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WEAK SINDy: GALERKIN-BASED DATA-DRIVEN MODEL
SELECTION∗

DANIEL A. MESSENGER† AND DAVID M. BORTZ†

Abstract. We present a novel weak formulation and discretization for discovering governing
equations from noisy measurement data. This method of learning differential equations from data
fits into a new class of algorithms that replace pointwise derivative approximations with linear trans-
formations and variance reduction techniques. Compared to the standard SINDy algorithm presented
in [S. L. Brunton, J. L. Proctor, and J. N. Kutz, Proc. Natl. Acad. Sci. USA, 113 (2016), pp. 3932–
3937], our so-called weak SINDy (WSINDy) algorithm allows for reliable model identification from
data with large noise (often with ratios greater than 0.1) and reduces the error in the recovered co-
efficients to enable accurate prediction. Moreover, the coefficient error scales linearly with the noise
level, leading to high-accuracy recovery in the low-noise regime. Altogether, WSINDy combines the
simplicity and efficiency of the SINDy algorithm with the natural noise reduction of integration, as
demonstrated in [H. Schaeffer and S. G. McCalla, Phys. Rev. E, 96 (2017), 023302], to arrive at a
robust and accurate method of sparse recovery.
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1. Problem statement. Consider a first-order dynamical system in D dimen-
sions of the form

(1.1)
d

dt
x(t) = F(x(t)), x(0) = x0 ∈ R

D, 0 ≤ t ≤ T,

and measurement data y ∈ R
M×D given at M timepoints t = (t1, . . . , tM )T by

ymd = xd(tm) + ǫmd, m ∈ [M ], d ∈ [D],

where throughout we use the bracket notation [M ] := {1, . . . ,M}. The variable ǫ ∈
R

M×D represents a matrix of independent and identically distributed measurement
noise. The focus of this article is the reconstruction of the dynamics (1.1) from the
measurements y.

The SINDy algorithm (sparse identification of nonlinear dynamics [4]) has been
shown to be successful in solving this problem for sparsely represented nonlinear
dynamics when noise is small and dynamic scales do not vary across multiple orders
of magnitude. This framework assumes that the function F : RD → R

D in (1.1) is
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given componentwise by

(1.2) Fd(x(t)) =
J∑

j=1

w⋆
jd fj(x(t))

for some known family of functions (fj)j∈[J] and a sparse weight matrix w⋆ ∈ R
J×D.

The problem is then transformed into solving for w⋆ by building a data matrix Θ(y) ∈
R

M×J given by

Θ(y)mj = fj(ym), ym := (ym1, . . . ,ymD),

so that the candidate functions are directly evaluated at the noisy data. Solving (1.1)
for F then reduces to identifying a sparse weight matrix ŵ such that

(1.3) ẏ ≈ Θ(y) ŵ,

where ẏ is the numerical time derivative of the data y. Sequential-thresholding least
squares is then used to arrive at a sparse solution.

1.1. Background. Research into statistically rigorous selection of mathematical
models from data can be traced back to Akaike’s seminal work in the 1970s [1, 2]. In
the last 20 years, there has been substantial work in this area at the interface between
applied mathematics, computer science, and statistics (see [3, 11, 12, 19, 22, 23] for
both theory and applications). More recently, the formulation of system discovery
problems in terms of a candidate basis of nonlinear functions (1.2) and subsequent
discretization (1.3) was introduced in [21] in the context of catastrophe prediction.
The authors of [21] used compressed sensing techniques to enforce sparsity. Since then
there has been an explosion of interest in the problem of identifying nonlinear dynam-
ical systems from data, with some of the primary techniques being Gaussian process
regression [15], deep neural networks [16], Bayesian inference [26, 27], and classical
methods from numerical analysis [7, 9, 25]. These techniques have been successfully
applied to the discovery of both ordinary and partial differential equations.

The variety of discovery algorithms qualitatively differ in the interpretability of
the resulting data-driven dynamical system, the scope and efficiency of the algorithm,
and the robustness to noise, scale separation, etc. For instance, a neural network
based data-driven dynamical system does not easily lend itself to physical interpreta-
tion, while the SINDy algorithm identifies governing equations which can be analyzed
directly. Moreover, it is also well-known that the training stage for neural networks
and other iterative learning algorithms can be computationally costly. Concerning the
scope of an algorithm, several methods have been independently developed to discover
models under the assumption of some prior knowledge of the governing equations, no-
tably for low-degree polynomial chaotic systems, cyclic ODEs, interacting particles,
and Hamiltonian dynamics [20, 18, 13, 24]. In each of these cases the authors derive
probabilistic recovery guarantees depending on the number of available trajectories,
the size of the candidate model library, the level of incoherence of the data, and/or
the sparsity of the governing equations.

The vast majority of algorithms and recovery guarantees assume that pointwise
derivatives of the data either are available or can be reliably computed. This severely
limits an algorithm’s robustness to noise and hence its applicability to real world data.
Here we relax this assumption and provide rigorous justification for the weak formu-
lation of the dynamics as a means to circumvent this ubiquitous problem in model
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1476 DANIEL A. MESSENGER AND DAVID M. BORTZ

selection. Building off of the SINDy framework, we present the robust discovery al-
gorithm WSINDy (weak SINDy), which operates under the assumption that the time
derivative is unavailable and that the only prior knowledge of the governing equations
is their inclusion in a large model library. We also focus on the realistic scenario
where only a single noisy trajectory of the state variable is available; however, exten-
sion to multiple trajectories is of course possible. For simplicity, we restrict numerical
experiments to autonomous ODEs for their amenability to analysis. Natural next
steps are to explore identification of PDEs and nonautonomous dynamical systems.
We note that the use of integral equations for system identification was introduced
in [17], where compressed sensing techniques were used to enforce sparsity, and that
this technique can be seen as a special case of the method introduced here.

In section 2 we introduce the algorithm with analysis of the resulting error struc-
ture. Section 3 contains numerical results showing identification of six ODE systems
over a range of noise levels and parameter regimes. In section 4, we provide conclud-
ing remarks as well as natural next directions for this line of research. In Appendix
A we include a detailed comparison between WSINDy and SINDy as well as further
information on the generalized least squares method.

2. WSINDy. We approach the problem of system identification (1.3) from a
nonstandard perspective by utilizing the weak form of the differential equation. Recall
that for any smooth test function φ : R → R (absolutely continuous is sufficient) and
interval (a, b) ⊂ [0, T ], (1.1) admits the weak formulation
(2.1)

φ(b)x(b)− φ(a)x(a)−
∫ b

a

φ′(u)x(u) du =

∫ b

a

φ(u)F(x(u)) du, 0 ≤ a < b ≤ T.

