. The
solution in fact represents the propagation of an initial positive pulse
as demonstrated in Fig. 1 in the time domain [0, 20]. In Fig. 2, we have
shown the absolute error profile in the same time domain. It can be
noticed that the maximum error stays well within the range of 10−2
ven for such a large time domain. The computational region is fixed
n 𝐼 = [−20, 30] and the time step size (𝛥𝑡) and the spatial step size
(𝛥𝑥) both are set as 0.1.

The discretized maximum norm errors 𝐿∞ and GREs at some dis-
tinct times are reported in Table 1 for the test example 01. Table 1
also includes the values of conserved quantities at distinct times. It can
be observed that values are being preserved as time progresses which
indicates towards a stable numerical scheme. To quantify the deviations
of the conserved quantities from their initial values, we have measured
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Fig. 1. Wave propagation of initial positive pulse for Test Example 01.

Fig. 2. Absolute error profile for the numerical approximation from Test Example 01.

he absolute relative changes (i.e., 𝐶(𝑀𝑡), 𝐶(𝐸𝑡), and 𝐶(𝐻𝑡)) of these
uantities at some distinct time T > 0 which are reported in Table 2.
n the case of linear momentum and energy, they are preserved up to
t least 4 decimal places even for T = 20.0. For the Hamiltonian, the
hange can be noticed only from the 5th decimal digit until T = 10.0. All
alculations are carried out by using the similar computational region
s well as the same time and spatial step size as noted in the previous
aragraph.
Also, for finding the 𝛼1, 𝛼2, and 𝛼3 in the integral of the Hamiltonian

or the Test Example 01, we have used the relation (3.1). If we select

(𝑢) = 𝑓 (𝑢, 𝑢𝑥, 𝑢𝑥𝑥,…) = −2
3
𝑢3 + 1

4
𝑢4 + 1

2
(𝑢𝑥)2,

it can be easily verified that the Hamiltonian formulation of the Eq. (3.2)
will be:
𝜕𝑢
𝜕𝑡

= 𝜕
𝜕𝑥

{ 𝛿
𝛿𝑢

(

−2
3
𝑢3 + 1

4
𝑢4 + 1

2
(𝑢𝑥)2

)}

.

3.2. Test example 02

The second version of the Gardner equation (Eq. (3.3)) that we
modeled using this method yields kink type soliton solutions. The kink
soliton is topological which implies that the boundary conditions at
infinity for the wave are topologically different to the vacuum it is
in Ref. 21. These kink solitons are typically characterized by their

permanent profiles, which means they are time-independent. A good

4

Table 1
GREs, 𝐿∞, and conserved quantities for 𝛥𝑡 = 0.1, 𝑥 ∈ [−20, 30] and 𝛥𝑥 = 0.1 for Test
example 01.
T GRE L∞ Momentum Energy Hamiltonian

0.1 6.8607E–04 3.9238E–05 1.044586714 6.0134543E–02 4.0653191E–03
0.2 1.3698E–03 7.8594E–05 1.044586592 6.0134555E–02 4.0653093E–03
0.5 3.4191E–03 1.9644E–04 1.044586380 6.0134591E–02 4.0652353E–03
1.0 6.8338E–03 3.9367E–04 1.044586162 6.0134651E–02 4.0649633E–03
2.0 1.3661E–02 7.9043E–04 1.044585894 6.0134772E–02 4.0638612E–03
5.0 3.4138E–02 1.9992E–03 1.044585455 6.0135124E–02 4.0560559E–03
10.0 6.8243E–02 4.0891E–03 1.044585000 6.0135644E–02 4.0275851E–03
15.0 1.0232E–01 6.2571E–03 1.044584742 6.0135996E–02 3.9067078E–03

Table 2
Absolute relative changes of conserved quantities at different time T for 𝛥𝑡 = 0.1,
𝑥 ∈ [−20, 30] and 𝛥𝑥 = 0.1 for Test example 01.
T 𝑀0 𝐸0 𝐻0 𝐶(𝑀𝑇 ) 𝐶(𝐸𝑇 ) 𝐶(𝐻𝑇 )

1.0 1.044587 6.01345E–02 4.06532E–03 8.673E–07 2.009E–06 8.808E–05
5.0 1.044587 6.01345E–02 4.06532E–03 1.544E–06 9.870E–06 2.279E–03
10.0 1.044587 6.01345E–02 4.06532E–03 1.980E–06 1.852E–05 9.282E–03
15.0 1.044587 6.01345E–02 4.06532E–03 2.227E–06 2.436E–05 2.137E–02
20.0 1.044587 6.01345E–02 4.06532E–03 2.384E–06 2.521E–05 3.902E–02

real-world example of a kink solution is a Bloch wall between two
magnetic domains in a ferromagnet. The parameters are chosen as
𝜇1 = 1, 𝜇2 = −5 and 𝜇3 = 1 which yields