With φ = 1, we arrive at the integral equation of the dynamics explored in [17]. If we
instead take φ to be nonconstant and compactly supported in (a, b), we arrive at

(2.2) −
∫ b

a

φ′(u)x(u) du =

∫ b

a

φ(u)F(x(u)) du.

Assuming a representation of the form (1.2), we then define the generalized residual
R(w;φ) for a given test function φ by replacing F with a candidate element from the
span of (fj)j∈[J] and x with y as follows:

(2.3) R(w;φ) :=

∫ b

a


φ′(u)y(u) + φ(u)




J∑

j=1

wj fj(y(u))




 du.

Clearly, with w = w⋆ and y = x(t) we have R(w;φ) = 0 for all φ compactly
supported in (a, b); however, y is a discrete set of data, so (2.3) can at best be
approximated numerically. Measurement noise then presents a significant barrier to
accurate indentification of w⋆.

2.1. Method overview. For analogy with traditional Galerkin methods, con-
sider the forward problem of solving a dynamical system such as (1.1) for x. The
Galerkin approach is to seek a solution x represented in a chosen trial basis (fj)j∈[J]

such that the residual R, defined by

R =

∫
φ(t)(ẋ(t)− F(x(t))) dt,
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is minimized over all test functions φ living in the span of a given test function basis
(φk)k∈[K]. If the trial and test function bases are known analytically, inner products
of the form 〈fj , φk〉 appearing in the residual can be computed exactly. Thus, the
computational error results only from representing the solution in a finite-dimensional
function space.

The method we present here can be considered a data-driven Galerkin method of
solving for F where the trial “basis” is given by the set of gridfunctions (fj(y))j∈[J]

evaluated at the data and only the test function basis (φk)k∈[K] is known analytically.
In this way, inner products appearing in R(w;φ) must be approximated numerically,
implying that the accuracy of the recovered weights ŵ is ultimately limited by the
quadrature scheme used to discretize inner products. Using Lemma 2 below, we show
that the correct coefficients w⋆ may be recovered to effective machine precision accu-
racy (given by the tolerance of the forward ODE solver) from noise-free trajectories
y by discretizing (2.2) using the trapezoidal rule and choosing φ to decay smoothly
to zero at the boundaries of its support. Specifically, in this article we demonstrate
this fact by choosing test functions from a particular family of unimodal piecewise
polynomials S defined in (2.6).

Having chosen a quadrature scheme, the next accuracy barrier is presented by
measurement noise, introducing randomness into the residuals R(w;φ). Numerical
integration then couples residuals R(w;φ1) and R(w;φ2) whenever φ1 and φ2 have
overlapping support. In this way, R(w;φ) does not have an ideal error structure for
least squares but may be amenable to generalized least squares. Below we analyze the
distribution of the residuals R(w;φ) to arrive at a generalized least squares approach
where an approximate covariance matrix can be computed directly from the test
functions. This analysis also suggests that placing test functions near steep gradients
in the dynamics may improve recovery; hence we develop a derivative-free method for
adaptively clustering test functions near steep gradients.

Remark 1. The weak formulation of the dynamics introduces a wealth of infor-
mation: given M timepoints t = (tm)m∈[M ], (2.2) affords K =M(M − 1)/2 residuals
over all possible supports (a, b) ⊂ t×t with a < b. Of course, one could also assimilate
the responses of multiple families of test functions

(
{φ1k}k∈[K1], {φ2k}k∈[K2], . . .

)
; how-

ever, the computational complexity of such an exhaustive approach quickly becomes
intractable. We stress that even with large noise, our proposed method identifies the
correct nonlinearities with accurate weight recovery while keeping the number of test
functions lower than the number of timepoints (K < M).

2.2. Algorithm: WSINDy. We state here the WSINDy algorithm in full gen-
erality. We propose a generalized least squares approach with approximate covariance
matrix Σ. Below we derive a particular choice of Σ which utilizes the action of the test
functions (φk)k∈[K] on the data y. Sequential thresholding on the weight coefficients
w with thresholding parameter λ is used to enforce sparsity, where λ ≤ minw⋆ 6=0 |w⋆|
is necessary for recovery. Lastly, an ℓ2-regularization term with coefficient γ is in-
cluded for problems involving rank deficiency. Methods of choosing optimal values of
λ and γ directly from a given dataset do exist, for instance, by selecting the optimal
position in a Pareto front [5]; however, this is not the focus of our current study,
and thus we select values that work across multiple examples. Specifically, in the
experiments below we set γ = 0 with the exception of the nonlinear pendulum and
the five-dimensional linear system, examples which show that regularization can be
used to discover dynamics from excessively large libraries. For noise-free data the
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1478 DANIEL A. MESSENGER AND DAVID M. BORTZ

algorithm is only weakly dependent on λ, and so we use λ = 0.001, while for noisy
data we set λ = 1

4 minw⋆ 6=0 |w⋆|.
ŵ = WSINDy

(
y, t ; (φk)k∈[K], (fj)j∈[J], Σ, λ, γ

)
:

1. Construct matrix of trial gridfunctions Θ(y) =
[
f1(y) | . . . | fJ(y)

]
.

2. Construct integration matrices V, V′ such that

Vkm = ∆tφk(tm), V′
km = ∆tφ′k(tm).

3. Compute Gram matrix G = VΘ(y) and right-hand side b = −V′y so that
Gkj = 〈φk, fj(y)〉 and bkd = −〈φ′k,yd〉.

4. Solve the generalized least squares problem with ℓ2-regularization

ŵ = argminw

{
(Gw − b)TΣ−1(Gw − b) + γ2 ‖w‖22

}
,

using sequential thresholding with parameter λ to enforce sparsity.
With this as our core algorithm, we can now consider a residual analysis (section 2.3)
leading to a generalized least squares framework. We can also develop theoretical
results related to the test functions (section 2.4), yielding a more thorough under-
standing of the impact of using uniform (section 2.4.1) and adaptive (section 2.4.2)
placement of test functions along the time axis.

2.3. Residual analysis. Performance of WSINDy is determined by the behav-
ior of the residuals

R(w;φk) := (Gw − b)k ∈ R
1×D,

denoted R(w) ∈ R
K×D for the entire residual matrix. Here we analyze the residual

for autonomous F to highlight key aspects for future analysis, as well as to arrive
at an appropriate choice of approximate covariance Σ. We also provide a heuristic
argument in favor of placing test functions near steep gradients in the dynamics.

A key difficulty in recovering the true weights w⋆ is that for nonlinear systems
the residual evaluated at the true weights w⋆ is biased: E[R(w⋆)] 6= 0. Any mini-
mization of R thus introduces a bias in the recovered weights ŵ. Nevertheless, we
can understand how different test functions impact the residual by linearizing around
the true trajectory x(t) and isolating the dominant error terms:

R(w;φk) = 〈φk, Θ(y)w〉+ 〈φ′k, y〉
= 〈φk, Θ(y)(w −w⋆)〉+ 〈φk, Θ(y)w⋆〉+ 〈φ′k, y〉
= 〈φk, Θ(y)(w −w⋆)〉+ 〈φk, F(y)− F(x)〉+ 〈φ′k, ǫ〉+ Ik

= 〈φk, Θ(y)(w −w⋆)〉︸ ︷︷ ︸
R1

+ 〈φk, ǫ∇F(x)〉︸ ︷︷ ︸
R2

+ 〈φ′k, ǫ〉︸ ︷︷ ︸
R3

+Ik +O(ǫ2),

where ∇F (x)dd′ = ∂Fd′

∂xd
(x). The errors manifest in the following ways:

• R1 is the misfit between w and w⋆.
• R2 results from measurement error in trial gridfunctions: fj(y) = fj(x+ǫ) 6=
fj(x).

• R3 results from replacing x with y = x+ ǫ in the left-hand side of (2.2).
• Ik is a deterministic integration error.
• O(ǫ2) is the remainder term in the truncated Taylor expansion of F(y) around
x:

F(ym) = F(x(tm)) + ǫm∇F(x(tm)) +O(|ǫm|2).
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Clearly, recovery of F when ǫ = 0 is straightforward: R1 and Ik are the only error
terms; thus one only needs to select a quadrature scheme that ensures that the in-
tegration error Ik is negligible and ŵ = w⋆ will be the minimizer. A primary focus
of this study is the use of a specific family of piecewise polynomial test functions S
defined below for which the trapezoidal rule is highly accurate (see Lemma 2). Figure
3.1 demonstrates this fact on noise-free data.

For ǫ > 0, accurate recovery of F requires one to choose hyperparameters that
exemplify the true misfit term R1 by enforcing that the other error terms are of lower
order. We look for (φk)k∈[K] and Σ = CCT that approximately enforce C−1R(w⋆) ∼
N (0, σ2I), justifying the least squares approach. In the next subsection we address
the issue of approximating the covariance matrix, providing justification for using
Σ = V′(V′)T . The following subsection provides a heuristic argument for how to
reduce corruption from the error terms R2 and R3 by placing test functions near
steep gradients in the data.

2.3.1. Approximate covariance Σ. Neglecting the deterministic integration
error, which can be made small (see Lemma 2 below), and higher-order noise terms,
the residual evaluated at the true weights is approximately

R(w⋆;φk) ≈ R2 +R3,

where E [R2] = E [R3] = (0, . . . , 0) implies that E[R(w⋆)] = 0 to leading order. Given
the variances

V [R2] = V [〈φk, ǫ∇F(x)〉] = ∆t σ2
(∥∥φk |∇F1(x)|

∥∥2
2
, . . . ,

∥∥φk |∇FD(x)|
∥∥2
2

)

and

V [R3] = V [〈φ′k, ǫ〉] = ∆t σ2
(
‖φ′k‖

2
2 , . . . , ‖φ′k‖

2
2

)
,

the true distribution of R(w⋆) depends on F, which is not known a priori. If it holds
that ‖φ′k‖2 ≫ ‖φk |∇Fd(x)|‖2, d ∈ [D], a leading order approximation to Cov(R(w⋆))
is

Σ := V′ (V′)
T ∝ Cov(R3),

using that Cov(R3)ij = ∆tσ2〈φ′i, φ′j〉. For this reason, we employ localized test func-

tions and adopt the heuristic Σ = V′(V′)T below.

2.3.2. Adaptive refinement. Next we show that by localizing φk around large
|ẋ|, we get an approximate cancellation of the error terms R2 and R3. Consider the
one-dimensional case (D = 1) where m is an arbitrary time index and ym = x(tm)+ ǫ
is an observation. When |ẋ(tm)| is large compared to ǫ, we approximately have

(2.4) ym = x(tm) + ǫm ≈ x(tm + δt) ≈ x(tm) + δtF(x(tm))

for some small δt, i.e., the perturbed value ym lands close to the true trajectory x at
the time tm + δt. To understand the heuristic behind this approximation, let tm + δt
be the point of intersection between the tangent line to x(t) at tm and x(tm) + ǫ.
Then

δt =
ǫ

ẋ(tm)
;

hence |ẋ(tm)| ≫ ǫ implies that x(tm)+ ǫ will approximately lie on the true trajectory.
As well, regions where |ẋ(tm)| is small will not yield accurate recovery in the case of
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noisy data, since perturbations are more likely to exit the relevant region of phase
space. If we linearize F using the approximation (2.4) we get

(2.5) F(ym) ≈ F(x(tm)) + δtF′(x(tm))F(x(tm)) = F(x(tm)) + δtẍ(tm).

Assuming φk is sufficiently localized around tm, (2.4) also implies that

〈φ′k,x〉+ 〈φ′k, ǫ〉︸ ︷︷ ︸
R3

= 〈φ′k,y〉 ≈ 〈φ′k,x〉+ δt 〈φ′k,F(x)〉 ;

hence R3 ≈ δt 〈φ′k,F(x)〉, while (2.5) implies

〈φk,Θ(y)w〉 = 〈φk,Θ(y)(w −w⋆)〉︸ ︷︷ ︸
=R1

+ 〈φk,F(y)〉

≈ 〈φk,Θ(y)(w −w⋆)〉+ 〈φk,F(x)〉+ δt 〈φk, ẍ〉︸ ︷︷ ︸
≈R2

= 〈φk,Θ(y)(w −w⋆)〉+ 〈φk,F(x)〉 − δt 〈φ′k,F(x)〉 ,

having integrated by parts. Collecting the terms together yields that the residual
takes the form

R(w;φk) = 〈φ′k,y〉+ 〈φk,Θ(y)w〉 ≈ R1,

and we see that R2 and R3 have effectively cancelled. In higher dimensions this
interpretation does not appear to be as illuminating, but nevertheless, for any given
coordinate xd, it does hold that terms in the error expansion vanish around points tm
where |ẋd| is large, precisely because xd(tm) + ǫ ≈ xd(tm + δt).

2.4. Test function basis (φk)k∈[K]. Here we introduce a test function space
S and quadrature scheme to minimize integration errors and enact the heuristic argu-
ments above, which rely on φk having fast decay to its support boundaries and being
sufficiently localized to ensure ‖φ′k‖

2
2 ≫ ‖φk‖22. We define the space S of unimodal

piecewise polynomials of the form

(2.6) φ(t) =

{
C(t− a)p(b− t)q t ∈ [a, b],

0 otherwise,

where (a, b) ⊂ t× t satisfies a < b and p, q ≥ 1. The normalization

C =
1

ppqq

(
p+ q

b− a

)p+q

ensures that ‖φ‖∞ = 1. Functions φ ∈ S are nonnegative, unimodal, and compactly
supported in [0, T ] with ⌊min{p, q}⌋− 1 continuous derivatives. Larger p and q imply
faster decay towards the endpoints of the support. For p = q, we refer to p as the
degree of φ.