𝑢𝑡 + 𝑢𝑢𝑥 − 5𝑢2𝑢𝑥 + 𝑢𝑥𝑥𝑥 = 0. (3.3)

This equation has an exact solution:

𝑢𝑒(𝑥, 𝑡)=
1
10

(

1 − tanh

(
√

30
60

(

𝑥 − 𝑡
30

)

))

,

which allows us to derive the initial condition 𝑢0(𝑥) = 𝑢(𝑥, 𝑡 = 0).
The mETDRK4 algorithm is applied to find the numerical solutions to
Eq. (3.3). Similar to the Test Example 01, the discretized maximum
norm errors 𝐿∞ and GREs at some distinct times are measured and
reported in Table 3. The scheme is allowed to run up to the final
time 𝑡 = 20 in the finite interval [−80, 80]. The kink wave profile and
the absolute error profile are shown in Fig. 3 and Fig. 4, respectively.
The time step size (𝛥𝑡) and the spatial step size (𝛥𝑥) both are fixed as
0.1. From Fig. 4, it is obvious that maximum error stays well within
the range of 10−3 even for (𝑡 = 20). Also the error is larger around
= 0 which is expected from kink-shape wave. We have also tabulated
bsolute relative changes in the conserved quantities at some distinct
ime T > 0 in Table 4. The magnitude of changes in all three conserved
quantities for Test Example 02 remain essentially in the same range as
that observed for Test Example 01. It is obvious that all three conserved
quantities remain unchanged up to at least four decimal digits for
various simulation time.

3.3. Test example 03

Next, we study the conservation of the linear momentum, energy
and the Hamiltonian for the following form of the Gardner equation

𝑢𝑡 + 6𝑢𝑢𝑥 + 6𝑢2𝑢𝑥 + 𝑢𝑥𝑥𝑥 = 0, (3.4)

by using the Gaussian initial condition, 𝑢(𝑥, 0) = 𝑒−𝑥2 . Table 5 depicts the
measurement of three conserved quantities over the interval [−80, 80]
until the final time T = 20. In can be observed that conservation is good
throughout the simulation. The conservation of momentum is preserved
up to 4 decimal places until large simulation time T = 10. Similarly, the
magnitude of deviation for energy is measured beyond 10−2 only after
T = 10. Though for the Hamiltonian, similar magnitude of deviation in
the conserved quantity occurs around T = 5.

We conclude this section by noting an important observation re-

garding the choice of contour 𝛤 . It was clearly stated in the paper
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Fig. 3. Propagation of Kink type wave for Test Example 02.

Fig. 4. Absolute error profile for the numerical approximation from Test Example 02.

Table 3
GREs, 𝐿∞ and conserved quantities for 𝛥𝑡 = 0.1, 𝑥 ∈ [−80, 80] and 𝛥𝑥 = 0.1 for Test
example 02.
Time GRE L∞ Momentum Energy Hamiltonian

0.1 5.1442E–05 2.9570E–05 15.99999987 2.9809121 1.0897243E–01
0.2 1.0288E–04 5.9142E–05 15.99999973 2.9809129 1.0897331E–01
0.5 2.5720E–04 1.4786E–04 15.99999933 2.9809156 1.0897603E–01
1.0 5.1438E–04 2.9575E–04 15.99999865 2.9809201 1.0898094E–01
2.0 1.0287E–03 5.9159E–04 15.99999725 2.9809291 1.0899217E–01
5.0 2.5709E–03 1.4796E–03 15.99999283 2.9809569 1.0903716E–01
10.0 5.1393E–03 2.9610E–03 15.99998466 2.9810057 1.0915006E–01
15.0 7.7049E–03 4.4434E–03 15.99997554 2.9810575 1.0931084E–01

Table 4
Absolute relative changes of conserved quantities at different time T for 𝛥𝑡 = 0.1,
∈ [−80, 80] and 𝛥𝑥 = 0.1 for Test example 02.
T 𝑀0 𝐸0 𝐻0 𝐶(𝑀𝑇 ) 𝐶(𝐸𝑇 ) 𝐶(𝐻𝑇 )

1.0 16.0 2.9809112 1.08972E–01 8.438E–08 2.989E–06 8.583E–05
5.0 16.0 2.9809112 1.08972E–01 4.481E–07 1.535E–05 6.018E–04
10.0 16.0 2.9809112 1.08972E–01 9.588E–07 3.172E–05 1.638E–03
15.0 16.0 2.9809112 1.08972E–01 1.529E–06 4.910E–05 3.113E–03
20.0 16.0 2.9809112 1.08972E–01 2.155E–06 6.745E–05 5.035E–03

by Kassam and Trefethen14 that selection of contour depends on the
roblem under consideration. According to,14 one must ensure that the
igenvalues are enclosed by the contour and it can be achieved through
ifferent choices. In their paper, they suggested to take 𝛤 to be a circle
5