To ensure the integration error in approximating inner products 〈fj , φk〉 is negligi-
ble, we rely on the following lemma, which provides a bound on the error in discretizing
the weak derivative relation

(2.7) −
∫
φ′f dt =

∫
φf ′ dt

using the trapezoidal rule for compactly supported φ. Following the lemma we intro-
duce two strategies for choosing the parameters of the test functions (φk)k∈[K] ⊂ S.
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Lemma 2 (numerical error in weak derivatives). Let f, φ have continuous deriv-

atives of order p, and define tj = a+ j b−a
N = a+ j∆t. If φ has roots φ(a) = φ(b) = 0

of multiplicity p, then

(2.8)
∆t

2

N−1∑

j=0

[
g(tj) + g(tj+1)

]
= O(∆tp+1),

where g(t) = φ′(t)f(t) + φ(t)f ′(t). In other words, the composite trapezoidal rule

discretizes the weak derivative relation (2.7) to order p+ 1.

Proof. This is a simple consequence of the Euler-Maclaurin formula. If g : [a, b] →
C is a smooth function, then the following asymptotic expansion holds:

∆t

2

N−1∑

j=0

[g(tj) + g(tj+1)] ∼
∫ b

a

g(t) dt+
∞∑

k=1

∆t2kB2k

(2k)!

(
g(2k−1)(b)− g(2k−1)(a)

)
,

where B2k are the Bernoulli numbers. The asymptotic expansion provides corrections
to the trapezoidal rule that realize machine precision accuracy up until a certain value
of k, after which terms in the expansion grow and the series diverges [6, Chapter 3].
In our case, g(t) = φ′(t)f(t) + φ(t)f ′(t), where the root conditions on φ imply that

∫ b

a

g(t) dt = 0 and g(k)(b) = g(k)(a) = 0, 0 ≤ k ≤ p− 1.

So for p odd, we have that

∆t

2

N−1∑

j=0

[g(tj) + g(tj+1)] ∼
∞∑

k=(p+1)/2

∆t2kB2k

(2k)!

(
g(2k−1)(b)− g(2k−1)(a)

)

=
Bp+1

(p+ 1)!
(φ(p)(b)f(b)− φ(p)(a)f(a))∆tp+1 +O

(
∆tp+2

)
.

For even p, the leading term is O(∆tp+2) with a slightly different coefficient.

For φ ∈ S with p = q, the exact leading order error in term in (2.8) is

(2.9)
2pBp+1

p+ 1

(
f(b)− f(a)

)
∆tp+1,

which is negligible for a wide range of reasonable p and ∆t values. The Bernoulli
numbers eventually start growing like pp, but for smaller values of p they are moderate.
For instance, with ∆t = 0.1 and f(b)−f(a) = 1, this error term is o(1) up until p = 85,
where it takes the value 0.495352, while for ∆t = 0.01, the error is below machine
precision for all p between 7 and 819. For these reasons, in what follows we choose
test functions (φk)k∈[K] ⊂ S and discretize all integrals using the trapezoidal rule.
Unless otherwise stated, each function φk satisfies p = q and so is fully determined by
the tuple {pk, ak, bk} indicating its polynomial degree and support. In the next two
subsections we propose two different strategies for determining φk using the data y.

2.4.1. Strategy 1: Uniform grid. The simplest strategy for choosing a basis
of test functions (φk)k∈[K] ⊂ S is to place φk uniformly on the interval [0, T ] with
fixed degree p and fixed support size

L := #{t ∩ supp(φk)}
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(i.e., L is the number of timepoints in t that φk is supported on). The triple (L, p,K)
then defines the scheme, where each piece effects the distribution of the residualR(w).

Step 1: Choosing L. Heuristically, the support size of φk relates to the Fourier
transform of the data. If supp(φk) is small compared to the dominant wavemodes
in the dynamics, then high-frequency noise will dominate the values of the inner
products 〈φ′k,y〉. If supp(φk) is much larger than the dominant wavemodes, then too
much averaging may occur, leading to unresolved dynamics. A natural choice is then
to set L equal to the period of a known active wavemode1 k:

L =

⌊
1

∆t

2π

(2πT/k)

⌋
=

⌊
M

k

⌋
.

In the noise-free and small-noise experiments below we set L = ⌊M
25 ⌋ and leave optimal

selection of L based on Fourier analysis to future work.
Step 2: Determining p. In light of the derivation above of the approximate co-

variance matrix Σ = V′(V′)T , we define the parameter ρ := ‖φ′k‖2 / ‖φk‖2, which
serves as an estimate for the ratio

√
V[R3]/V[R2] between the standard deviations of

the two dominant error terms R3 and R2 in the residual R(w⋆). Larger ρ indicates
better agreement with the approximate covariance matrix Σ, since Σ ∝ Cov(R3).
Furthermore, for φk ∈ S we have the exact formula

ρ2 =
8p2

(b− a)2

(
Γ(2p− 1)Γ(2p+ 1

2 )

Γ(2p+ 1)Γ(2p+ 3
2 )

)
=

p

(b− a)2

(
4p+ 1

p− 1
2

)
,

where Γ(z) =
∫∞

0
tz−1e−t dt is the gamma function. Given ρ2 ≥ (5 + 2

√
6)/(b − a)2,

a polynomial degree p may be selected from ρ using the formula

p =

⌊
1

8

(
((b− a)2ρ2 − 1) +

√
((b− a)2ρ2 − 1)2 − 8(b− a)2ρ2

)⌋
.

Step 3: Determining K. Next we introduce the shift parameter s ∈ [0, 1] defined
by

s := φk(t
∗) s.t. φk(t

∗) = φk+1(t
∗),

which determines K from p and L. In words, s is the height of intersection between
φk and φk+1 and measures the amount of overlap between successive test functions.
More overlap increases the correlation between rows in the residual R(w) and hence
leads to larger off-diagonal elements in the covariance matrix Σ. Larger s implies that
neighboring functions overlap on more points, with s = 1 indicating that φk = φk+1.
Specifically, neighboring test functions overlap on ⌊L(1−

√
1− s1/p)⌋ timepoints. In

Figures 3.2 and 3.3 we vary the parameters ρ and s and observe that results agree
with intuition: larger ρ (better agreement with Σ) and larger s (more test functions)
lead to better recovery of w⋆. We summarize the uniform grid algorithm below.
ŵ = WSINDy UG

(
y, t ; (fj)j∈[J], L, ρ, s, λ, γ

)
:

1. Construct matrix of trial gridfunctions Θ(y) =
[
f1(y) | . . . | fJ(y)

]
.

2. Construct integration matrices V, V′ such that

Vkm = ∆tφk(tm), V′
km = ∆tφ′k(tm)

with the test functions (φk)k∈[K] determined by L, ρ, s as described above.

1Such that Fk(y) :=
∑M−1

j=0 yme−2πijk/M is not negligible.
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Test function φ and derivative −φ′ Approximate total

used to compute v variation |v|

Cumulative distribution ψ =
∫ t |v| dt Data y from the Duffing equation

and resulting grid c

Fig. 2.1. Adaptive grid construction used on data from the Duffing equation with 10% noise
(σNR = 0.1). As desired, the centers c are clustered near steep gradients in the dynamics despite
large measurement noise. (Note −φ(t)′/10 is plotted in the upper-left instead of −φ(t)′ in order to
visualize both φ and φ′.)

3. Compute Gram matrix G = VΘ(y) and right-hand side b = −V′y so that
Gkj = 〈φk, fj(y)〉 and bkd = −〈φ′k,yd〉.

4. Compute approximate covariance and Cholesky factorization Σ = V′(V′)T =
CCT .

5. Solve the generalized least squares problem with ℓ2-regularization

ŵ = argminw

{
(Gw − b)TΣ−1(Gw − b) + γ2 ‖w‖22

}
,

using sequential thresholding with parameter λ to enforce sparsity.

2.4.2. Strategy 2: Adaptive grid. Motivated by the arguments above, we
now introduce an algorithm for constructing a test function basis localized near points
of large change in the dynamics. This occurs in three steps: (1) construct a weak ap-
proximation to the derivative of the dynamics v ≈ ẋ, (2) sample K points c from a
cumulative distribution ψ with density proportional to the total variation |v|, and (3)
construct test functions centered at c using a width-at-half-max parameter rwhm to
determine the parameters (pk, ak, bk) of each function φk. Each of these steps is nu-
merically stable and carried out independently along each coordinate of the dynamics.
A visual diagram is provided in Figure 2.1.
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Step 1: Weak derivative approximation. Define v := −V′
w y, where the matrix

−V′
w enacts a linear convolution with the derivative of a chosen test function φ ∈ S

of degree pw and support size Lw so that

vm = −〈φ′,y〉 = 〈φ, ẏ〉 ≈ ẏm.

The parameters Lw and pw are chosen by the user, with Lw = 5 and pw ≥ 2 cor-
responding to taking a centered finite difference derivative with a 3-point stencil.
Smaller pw results in more smoothing and minimizes the corruption from noise while
still accurately locating steep gradients in the dynamics. For the examples below we
arbitrarily2 use pw = 2 and Lw = 17.

Step 2: Selecting c. Having computed v, define ψ to be the cumulative sum of
|v| normalized so that maxψ = 1. In this way ψ is a valid cumulative distribution
function with density proportional to the total variation of y. We then find c by
sampling from ψ. Let U = [0, 1

K ,
2
K , . . . ,

K−1
K ] with K being the number of the test

functions; we then define c = ψ−1(U), or numerically,

ck = min{t ∈ t : ψ(t) ≥ Uk}.

This stage requires the user to select the number of test functions K.
Step 3: Construction of test functions (φk)k∈[K]. Having chosen the location

ck of the centerpoint for each test function φk, we are left to choose the degree
pk of the polynomial and the supports [ak, bk]. The degree is chosen according to
the width-at-half-max parameter rwhm, which specifies the difference in timepoints
between each center ck and argt{φk(t) = 1/2}, while the supports are chosen such
that φk(bk − ∆t) = 10−16. This gives us a nonlinear system of two equations in
two unknowns which can be easily solved (i.e., using fzero in MATLAB). This can
be done for one reference test functions and the rest of the weights obtained by
translation. The optimal value of rwhm depends on the timescales of the dynamics
and can be chosen from the data using the Fourier transform as in the uniform grid
case; however, for simplicity we set rwhm = ⌊M/100⌋ in the large-noise examples
below.

The adaptive grid WSINDy algorithm is summarized as follows:
ŵ = WSINDy AG

(
y, t ; (fj)j∈[J], pw, Lw,K, rwhm, λ, γ

)
:

1. Construct matrix of trial gridfunctions Θ(y) =
[
f1(y) | . . . | fJ(y)

]
.

2. Construct integration matrices V, V′ such that

Vkm = ∆tφk(tm), V′
km = ∆tφ′k(tm),

with test functions (φk)k∈[K] determined by pw, Lw,K, rwhm as described
above.

3. Compute Gram matrix G = VΘ(y) and right-hand side b = −V′y so that
Gkj = 〈φk, fj(y)〉 and bkd = −〈φ′k,yd〉.

4. Compute approximate covariance and Cholesky factorization Σ = V′(V′)T =
CCT .

5. Solve the generalized least squares problem with ℓ2-regularization

ŵ = argminw

{
(Gw − b)TΣ−1(Gw − b) + γ2 ‖w‖22

}
,

using sequential thresholding with parameter λ to enforce sparsity.

2We find that a lower-degree test function with small support effectively locates steep gradients
in noisy trajectories.
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3. Numerical experiments. We now show that WSINDy is capable of recov-
ering the correct dynamics to high accuracy over a range of noise levels. We examine
the systems in Table 1 which exhibit several canonical dynamics, namely growth and
decay, nonlinear oscillations and chaotic dynamics, in dimensions D ∈ {2, 3, 5}. To
generate true trajectory data we use ode45 in MATLAB with absolute and relative
tolerance 10−10 and collect M samples uniformly3 in time with sampling rate ∆t.
The parameters M and ∆t are chosen to provide a balance between illustrating ODE
behaviors and avoiding an overabundance of observations. Gaussian white noise with
mean zero and variance σ2 is added to the exact trajectories, where σ is computed by
specifying a noise ratio σNR and setting

(3.1) σ = σNR
‖x‖F√
MD

,

where the Frobenius norm of a matrix x ∈ R
M×D is defined by

‖x‖F :=

√√√√
M∑

m=1

D∑

d=1

|xmd|2.

The ratio of noise to signal is then approximately equal to the square root of the
variance: ‖ǫ‖F / ‖x‖F ≈ σ.

We measure the accuracy in the recovered dynamical system using the relative
‖·‖F error in the recovered coefficients,

(3.2) E2(ŵ) =
‖ŵ −w⋆‖F

‖w⋆‖F
,

and the relative ‖·‖F error between the noise-free data x and the data-driven dynamics
xdd along the same timepoints:

(3.3) E2(xdd) =
‖xdd − x‖F

‖x‖F
.