Table 5
Conserved quantities for 𝛥𝑡 = 0.1, 𝑥 ∈ [−80, 80] and 𝛥𝑥 = 0.1 for Test example 03.
Time Momentum Energy Hamiltonian

0.0 1.691436609 0.8756760777 21.19962092
0.1 1.691436608 0.8756804146 21.19977423
0.2 1.691436602 0.8756821104 21.19986803
0.5 1.691436548 0.8756713664 21.1997926
1.0 1.69143634 0.8756009404 21.19848036
2.0 1.691435482 0.8752672486 21.19145343
5.0 1.691429424 0.8729142508 21.13733488
10.0 1.691408465 0.8670010451 20.96581856
15.0 1.69137624 0.8652143387 20.76894611
20.0 1.691336595 0.8751498617 20.63601928

and to discretize the contour path with 𝑀 (preferably 32 or 64) equally
spaced points

𝑡𝑘 = 1.0 exp (𝑖(𝑘 − 0.5)𝜋∕𝑀) , for 𝑘 = 1, 2,… ,𝑀

before approximating the contour integral.
What we have found is that the choice of the value 𝑘0 = 0.5 (Fig. 5)

s not optimum. Changing this value makes the upper half of the circle
otate. For example, in Fig. 6 where 𝑘0 = 2.5, we can observe that the
leftmost point which was above the positive real axis for 𝑘0 = 0.5, now
oes below it, thus possibly enclosing more eigenvalues situated at the
haded region and consequently improving the error estimates.
In this context, one numerical approach introduced by Schmelzer22

is worth mentioning. Schemlzer made the existing approach more effi-
cient by using the complex contour approach only for values of 𝑧 close
to the pole, e.g., |𝑧| < 1∕2. This requires a special care when devising an
algorithm to compute the contour integrals while employing different
approach to the values of 𝑧 based on their proximity to the pole. We
wish to address this issue in detail elsewhere.

4. Conclusion

The Fourier spectral modified ETD method with Runge–Kutta time
marching (mETDRK4) is implemented to solve the Gardner equations –
a nonlinear PDE from the KdV family which consists of two nonlinear
terms. The scheme introduces a novel concept of using contour integral
method to evaluate terms usually prone to numerical instability when
eigenvalues are close to zero. Though current problem poses the chal-
lenge of severe nonlinearity, the differentiation is carried out spectrally
in order to avoid using very small time step size. The performance
and applicability of the scheme have been investigated by testing it on
several test problems – especially evaluating the discretized maximum
norm errors and global relative errors. The first Gardner equation
yields single solitary wave and the second one yields kink-type soliton
solutions. Another version of the Gardner equation with Gaussian
initial condition is also numerically studied. The computed numerical
solutions maintain good accuracy compared with the respective exact
solutions. The conserved quantities are also evaluated along with their
absolute relative changes to observe the validity and accuracy of the
scheme even when there exists no exact solution. It is also argued that
rearranging the contour points which discretize the contour path could
be effective to improve the accuracy of the numerical approximations.

It must be noted that the mETDRK4 scheme is not completely free
of limitations. It suffers from limitations such as (a) it is fairly slow
– need 𝑀 matrix inverses; (b) one needs to know where eigenvalues
are; and (c) inaccurate if contour too large: error ∝ 𝑅𝑀∕𝑀!. Despite
these drawbacks, it has been quite popular since its inception because
it allows a control of the accuracy in evaluating functions (𝜙𝑙) prone
to numerical instabilities. In fact, it is sufficient to use a small number
of Fourier modes in the numerical evaluation of the complex contour
integral in order to attain machine accuracy while determining 𝜙𝑙 func-
tions. Building on this work, more improved exponential integrators are
derived for solving stiff PDEs. Since exponential integrators require the
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e

Fig. 5. Contour Region by setting 𝑘0 = 0.5 according to Eq. (2.6).
Fig. 6. Contour Region by setting 𝑘0 = 2.5 according to Eq. (2.6).
valuation of 𝑓 (A) where A is a negative semidefinite matrix and 𝑓 is
an exponential function or 𝜙𝑙-type functions, more efforts were made in
devising schemes to better tackle the issue of numerical approximation
of 𝜙𝑙 functions. Many novel approaches were introduced in this con-
text which includes using uniform rational Chebyshev approximations,
scaling and squaring or the application of the Trapezoid rule on Talbot-
type contours.23 It is also shown that the computation of these functions
does not require significant amount of additional time while extended
to the problems with higher spatial dimension. Application of these
schemes for (2+1)-dimensional Gardner or other KdV-type equations is
yet under investigation, and will be the subject of future research.
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