The collection of ODEs in Table 1 are all first-order autonomous systems; however,
they exhibit a diverse range of dynamics. The Linear 5D system (for β < 0) and
Duffing’s equation are both examples of damped oscillators, showing that WSINDy
is able to discern whether such motion is governed by linear or nonlinear coupling
between variables. For β > 0, the Linear 5D system exhibits exponential growth. The
van der Pol oscillator, Lotka–Volterra system, and nonlinear pendulum demonstrate
that a stable limit cycle with abrupt changes may manifest from vastly different
nonlinear mechanisms, which turn out to be identifiable using the weak form. Finally,
the Lorenz system exhibits deterministic chaos, and hence the dynamics cover a wide
range of Fourier modes, which easily become corrupted with noise.

3.1. Noise-free data. The goal of the following noise-free experiments is to
demonstrate convergence of the recovered weights ŵ to the true weights w⋆ to within
the accuracy tolerance of the ODE solver (fixed 10−10 throughout). In light of Lemma
2, this should occur as the decay rate of the test functions (φk)k∈[K] is increased, which
for test functions in class S (see (2.6)) is realized by increasing the polynomial degree

3We leave a detailed study of nonuniform time sampling to future work.
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Table 1

ODEs used in numerical experiments. For Linear 5D, Duffing, van der Pol, and Lotka–Volterra
we measure the accuracy in the recovered system as the parameter β varies (see Table 2).

Name Governing equations M ∆t

Linear 5D






ẋ1 = −x5 + βx1 + x2,

ẋi = −xi−1 + βxi + xi+1, i = 2, 3, 4

ẋ5 = −x4 + βx5 + x1

1401 0.025

Duffing

{
ẋ1 = x2,

ẋ2 = −0.2x2 − 0.2x1 − βx3
1

3001 0.01

Van der Pol

{
ẋ1 = x2,

ẋ2 = βx2(1− x2
1)− x1

3001 0.01

Lotka–Volterra

{
ẋ1 = 3x1 − βx1x2,

ẋ2 = βx1x2 − 6x2
1001 0.01

Nonlinear pendulum

{
ẋ1 = x2,

ẋ2 = − sin(x1)
501 0.1

Lorenz






ẋ1 = 10(x2 − x1),

ẋ2 = x1(28− x3)− x2,

ẋ3 = x1x2 −
8

3
x3

10001 0.001

Table 2

Specifications for parameters used in illustrating simulations in Figure 3.1.

ODE β x(0) L ∆L J(= K)

Linear 5D (−0.3,−0.2,−0.1, 0.1) (10, 0, 0, 0, 0)T 57 5 252

Duffing (0.01, 0.1, 1, 10) (0, 2)T 121 99 29

Van der Pol (0.01, 0.1, 1, 10) (0, 1)T 121 99 29

Lotka–Volterra (0.005, 0.01, 0.1, 1) (1, 1)T 41 33 29

Pendulum — x2(0) = 0, 21 16 29
x1(0) ∈ { 15

16
π, 10

16
π, 5

16
π, 1

16
π}

Lorenz — ∼ U[−15,15]2×[10,40] 401 141 68

p. Hence, over the range of parameter values in Table 2, for each system we test
convergence as p increases. We use the uniform grid approach with shift parameter s
chosen such that the number of test functions equals to the number of trial functions
(K = J), resulting in square Gram matrices G = VΘ(y). The support of the basis
functions along the timegrid t is set to L =

⌊
M
25

⌋
points. The data-driven trial basis

(fj)j∈[J] includes all monomials in the state variables up to degree 5 as well as the
trigonometric terms cos(nyd), sin(nyd) for n = 1, 2 and d ∈ [D]. We set the regu-
larization parameter to zero (γ = 0), with the exception of the nonlinear pendulum,
where γ = 10−8, and the sparsity threshold to λ = 0.001. We note that a nonzero γ
is always necessary to discover the nonlinear pendulum from combined trigonomet-
ric and polynomial libraries since sin(x1) is well-approximated by polynomial terms;
however, the same is not true for low-order polynomial systems. In cases consid-
ered here, sequential thresholding successfully removes trigonometric library terms
for ODE systems with polynomial dynamics despite initially ill-conditioned Gram
matrices G resulting from combining polynomial and trigonometric terms.

Figure 3.1 shows that in the limit of large p, WSINDy recovers the correct weight
matrix w⋆ of each system in Table 1 to an accuracy of O(10−10). For the Linear 5D
system, we vary the growth/decay parameter, showing that the system is identifiable
to high accuracy despite an excessively large trial library (252 terms). For Duffing’s
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(a) Linear 5D (b) Duffing

(c) Van der Pol (d) Lotka–Volterra

(e) Pendulum (f) Lorenz

Fig. 3.1. Noise-free data (σNR = 0): plots of relative coefficient error E2(ŵ) (defined in
(3.2)) vs. p. V1-V4 indicate different ODE parameters (see Table 2). For the Lorenz system the
parameters are fixed, and 40 different initial conditions are sampled from a uniform distribution.
In each case, the recovered coefficients ŵ rapidly converge to within the accuracy of the ODE solver
(10−10).

equation and the van der Pol oscillator, the same convergence trend is observed for β
values spanning several orders of magnitude. Accuracy is slightly worse for the Lotka–
Volterra equation when β = 0.005, which corresponds to highly infrequent predator-
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prey interactions and leads to solutions with large amplitudes and gradients. For the
nonlinear pendulum, we test that WSINDy is able to identify the sin(x1) nonlinearity
for both large and small initial amplitudes, noting that x1(0) = 15

16π ≈ π produces
strongly nonlinear oscillations, while x1(0) = 1

16π produces small-angle oscillations
where sin(x1) ≈ x1. In addition, for the pendulum we use fewer samples (M = 501)
and a larger time step ∆t = 0.1 and hence observe a decreased convergence rate.
For the Lorenz equations we vary the initial conditions, generating 40 random initial
conditions from a region covering the strange attractor, and show convergence over
all cases.

3.2. Small-noise regime. We now turn to the case of low to moderate noise
levels, examining a noise ratio σNR in the range [10−5, 0.04] for the van der Pol os-
cillator and Duffing’s equation. We examine ρ ∈ [1, 7] and s ∈ [0.3, 0.95], where
ρ := ‖φ′k‖2 / ‖φk‖2 and s is the height of intersection of two neighboring test func-
tions φk and φk+1 (with s = 1 leading to φk = φk+1 and s = 0 indicating supp(φk) ∩
supp(φk+1) = ∅). Using the analysis from section 2.3, increasing ρ affects the dis-
tribution of the residual R(w) by magnifying the portion R3 = 〈φ′k, ǫ〉 that is lin-
ear in the noise. For φ ∈ S, larger ρ corresponds to a higher polynomial degree
p, with ρ ∈ [1, 7] leading to p ∈ [2, 98]. Larger shift parameter s corresponds to
more test functions (higher K) but also to higher correlation between rows in G,
as 〈φk, fj(y)〉 ≈ 〈φk+1, fj(y)〉 when the supports of φk and φk+1 sufficiently over-
lap. Here s ∈ [0.3, 0.95] corresponds to K ∈ [14, 451]. We again use the uniform
grid approach with γ = 0 and λ = 1

4 minw⋆
j
6=0 |w⋆

j |. For each system we generate 200
instantiations of noise and record the coefficient error over the range of s and ρ values.

From Figures 3.2 and 3.3 we observe two properties. Firstly, the coefficient error
E2(ŵ) monotonically deceases with increasing s and ρ; hence accurate recovery re-

Fig. 3.2. Small-noise regime: dynamic recovery of the Duffing equation with β = 1. Top: heat
map of the log10 average error E2(ŵ) (left) and sample standard deviation of E2(ŵ) (right) over
200 instantiations of noise with σNR = 0.04 (4% noise) vs. ρ and s. Bottom: E2(ŵ) vs. ρ for fixed
s = 0.5 and various σNR. For ρ > 3 the average error is roughly an order of magnitude below σNR.
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Fig. 3.3. Small-noise regime: dynamic recovery of the van der Pol oscillator with β = 4. Top:
heat map of the log10 average error E2(ŵ) (left) and sample standard deviation of E2(ŵ) (right)
over 200 instantiations of noise with σNR = 0.04 (4% noise) vs. ρ and s. Bottom: E2(ŵ) vs. ρ for
fixed s = 0.5 and various σNR. Similar to the Duffing equation, average error falls to roughly an
order of magnitude below σNR, although for van der Pol this regime is reached when ρ ≈ 6.

quires sufficient overlap between test functions (large enough shift parameter s) and
sufficiently localized test functions that amplify the portion of the residual that is lin-
ear in the noise. Secondly, for large enough ρ and s, the error in the coefficients scales
linearly with σNR, leading to an accuracy of E2(ŵ) ≈ 0.1σNR, or − log10(0.1σNR)
significant digits in the recovered coefficients. In Appendix A we show that this second
property does not hold for standard SINDy; in particular, the method of differentia-
tion must change depending on the noise level in order to reach a desired accuracy.

3.3. Large-noise regime. Figures 3.4 to 3.9 show that adaptive placement
of test functions (Strategy 2) can be employed to discover dynamics in the large-
noise regime with fewer test functions. We test that each system in Table 1 can be
discovered under σNR = 0.1 (10% noise) from only 250 test functions distributed near
steep gradients in y, which are located using the scheme in section 2.4.2 with pw = 2
and Lw = 17. We set the width-at-half-max of the test functions to rwhm = ⌊M/100⌋
timepoints. To exemplify the separation of scales and the severity of the corruption
from noise, the noisy data y, true data x, and trajectories xdd from the learned
dynamical systems are shown in dynamo view and in phase space (for D ≤ 3). We
extend xdd by 50% to show that the data-driven system captures the true limiting
behavior. We set the sparsity to λ = 1

4 minw⋆ 6=0 |w⋆| and γ = 0 except in the Linear
5D and nonlinear pendulum examples, where γ =

√
σNR ≈ 0.32. For the trial basis

we use all monomials up to degree 5 in the state variables, and for the pendulum we
include the trigonometric terms sin(kyd), cos(kyd) for k = 1, 2 and d = 1, 2.

In each case the correct terms are identified with coefficient error E2(ŵ) < 10−2,
in agreement with the trend E2(ŵ) ≈ 0.1σNR observed in the small-noise regime.
For the Linear 5D, Duffing, and Lotka–Volterra systems (Figures 3.4, 3.5, and 3.7)
the data-driven trajectory xdd is indistinguishable from the true data to the eye,
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Fig. 3.4. Large-noise regime: Linear 5D system with damping β = −0.2. All correct terms were
identified with an error in the weights of E2(ŵ) = 0.0064 and a trajectory error of E2(ŵ) = 0.013.

Fig. 3.5. Large-noise regime: Duffing equation, β = 1. All correct terms were identified with
an error in the weights of E2(ŵ) = 0.0075 and a trajectory error of E2(ŵ) = 0.014.

with trajectory error E2(ŵ) < 0.02. For the van der Pol oscillator and nonlinear
pendulum (Figures 3.6 and 3.8), xdd follows a limit cycle with an attractor that is
indistiguishable from the true data (see phase plane plots); however, an error in the
period of oscillation of roughly 0.6% leads to a larger trajectory error. The data-
driven trajectory for the Lorenz equation diverges from the true trajectory around
t = 2.5 (Figure 3.9), which is expected from chaotic dynamics, but still remains close
to the Lorenz attractor.
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Fig. 3.6. Large-noise regime: van der Pol oscillator, β = 4. All correct terms were identified
with coefficient error E2(ŵ) = 0.0073 and trajectory error E2(ŵ) = 0.32. The data-driven trajectory
xdd has a slightly shorter oscillation period of 10.14 time units compared to the true 10.2, resulting
in an eventual offset from the true data x and hence a larger trajectory error. Measured over the
time interval [0, 8] the trajectory error is 0.065.

Fig. 3.7. Large-noise regime: Lotka–Volterra system with β = 1. All correct nonzero terms
were identified with an error in the weights of E2(ŵ) = 0.0013 and trajectory error E2(ŵ) = 0.0082.
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Fig. 3.8. Large-noise regime: nonlinear pendulum with initial conditions x(0) = (15π/16, 0)T .
All correct nonzero terms were identified with an error in the weights of E2(ŵ) = 0.0089 and an
error between E2(ŵ) = 0.076.

Fig. 3.9. Large-noise regime: Lorenz system with x0 = (−8, 7, 27)T . All correct terms were
identified with an error in the weights of E2(ŵ) = 0.0084 and trajectory error E(ŵ) = 0.56. The
large trajectory error is expected due to the chaotic nature of the solution. Using data up until
t = 1.5 (first 1500 timepoints) the trajectory error is 0.027.
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4. Concluding remarks. We have developed and investigated a data-driven
model selection algorithm based on the weak formulation of differential equations.
The algorithm utilizes the reformulation of the model selection problem as a sparse
regression problem for the weights w⋆ of a candidate function basis (fj)j∈[J] intro-
duced in [21] and generalized in [4] as the SINDy algorithm. Our WSINDy algorithm
can be seen as a generalization of the sparse recovery scheme using integral terms found
in [17], where dynamics were recovered from noisy data using the integral equation.
We have shown that by extending the integral equation to the weak form and using
test functions with certain localization and smoothness properties, one may discovery
the dynamics over a wide range of noise levels, with accuracy scaling favorably with
noise: E2(ŵ) ≈ 0.1σNR.

A natural line of inquiry is to consider how WSINDy compares with conven-
tional SINDy. There are several notable advantages of WSINDy; in particular, by
considering the weak form of the equations, WSINDy completely avoids approxima-
tion of pointwise derivatives which significantly reduce the accuracy in conventional
SINDy. When using SINDy, one must choose an appropriate numerical differenti-
ation scheme depending on the noise level (e.g., finite differences are not robust to
large noise but work well for small noise). For WSINDy, test functions from the space
S (see section 2.4) together with the trapezoidal rule are effective in both low-noise
and high-noise regimes. We demonstrate these observations in Appendix A by com-
paring WSINDy to SINDy under several numerical differentiation schemes. On the
other hand, it may be the case that less data is required by standard SINDy. For the
examples shown here, WSINDy works optimally for test functions supported on at
least 15 timepoints, while many derivative approximations require fewer consecutive
points.

WSINDy also utilizes the linearity of inner products with test functions to esti-
mate the covariance structure of the residual, performing model selection in a gener-
alized least squares framework. This is a much more appropriate setting given that
residuals are neither independent nor uniformly distributed; however, we note that
our implementations in this article employ approximate covariance matrices and could
benefit from further refinements and investigation. In Appendix B we show that us-
ing generalized least squares with approximate covariance improves some results over
ordinary least squares, but not significantly. We leave incorporation of more detailed
knowledge of the covariance structure to future work. In addition, generalized least
squares could potentially improve traditional model selection algorithms that rely on
pointwise derivative estimates by similarly exploiting linear operators. Ultimately, a
thorough analysis of the advantages of generalized least squares for model selection
deserves further study.

Lastly, the most obvious extensions lie in generalizing the WSINDy method to
spatiotemporal datasets. WSINDy as presented here in the context of ODEs is an ex-
citing proof of concept with natural extensions to spatiotemporal and multiresolution
settings building upon the extensive results in numerical and functional analysis for
weak and variational formulations of physical problems.

Appendix A. Comparison between WSINDy and SINDy. Here we com-
pare WSINDy and SINDy using the van der Pol oscillator, Lotka–Volterra system, and
Lorenz equation. For WSINDy we place test functions along the time axis according
to the uniform grid strategy. For SINDy, we examine three differentiation methods:
total variation regularized derivatives (SINDy-TV), centered second-order finite dif-
ference (SINDy-FD-2), and centered fourth-order finite difference (SINDy-FD-4). For
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SINDy-TV we use default settings and set the regularization parameter equal to the
time step.

For each system and noise level we generate 200 independent instantiations of
noise and record the average coefficient error E2(ŵ) (3.2) as well as the average true
positivity ratio (TPR) [10]:

(A.1) TPR(ŵ) =
TP(ŵ)

TP(ŵ) + FP(ŵ) + FN(ŵ)
,

where TP(ŵ) is the number of correctly identified nonzero terms, FP(ŵ) is the num-
ber of falsely identified nonzero terms, and FN(ŵ) is the number of terms that are
falsely identified as having a coefficient of zero. Since the feasible range of sparsity
thresholds λ depends on the noise level, we adopt the selection methodology in [14]
to choose an appropriate λ value for each instantiation of noise: λ is chosen from the
set 10{−5+ i

10
,i∈{0,...,50}} (i.e., the 51 values from 10−5 to 1 equally spaced log10) as

the minimizer of the loss function

L(λ) =
∥∥Awλ −Aw0

∥∥
2

‖Aw0‖2
+

#{j : wλ
j 6= 0}
J

,

where A = VΘ(y) for WSINDy and A = Θ(y) for SINDy; wλ is the sequential-
thresholding least squares solution for sparsity threshold λ, and J is the number of
terms in the model library (for further details see [14]).

From Figures A.1, A.2, and A.3 we observe that for small noise (up to σNR =
10−1), the coefficient error for WSINDy follows the linear trend E2(ŵ) ≈ 0.1σNR

Fig. A.1. Comparison between WSINDy and SINDy: van der Pol. Clockwise from top left:
small-noise TPR(ŵ) (defined in (A.1)), large-noise TPR(ŵ), large-noise E2(ŵ) (defined (3.2)),
small-noise E2(ŵ).
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Fig. A.2. Comparison between WSINDy and SINDy: Lotka–Volterra. Clockwise from top left:
small-noise TPR(ŵ) (defined in (A.1)), large-noise TPR(ŵ), large-noise E2(ŵ) (defined (3.2)),
small-noise E2(ŵ).

Fig. A.3. Comparison between WSINDy and SINDy: Lorenz system. Clockwise from top left:
small-noise TPR(ŵ) (defined in (A.1)), large-noise TPR(ŵ), large-noise E2(ŵ) (defined (3.2)),
small-noise E2(ŵ).
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Fig. B.1. Comparison between WSINDy with GLS and WSINDy with ordinary least squares
using the Duffing equation. Results are averaged over 200 instantiations of noise.

(observed in the text) and that SINDy-FD-4 behaves similarly but with slightly worse
accuracy. For larger noise, SINDy diverges in accuracy and identification of the correct
nonzero terms for each differentiation scheme, while WSINDy maintains a TPR of at
least 0.8 up to 40% noise for each system. WSINDy thus provides an advantage across
the entire noise spectrum examined, all while employing the same weak discretization
scheme.

Appendix B. Generalized least squares vs. ordinary least squares.Gene-
ralized least squares (GLS) aims to account for correlations between the residuals [8].
Given a linear model y = Xβ + ǫ, where Cov(ǫ) = Σ and E[ǫ|X] = 0, the GLS
estimator of the parameters β upon observing ŷ is

β̂ =
(
XTΣ−1X

)−1
XTΣ−1ŷ.

This provides the best linear unbiased estimator of β in the sense that if β̃ is any
other unbiased estimator, then β̂ has lower variance: V[β̂i] ≤ V[β̃i], i = 1, . . . , n.

Above we derived an approximate covariance matrix Σ ≈ V′(V′)T to use in
the GLS implementation of WSINDy, although the true covariance depends on the
underlying unknown dynamical system and hence is unattainable. In addition, since
in our case X = G = VΘ(y) depends on the noise ǫ, the assumption E[ǫ|X] = 0 is
violated. Nevertheless, we find that the noise regime σNR ∈ [ 0.01, 0.3] does benefit
from using GLS over ordinary least squares. Figure B.1 shows that for the Duffing
equation, GLS extends the region {σNR | TPR(ŵ) > 0.95} from σNR ≤ 0.05 to σNR ≤
0.15, as well as increases the accuracy in the recovered coefficients. This suggests that
further improvements can be made with a more refined covariance matrix.
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